
Adding Support to XACML for Multi-
Domain User to User Dynamic 
Delegation of Authority 
David W Chadwick1, Sassa Otenko2 and Tuan Anh Nguyen1 

1University of Kent, Computing Laboratory, Canterbury, Kent, CT2 
7NF 
2Oracle Corporation UK Ltd., Oracle Parkway, Thames Valley Park, 
Reading, Berkshire. RG6 1RA. 
1Tel: +447796447184 
1Fax: +44 1227 762 811 

Email: d.w.chadwick@kent.ac.uk, sassa.nf@gmail.com, tn32@kent.ac.uk 
1URL: http://www.cs.kent.ac.uk/people/staff/dwc8/index.html 
 

Authors Biographies 

David Chadwick is Professor of Information Systems Security at the 

University of Kent, and the leader of the Information Systems Security 

Research Group. He is a member of IEEE and ACM. He has published 

widely, with over 120 publications in international journals, 

conferences and workshops, including 5 books and 12 chapters in 

books. He specializes in Trust Management, Public Key Infrastructures 

and Privilege Management Infrastructures. Current research topics 

include: policy based authorisation, privacy protection, identity 

management, the management of trust, the delegation and recognition 

of authority between domains and autonomic security. 

Dr Alexander (Sassa) Otenko has a specialist degree in Applied 

Mathematics and Computing from Sumy State University in the 



2       David W Chadwick, Sassa Otenko and Tuan Anh Nguyen 

Ukraine, where he was the top student in his year. He also has a PhD 

from Salford University in the UK. Sassa moved to the University of 

Kent with David Chadwick in 2005, where he was appointed as a 

research associate. He helped to tutor Tuan as he studied dynamic 

delegation of authority for his PhD. Sassa was the main architect and 

Java programmer for the PERMIS privilege management software 

which he developed whilst studying for his PhD under Professor 

Chadwick. He subsequently completed implementing the SAML 

interface to PERMIS, and integrating PERMIS into Globus Toolkit. 

Tuan Anh Nguyen has a Master of Electronics and 

Telecommunications degree from the Hanoi University of Technology, 

Vietnam. He is studying for a PhD in dynamic delegation of authority 

at the University of Kent, under the supervision of Professor Chadwick. 

 
Abstract. We describe adding support for dynamic delegation of authority between 

users in multiple administrative domains, to the XACML model for authorisation 

decision making. Delegation of authority is enacted via the issuing of credentials from 

one user to another, and follows the role based access control model. We present the 

problems and requirements that such a delegation model demands, the policy 

elements that are necessary to control the delegation chains and a description of the 

architected solution. We propose a new conceptual entity called the Credential 

Validation Service (CVS) to work alongside the XACML PDP. We describe our 

implementation of the CVS and present performance measurements for validating 

delegated chains of credentials. 

Keywords. XACML, RBAC, Delegation of Authority, Credential 

Validation Service. 



Adding Support to XACML for Multi-Domain User to User Dynamic Delegation of 
Authority   3 

1 Introduction 

XACML [8] is an OASIS standard for writing access control policy 

languages in XML. Many people are starting to experiment with it in 

their applications e.g. [11, 12, 25]. XACML was designed as a general 

purpose access control policy language for protecting resources from 

being accessed by subjects who are identified by their attributes. Some 

of XACML’s benefits include: a flexible attribute based authorisation 

model, where access control decisions can be made based on the 

attributes of the subject, the action, the target and the environment; a 

comprehensive way of specifying conditions, so that arbitrarily 

complex conditions can be specified; and the support for obligations. 

An obligation is an action that should be performed by the application’s 

policy enforcement point (PEP) when enforcing the access control 

decision made by the policy decision point (PDP).  XACML policies 

can be built that support role based access controls (RBAC) [5], in 

which users are assigned to roles, and roles are given permissions to 

access resources. An RBAC profile for XACML has been published 

[21]. This requires two XACML PDPs to be constructed. One, the 

access control PDP, determines if the holder of a set of roles can be 

granted access to a resource. The other, the role assignment PDP, can 

only be called by the Role Authority to determine if a particular user is 

allowed to hold a particular role. There are a number of deficiencies in 

this profile. Firstly the role assignment PDP has no knowledge about 

who is a Role Authority and who is not, and therefore it cannot make 

decisions about who can assign roles.  Similarly it cannot support static 



4       David W Chadwick, Sassa Otenko and Tuan Anh Nguyen 

or dynamic delegation of authority because in these cases the Role 

Authority can change. Consequently this function has to be performed 

by the application dependent PEP. We would like it to be application 

independent. The XACMLv3 working draft [18] which has been 

undergoing development for several years, is concerned with the 

administration and delegation of policies, rather than the delegation of 

attributes from one user to another. Therefore it is complementary to 

the work described here. 

 

A delegate is defined as “A person authorized to act as representative 

for another; a deputy or an agent” [1]. Without delegation of authority 

(DOA), managers would soon become overloaded. DOA allows tasks 

to be disseminated between employees in a controlled manner. A 

delegate may be appointed for months, day or minutes, for one task, a 

series of tasks, or all tasks associated with a role. DOA needs to be fast 

and efficient with a minimum of disruption to others. Delegators should 

not need permission from their superiors for each act of delegation they 

undertake, otherwise their superiors would soon become overburdened 

with delegation requests from subordinates. Instead, a delegation policy 

should be in place so that delegators know when they are empowered to 

delegate (i.e. what and to whom) and when they are not. Delegation of 

authority is thus the act of one user with a privilege, the delegator, 

giving it to another user (the delegate), in accordance with some 

delegation policy. Static delegation of authority is when the delegation 

policy contains the complete list of delegators. No new delegators may 

be created without updating the delegation policy. Dynamic delegation 



Adding Support to XACML for Multi-Domain User to User Dynamic Delegation of 
Authority   5 

of authority is when the delegation policy only contains the initial set of 

delegators (the trusted root delegators) and further delegators can be 

created dynamically through the act of delegation. 

 

In the context of role based access controls there are two aspects to 

delegation of authority. One is the delegation of a role from one user to 

another. This is delegation of the user-role assignments. The other is 

the delegation to assign permissions to roles from one user to another. 

This is delegation of the role-permission assignments. The later is 

sometimes referred to as delegation of policy administration. In this 

paper we are only concerned with the former acts of delegation, where 

one user delegates his role to another user, so that the latter can carry 

out the functions of the former. This is the usual form of delegation in 

organisations. Delegation of policy administration on the other hand is 

a specialised function usually only carried out by security 

administrators, and we will not cover that in this paper. 

 

When one user delegates a role to another user, who then delegates to 

another user, recursively, a directed acyclic graph (DAG) is created, 

starting from the root user who has the role initially and is the source of 

the DAG, to the users at the sink nodes of the DAG who end up with 

the authority to assert the delegated role, but cannot delegate it further 

themselves. Intermediate nodes are users with permission to delegate, 

but may or may not be able to assert the role themselves (according to 

the delegation policy). We differentiate between static and dynamic 

delegation of authority as follows. Static delegation of authority is 



6       David W Chadwick, Sassa Otenko and Tuan Anh Nguyen 

when intermediate nodes are not allowed in the DAG and all the 

delegators are configured as root nodes in the software (or policy) prior 

to users accessing resources i.e. the depth of the delegation DAG is 

known from the start to be one, and no intermediate nodes can be 

created. Dynamic delegation of authority is when only the root user 

nodes and delegation policy are configured into the software prior to 

user access, and users may dynamically delegate authority to other 

users as and when they wish. In this case the delegation DAG is created 

dynamically as one user delegates to another, and new leaf and 

intermediate nodes are created spontaneously. 

 

A responsive authorisation infrastructure that can cater for rapidly 

changing dynamic environments should be able to validate the roles 

given to any of the users in a dynamically created delegation DAG, 

even though the actual DAG is not known when the authorisation 

policy is written and fed into the PDP. This requires the authorisation 

policy to be supplemented with a delegation policy that will state how 

the delegation DAG is to be constrained. As long as a user’s role falls 

within the scope of the delegation DAG then it is considered valid, if it 

falls outside the DAG, and thus outside the delegation policy, it is not. 

The purpose of the current research was to add dynamic delegation of 

authority to an authorisation infrastructure that contains an XACMLv2 

access control PDP (or in fact any PDP that bases its access control 



Adding Support to XACML for Multi-Domain User to User Dynamic Delegation of 
Authority   7 

decisions on the attributes of subjects), without changing the 

XACMLv2 PDP or its policy1. 

 

We assume that permissions are assigned to roles, or attributes in the 

more general case, and that the attributes are assigned to the users. An 

important point to clarify at the outset is the difference between an 

attribute and a credential (i.e. authorisation credential). An attribute is a 

property of an object2; a credential is a statement or assertion about an 

attribute. In particular, a credential must state: what the attribute is, 

who the attribute belongs to, who says so (i.e. who is the credential 

issuer), and if there are any policy constraints on its validity. When 

attributes of an entity do not exist as part of the entity, they are often 

stored or transferred as separate stand alone credentials. In this paper 

we are concerned with dynamic delegation of authority from one user 

to another by the use of credentials. One important feature of a 

credential is that it requires validation before the user can be attributed 

with the asserted property. 

 

The rest of this paper is structured as follows. Section 2 describes the 

problems that need to be addressed when creating an infrastructure to 

                                                 
1 Note that this research originally started whilst XACMLv2 was still under construction, when 

it was known that XACMLv2 would not support dynamic delegation of authority. This was 

one of the reasons for not proposing changes to XACMLv2. Work is currently underway to 

add administrative policy delegation to XACML v3 [18], but this is complementary to the 

work described here. 
2 Dictionary.com defines an attribute as “A quality or characteristic inherent in or ascribed to 

someone or something” 



8       David W Chadwick, Sassa Otenko and Tuan Anh Nguyen 

support dynamic delegation of authority between multiple domains, and 

this leads to various requirements being placed on any proposed 

solution. Section 3 describes the new conceptual credential validation 

service (CVS) that is proposed to resolve the problems and 

requirements described in Section 2. Section 4 briefly describes the 

XACMLv2 infrastructure. Section 5 discusses how the CVS could 

conceptually be incorporated into the XACML infrastructure. Section 6 

describes our implementation of a CVS, and provides some 

performance measurements of its operation. Section 7 concludes, and 

looks at possible future work in this area. 

2 Problem and Requirement Statements 

The underlying model used for dynamic delegation of authority in 

multiple domains is an enhancement of the basic XACMLv2 model 

(see section 5). In this enhanced model a user (subject) is dynamically 

given a set of attributes by one or more dynamically created attribute 

authorities (AAs) in one or more domains, and these attributes, in the 

form of credentials, are presented (pushed) to or obtained (pulled) by a 

new functional component of the authorisation infrastructure which we 

call the Credential Validation Service (CVS). The CVS validates the 

user’s credentials and returns the valid attributes directly or indirectly 

to the PDP. The PDP then makes its access control decisions based on 

its policy, the validated set of subject attributes, the target and 

environmental attributes and the parameters of the user’s request. 

Below are a set of issues and requirements that need to be addressed by 

the new functional component in such a model. 



Adding Support to XACML for Multi-Domain User to User Dynamic Delegation of 
Authority   9 

1. Valid vs. Authentic Credentials. The first thing to recognise is the 

difference between an authentic credential and a valid credential. 

An authentic credential, from the perspective of authorisation 

decision making, is one that has been received exactly as it was 

originally issued by the AA. It has not been tampered with or 

modified. Its digital signature, if present, is intact and validates as 

trustworthy meaning that the AA’s signing key has not been 

compromised, i.e. his public key (certificate) is still valid. This 

means that the public key certificate has been issued by a known 

trusted root CA or one of its subordinates, and has not been revoked 

since then. A valid credential on the other hand is one that is trusted 

by the CVS’s policy for authorisation decision making. In order to 

clarify the difference, an example might be an employee certificate 

issued by the University of Kent. This credential is authentic, since 

it has been issued by the University of Kent’s AA. The credential is 

also valid for accessing staff resources at the University of Kent. 

However, the credential is not valid if used via eduroam to access 

staff resources at the University of London (yet it remains 

authentic).  

2. Credential validity is determined by the target domain. The 

above discussion leads onto the second problem that needs to be 

addressed in any solution, and this is that there are potentially 

multiple domains within an authorisation infrastructure. There are 

issuing domains, which issue credentials, and target domains that 

consume credentials. The CVS is part of the target domain, and as 

such it must use the policy of the target domain to decide whether a 



10       David W Chadwick, Sassa Otenko and Tuan Anh Nguyen 

credential is to be trusted or not i.e. is valid or not. So the validity 

of an authorisation credential is ultimately determined by the 

(writer of the) CVS policy. A valid credential is a credential that is 

trusted by the consumer of the credential. 

3. Multiple trusted credential issuers. In any system of any 

significant size, there will be multiple credential issuers. Some of 

these will be trusted by the target domain, others will not be. Thus 

the system must be capable of differentiating between trusted and 

untrusted issuers, and of dynamically obtaining this information 

from somewhere. (In point 4 below we propose to use roots of 

trust.) Different target domains in the same system may trust 

different issuers, and therefore the CVSs must be capable of being 

flexibly configured via their policies to say which issuers are 

trusted and which are not. For example, in the physical world of 

shopping with credit cards, there are several issuers such as Amex 

and Visa. Some shopkeepers accept (trust) both issuers, others only 

trust one of them. It is their (the target domain’s) decision which 

card issuers to trust. 

4. Identifying roots of trust. Point 3 above leads us to conclude that 

the CVS must be configured, in an out of band trusted way, with at 

least one authorization (or Privilege Management Infrastructure –

PMI) root of trust and it is from these PMI roots of trust that all 

credentials must be validated in order to be trusted. A PMI root of 

trust must be a single entity identified directly or indirectly by its 



Adding Support to XACML for Multi-Domain User to User Dynamic Delegation of 
Authority   11 

public key3, since this key will be used to validate the signed 

credentials that are received. Note that it is not possible to refer to a 

PMI root of trust through its set of assigned attributes, e.g. anyone 

with a project manager attribute and company X attribute, since 

these attributes may identify several candidate roots, and may be 

issued by several attribute authorities, in which case it wont be 

known who to trust. This implies that a higher authority is the real 

PMI root of trust, the one who issues the set of attributes that can be 

trusted. 

5. The role of the Issuer’s policy. Most issuers will have an Issuing 

Policy that states its rules for issuing credentials and places 

constraints on the use of the issued credentials. This policy will 

include any delegation policy to say which delegates are allowed to 

act as delegators and delegate which credentials to which users. 

Consequently there will be constraints on which credentials are 

deemed to be valid for which purposes within and without the 

issuing domain. However, the target domain may choose to ignore 

these constraints and trust (treat as valid) credentials which the 

issuer deems to be invalid. A well known example in the physical 

world concerns supermarkets who issue their own discount 

coupons. These coupons state quite clearly that they are only valid 

for use in supermarkets owned by the issuer. However, it is often 

                                                 
3 When an X.509 conformant PKI is used which already has its own configured CA root public 

keys, the globally unique name of the subject in the PKI certificate can be used to refer to the 

authorization root of trust, instead of the public key in the certificate, in which case the 

subject will be trusted regardless of which public/private key pair it is currently using. 



12       David W Chadwick, Sassa Otenko and Tuan Anh Nguyen 

the case that a different brand of supermarket will accept these 

discount coupons as a way of enticing the other supermarkets’ 

customers to come and shop in their own supermarket. Thus the 

CVS must have a way of either conforming to or overriding the 

issuer’s policy. If a target domain chooses to ignore the issuer’s 

policy, then it is liable for any losses incurred by this. The issuer 

cannot be held responsible for targets that ignore its Issuing Policy. 

6. Obtaining the Issuing Policy. In a multi-domain system, the target 

domain may not be aware of the issuing domain’s Issuing Policy, 

unless it is explicitly placed into the issued credentials. If the 

complete Issuing Policy is not explicitly placed in the issued 

credentials, but the target domain still wishes to enforce it and only 

treat as valid those credentials that the issuer says are valid, then the 

target’s CVS will need to infer or be configured with the issuer’s 

Issuing Policy. For example, in SPKI [7], a credential is marked as 

being infinity delegatable or not, and does not contain any other 

details of the Issuing Policy, such as who is entitled to be delegated 

the permission. Thus unless a delegatable credential explicitly 

contains restrictions, or out of band means are used to transfer 

them, the target CVS will infer than anyone is entitled to be 

delegated this credential. 

7. Pulling credentials. The CVS may not have all the credentials it 

needs in order to validate the credential(s) presented by the user, 

e.g. if only the credential of a sink node in a delegation DAG is 

presented, but none of the intermediate node credentials are 

presented. In the most extreme case the user may not present any 



Adding Support to XACML for Multi-Domain User to User Dynamic Delegation of 
Authority   13 

credentials at all, for example, when a user logs into a portal and the 

portal displays only the services this user is allowed to see, the 

portal has, unknown to the user, retrieved the user’s credential(s) 

from a repository in order to determine which services to display. 

There is thus a strong requirement for the CVS to be able to pull 

credentials before the PDP can make access control decisions. 

8. Discovering credential locations. The user’s credentials may be 

stored and/or issued in a variety of places, for example, each AA 

may store the attributes or the credentials it issues in its own 

repository. One could always mandate that the user collects 

together the credentials he wants to use, before attempting to gain 

access to a resource e.g. as in the VOMS model [13]. Alternatively 

the user could send references to the locations of the credentials 

rather than the credentials themselves. Both of these models have 

their merits, but they are not always very user friendly. In fact, in 

some cases, the user may not be aware what credentials have 

actually been issued to him or where they are stored – he might 

only know what services he is allowed to access, as in the portal 

example given above. Thus, in addition to being pushed credentials 

the CVS must also be capable of contacting different 

repositories/AAs in order to pull the user’s credentials prior to 

making its access control decision. 

9. Multiple user identities.  If the user is known by different 

identities to the different AAs, then there must be a way for the user 

to use these mixed credentials in the same session. The GridShib 

project currently uses a mapping table to convert between X.509 



14       David W Chadwick, Sassa Otenko and Tuan Anh Nguyen 

PKI identities and Shibboleth identity provider identities [14]. But a 

more flexible approach is needed, in which the user may determine 

which set of credentials are to be used in a given session and the 

CVS can prove the user’s right to assert each one. We propose one 

solution to this in [20]. 

10. Multiple credential formats. Following on from above, the user’s 

credentials may be created in different formats and stored in 

different repositories, and therefore presented to the CVS in 

different ways, e.g. as signed SAML assertions [2], as X.509 

attribute certificates [3], as Shibboleth encoded attributes [4] etc. 

The CVS needs to be able to decode and handle credentials in 

different formats. In [25] the authors propose a Credential 

Conversion System (CCS) to handle this problem, by the CCS re-

issuing credentials in the local format. However this changes the 

trust model by introducing trust in the CCS rather than trust in the 

credential issuer. We prefer to keep to the original trust model 

where credentials are issued by their authoritative sources. 

11. Hierarchies of attributes. The attributes may form some sort of 

hierarchy, for example in accordance with the ANSI RBAC 

specification [5], in which the superior attributes (or roles) inherit 

the permissions of the subordinate roles. The CVS needs to be 

aware of this hierarchy when validating the credentials. For 

example, if a superior role holder delegates a subordinate role to 

another user, then the CVS needs to know if this delegation is valid 

or not, given that the attributes are different. Furthermore some of 

the attributes known to the CVS won’t form a hierarchy. Therefore 



Adding Support to XACML for Multi-Domain User to User Dynamic Delegation of 
Authority   15 

the CVS needs to be able to cater for multiple disjoint attribute 

hierarchies. 

12. Constraining credential validity. Only part of an authentic 

credential might be valid in a target domain. For example, a 

credential might contain multiple attributes but the target domain 

only trusts the issuer to issue a subset of the enclosed attributes. 

13. Understanding and differentiating attributes. If each credential 

issuer puts its own proprietary attributes into its credentials, no 

other VO partner will be able to understand and use them. But for 

inter domain authorisation, remotely issued attributes need to be 

understood by the receiving domain. There are two possible 

solutions to this problem: standard attributes and attribute mappings 

both of which are described below.  

 

The function of attribute mappings is to map external (unknown) 

attributes into internally known ones. With this approach the unique 

combination of issuer, attribute type and attribute value are mapped 

into a locally understood attribute value or role, and the remote users 

with these credentials inherit the permissions that are granted to the 

local attribute value or role. Of course, this requires the mapping 

function to be configured with knowledge of these unknown attributes 

so that correct mappings can be performed, but this is a tractable 

problem.  

 

The alternative approach to attribute mappings is to define a common 

set of standard attributes. This allows the attributes that are issued by 



16       David W Chadwick, Sassa Otenko and Tuan Anh Nguyen 

every issuing domain to be understood by each receiving domain. This 

is a feasible approach for federations. Perhaps the most extreme 

example of this are credit cards such as Visa. Visa cards (a plastic 

credential) are issued by hundreds of different issuing banks, but all 

contain the same Visa logo (attribute) and all are treated as being equal 

by the relying parties, regardless of the issuer. The US academic 

community also adopted this approach some years ago, by defining the 

EDU person schema [6], which is a collection of standard attribute 

types, and in some cases (for the affiliation attributes) standard values 

as well. However, in the general case it will never be possible to define 

standard sets of values for all attributes that will provide sufficiently 

fine grained access control both for and between all organisations in a 

VO. Locally defined values of standard attributes will become the 

differentiating factor for fine grained control. In order to prevent 

clashes of attribute values, Internet 2 defined a standard encoding 

format for values to provide them with global uniqueness so that no 

two organisations should issue the same value for attributes which are 

inherently different. However, not all organisations may conform to 

these uniqueness rules, and there is no way of enforcing it. Thus 

standard attributes on their own can never fully resolve the problem of 

understanding and differentiating between attributes. For example, 

suppose most organisations in the world issue a standard Project 

Manager attribute to their project managers. In a VO between 

organisations A and B, the CVS policy for organisation B might only 

trust the Project Manager attributes issued by itself, and not those 

issued by organisation A (or by C or D or any other organisation). Or 



Adding Support to XACML for Multi-Domain User to User Dynamic Delegation of 
Authority   17 

alternatively it might wish to downgrade those issued by organisation A 

and treat them as being equivalent to a guest user attribute. Or it might 

decide to trust the project managers from A as being equal to its own 

project managers. Thus some form of attribute mapping may still be 

required even when standard attributes are used. 

 

In conclusion, the CVS’s policy needs to be flexible enough to cater for 

all the above requirements, including the ability to perform attribute 

mappings. 

3 Architecting a Solution 

Given the problem statements and various requirements from above, 

one can see that all these new functional requirements cannot be met by 

existing PDPs. Consequently, we have proposed a new conceptual 

component called the Credential Validation Service (CVS), whose 

purpose is to perform the new functionality. In essence the purpose of 

the CVS is to validate a set of credentials for a subject, issued in 

different formats by multiple dynamic attribute authorities from 

different domains, according to the local policy, and return a set of 

valid attributes. How this conceptual component is merged into the 

XACML infrastructure will be described later. There are several 

reasons for making the CVS a separate component to the XACML 

PDP. Firstly, its purpose is to perform a distinct function from the PDP. 

The purpose of the PDP is to answer the question “given this access 

control policy, and this subject (with this set of valid attributes), does it 

have the right to perform this action (with this set of attributes) on this 



18       David W Chadwick, Sassa Otenko and Tuan Anh Nguyen 

target (with this set of attributes)” to which the answer is essentially a 

Boolean, Yes or No4. The purpose of the CVS on the other hand is to 

perform the following “given this credential validation policy, and this 

set of (possibly delegated) credentials, please return the set of valid 

attributes for this entity” to which the answer will be a subset of the 

attributes in the presented credentials, possibly mapped into locally 

known and trusted attributes. Secondly, the XACML language is 

incapable of specifying credential chains and therefore handling 

delegated credentials in a request context. This is because subjects and 

attribute issuers are identified differently in the language (subjects are 

identified by any attributes of any data type whilst the attribute issuer is 

an optional string), hence it is not possible to chain delegated 

credentials together. 

 

When architecting a solution there are several things we need to do. 

Firstly we need a trust model that will tell the CVS which credential 

issuers and policy issuers to trust. Secondly we need to define a 

credential validation policy that will control the trust evaluation of the 

credentials, including mapping the validated attributes into locally 

known attributes. Finally we need to define the functional components 

that comprise the CVS. 

 

                                                 
4 XACML also supports other answers: indeterminate (meaning an error) and not applicable 

(meaning no applicable policy), but these are conceptually other forms of No or Don’t Know. 



Adding Support to XACML for Multi-Domain User to User Dynamic Delegation of 
Authority   19 

3.1 The Trust Model 

The CVS needs to be provided with a trusted master credential 

validation policy5. We assume that this credential validation policy will 

be provided by the Policy Administration Point (PAP), which is the 

conceptual entity from the XACML specification that is responsible for 

creating policies. If there is a trusted communications channel between 

the PAP and the CVS, then the policy can be provided to the CVS 

through this channel. If the channel is not trusted, or the policy is stored 

in an intermediate repository, then the policy should be digitally signed 

by a trusted policy author, and the CVS configured with the public key 

(or distinguished name if X.509 certificates are being used) of the 

policy author. In addition, if the PAP or repository, has several 

different credential validation policies available to it, that are designed 

to be used at different times and under different conditions, then the 

CVS needs to be told which policy to use. In this way the CVS can be 

assured of being configured with the correct credential validation 

policy. All other information about which sub policies, credential 

issuers and their respective policies to trust can be written into this 

master credential validation policy by the policy author. 

 

In a distributed environment we will have many issuing authorities, 

each with their own issuing policies provided by their own PAPs. If the 

policy author decides that his CVS will abide by these issuing policies 

                                                 
5 Note that whilst we refer to the policy in the singular, we acknowledge that it will contain 

multiple policy statements, and therefore may be regarded as a set of policies.   



20       David W Chadwick, Sassa Otenko and Tuan Anh Nguyen 

there needs to be a way of securely obtaining them. Possible ways are 

that the CVS could be given read access to the remote PAPs, or the 

remote issuing authorities could be given write access to the local PAP, 

or more realistically, the issuing policies can be bound to their issued 

credentials and obtained dynamically during credential validation. 

Whichever way is used, the issuing policies should be digitally signed 

by their respective issuers so that the CVS can evaluate their 

authenticity. If the issuing policies are bound to the credentials, then a 

single signature over all the information will suffice.  

 

The policy author may decide to completely ignore all the issuer’s 

policies (see section 2 point 5), or to use them in combination with his 

own credential validation policy, or to use them in place of his own 

policy. Thus this information (or policy combining rule) needs to be 

conveyed as part of the CVS’s policy. 

3.2.The Credential Validation Policy 

The CVS’s policy needs to comprise the following components: 

- a list of trusted credential issuers. These are the issuers in the local 

and remote domains who are trusted to issue credentials that are valid 

in the local domain. They are the roots of trust. This list is needed so 

that the signatures on credentials and policies can be validated. The list 

could contain the raw public keys of the issuers or it could refer to them 

by their X.500 distinguished names or their X.509 public key 

certificates. 



Adding Support to XACML for Multi-Domain User to User Dynamic Delegation of 
Authority   21 

- the hierarchical relationships of the various sets of attributes. All 

attributes need to be included in this hierarchy; both externally defined 

ones and internally understood ones. Some attributes, such as roles, 

form a natural hierarchy. Other attributes, such as file permissions 

might also form one e.g. all permissions is superior to read, write and 

delete; and write is superior to append and delete. Other attributes 

usually will not e.g. the names of organisations. When an attribute 

holder delegates a subordinate attribute to another entity, the credential 

validation service needs to understand the hierarchical relationship and 

whether the delegation is valid or not. For example, if a holder with a 

manager role delegates the administrator role to someone, is this a valid 

delegation or not? The relationship of manager to administrator in the 

attribute hierarchy will provide the answer to this question. 

 

Figure 1. An example Delegation Directed Acyclic Graph 



22       David W Chadwick, Sassa Otenko and Tuan Anh Nguyen 

- a description (schema) of the valid delegation graph. The process of 

delegation forms a directed acyclic graph (DAG), with the initial PMI 

roots of trust as the sources of the graph (see Figure 1). Intermediate 

nodes in the graph represent delegates who subsequently act as 

delegators and further delegate their attributes (or permissions) to 

others. Sink nodes represent delegates who have not further delegated 

their attributes (or permissions) to others. Edges in the graph represent 

the attributes or permissions that have been delegated from the 

delegator to the delegate. Successor edges must always represent the 

same or less attributes and permissions than the union of their 

predecessor edges, otherwise a delegator will have delegated more 

privileges than he himself possessed. The graph is acyclic because a 

delegator should not be able to delegate to herself or to a predecessor 

(e.g. edges 14 and 17 in Figure 1). Rationally, there is a reason for this, 

a delegate should never need to delegate to an entity that previously 

delegated directly or indirectly to it. But there is also a security reason 

for this. There is a potential security loophole if a delegator, who is 

allowed to delegate a privilege but not to assert it, does subsequently 

delegate it to herself, then she would be able to assert the delegated 

privilege. This CVS policy component describes how the CVS can 

determine if a chain of delegated credentials and/or policies falls within 

a trusted graph or not. This is obviously a complex policy component. 

One way of simplifying it, is to restrict the directed graph into being a 

delegation tree, or set of trees, in which there is only one source or PMI 

root node for each tree which holds the set of attributes that it can 

delegate, and each act of delegation creates a separate delegate 



Adding Support to XACML for Multi-Domain User to User Dynamic Delegation of 
Authority   23 

subordinate node. If a delegate receives attributes from two or more 

delegators in separate acts of delegation, such as edges 7 and 12 in 

Figure 1, then these are represented as separate edges and nodes in the 

tree, without merging the delegate nodes together. Figure 2 shows how 

the DAG of Figure1 might be simplified into two delegation trees. 

Delegation trees significantly simplify the process of credential 

validation and credential revocation because each credential only has a 

single parent. Even then, there is no widely accepted standard way of 

describing delegation trees. One approach can be found in X.509 [3] 

and a different approach in [9]. The essential elements however should 

specify who is allowed to be in each tree (both as an issuer and/or a 

subject), what attributes they can validly have (assert) and delegate, and 

what constraints apply. 

 
Figure 2. An example set of Delegation Trees 

 



24       David W Chadwick, Sassa Otenko and Tuan Anh Nguyen 

- any validity constraints on the various credentials (e.g. time 

constraints or target constraints). The CVS’s policy may place its own 

constraints on credential validity regardless of those of the issuer. 

Consider for example time constraints. An issuer gives each issued 

credential a validity period, which may range from fairly short (e.g. 

minutes) to very long (e.g. several years). The primary reason for 

issuing short lived certificates (for other than intrinsically short lived 

permissions) is so that they do not need to be revoked, and therefore the 

relying party does not need to consult revocation lists, white lists, or 

OCSP servers etc. In the case of relatively long lived credentials, the 

CVS policy author may have his own opinion about which credentials 

to trust, from a chronological perspective, and therefore may wish to 

place his own additional time constraints on remotely issued 

credentials. For example, a plumber may have a “certified plumber” 

credential, which is valid for 10 years from the date of issue. He may 

be required to pass a competence test every ten years to prove that he is 

conversant with the latest technology developments and quality 

standards before the credential is renewed. However, in the target 

domain, the CVS policy author may decide that he does not want to 

accept anyone with a credential that is newer than one year old, due to 

insufficient experience on the job, or is more than 8 years old, due to 

doubts about competencies with the latest technologies. Consequently 

the CVS must be told what the local constraints are on credential 

validity. 

- the attribute mapping policy that maps externally defined attributes 

into ones known by the local PDP and used in its access control rules. 



Adding Support to XACML for Multi-Domain User to User Dynamic Delegation of 
Authority   25 

- finally, we need a disjunctive/conjunctive directive (or policy 

combining rule) to say how to intersect the issuer’s policy with the 

CVS’s own policy. The options are: only the issuer’s issuing and 

delegation policy should take effect, or only the CVS’s policy should 

take effect, or both should take effect and valid credentials must 

conform to both policies. 

 

Note that when dynamic delegation of authority is not being supported, 

the above policy can still be used in a simplified form to support static 

delegation of authority. In this case the delegation trees reduce to one 

level hierarchies, in which the root nodes are the (static) set of trusted 

issuers and the first level nodes are the set of delegates who can be 

issued with credentials. In this case the CVS’s policy now controls 

which trusted issuers are allowed to assign which attributes to which 

subjects, along with the various constraints and disjunctive/conjunctive 

directive, but the subjects are not allowed to delegate further. 

 

XACMLv2 [8] or its RBAC profile [21] are not suitable instruments to 

express Credential Validation Policies. As the RBAC profile states 

“The policies specified in this profile do not answer the question “What 

set of roles does subject X have?” That question must be handled by a 

Role Enablement Authority, and not directly by an XACML PDP”. The 

current working draft of XACMLv3 [18] is not suitable either. An 

important requirement for multi-domain dynamic delegation is the 

ability to accept only part of an asserted credential. This means that the 

policy should be expressive enough to specify what is the maximum 



26       David W Chadwick, Sassa Otenko and Tuan Anh Nguyen 

acceptable set of attributes that can be issued by one Issuer to a Subject, 

and the evaluation mechanism must be able to compute the intersection 

of this with those that the Subject’s credential asserts. The approaches 

used by XACML can only state that an asserted set of attributes or 

policies is fully accepted, or fully rejected. In [18] the delegation is 

deemed to be valid if the issuer of the delegated policy could have 

performed the request that the policy grants to the delegatee. We think 

this is a serious deficiency, which lies at the core of the XACML policy 

evaluation process.  We think it is a limitation on an independent 

issuing domain to have to take into account all the policies that the 

validating domains support, so that only fully acceptable sets of 

credentials or policies can be issued to its subjects. Our model is based 

on full independence of the issuing domain from the validating 

domains. In general it is impossible for a validating domain to fully 

accept an arbitrary set of credentials from an issuing domain, since the 

issuing and validating policies will not match. It is not always possible 

for the issuing domain to tell in advance in what context a subject’s 

credentials will be used (unless new credentials are issued every time a 

subject requests access to a resource) so it is not possible to tell in 

advance what validation policy will be applied to them. 

 

Having identified this problem, we propose a solution that uses a non-

XACML based credential validation policy first, and an XACML 

policy next for access control decision making that uses the delegated 

attributes that have been validated by the CVS’s policy. 



Adding Support to XACML for Multi-Domain User to User Dynamic Delegation of 
Authority   27 

3.2.1 Formal Credential Validation Policy 

We define a Credential Validation Policy as an unordered set of tuples 

<S, I, C, E>, where S is a set of Subjects to whom any Issuer from set I 

can assign at most a set of Credentials C, but only if any of the 

conditions in set E holds true: 

CVP = {<S, I, C, E>} 

We define the Credential Validation process as a process of obtaining a 

subset of valid credentials V, given an asserted set of credentials c, 

issued by issuer i to the subject s, if condition e holds true at the time of 

evaluation:  

V = { c∩C | c∩C≠∅, s⊆S, i⊆I, e⊆E, <S, I, C, E>⊆CVP } 

Note that in XACML the only possible evaluation of a Credential 

Validation process is:  

V = { c | c⊆C, s⊆S, i⊆I, e⊆E, <S, I, C, E>⊆CVP } 

Further, we define a dynamic delegation process as a process of 

obtaining a set R of Credential Validation rules for intermediate issuers, 

i.e. the issuers on the path from the policy writer to the end user, where 

the intermediate issuer s is issued a set of Credentials c by a higher 

level issuer i, subject to condition e and a constraint on subject domain 

d: 

Rs = { <d∩S\s, s, c∩C, e> | c∩C≠∅, s⊆S, i⊆I, e⊆E, 

<S, I, C, E>⊆CVP∪Ri } 



28       David W Chadwick, Sassa Otenko and Tuan Anh Nguyen 

Thus the issuer i can allow the issuer s to delegate a subset of his own 

permissions to a subset of his own set of subjects, subject to the 

condition e being stricter than that imposed on i.  Note the recursive 

nature of the process - the tuple <S, I, C, E> must belong to the CVP or 

to the set of valid rules for issuer i. Note also that loops in the 

delegation are prohibited by excluding the holder of the rule from the 

set of possible subjects. XACML currently lacks the expressiveness for 

deriving new Credential Validation rules given the set of existing rules 

and valid credentials. 

3.3 The CVS functional components 

Figure 3 illustrates the architecture of the CVS function and the general 

flow of information and sequence of events. First of all the service is 

initialised by giving it the credential validation policy (step 0). Now the 

CVS can be queried for the valid attributes of an entity (step 1). 

Between the request for attributes and returning them (steps 1 and 6) 

the following events may occur a number of times, as necessary i.e. the 

CVS is capable of recursively calling itself as it determines the path in 

a delegation tree from a given node to a PMI root of trust. The Policy 

Enforcer requests credentials from a Credential Provider (step 2). When 



Adding Support to XACML for Multi-Domain User to User Dynamic Delegation of 
Authority   29 

operating in credential pull mode, the credentials are dynamically 

 

Figure 3. Data Flow Diagram for Credential Validation Service Architecture 

 

pulled from one or more remote credential providers (these could be 

AA servers, LDAP repositories etc.). The actual attribute request 

protocol (e.g. SAML or LDAP) is handled by a Credential Retriever 

module. When operating in credential push mode, the CVS client stores 

the already obtained credentials in a local credential provider repository 

and pushes the repository to the CVS, so that the CVS can operate in 

logically the same way for both push and pull modes. After credential 

retrieval, the Credential Retriever module passes the credentials to a 

decoding module (step 3). From here they undergo the first stage of 

validation – credential authentication (step 4). Because only the 

Credential Decoder is aware of the actual format of the credentials, it 

has to be responsible for authenticating the credentials using an 

Credential Validation Service 

Policy 

Admin 

Point

Credential 

Provider 

Credential Validation 

Policy Enforcer 

Credential 

Decoder

Credential Retriever 

Credential 

Authenticator 

0. Initialize with a policy

1. Request attributes 

2. Request credentials 

3. Return credentials 

4. Authenticate 

credentials

5. Return authentic transcoded 

credentials 

6. Return attributes 



30       David W Chadwick, Sassa Otenko and Tuan Anh Nguyen 

appropriate Credential Authenticator module. Consequently, both the 

Credential Decoder and Credential Authenticator modules are encoding 

specific modules. For example, if the credentials are digitally signed 

X.509 attribute certificates, the Credential Authenticator uses the 

configured X.509 PKI to validate the signatures. If the credentials are 

XML signed SAML attribute assertions, then the Credential 

Authenticator uses the public key in the SAML assertion to validate the 

signature. The Credential Decoder subsequently discards all credentials 

that are deemed by the Authenticator module to be unauthentic – these 

are ones whose digital signatures are invalid, either cryptography or 

because the signer’s certificate cannot be traced to a PKI root of trust, 

or because the signer’s certificate has been revoked. Authentic 

credentials on the other hand are decoded and transformed into an 

implementation specific local format that the Policy Enforcer is able to 

handle (step 5). 

 

The task of the Policy Enforcer is to decide if each authentic credential 

is valid (i.e. trusted) or not. It does this by referring to its Credential 

Validation policy to see if the credential has been issued by a PMI root 

of trust or not. If it has, it is valid. If it has not, the Policy Enforcer has 

to work its way up the delegation tree (or graph) from the current 

credential to its issuer, and from there to its issuer, recursively, until a 

PMI root of trust is located, or no further issuers can be found (in which 

case the credential is not trusted and is discarded). Consequently steps 

2-5 are recursively repeated until closure is reached. Even when the 

delegation graph has been simplified to a set of delegation trees, in the 



Adding Support to XACML for Multi-Domain User to User Dynamic Delegation of 
Authority   31 

general case there will be multiple trees each with their own PMI root 

of trust, who each may have their own Issuing Policy, which may have 

been further restricted by their delegates, which may then need to be 

adhered to or not by the Policy Enforcer according to the CVS’s policy. 

There are also issues of height first or breadth first upwards tree 

walking, or top-down vs. bottom-up tree walking. These are primarily 

implementation rather than conceptual issues, as they effect 

performance and quality of service, and so we will address them further 

in Section 6 where we describe our implementation of a CVS.  

 

The proposed architecture makes sure that the CVS can:  

• Retrieve credentials from a variety of physical resources 

• Decode the credentials from a variety of encoding formats 

• Authenticate and perform integrity checks specific to the 

credential encoding format 

All this is necessary because realistically there is no way that all of 

these will fully match between truly independent issuing domains and 

the validating domain. 

4 The XACML Model 

Figure 4 shows the overall conceptual set of interactions, as described 

in XACMLv2 [8]. The PDP is initially loaded with the XACML policy 

prior to any user’s requests being received (step 1). The user’s access 

request is intercepted by the PEP (step 2), is authenticated, and any 

pushed credentials are validated and the attributes extracted (note that 



32       David W Chadwick, Sassa Otenko and Tuan Anh Nguyen 

this is not within the scope of the XACML standard). The request and 

user attributes (in local format) are forwarded to the context handler 

(step 3), which may ask the PIP for additional attributes (steps 6 to 8) 

before passing the request to the PDP (step 4). If the PDP determines 

from the policy that additional attributes are still needed, it may ask the 

context handler for them (step 5). Optionally the context handler may 

also forward resource content (step 9) along with the additional 

attributes (step 10) to the PDP. The PDP makes a decision and returns 

it via the context handler (step 11) to the PEP (step 12). If the decision 

contains optional obligations they will be enforced by the obligations 

service (step 12).  

 

As can be seen from Figure 4, XACMLv2 currently has nothing to say 

about credentials or how they are validated. 

 
 

Figure 4.  Data Flow Diagram for XACML Architecture 



Adding Support to XACML for Multi-Domain User to User Dynamic Delegation of 
Authority   33 

5 Incorporating the CVS into XACML 

Figure 5. Incorporating the CVS by directly calling it from the PEP 

 

Figure 6. Incorporating the CVS as an additional module called by the XACML Context 

handler 
 



34       David W Chadwick, Sassa Otenko and Tuan Anh Nguyen 

Figures 5, 6 and 7 show the three possible ways in which the CVS 

could be incorporated into the XACML model. The CVS could be an 

additional component called by either the PEP (step 101 in Figure 5) or 

the context handler (step 103 in Figure 6), or it could completely 

replace the PIP (step 6 in Figure 7). 

 

The primary advantage of having the CVS called by the PEP (Figure 

5), is that existing XACMLv2 implementations do not need to change. 

Furthermore some PEPs, such as Globus Toolkitv4 [27], already 

implement this model. When GT4 is pushed a complete set of 

credentials, it makes a call-out to an external plug-in to process them 

before calling the PDP. When called by the PEP, the CVS is either 

passed a complete bag of credentials (push mode), or it fetches all the 

credentials it needs (pull mode), or a mixture of the two modes occurs 

 
Figure 7. Incorporating the CVS as a replacement for the XACML PIP module 



Adding Support to XACML for Multi-Domain User to User Dynamic Delegation of 
Authority   35 

and the CVS pulls the additional attributes that it needs to supplement 

those pushed by the PEP. In all cases the CVS returns the valid set of 

subject attributes to the PEP, which the latter can then pass to the 

existing XACML context handler. The primary disadvantage of this 

model is that each application will need to be modified in order to 

utilise the CVS, since the PEP is an application dependent component 

of the authorisation infrastructure. Note that this model, when operating 

in push mode only, with no credential retrievals, is similar to that being 

proposed by the WS-Trust specification, in which the Security Token 

Service (STS) operates as a token validation service [10]. However, the 

STS has no equivalent functionality of the CVS operating in credential 

pull mode. 

 

The advantage of having the CVS called by the context handler is that 

many existing applications i.e. the PEPs, will not need to change. If 

subject credentials can be packaged like subject attributes and hence 

relayed transparently from the access requestor to the context handler, 

or the CVS operates in pull mode, then a PEP can call an enhanced 

context handler without needing to be modified. The only change that 

will be needed is to the context handler component of an XACML 

implementation. Support for multiple autonomous domains that each 

support delegation of authority can be added to applications without 

either the application logic or the context handler interface needing to 

change. Only a new credential validation policy is needed. Credentials 

that were previously invalid (because they had been delegated) would 

now become valid, once the appropriate policy is added to the PAP.  



36       David W Chadwick, Sassa Otenko and Tuan Anh Nguyen 

 

The advantage of completely replacing the PIP by the CVS, is that we 

have the opportunity of using digitally signed credentials for 

constructing target attributes and environmental attributes as well as 

subject attributes. For example, time may be obtained from a secure 

time stamping authority as a digitally signed credential (step 4b in 

Figure 7), and validated according to the CVS’s policy. The 

disadvantage of the last two approaches is that incorporating the CVS 

inside the policy evaluator introduces transforms to the request context 

that are invisible to the PEP.  

 

At the current time we do not know which approach will eventually be 

favored. Consequently in our implementation we support two modes of 

operation: the CVS called directly by the PEP and the CVS called by 

the XACML context handler. We have also specified two Open Grid 

Forum profiles for the protocol interactions between a PEP and an 

enhanced context handler/PDP [22] and a PEP and a CVS [23] so that 

credentials can be transparently processed by XACML applications. 

Note that the mode of operation does not affect the implementation of 

the CVS, which is explained in the next section. 

6  Implementing the CVS 

There are a number of challenges involved in building a fully 

functional CVS that is flexible enough to support the multiple 

requirements outlined in section 2. Firstly we need to fully specify the 

Credential Validation Policy, including the rules for constructing 



Adding Support to XACML for Multi-Domain User to User Dynamic Delegation of 
Authority   37 

delegation graphs (or multiple trees). Then we have to engineer the 

policy enforcer with an appropriate algorithm that can efficiently 

navigate the delegation graph (or a tree) and determine whether a 

subject’s credentials are valid or not. In our implementation we have 

chosen to constrain the delegation DAG into a set of delegation trees, 

with each tree having a single PMI root of trust. The output from the 

CVS is a set of valid attributes encoded in XACML format ready for 

passing to the PDP. 

6.1 Credential Validation Policy 

We have implemented our CVS policy in XML, according to the 

schema shown in Appendix 1. Most components of the policy are 

relatively straightforward to define, apart from the delegation trees. We 

have specified the list of trusted credential issuers (PMI roots of trust) 

by using either their subject distinguished names (DNs) or their 

subjectAltName Uniform Resource Identifiers (URIs) from their X.509 

public key certificates. Only the latter subjectAltName is supported 

since this is the naming scheme used by all entities on the world wide 

web. We chose to use DNs or URLs rather than public keys for two 

reasons. Firstly, they are easier for policy writers to understand and 

handle, and secondly it makes the policy independent of the current key 

pair that happens to be in use by a trusted issuer. The authorisation 

policy is therefore independent of the underlying PKI. 

 

Multiple disjoint attribute hierarchies are supported. Each attribute 

hierarchy is specified by listing superior-subordinate attribute value 

Comment [DWC1]: Add 
credential decoding 



38       David W Chadwick, Sassa Otenko and Tuan Anh Nguyen 

pairs. This allows any arbitrary partial order to be created, since there is 

no limit to the number of times a particular attribute value can occur as 

either a superior or a subordinate value in one hierarchy (subject to the 

restriction that loops are not created). Attributes and attribute values 

can be independent of any hierarchy if so wished, so that permission 

inheritance does not have to be supported if it is not required. 

 

Delegation trees have each been defined as a name space (a delegation 

domain), a delegation depth and a root of trust. Anyone in the 

delegation domain who is given a credential by the designated root of 

trust may delegate it to anyone else in the same domain, who in turn 

may delegate it to anyone else in the same domain until the delegation 

depth is reached.  X.500/LDAP distinguished names or HTTP URLs 

are used to define the delegation domains. A base DN or URL is used 

to specify the root node of the delegation domain, and the domain may 

be refined by defining included and excluded subtrees so that any 

arbitrary subtree may be constructed.  All delegates must belong to the 

refined domain otherwise the delegation is not valid. Since we already 

refer to the credential issuers (roots of trust) by their LDAP DNs or 

URLs, it was natural to refer to the delegates in a delegation tree by 

their DNs or URLs as well. In this way we can easily link delegation 

chains together by matching the issuer in one certificate with the 

subject in the next certificate in the chain. We recognise that a more 

flexible approach to defining delegation trees is by referring to 

delegates by their attributes rather than their DNs or URLs, as for 

example as used by Bandmann et al [9]. Their delegation tree model 



Adding Support to XACML for Multi-Domain User to User Dynamic Delegation of 
Authority   39 

allows a policy writer to specify delegation trees such as “anyone with 

a head of department attribute may delegate a project manager attribute 

to any member of staff in the department”. This is a future planned 

enhancement to our work. It introduces a level of indirection and 

complexity whereby one has to retrieve a delegate or delegator’s 

credentials, extract their attributes from this, see if they have an 

attribute that matches the one in the delegation rule, and then validate 

that this attribute was correctly assigned or delegated in the credential 

according to its governing rule. This adds a level of complexity that our 

current model does not have, since in our current model we simply 

need to match on the delegate or delegator’s name.  

 

One obvious constraint that we place on our delegation trees is that the 

same attribute value (or one of its subordinate values in the role 

hierarchy) must be propagated down any given tree from the root of 

trust, and either new unrelated attributes that are not in the same role 

hierarchy, or superior values from the same role hierarchy, cannot be 

introduced in the middle of a delegation tree. This is to ensure that a 

delegator can only delegate his existing permissions or a subset of 

them, and not an unrelated set or superset. A new delegation tree would 

need to be specified for the delegation of an unrelated or superior 

attribute. 

 

Trusted issuers and delegation domains are defined separately in the 

policy and then linked together with the attributes that each issuer is 

trusted to issue, along with any additional time/validity constraints that 



40       David W Chadwick, Sassa Otenko and Tuan Anh Nguyen 

are placed on the issued credentials. (The constraints have not been 

shown in the schema.) The reason for doing this is improved flexibility, 

since one trusted issuer may be the root of several delegation trees, and 

one delegation domain may have several roots of trust. 

 

In our current implementation we do not pass the full Issuing Policy 

along with the issued credential, we only pass the tree depth integer, 

since this was already an X.509 standard extension. Therefore the CVS 

does not know what the issuer’s intended delegation tree is. We have 

assumed that the credential issuing software at the issuing site will 

enforce the Issuing Policy and so only credentials that conform to the 

Issuing Policy will be issued. However, the CVS policy writer is able to 

specify his own delegation domain for the received credentials and this 

may be more restrictive than that of the issuing domain, or the same as 

or less restrictive than it. So ultimately the owner of the resource will 

control the delegation tree that is deemed to be valid at the target site. 

In order to ensure that the Issuing Policy is enforced at the target site 

the issuer’s delegation tree should be configured into the CVS’s policy. 

This assumes that the structure of the issuer’s delegation tree is the 

same as that of our CVS policy, which will not always be the case in 

independent domains using different models and software 

implementations. A future planned enhancement is to carry the 

complete Issuing Policy in each issued credential, and to allow the 

CVS’s policy writer to enforce it, or overwrite it with his own policy, 

or force conformance to both. In this way a more sophisticated 

delegation tree can be adhered to. This of course will depend upon 



Adding Support to XACML for Multi-Domain User to User Dynamic Delegation of 
Authority   41 

there being a standardised format for the transfer of Issuing Policies in 

credentials, which currently there is not for either SAML attribute 

assertions or X.509 or SPKI certificates. 

6.2 Delegation Tree Navigation 

Given a subject’s credential, the CVS needs to create a path between it 

and a root of trust, or if no path can be found, conclude that the 

credential cannot be trusted. There are two alternative conceptual ways 

of creating this path, either top-down, also known as backwards [3, 17] 

(i.e. start at a root of trust and work down the delegation tree to all the 

leaves until the subject’s credentials are found) or bottom-up, also 

known as forwards (i.e. start with the subject’s credential and work up 

the delegation tree until you arrive at its root of trust).  Neither 

approach is without its difficulties. Either way can fail if all the 

credentials are not pushed to the CVS. If the CVS has to pull 

credentials from the issuers or their repositories, then all the credentials 

have to be held consistently – either all with their subjects or all with 

their issuers, otherwise the CVS will not be able to efficiently locate 

them. In our implementation all credentials are held with their subjects, 

typically in their LDAP directory entries, or more recently, in files 

linked to their DNs held in WebDAV repositories [24]. As Li et al 

point out [17], building an authorisation credential chain is more 

difficult in general than building an X.509 public key certificate chain, 

because in the latter one merely has to follow the subject/issuer chain in 

a tree, whereas in the former, a DAG rather than a tree may be 



42       David W Chadwick, Sassa Otenko and Tuan Anh Nguyen 

encountered. Graphs may arise for example when a superior delegates 

some permissions in a single credential that have been derived from 

two of more credentials that he possesses, or when attribute mappings 

occur between different authorities. Our CVS implementation is 

currently limited to supporting delegation trees rather than DAGs, and 

so it will not follow multiple superior credentials from a single 

subordinate one as these are forbidden. Delegations are also restricted 

to occurring in a single subject domain, and therefore attribute 

mappings will not occur. But even for the simpler PKI certificate 

chains, which our credential chains conform to, there is no best 

direction for validating them. SPKI uses the forwards chaining 

approach [15]. As Elley et al describe in [16], in the X.509 model it all 

depends upon the PKI trust model and the number of policy related 

certificate extensions that are present to aid in filtering out untrusted 

certificates, whether backwards or forwards chaining is preferrable. 

Given that our delegation tree is more similar to a PKI tree, and that we 

do not have the policy controls to filter the top-down (backwards) 

approach, and furthermore, we support multiple roots of trust so in 

general would not know where to start, then the top-down method is 

not appropriate. 

 

There are two ways of performing bottom-up (forwards) validation, 

either height first in which the immediately superior credential only is 

obtained, recursively until the root is reached, or breadth first in which 

all the credentials of the immediate superior are obtained, and then all 

the credentials of their issuers are obtained recursively until the root or 



Adding Support to XACML for Multi-Domain User to User Dynamic Delegation of 
Authority   43 

roots are reached. The latter approach may seem counter-intuitive, and 

certainly is not sensible to perform in real time in a large scale system, 

however a variant of it may be necessary in certain cases, i.e. when 

DAGs are supported, or when a superior possesses multiple identical 

credentials issued by different authorities. Furthermore, given that in 

our federation model described in section 2 (point 7) we allow a user to 

simply authenticate to a gateway and for the system to determine what 

the user is authorised to do (the credential pull model), the first step of 

the credential validation process is to fetch all the credentials of the 

user. This is performed by the Credential Retriever in Figure 3. Thus if 

the CVS recursively calls itself, the breadth first approach would be the 

default credential retrieval method. Thus we have added a retrieval 

directive to the credential validation method, which is set to breadth 

first for the initial call to the CVS, and then to height first for 

subsequent recursive calls that the CVS makes to itself.  

 

In order to efficiently solve the problem of finding credentials, we add 

a pointer in each issued credential that points to the location of the 

issuer’s credential(s) which are superior to this one in the delegation 

tree. This pointer is the AuthorityInformationAccess extension defined 

in [19]. Although this pointer is not essential in limited systems that 

have a way of locating all the credential repositories, in the general case 

it is needed. 

 

In order to ensure that a delegator does not overstep his or her 

authority, after retrieving the attribute(s) from the delegator’s credential 



44       David W Chadwick, Sassa Otenko and Tuan Anh Nguyen 

we need to check that one of them is superior or equal to all the 

attributes in the delegate’s credential in the attribute hierarchy. If it is 

not superior to all of the delegate’s attributes in the attribute hierarchy, 

the delegator has exceeded his authority and the delegate's credential is 

discarded and processing stops. 

 

In the case of relatively long lived credentials, revocation is clearly an 

issue. When a credential has been revoked, then all the credentials in 

the branch of the tree for which the revoked credential is the root, are 

also considered to be revoked. The CVS retrieves the revocation 

information about credentials when determining their validity. If any 

credential between the requestor’s credential and the root of trust has 

been revoked, then the requestor’s credential is considered to be 

invalid, and processing stops. We have also implemented a novel 

scheme for revoking credentials which uses the web as a finite state 

machine to indicate the revocation status of each credential [24]. This 

scheme inherently supports instant revocation and can be more efficient 

than using CRLs.  

 

Finally, as a means of enhanced performance, we envisage that a 

background task could be run when the system is idle, that works its 

way down all the delegation trees from the roots of trust, in a breadth 

first search for credentials, validates them against the CVS’s policy, 

and caches the valid attributes for each user for a configuration period 

of time that is approximately equal to the period of CRL issuance. Then 

when a user attempts to access a resource, the CVS will be able to give 



Adding Support to XACML for Multi-Domain User to User Dynamic Delegation of 
Authority   45 

much faster responses because the high level branches of the delegation 

tree will have already been validated. 

6.3 Performance Measurements 

The performance measurements were primarily conducted on a Linux 

machine (Intel Pentium(R) D 2.8GHz and 1GB memory) with Globus 

Tool kit 4.0.0 and MySQL installed. The application provided 

distributed access to a grid enabled MySQL database. Users with a 

particular role were granted access to the database. Since Globus 

Toolkit already supports java call outs to PIPs and PDPs, it was a 

relatively straightforward task to implement the PEP direct-call-to CVS 

model (Figure 5), with the CVS acting as a GT4 PIP.  

 

Initially we configured the CVS to operate in attribute pull mode, 

retrieving X.509 attribute certificates from an LDAP server in which all 

the users’ credentials were stored in their LDAP entries. The LDAP 

server ran on a different PC to the database service. They were 

connected via a high speed LAN. We tested attribute certificate chains 

from lengths 1 to 5, with 1 representing a credential issued directly by 

the PMI root of trust.  The complete chain was 

PMI_root→AA1→AA2→AA3→AA4→AA5. No revocation lists 

were issued or processed. 

 

Each set of performance measurements was carried out 100 times and 

the average and standard deviations were computed. Each set of 100 



46       David W Chadwick, Sassa Otenko and Tuan Anh Nguyen 

results contained several spurious results (between 1 and 6). According 

to Shewhart [28], when a process is in control, approximately 1% 

of the measurements will be greater or less than three times the 

standard deviation, and approximately 5% will be outside two times the 

standard deviation. Usually it was the very first one or two results in 

the set and then several random other ones. We believe that these 

spurious results are due to either java initialization or java garbage 

collection kicking in at random intervals. We removed these from the 

figures presented in the tables below. 

 

Table 1.  CVS pulling all credentials from LDAP Server (ms) 

Delegation 

Chain length 

Average time with 

signature 

verification(ms) 

STD DEV Average time 

without signature 

verification (ms) 

STD DEV 

1 9.44 2.30 5.44 1.75 

2 17.08 3.68 9.49 2.62 

3 24.77 4.81 13.31 3.28 

4 31.96 5.60 16.80 3.82 

5 39.92 6.69 20.25 4.66 

 

The second column shows the average time for verifying a chain of 

attribute certificates. These figures are a combination of several tasks, 

repeated for each AC in the chain, namely: retrieve the AC from 

LDAP, verify its digital signature, and validate its asserted attribute(s) 

against the CVS’s delegation policy. The figures show that as the AC 

chain length increases, the time taken to validate the subject’s attribute 



Adding Support to XACML for Multi-Domain User to User Dynamic Delegation of 
Authority   47 

increases by approximately 7.6ms for each additional AC in the chain 

between the subject’s AC and the PMI root of trust. If we subtract this 

figure from all the results, for each AC in the chain, we find that the 

fixed CVS overhead time for marshalling arguments and producing a 

response is somewhere between 1.48 and 1.91ms.  

 

In order to determine the time taken to pull an AC from LDAP, we 

configured the CVS to work in attribute push mode, providing the 

complete set of credentials to the CVS with each request. The results 

are shown in Table 2 column 2. To determine the time taken for 

signature verification we switched off the cryptography function for 

both the push and pull modes. These results are presented in the 4th 

columns of Tables 1 and 2. 

  

Table 2.  All credentials pushed to CVS (ms) 

Delegation 

Chain length 

Average time with 

signature 

verification (ms) 

STD DEV Average time 

without 

signature 

verification (ms) 

STD DEV 

1 6.16 1.55 3.91 1.45 

2 10.67 2.46 6.47 1.96 

3 15.74 3.34 8.92 2.64 

4 19.78 3.59 11.10 3.27 

5 24.70 4.24 13.91 3.66 

 



48       David W Chadwick, Sassa Otenko and Tuan Anh Nguyen 

An analysis of columns 2 and 4 in each table reveals that the time taken 

to verify a signature on an attribute certificate pulled from LDAP is 

approximately 3.86±0.1ms, whereas the same task when the attribute 

certificate is pushed to the CVS is just 2.2±0.1ms. The reason for this 

apparent disparity is that the public key certificate of the attribute 

certificate signer also has to be pulled from LDAP in the pull model, 

but since this was pushed to the CVS with the attribute certificates in 

the push model, there was no additional retrieval time in Table 2. We 

can therefore calculate that it takes approximately 1.66ms to retrieve a 

public key certificate from LDAP. When we compare the 4th columns 

of both tables we find that the average time to retrieve an attribute 

certificate from LDAP is 1.44ms (values range from 1.27 to 1.53ms) so 

this figure is close to that computed for retrieving a public key 

certificate. When we compare the 2nd columns of both tables we find 

that the additional time required to pull from LDAP when signatures 

are verified is 3.12ms on average (values range from 3.0 to 3.28). This 

is approximately the sum of the times we have just computed for 

retrieving an attribute certificate and public key certificate from LDAP. 

We don’t believe there is any inherent difference in the time taken to 

retrieve an attribute or public key certificate, and the difference in the 

figures is within the error of measurement. To conclude, we calculate 

that it took approximately 1.55 ms to retrieve a certificate from LDAP 

and 2.2ms to verify the signature on an attribute certificate. We can see 

from table 2 that is takes approximately 3.91ms to parse the attribute 

certificate and verify it against the CVS’s policy. When we add onto 

this the time for signature verification (2.2ms) and two retrievals from 



Adding Support to XACML for Multi-Domain User to User Dynamic Delegation of 
Authority   49 

LDAP (3.12ms) we get a total time of 9.23ms which is well within the 

standard deviation of the overall time for retrieving and validating an 

attribute certificate pulled from LDAP (9.44ms). 

7 Conclusions and Future Work 

Providing XACML with support for dynamic delegation of authority 

that is enacted via the issuing of credentials from one user to another, is 

a non-trivial task to model and engineer. In this paper we have 

presented the problems and requirements that such a model demands, 

and have architected a solution based on the XACML conceptual and 

data flow models. We have also presented at a conceptual level the 

policy elements that are necessary to support this model of dynamic 

delegation of authority. Given that these policy elements are 

significantly different to those of the existing XACMLv2 policy, and 

that the functionality required to evaluate this policy is significantly 

different to that of the existing XACML PDP, we have proposed a new 

conceptual entity called the Credential Validation Service, to work 

alongside the PDP in the authorisation decision making. The 

advantages of this approach are several. Firstly the XACML policy and 

PDP do not need to change, and support for dynamic delegation of 

authority can be phased in gradually. The exact syntax and semantics of 

the new policy elements can be standardised with time, based on 

implementation experience and user requirements. We have presented 

our first attempt at defining and implementing such a policy, and now 

have an efficient implementation that supports dynamic delegation of 



50       David W Chadwick, Sassa Otenko and Tuan Anh Nguyen 

authority. A live demonstration is available at 

https://sec.cs.kent.ac.uk/dis.html. 

 

Future work will look at supporting more sophisticated delegation trees 

and schema, and enforcing (or ignoring) Issuing Policies in target 

domains by passing the full policy embedded in the issued credentials. 

We also plan to support the delegation of role-permission assignments 

according to the design presented in [26] and incorporate additional 

policy elements in the delegation trees, such as attribute mappings of 

the kind described in [17]. 

 

Acknowledgments. We would like to thank the UK JISC for supporting this work 

under the research project entitled “Dynamic Virtual Organisations in e-Science 

Education (DyVOSE)”. 

References 

1. See http://dictionary.reference.com/search?q=delegate 
2. OASIS. “Assertions and Protocol for the OASIS Security Assertion Markup Language 

(SAML) V2.0”, 15 January 2005 

3. ISO 9594-8/ITU-T Rec. X.509 (2001) The  Directory:  Public-key and attribute certificate 

frameworks 

4. Scott Cantor. “Shibboleth Architecture, Protocols and Profiles, Working Draft 02, 22 

September 2004, see http://shibboleth.internet2.edu/ 

5. ANSI. “Information technology - Role Based Access Control”. ANSI INCITS 359-2004 

6. Internet2 Middleware Architecture Committee for Education, Directory Working Group 

(MACE-Dir) “EduPerson Object Class Specification (200604)”, 14 April 2006. Available 

from http://www.nmi-edit.org/eduPerson/internet2-mace-dir-eduperson-200604.html 



Adding Support to XACML for Multi-Domain User to User Dynamic Delegation of 
Authority   51 

7. C. Ellison, B. Frantz, B. Lampson, R. Rivest, B. Thomas, T. Ylonen. “SPKI Certificate 

Theory”. RFC 2693, Sept 1999.  

8. “OASIS eXtensible Access Control Markup Language (XACML)” v2.0, 6 Dec 2004, 

available from http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=xacml 

9. O. Bandmann, M. Dam, and B. Sadighi Firozabadi. “Constrained delegation”. In 

Proceedings of the IEEE Symposium on Research in Security and Privacy, pages131-140, 

Oakland, CA, May 2002. IEEE Computer Society Press. 

10. Paul Madsen. “WS-Trust: Interoperable Security for Web Services”. June 2003. Available 

from http://webservices.xml.com/pub/a/ws/2003/06/24/ws-trust.html 

11.  Markus Lorch , Seth Proctor , Rebekah Lepro , Dennis Kafura , Sumit Shah. “First 

experiences using XACML for access control in distributed systems”. Proceedings of the 

2003 ACM workshop on XML security, October 31-31, 2003, Fairfax, Virginia 

12. Wolfgang Hommel. “Using XACML for Privacy Control in SAML-based Identity 

Federations”. In 9th IFIP TC-6 TC-11 Conference on Communications and Multimedia 

Security (CMS 2005), Springer, Salzburg, Austria, September 2005 

13. Alfieri, R., Cecchini, R., Ciaschini, V., Dell'Agnello, L., Frohner, A., Lorentey, K., 

Spataro, F., “From gridmap-file to VOMS: managing authorization in a Grid 

environment”. Future Generation Computer Systems. Vol. 21, no. 4, pp. 549-558. Apr. 

2005 

14. Tom Barton, Jim Basney, Tim Freeman, Tom Scavo,  Frank Siebenlist, Von Welch, 

Rachana Ananthakrishnan, Bill Baker, Kate Keahey. “Identity Federation and Attribute-

based Authorization through the Globus Toolkit, Shibboleth, GridShib, and MyProxy”. 

Presented at NIST PKI Workshop, April 2006. Available from 

http://middleware.internet2.edu/pki06/proceedings/welch-idfederation.pdf 

15. Dwaine Clarke, Jean-Emile Elien, Carl Ellison, Matt Fredette, Alexander Morcos, Ronald 

L. Rivest. “Certificate chain discovery in SPKI/SDSI”. Journal of Computer Security, 

Issue: Volume 9, Number 4 / 2001, Pages:  285 - 322 

16. Y. Elley, A. Anderson, S. Hanna, S. Mullan, R. Perlman and S. Proctor, “Building 

certificate paths: Forward vs. reverse”. Proceedings of the 2001 Network and Distributed 

System Security Symposium (NDSS’01), Internet Society, February 2001, pp. 153–160. 

17. Ninghui Li, William H. Winsborough, John C. Mitchell. “Distributed credential chain 

discovery in trust management”.Journal of Computer Security 11 (2003) pp 35–86 



52       David W Chadwick, Sassa Otenko and Tuan Anh Nguyen 

18. XACML v3.0 administration policy Working Draft 16 February 2007. http://www.oasis-

open.org/committees/documents.php?wg abbrev=xacml. 

19. Housley, R., Ford, W., Polk, W., and Solo, D., "Internet X.509 Public Key Infrastructure 

Certificate and Certificate Revocation List (CRL) Profile," RFC 3280, April 2002 

20. David Chadwick. “Authorisation using Attributes from Multiple Authorities” in 

Proceedings of WET-ICE 2006, June 2006, Manchester, UK 

21. OASIS. “Core and hierarchical role based access control (RBAC) profile of 

XACML v2.0”. February 2005 

22. David W Chadwick, Linying Su, Romain Laborde. “Use of XACML Request 

Context to Obtain an Authorisation Decision”, Open Grid Forum Working Draft, 

31 October 2007. Available from 

https://forge.gridforum.org/sf/go/doc14907?nav=1 

23. David W Chadwick, Linying Su. “Use of WS-TRUST and SAML to access a 

CVS”. Open Grid Forum Working Draft, 31 October 2007. Available from 

https://forge.gridforum.org/sf/go/doc14908?nav=1 

24. D.W.Chadwick, S. Anthony. “Using WebDAV for Improved Certificate 

Revocation and Publication”. In LCNS 4582, “Public Key Infrastructure. Proc of 

4th European PKI Workshop, June, 2007, Palma de Mallorca, Spain. pp 265-279 

25. G López, Ó Cánovas, AF Gómez-Skarmeta. “Use of XACML policies for a 

Network Access Control Service”. Applied Public Key Infrastructure.  J. Zhou et 

al. Eds. IOS Press, 2005. Proc 4th International Workshop for Applied PKI, 

IWAP 05. Singapore. September 2005. 

26. Tuan-Anh Nguyen, David Chadwick, Bassem Nasser. “Recognition of Authority 

in Virtual Organisations”. LCNS 4657, Trust, Privacy & Security in Digital 

Business eds Costas Lambrinoudakis, Gunther Pernul, A Min Tjoa. Sept. 2007, 

pp 3-13 

27. Globus Toolkit Homepage is http://globus.org/toolkit/ 

28. Details of the Shewhart Control Chart can be found at 

http://www.itl.nist.gov/div898/handbook/mpc/section2/mpc221.htm 

 



Adding Support to XACML for Multi-Domain User to User Dynamic Delegation of 
Authority   53 

Appendix 1:  CVS Policy Schema 

<?xml version="1.0" > 

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" 

xmlns:permis="http://sec.cs.kent.ac.uk/permis" elementFormDefault="qualified" 

attributeFormDefault="unqualified">  

<xs:element name="CVSPolicy" type="permis:CVSPolicyType"/> 

    <xs:complexType name="CVSPolicyType" > 

       <xs:sequence> 

          <xs:element name="TrustedIssuers" type="permis:TrustedIssuersType" /> 

          <xs:element name="AttributeHierarchies" 

type="permis:AttributeHierarchiesType" /> 

<xs:element name="Domains" type="permis:DomainsType"/> 

         <xs:element name="AttributeAssignments" 

type="permis:AttributeAssignmentsType" /> 

       </xs:sequence> 

        <xs:attribute name="CVSPolicyID" use="required" type="xs:anyURI"/> 

    </xs:complexType> 

<!-- --> 

<xs:complexType name="TrustedIssuersType"> 

       <xs:sequence> 

<xs:element name="TrustedIssuer" maxOccurs="unbounded" 

type="permis:TrustedIssuerType"/> 

        </xs:sequence> 

</xs:complexType> 

<!-- --> 

<xs:complexType name="TrustedIssuerType"> 

<xs:attribute name="TrustedIssuer" use="required" type="xs:anyURI"/> 

  <!-- Only LDAP and HTTP URLs are currently allowed for issuers --> 

       <xs:attribute name="TID" use="required" type="xs:ID"/  

</xs:complexType> 

<!-- --> 

<xs:complexType name="AttributeHierachiesType"> 

       <xs:sequence> 



54       David W Chadwick, Sassa Otenko and Tuan Anh Nguyen 

<xs:element name="AttributeHierarchy" maxOccurs="unbounded" 

type="permis:AttributeHierarchyType"  /> 

        </xs:sequence> 

</xs:complexType> 

<!-- --> 

<xs:complexType name="AttributeHierachyType"> 

<xs:sequence> 

<xs:element name="Superior" type="permis:SuperiorValueType" 

maxOccurs="unbounded" > 

<xs:sequence> 

         <xs:attribute name="AttributeOID" use="required" type="xs:anyURI"/   

   <!-- Must be encoded according to SAML LDAP Profile e.g. urn:oid:1.2.3.4 --> 

 <xs:attribute name="FriendlyName" use="required" type="xs:ID"/ 

</xs:complexType> 

<!-- --> 

 <xs:complexType name="SuperiorValueType"> 

<xs:sequence> 

<xs:element name="Subordinate" type="permis:SubordinateValueType" 

minOccurs="0" > 

<xs:sequence> 

         <xs:attribute name="Value" use="required" type="xs:ID" / > 

 </xs:complexType> 

<!-- --> 

<xs:complexType name="SubordinateValueType"> 

     <xs:attribute name="Value" use="required" type="xs:IDREF"/          

</xs:complexType> 

<!-- --> 

<xs:complexType name="DomainsType"> 

       <xs:sequence> 

          <xs:element name="Domain" maxOccurs="unbounded" type="permis:DomainType" /> 

        </xs:sequence> 

</xs:complexType> 

<!-- --> 

  <xs:complexType name="DomainType"> 

       <xs:sequence> 



Adding Support to XACML for Multi-Domain User to User Dynamic Delegation of 
Authority   55 

<xs:element name="RootNode" type="permis:RootNodeType" 

maxOccurs="unbounded" 

</xs:sequence> 

         <xs:attribute name="DomainID" use="required" type="xs:ID"/ </xs:complexType> 

<!-- --> 

 <xs:complexType name="RootNodeType"> 

       <xs:sequence> 

<!-- the excluded nodes must be immediately subordinate to the root node. 

Only LDAP and HTTP URLs are currently allowed for nodes --> 

<xs:element name="ExcludedNode" type=" xs:anyURI " minOccurs="0" 

maxOccurs="unbounded" 

</xs:sequence> 

 <xs:attribute name="Name" type="xs:anyURI" use="required"/> 

</xs:complexType> 

<!-- --> 

<xs:complexType name="AttributeAssignmentsType"> 

       <xs:sequence> 

<xs:element name="AttributeAssignment" maxOccurs="unbounded" 

type="permis:AttributeAssignmentType"/> 

        </xs:sequence> 

</xs:complexType> 

<!-- --> 

<xs:complexType name="AttributeAssignmentType" > 

       <xs:sequence> 

<xs:element name="Attribute" type="permis:AttributeType" minOccurs="0" 

maxOccurs="unbounded" /> 

       </xs:sequence> 

        <xs:attribute name="AAID" use="required" type="xs:ID"/> 

     <xs:attribute name="TI" use="required" type="xs:IDREF"/          

        <xs:attribute name="DomainID" use="required" type="xs:IDREF"/> 

<xs:attribute name="DelegationDepth" use="optional" 

type="xs:nonNegativeInteger"/> 

    </xs:complexType> 

<!-- --> 

<xs:complexType name="AttributeType"> 



56       David W Chadwick, Sassa Otenko and Tuan Anh Nguyen 

<xs:sequence> 

<xs:element name="AttributeValue" type="permis:SubordinateValueType" 

minOccurs="0" > 

<xs:sequence> 

         <xs:attribute name="FriendlyName" use="optional" type="xs:IDREF"/   

</xs:complexType> 

<!-- --> 

</xs:schema> 

 

 


