
Federated Identity Management 

David W Chadwick 

Computing Laboratory, University of Kent, Canterbury, CT2 7NF, UK 
d.w.chadwick@kent.ac.uk 

Abstract. This paper addresses the topic of federated identity management. It 
discusses in detail the following topics: what is digital identity, what is identity 
management, what is federated identity management, Kim Cameron’s 7 Laws 
of Identity, how can we protect the user’s privacy in a federated environment, 
levels of assurance, some past and present federated identity management 
systems, and some current research in FIM. 

Keywords.  Identity Management, Shibboleth, CardSpace, Federations 

1  Introduction 

What is digital identity? One can find many different variants of this definition on the 
Internet. Perhaps the most general definition is the one from a new draft ITU-T 
standard (X.1250) on global identity management [2], which states that identity is the 
“Representation of an entity (or group of entities) in the form of one or 
more information elements which allow the entity(s) to be uniquely recognised within 
a context to the extent that is necessary (for the relevant applications).” This 
definition is so general that it lacks precision of whose identity we are talking about 
(who or what is an entity?) and what data are we talking about (what is an information 
element?). Whilst an entity can be any object, in most cases it is personal identity that 
we are concerned about, so we will restrict this chapter to considering identity 
management of people rather than of any object. In this context, the information 
elements are restricted to Personal Indentifying (or Personally Identifiable) 
Information (PII), which is “the information pertaining to any living person which 
makes it possible to identify such individual (including the information capable of 
identifying a person when combined with other information even if the information 
does not clearly identify the person).” [1] We can consider that PII is simply the 
attributes1 of a person, such as: their hair colour, sound of their voice, height, name, 
qualifications, past actions, reputation, medical records, etc. You might think that hair 
colour is not PII and is not a digital identity as it is too generic, but if we had a rule 
that stated that ginger haired people are granted a 10% discount at Ginger’s 
hairdressing salon, then hair colour alone would be sufficient identity information to 
allow a person to be uniquely recognised within a context to the extent that is 

                                                            
1 An attribute is defined in [3] as “information of a particular type”. 



2      David W Chadwick 

necessary (for the relevant applications). So even something as generic as hair colour 
can be classed as a digital identity and as PII. To summarise, we can say that a 
person’s (digital) identity comprises a set of attributes, and only a subset of these 
attributes are necessary to allow the person to be sufficiently recognised within a 
given context. 

So what is identity management? In short it is the whole process of managing a 
user’s identity attributes. Y.2720 [1] has a more comprehensive definition which 
states that identity management is: A set of functions and capabilities (e.g. 
administration, management and maintenance, discovery, communication exchanges, 
correlation and binding, policy enforcement, authentication and assertions) used for: 

• Assurance of identity information (e.g., identifiers, credentials, 
attributes);  

• assurance of the identity of an entity  (e.g., users/subscribers, groups, 
user devices, organizations, network and service providers, network 
elements and objects, and virtual objects); and  

• enabling business and security applications. 
Before proceeding further, we should clarify the difference between an identifier 

and an Identity, and an attribute and a credential. An identifier is usually a series of 
digits and/or characters that is used to uniquely identify an entity within one domain 
or system. No two entities (or users) within the same system can have the same 
identifier. So an identifier is a rather special type of identity attribute, since no two 
users can share the same identifier, whilst they may have other identity attributes in 
common, such as hair colour. Furthermore, an identifier is tightly bound to the system 
or domain in which it is defined; it usually cannot be meaningfully moved between 
domains, unlike the other identity attributes. Indeed, different domains can use the 
same identifier to identify different users. An identifier is only one of the identity 
attributes that comprise that person’s digital identity within a system. Different 
computer systems know different subset’s of a person’s identity attributes, but each 
computer system will have its own identifier which uniquely identifies this individual 
within this system. An individual whose identity is distributed throughout many 
systems will therefore have multiple identifiers such as: their passport number, login 
ID, social security number, email address etc., which are each unique within their own 
domains. Some systems may store the identifiers from remote domains as well as 
their own. For privacy (and other) reasons, users are typically wary about releasing 
their identifiers to third parties, since these can uniquely identify them, whereas their 
other identity attributes, such as age, typically cannot. 

An attribute assertion is a claim made by someone (the asserter) that a particular 
person possesses a particular attribute. Usually attributes have to be conferred on 
individuals (or asserted) by authoritative sources. Whilst people may be trusted in 
some situations to assert some of their identity attributes themselves, for example, 
their favourite drink, they certainly wont be trusted in all situations to assert all of 
their identity attributes themselves, for example, their qualifications or criminal 
record. Thus different authoritative sources are usually responsible for assigning 
different attributes to individuals. For example, the university that one graduated from 
is the authoritative source of one’s degree attribute. These authoritative sources are 
also known as attribute authorities (AAs). An identity provider is an attribute 
authority combined with an authentication service to authenticate its users. An 



Federated Identity Management      3 

identity provider can authenticate a user and then issue an attribute assertion about the 
user. Attribute assertions typically have to be digitally signed to ensure their integrity 
and authenticity. A digitally signed attribute assertion is an authorization credential. 

Whilst discussing credentials, we need to differentiate between authentic 
credentials and valid credentials. 

• Authentic credentials are ones that have not been tampered with and are 
received exactly as issued by the issuing authority. Their digital signature is 
used to prove their authenticity. 

• Valid credentials are ones that are trusted for use by the recipient, sometimes 
called the relying party. 

– Example 1: Monopoly money is authentic if obtained from the 
Monopoly game pack. It was issued by the makers of the game of 
Monopoly. Monopoly money is valid for buying houses on Mayfair 
in the game of Monopoly, but it is not valid for buying groceries in 
supermarkets such as Tesco’s or LIDL. 

– Example 2: My credit card is an authentic credential. I can use it to 
buy groceries in Tesco, so it is valid there, but I cannot use it in 
LIDL as they do not accept credit cards. It is not valid there, but it is 
still authentic. 

The difference between an authentic and a valid credential is whether the relying 
party does or does not trust the issuer of the credential to issue that particular 
credential. 

Authoritative sources may remove attributes as well as assign them. For example, a 
university may remove a degree from a student, if it was subsequently proved that the 
student had committed plagiarism in their dissertation. Similarly, in the UK, the 
General Medical Council (GMC) is the only authoritative source of who is a doctor, 
and it keeps a register of them. If a doctor commits malpractice, the doctor may be 
struck off the register by the GMC. Thus in identity management systems, we cannot 
rely on the individual to assert his various attributes, otherwise he might lie about his 
various roles, and omit to tell about negative attributes such as the points on his 
driving license. Similarly we cannot rely on a single identity provider to assert all a 
user’s attributes, but only the attributes they are authoritative for. For example, a 
credit card company would not normally be trusted to assert someone’s degree 
qualification attribute. Consequently a set of authoritative sources may need to be 
consulted by service providers before the latter grant users access to their resources. 
X.1250 defines an authoritative identity provider as “the Identity Provider responsible 
by law, industry practice, or system implementation” for asserting a particular identity 
attribute.  

This brings us to the topic of federations and federated identity management. A 
federation is defined in X.1250 as “an association compromising any number of 
service providers and identity providers”[2]. Implicit in this definition is trust. The 
fact that the various providers have formed an association between themselves means 
that they must have a certain level of trust between themselves, sufficient to be 
willing to exchange messages between themselves. When these messages contain the 
authentication and authorisation credentials of users, allowing users from one system 
to access resources in a federated system, we have federated identity management 
(FIM). With FIM, a user can use her credentials (authentication and authorisation) 



4      David W Chadwick 

from one or more identity providers to gain access to other sites (service providers) 
within the federation. FIM brings the following benefits to the various stakeholders: 

- it gives users the single sign on (SSO) capability, allowing them to move 
between the various service providers without having to authenticate or log 
in again, 

- it allows service providers to offload the cost of managing user attributes, 
passwords and login credentials to trusted identity providers 

- it provides scalability, allowing service providers to offer services to a much 
greater number of users 

- it allows identity providers to maintain close relationships with end users and 
sell them additional services, as well as extract fees from the service 
providers they support. 

In a centralised system, as opposed to a federated system, the user typically 
presents their identifier and an authentication token (such as a password) to prove that 
they are entitled to be known by this identifier. The system then associates the user 
with this identifier and with all the attributes linked to this identifier. The user is then 
granted access based on these. In a distributed system the user might typically have 
different identifiers in each local system, so if the user authenticated to one identity 
provider using his local identifier, this identifier would not be known by and therefore 
could not be used by the other local systems to grant the user access. Single sign on 
would not be possible without some sort of federation. When X.509 based PKI 
systems were first designed, they tried to solve this problem by allocating each user a 
globally unique identifier (called an X.500 distinguished name) which would be 
known by all local systems in the distributed system and therefore could be used to 
grant the user access. Since this global identifier was bound to the user’s public key in 
an X.509 public key certificate, a signature created by the user’s private key could be 
used as an authentication token by each local system. 

One of the reasons this X.509 based identity management system failed was the 
privacy concerns about everyone knowing everyone else’s globally unique identifier. 
The breakthrough came when it was realised that a user’s identifier did not need to be 
globally unique, but could remain local to the system that allocated it. Authorisation 
to use a remote federated system could be granted based on the user’s identity 
attributes, rather than on the user’s identifier. If the identity attributes are provided by 
trusted authoritative sources, then a service provider can be assured of the identity of 
the user, even if the user’s identifier is unknown (or temporary). This gave birth to 
early federated identity management systems such as Passport and Athens, and more 
lately to standardized systems such as Shibboleth [4] and CardSpace [5], which will 
be described later. 

2  The 7 Laws of Identity 

After the failure of Microsoft’s Passport FIM system (see later), Kim Cameron 
thought long and hard about what is needed in order to build a successful FIM system. 
He discussed the issues intently on his blog www.identityblog.com. One of the end 
results was his 7 Laws of Identity [6] described below. Another was the design and 



Federated Identity Management      5 

implementation of CardSpace which is now an integral part of Vista and Internet 
Explorer 7. The seven laws are summarised below. 

1. User Control and Consent 
Technical identity systems must only reveal information identifying a user with the 

user’s consent. [6] 
The underlying hypothesis here is that users will cease to trust a system that reveals 

their identity attributes to others, without the users’ explicit consent. A user needs to 
have confidence that any system that is provided with his identity attributes will 
protect them and respect his wishes for how they should be used.  

2. Minimal Disclosure for a Constrained Use 
The solution which discloses the least amount of identifying information and best 

limits its use is the most stable long term solution. [6] 
The underlying hypothesis here is that all systems are vulnerable to attack and the 

theft (or loss) of the confidential information that they hold. Therefore systems should 
minimize the PII that they capture and store, and should delete it as soon as the 
purpose of capture is complete. 
3. Justifiable Parties 

Digital identity systems must be designed so the disclosure of identifying 
information is limited to parties having a necessary and justifiable place in a given 
identity relationship. [6] 

The underlying hypothesis here is that users resent their PII being given to third 
parties that have no proper role to play in a digital transaction. Thus if a user is 
posting pictures to his family blog, then he should not need to use a government 
identity provider, or Microsoft for that matter. This is hypothesized as the primary 
reason that Microsoft Passport failed to become the identity provider for the Internet. 
4. Directed Identity 

A universal identity system must support both “omni-directional” identifiers for 
use by public entities and “unidirectional” identifiers for use by private entities, thus 
facilitating discovery while preventing unnecessary release of correlation random 
identifiers. [6] 

The underlying hypothesis here is that users do not want everyone to know their 
identifiers, they prefer to keep them private, whilst public web sites and commercial 
organisation do want everyone to know their identifiers and hence be able to contact 
them. When users establish communications with a public entity such as a service 
provider, they should be assigned a one-off (or private) identifier that is only for use 
in this communication (or with this service provider). The use of different identifiers 
with different service providers will prevent the service providers from colluding 
together to build global profiles of the user. 
5. Pluralism of Operators and Technologies 

A universal identity system must channel and enable the inter-working of multiple 
identity technologies run by multiple identity providers. [6] 

The underlying hypothesis here is that diversity and competition between identity 
providers is good, and users should be able to switch between pseudonymous 
identities at will. This necessitates that there is an overarching meta-identity system 
that uses a common protocol for the transport of identity credentials, whilst 
supporting an infinite variety in the types of credential technologies that are 
supported. 



6      David W Chadwick 

6. Human Integration 
The universal identity metasystem must define the human user to be a component 

of the distributed system integrated through unambiguous human-machine 
communication mechanisms offering protection against identity attacks. [6] 

The underlying hypothesis here is that the vast majority of identity thefts succeed 
by attacking the link between the PC and the human rather than the links between the 
PC and the various identity and service providers. The human is the weakest link in 
the chain and therefore securing this communication link should be an essential 
component of any identity management system. A second hypothesis is that a well 
known ceremony is needed for this communication, one that will always be used by 
the user, that the user will become very familiar with, and can therefore immediately 
determine if and when an attack is taking place. The design of the Identity Selector in 
CardSpace, described later, is one attempt at making the human-computer link more 
secure through having a consistent ceremony. 
7. Consistent Experience Across Contexts 

The unifying identity metasystem must guarantee its users a simple, consistent 
experience while enabling separation of contexts through multiple operators and 
technologies. [6] 

This law is very closely related to the last law, and is also re-iterating several of the 
previous laws. It is re-stating that the user needs to have a consistent experience (i.e. 
ceremony) regardless of the underlying credential technologies that are in use, or the 
pseudonym that the user chooses to use for any particular transaction. The user should 
be able to switch between pseudonyms or identities at will. In order for the user to 
recognize which identity he is using in any given transaction, identities should be 
“thingyfied” into icons that the user can easily recognize. This naturally leads to the 
concept of information cards, an electronic representation of the plastic cards we all 
carry around in our pockets today. 

These seven laws of identity are not physical laws that all living things must abide 
by, like the law of gravity, but they are laws which identity management systems 
should endeavour to support, and which they break at their peril. The peril in this case 
is that users are likely to reject any identity management system that does not abide 
by the seven laws in its implementation. CardSpace has endeavoured to keep them, as 
we shall see later. 

3  Related Issues 

3.1 Privacy Protection 

As the seven laws of identity management make clear, privacy protection is an 
important issue that FIM systems should take into account. In many countries there 
are legal requirement for information systems to protect user privacy. Invariably these 
all derive from the OECD privacy guidelines [8], which state eight data protection 
principles. These are: 

1. Collection Limitation Principle 



Federated Identity Management      7 

There should be limits to the collection of personal data and any such data 
should be obtained by lawful and fair means and, where appropriate, with 
the knowledge or consent of the data subject. 
2. Data Quality Principle 
Personal data should be relevant to the purposes for which they are to be 
used, and, to the extent necessary for those purposes, should be accurate, 
complete and kept up-to-date. 
3. Purpose Specification Principle 
The purposes for which personal data are collected should be specified not 
later than at the time of data collection and the subsequent use limited to the 
fulfilment of those purposes or such others as are not incompatible with 
those purposes and as are specified on each occasion of change of purpose. 
4. Use Limitation Principle 
Personal data should not be disclosed, made available or otherwise used for 
purposes other than those specified at the time of collection except with the 
consent of the data subject or by the authority of law. 
5. Security Safeguards Principle 
Personal data should be protected by reasonable security safeguards against 
such risks as loss or unauthorised access, destruction, use, modification or 
disclosure of data. 
6. Openness Principle 
There should be a general policy of openness about developments, practices 
and policies with respect to personal data. Means should be readily 
available of establishing the existence and nature of personal data, and the 
main purposes of their use, as well as the identity and usual residence of the 
data controller. 
7. Individual Participation Principle 
An individual should have the right: 

a) to obtain from a data controller, confirmation of whether or not the 
data controller has data relating to him; 
b) to have communicated to him, data relating to him within a reasonable 
time, at a charge that is not excessive, in a reasonable manner, and in a 
form that is readily intelligible to him; 
c) to be given reasons if a request made under subparagraphs(a) and (b) 
is denied, and to be able to challenge such denial; and 
d) to challenge data relating to him and, if the challenge is successful to 
have the data erased, rectified, completed or amended. 

8. Accountability Principle 
A data controller should be accountable for complying with measures which 
give effect to the principles stated above. [8] 

But how are the above to be implemented in FIM systems and more importantly, 
can we build FIM systems that automatically safeguard at least some of the above? 
One method is to separate identity providers (IdPs) from service providers (SPs), and 
to store identity attributes with the IdPs only and not with the SPs. All modern FIM 
systems are designed to be capable of this. Then we give the user control over her 
identity attributes that are held at her various IdPs, and allow her to say which of these 
may be given which of which SPs. In Shibboleth this is implemented as Attribute 



8      David W Chadwick 

Release Policies that can be set by the user (see later) at each IdP. Then we define 
protocols that do not release the user’s identifier from the IdP to the SPs, so that 
multiple SPs cannot collude together about a specific user. Further if the identifier is 
randomly generated each time, the SP cannot correlate the multiple sessions of the 
same user. The OASIS Security Assertion Markup Language (SAML) protocol [7] 
supports both of these schemes by allowing the IdP to create a new random identifier 
for the user for each association (this is used by Shibboleth). Alternatively if the user 
needs to be uniquely identified in order to obtain personalized services, then the IdP 
can generate a new permanent identifier to identify this user to this specific SP, and 
use this identifier every time. SAML also supports this, and this is used by Liberty 
Alliance in its identity management protocols [9]. In this way we prevent the SPs 
from knowing the real identity of the user of her unique identifier at the IdP. The user 
is either pseudonymously identified (as in Liberty) or randomly identified (as in 
Shibboleth). Finally if the IdPs make the attribute assertions which they give to the SP 
short lived, then we effectively remove the attributes from the possession of the SP at 
the close of each transaction (or shortly afterwards). Short lived assertions are another 
feature of the SAML protocol. 

3.2 Level of Assurance 

Different IdPs will authenticate users in different ways and to different strengths. For 
example, usernames and passwords are weaker than public-key certificates and 
private keys. A relying party’s level of assurance (LOA) that the user is really who it 
thinks she is depends not only on the electronic authentication method used by the IdP 
but also on the initial registration process used by the IdP. For example, registering 
electronically over the Web is much weaker than turning up in person with a passport. 
Registering over the Web is equivalent to self asserting your identity attributes. So a 
relying party should rightly give little credence to these identity attributes. 

The National Institute of Standards and Technology (NIST) recommends four 
LOA levels, with level 4 being the strongest and level 1 the weakest. Some SPs may 
wish to grant a user different access permissions based on the LOA during the current 
session. For example, if the user authenticates with an LOA of 1, she can read the 
resource, but with an LOA of 3 she can modify its contents. Limitations of the NIST 
recommendation are that: the LOA only applies to user authentication, and not to her 
identity attributes for authorisation, and it is a compound metric that is dependent on 
both the strength of the registration process and the electronic authentication method 
being used.  

In the latest research being carried out at the University of Kent, we believe it’s 
more useful if the LOA is split into two separate metrics, one for registration of the 
identity attributes, and one for the authentication method being used in the current 
session.  

Prior to any computer-based authentication, a user must register with a service and 
provide various credentials to prove her identity. For example, before a new student 
can register to use the University of Kent’s computing services, she must first present 
her passport and existing qualifications to prove she is entitled to register as a student. 
We call this the registration LOA. Different systems will require different registration 



Federated Identity Management      9 

documents and have different registration procedures, and will therefore have 
different registration assurance levels. Any identity attributes that are assigned to the 
user during registration or afterwards by the IdP, and for which the IdP is the 
authoritative source, will be given the registration LOA. For example, after successful 
registration, the University of Kent allocates the student a login ID (her identifier) and 
associates various attributes with this in its database, for example, degree course, e-
mail address, department, tutor, and so on, for which the university is the authoritative 
source. These will be assigned the registration LOA. Other identity attributes for 
which the IdP is not the authoritative source, such as date of birth and name, may be 
given the same registration LOA value or a lower one depending upon the quality of 
the documents used at registration time. For example, if the person’s name and date of 
birth were taken from their passport, they would have the same registration LOA as 
the other identity attributes. If they were asserted by the user without any 
documentary evidence to support these assertions, they would be given the lowest 
LOA value. Typically an IdP would not send these attributes to an SP, because it is 
not authoritative for them. 

After registration the IdP will issue the user with authentication credentials, and 
these will have an associated authentication LOA. For example, the University of 
Kent may offer different authentication mechanisms for student login, such as un/pw 
with Kerberos, un/pw with Secure Sockets Layer (SSL), one-time passwords via a 
mobile phone, and so on. The system assigns each of these mechanisms an 
authentication LOA with the proviso that no authentication LOA can be higher than 
the registration LOA that originally authenticated the user’s identity attributes. The 
reason for this is that the user’s identity attributes can never be asserted at a higher 
assurance level than was carried out during the registration process. Consequently, 
registering over the web using self assertions must always have the lowest LOA (in 
NIST this is 1) assigned to both the registration LOA and the authentication LOA. 
However, if an IdP never asserts any identity attributes to the SP, and merely 
authenticates the user and presents a uniquely generated identifier to the SP, then the 
authentication LOA can be set to the strength of the authentication method that is 
used. The SP can be sure that each time this user contacts it, that it is the same user 
because the identifier will be the same each time. The SP also has an assurance of this 
to the value of the authentication LOA. In this scenario, the SP has no idea who the 
user is, as no identity attributes have been provided, but it does know that it is the 
same user each time. This is how the early versions of OpenID worked [11], before 
attribute assertions were added to it. (Note that there is no level of assurance provided 
by OpenID). 

When a user logs in for a session, the authentication service assigns her a session 
LOA equivalent to the authentication LOA of the authentication mechanism she chose 
to use. Thus the same user may have different session LOAs with the same SP, due to 
the fact that she used different authentication methods with her IdP in the adjacent 
sessions. 

A new addition to the SAML protocol [10] is adding support for passing the 
session LOA in each assertion sent from the IdP to the SP. Thus the SP can obtain the 
level of assurance for the identity attributes that are to be used for authorizing the user 
in the current session. Note that the SAML specification [10] only allows one LOA 



10      David W Chadwick 

value to be passed with an assertion, so all the identity attributes in the assertion must 
have been registered to that level if they are to be passed. 

3 Some early FIM systems 

3.1 Microsoft’s .NET Passport  

.NET Passport is an authentication and single sign on system that allows users to 
access multiple service providers using the same credentials. Each service provider 
remains in charge of its own authorisation, and may use Passport provided identity 
attributes to help in this. It works as follows. Users register at a service provider site, 
but their credentials and profile information are stored centrally by Microsoft at the 
Passport server. This means that sites must trust Microsoft/Passport to hold the user 
credentials securely, and to authenticate the users correctly during sign on.  

Referring to figure 1 below, the system works as follows: 
1.        The user browses Site A, a Passport participating site, and clicks the “Sign In” 
button. 

Sign In

1.
2.

3.

4.

5.
Passport site stores the 
user’s credential and 
profile information, and 
allocates the user a unique 
64 bit Passport User ID 
(PUID)

Participating
Site A

Sign In

Participating
Site B

Sign In

Participating
Site C

6.

7.

Passport Site

 
 
Figure 1. Message Flows in Passport. 

 



Federated Identity Management      11 

2.        The user is redirected to a co-branded registration page at the Passport site, 
which displays the registration fields chosen by Site A.  (The minimum number of 
fields required is two: email address and password.)   
3.        The user reads and accepts the terms of use (or declines, and the process ends), 
and submits the registration form containing their profile information. The registration 
form is sent encrypted to the Passport site via SSL to protect the user’s privacy.  Next 
the user can choose whether or not they want to opt in to share their profile 
information with other Passport-enabled sites or not. They can select any or all of 
three tick boxes, viz: share email address, share first and last name, share all other 
profile attributes, which may comprise: Birth Date, Country / Region, First Name, 
Gender, Last Name, Occupation, Postal Code, Preferred Language, State, and Time 
Zone. After completing registration, the user is shown a congratulations page and  
4.        is then redirected back to Site A with their encrypted authentication ticket and 
profile information attached. The redirect message contains four cookies (a ticket 
granting cookie containing a secret key, a Participating Sites cookie, an authentication 
cookie and a profile cookie) which are stored in the user’s browser to shortcut future 
authentication attempts within the lifetime of the cookies. The last three cookies are 
encrypted with the secret key in the ticket granting cookie, the latter is encrypted with 
a secret key known only to Passport. 
5.        Site A decrypts the authentication ticket and profile information and continues 
the user’s registration process, or immediately grants her access to the site. 
6.      When a user moves to another Participating Site, say Site C, the user is again 
shown the “Sign In” button as in Step 1, which she may decide to click.  
7.        If so, she is redirected to the Passport site (as in step 2). The user’s browser 
sends the four cookies back to Passport during redirection. Passport then knows the 
user has already successfully authenticated and redirects the user back to site C (as in 
step 4). The redirect contains an authentication ticket (generated from the 
authentication cookie) and profile information (generated from the profile cookie) 
which Site C can decrypt and use to authorize the user. The redirection also contains 
an updated Participating Sites cookie containing the list of all Participating Sites the 
user has visited during this session. 
8.        When the user logs out of Passport, all four cookies are deleted from the 
browser and the Participating Sites cookie is used to clean up all Participating sites 
computers. 

Passport has been very successful when used between Microsoft owned sites such 
as MSN and Hotmail. But because all participating sites have to trust Microsoft to 
hold the identity of the user, and to authenticate the user properly, it fails Kim 
Camerson’s 3rd Law of Justifiable Parties. Why should Microsoft be involved in a 
transaction between a car hire company and a hotel? It is clearly not appropriate for 
Microsoft to be involved in all federated communications between different 
commercial companies. Another failing of Passport is that it does not provide good 
privacy protection for a user’s attributes, since these are made available to Microsoft, 
and the user does not have fine grained control over how they are released to the 
affiliated sites (see step 3 above). 



12      David W Chadwick 

 
Figure 2. Message Flows in Athens. © EduServ, 2002 

3.2 UK Athens 

Athens was the de facto standard for secure access management to online services for 
the UK Education and Health sectors during the late nineties and first decade of two 
thousand. By 2002, 769 user sites, with over 2 million users, were using Athens to 
connect to 249 resources at 51 service provider sites such as Elsevier, Wiley, Science 
Direct, and Oxford University Press. It is therefore one of the most successful 
federated identity management systems to date.  

Athens was originally designed by a team at the University of Bath in a series of  
JISC-funded projects, and was subsequently made into a commercial service that is 
owned, developed and operated by EduServ (http://www.eduserv.org.uk). Essentially 
EduServ is a “trusted third party” identity provider. EduServ operate a large database 
of over 2 million user IDs and passwords along with authorisation data (which says 
which sites users can access). The service is replicated to provide a resilient service. 
Each participating college or university administers its own part of the database to 
keep their user base up to date. This makes the administration manageable. 

Referring to Figure 2 below, Athens works as follows: 
1. The user contacts a data service provider (DSP) e.g. Elsevier 
2.  The user is re-directed to the Athens Authentication Point (AAP) via an SSL 
connection 
3/4.  The AAP displays the login page to the user. The user types in his Athens 
username and password which is sent encrypted back to the AAP over SSL. If the 



Federated Identity Management      13 

user is authenticated correctly, the AAP writes an encrypted cookie (with a validity 
time of 8 hours) back to the browser to enable Single Sign On (see 7 below) and 
redirects the user back to the DSP. 
5.  The redirection message carries an encrypted token to signal the user’s 
successful authentication. This token is symmetrically encrypted with a secret shared 
between the DSP and the AAP, and it contains the user’s Athens username and a short 
expiry time (60 secs). The user is now authenticated and tries to access various data 
sources at the DSP, but may not be authorised to access everything. 
6.  The DSP web server calls a special Athens Agent plug in software which 
communicates with the Athens database to see if the user is authorised to access this 
particular data source. The user is granted or denied access depending upon the reply. 
The Athens Agent plug-in is provided either as a toolkit (C, Java, Perl 
implementations all available) for integration into the supplier’s system or as pre-
packaged modules for Apache and MS IIS. 
7.  If the user moves to a different DSP, then the user is re-directed to the AAP 
as in step 2 above. This time however the AAP is sent the cookie by the browser, so 
the AAP knows the user has been authenticated and does not need to ask him to login 
again. The user is redirected straight back to the DSP site. 

On 1 August 2008, Athens was superseded by Shibboleth as the JISC preferred 
federated identity management system for UK education. It is now being slowly 
phased out. Since it appears to have been so successful, why is this? Firstly it uses 
proprietary protocols and is not easily adaptable to becoming a general federated 
identity management system. Sites cannot leverage it to set up their own mini-
federations. In essence it is a centralised system and suffers from the same trust 
problems as Passport. Why should all transactions have to be authenticated by the 
central Athens server? Finally, during the last few years, there have been significant 
efforts in standardising federated identity management protocols, and the US, Europe 
and Australia are migrating towards these systems. Consequently the time has come 
to do the same with Athens. 

4  Some current FIM systems 

4.1 Shibboleth  

Shibboleth [4], conceived and developed by the Internet 2 consortium 
(http://www.internet2.org/), is a system designed to ease the formation of federations 
and collaborations between organisations. Shibboleth provides a protocol to allow 
collaborating organisations to more easily authenticate and authorise each other’s 
users. In Shibboleth, authentication is always performed by the user’s own 
organisation – the identity provider – using the organisation’s existing authentication 
scheme. The organisation might use usernames and passwords, or Kerberos, or one 
time passwords etc. It does not matter, providing the scheme is secure enough for the 
federating service providers. In this way, the user always uses his existing login 
credentials and so single sign on is enabled through this. Whilst the current system 



14      David W Chadwick 

does not support Levels of Assurance, it clearly will not be difficult to add it, since 
Shibboleth uses standard SAML protocols. 

Authorisation always takes place at the site the user is trying to access – the service 
provider – using identity attributes of the user provided by the identity provider. A 
trust relationship exists between the identity and service providers, so that the service 
provider trusts the identity provider to correctly authenticate the user, and to provide 
the correct set of attributes for the user. Messages are digitally signed by the identity 
provider so that the service provider can validate that they are correct and trustworthy. 
Single sign on is enabled throughout the federation so that if the user contacts a 
second service provider, the identity provider can immediately send a digitally signed 
message to the new service provider saying that the user has already been 
authenticated correctly. Therefore the user does not need to login again.  

Importantly, Shibboleth provides strong privacy protection of the user’s details. 
The user’s username (identifier) is privacy protected because the user is identified 
with a different pseudonym, or random identifier, each time he contacts a service 
provider. Thus the service provider is not able to profile the user’s accesses since it 
has no way of linking together the different identifiers from the different sessions, or 
of linking an identifier to the actual user. (Note that in the case of abuse of a service 
provider by a user, the service provider can request the help of the identity provider to 
identify the abusive user, by scanning its activity logs. However, such breaches of 
privacy are expected to be exceptional, and only triggered by abuse in the first place.) 
The user’s attributes are privacy protected because both the user and the home site 
can set Attribute Release Policies (ARPs) that say which attributes can be released to 
which remote sites. This helps to protect the privacy of the user’s attributes, since 
only the minimum necessary need to be sent to each service provider. It also provides 
the user with full control and the ability to give consent for the user of his attributes. 
If a service provider wishes to provide personalized services to the user, then one of 
the user’s identity attributes will need to uniquely identify the user, and be provided in 
each session. The user will need to agree to this through his ARP. 

4.1.1 How Shibboleth works 
Shibboleth is a Web based middleware layer that defines the protocols that are sent 
between a user’s Web browser, his home/identity provider’s Web server and the 
target resource site’s Web server. Shibboleth is standard’s based, and the current 
version makes use of the SAML v2 protocol [7] for encoding its messages. 

When a user contacts a Shibboleth service provider from their browser, requesting 
access to a particular URL, Shibboleth single sign on and access control takes place in 
separate stages as shown in Figures 4 and 5 (although it is possible to combine both 
stages into a single communication exchange, which is not shown). In a large 
distributed open environment the authentication stage has a number of complications. 
Firstly how does the resource site/service provider know where the user’s home 
site/identity provider is in order to redirect the user to the correct authentication 
service? This is known as the discovery problem. Secondly, how can the SP trust that 
the authentication statement that is returned is authentic and that the random identifier 
identifies the current user? A number of different solutions have been attempted to 
solve the discovery problem. The one used by OpenID [11] is to use globally unique 
IDs based on DNS names so that the DNS can be used to discover the location of the 



Federated Identity Management      15 

user’s IdP. Another is to pre-configure one or a small number of IdPs into the SP and 
force the user to use one of these. However, the method currently favoured by 
Shibboleth is to use a Where Are You From Service which asks the user to pick the 
site that he or she is from (see Figure 3), from a pre-configured list of all IDPs that the 
SP trusts. The answer to the second question is provided by the Shibboleth trust 
model. This requires the sites to establish trust relationships between themselves as 
part of the process of forming a federation. They do this by exchanging their public 
key certificates or CA root keys, so that they can validate messages signed by each 
other. 

 

 
 
Figure 3. Screen shot of a typical Shibboleth Where Are You From service 
 
Referring to Figure 4 below: 

1. The user makes a request to a web site. The user can be stationed at his home 
site, or anywhere else on the Internet. The web site knows nothing about the user, 
so needs to authenticate and obtain the attributes of the user in order to grant 
him/her access. The SP first needs to discover where the user is from. This is the 
function of the Where Are You From (WAYF) service. 

2. The Shibboleth SP uses the Http Redirect reply to re-direct the user to its Where 
Are You From service. This prompts the user to choose his home site from a 
picking list (see Figure 3). The WAYF knows the name and location of the 
Authentication Service of each trusted IdP that is participating in Shibboleth. If 
the SP does not trust a particular IdP then it won’t be listed in its WAYF picking 



16      David W Chadwick 

list. If a user is deceitful and tries to fool the system by picking an IdP to which 
he does not belong, he will have difficulty authenticating to that site’s 
authentication service, since he won’t have any valid credentials for it. However, 
if he picks his own home site, he should find authentication is no problem. 
Consequently the honest user picks his home site, and then 

3. the user is re-directed to the Authn Service at his home site by the WAYF 
service. 

4. The Authn Service (AS) is responsible for making sure the user is authenticated 
locally at the IdP, and for creating a random identifier that can be used to retrieve 
attributes about the user. The Authn Service prompts the user to login and 
provide his authentication token. The IdP can use whatever type of authentication 
it likes e.g. username/password, Kerberos, digital signatures etc. This is currently 
not relayed to the SP, but the LOA will be added as a future extension. Once the 
user has authenticated him/her self, the AS produces a random identifier for the 
user. The content of the identifier is left entirely up to the home site. A random 
identifier ensures that the user’s local identifier remains private to the IdP, and 
the SP will never know the true identity of the user that is accessing it. Thus 
Shibboleth automatically provides Privacy Protection of the user’s identity. 

User

1. 
User

 re
qu

est

Authn
Service

SHIB SP

WAYF

2.Re-direct to WAYF

3.Re-direct to AS
5. 

Signed
Authn

Statement

AA
Service

Web Service
Provider

Random
ID

4. User authentication

SHIB IdP

6.

 
Figure 4. Authenticating the user in Shibboleth 
 

5. The AS passes the random identifier (in the form of a SAML Authentication 
statement) back to the user’s browser inside an HTML form  

6. that POSTS the data back to the destination SHIB SP. This information includes 
the location of the AA service at which the random identifier will be usable. This 



Federated Identity Management      17 

message is digitally signed by the AS to prove its authenticity. The SHIB SP 
must check the signature and the message contents to ensure its validity. The AS 
ensures that the AA Service knows the new random identifier for the user. 

7. Referring to Figure 5 below, the SHIB SP sends a SAML Attribute Query 
Message to the Attribute Authority (AA) service at the user’s IdP. This request 
needs to be protected i.e. mutually authenticated and have message integrity. SSL 
with client side authentication is used for this. 

8. The AA server returns a SAML Attribute Response Message (ARM) containing a 
SAML Attribute Statement. This message also needs to be protected by mutual 
authentication, message integrity and message confidentiality, so SSL is used.  

9. Once the ARM is received and validated by the SHIB SP, the embedded 
attributes are passed to the web service’s authorisation code. Shibboleth provides 
its own simple authorisation code for sites to use, or they can use more 
sophisticated policy bases systems such as XACML [12] or PERMIS [13]. 

10. The authorisation code now grants or denies access to the user based on their 
attributes. 

User

Authn
Service

SHIB SP

AA
Service

7. Att Query

8. Att Resp

Web Service
Provider

Shib
Authzn

9. Attributes

10. A
ccess g

ran
ted

SHIB IdP

 
Figure 5. Authorising the user in Shibboleth 
 
The latest version of the Shibboleth specification has introduced a performance 

improvement over the original version, by optionally allowing stage one and stage 
two to be combined together into one message exchange. In this way, the initial 
request from the SP may ask for both authentication and attribute statements, and the 
digitally signed SAMLresponse message may optionally contain the user’s attributes 
as well as the authentication assertion. 



18      David W Chadwick 

4.1.2. Privacy Protection and Attribute Release Policies in Shibboleth 
Shibboleth has four mechanisms to ensure user privacy. Firstly it allows a different 

pseudonym for the user’s identity (the randomly generated identifier) to be returned 
each time. Secondly it allows the service provider to request specific user attributes to 
be returned, as opposed to “all”, so as to minimise the potential loss of privacy. 
Thirdly, and most importantly, it requires that the attribute authorities provide some 
form of control over the release of user attributes to service providers, which they 
term attribute release policies (ARPs). Both users and administrators should have a 
say about which attributes can be released. Finally, in order to stop third parties from 
seeing the attributes as they are transferred over the Internet, the connection between 
the AA service and the SP should be protected by using SSL/TLS with strong 
encryption enabled.  

A basic ARP rule at the AA consists of the following: 
• A destination service provider ID e.g. 

https://engineering.example.edu/blackboard/shibboleth-sp 
• A list of attribute types (and optionally specific values) that should be 

released to this SP 
• Other optional conditions such as time of day or location of the user etc. as 

may be implemented by the identity provider (typically none are 
implemented at present, but this allows for more sophisticated privacy 
controls to be added in the future). 

The identity provider can have as many of these rules as it needs for each 
destination SP. The destination SP ID allows the AA to find the right ARP rules to 
use when it receives an Attribute Query Message from an SP, since the latter contains 
the service provider ID as part of the SAML protocol message. 

ARPs are specified in XML according to a predefined schema (shibboleth-arp-
1.0.xsd). An example ARP is given in Figure 6 below. This ARP consists of 3 rules, 
one that will release an attribute to any service provider, one that will release an 
attribute to any service provider within a specific DNS domain, and one that releases 
a specific attribute value to a specific SP.  

The <Target> element of an ARP rule identifies the service provider. It has one 
child element which is either:  

- <Requester> which contains a matching rule (only two are currently defined, 
regular expression or exact) and an SP ID to match against, or 

- <AnyTarget/> which indicates that all SPs match.  
The <Target> element is followed by an <Attribute> element which specifies the 

attributes that can or cannot be released to this target. As shown in the examples, for 
any particular attribute type, either any attribute value can be specified, or a specific 
value. Each attribute can either be Permitted or Denied from being released. Note that 
in most cases it is not necessary to Deny an attribute from being released, since it will 
only be released if it occurs in a Permitted element. However, an administrator (or a 
user) may want to allow all attribute values to be released except one particular value. 
In this case, the attribute with any values would be Permitted to be released in one 
ARP rule, and then the specific value would be Denied to be released in another ARP 
rule.  

Each IdP administrator creates the site’s ARP and stores it in a file called 
arp.site.xml. This ARP applies to all users for which the AA is answerable.  



Federated Identity Management      19 

Figure 6.  An example Attribute Release Policy 
 
Each user may also have his/her own ARP and this is stored in a file called 

arp.user.<$PRINCIPALNAME>.xml. in the same directory as the site ARP file. User 
ARPs can be maintained either by the IdP administrator or by the users themselves, 
according to the site’s local policy. The MAMS project in Australia has produced a 
user friendly GUI editor for ARPs, called the Shibboleth Attribute Release Policy 

<?xml version="1.0" encoding="UTF-8"?> 
<AttributeReleasePolicy 
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"; 

xmlns="urn:mace:shibboleth:arp:1.0" 
xsi:schemaLocation="urn:mace:shibboleth:arp:1.0 shibboleth-arp-1.0.xsd"> 
<Rule> 
<!--  This rule will release the edu person affiliation attribute with a value 

member@example.edu to any service provider  -->  
 <Target> 
  <AnyTarget/> 
 </Target> 
 <Attribute name="urn:mace:dir:attribute-def:eduPersonAffiliation"> 
  <Value release="permit">member@example.edu</Value> 
 </Attribute> 
</Rule> 
<Rule> 
<!--  This rule will release the user’s edu person principal name attribute to any 

example.edu/Shibboleth service provider  -->  
 <Target> 

<Requester matchFunction="urn:mace:shibboleth:arp:matchFunction:regexMatch"> 
https://.*\.example\.edu/Shibboleth</Requester> 

 </Target> 
 <Attribute name="urn:mace:dir:attribute-def:eduPersonPrincipalName"> 
  <AnyValue release="permit"/> 
 </Attribute> 
</Rule> 
<Rule> 
<!--  This rule will release a specific contract value of the edu person entitlement 

attribute to the www.external.com/contract.asp service provider --> 
 <Target> 

<Requester matchFunction="urn:mace:shibboleth:arp:matchFunction:exactShar" 
https://www.external.com/contract.asp</Requester> 

 </Target> 
 <Attribute name="urn:mace:dir:attribute-def:eduPersonEntitlement"> 
  <Value release="permit">urn:example:contract:113455</Value> 
 </Attribute> 
</Rule> 
</AttributeReleasePolicy> 



20      David W Chadwick 

Editor (ShARPE). This is designed for use by both end users and IdP administrators, 
and it is distributed as open source software [14]. 

When an attribute query request is received, the Shibboleth software computes an 
effective ARP by locating the user’s and site’s ARPs and extracting from these each 
rule that matches the SP ID. All the attributes and values that are requested in the 
query are then compared with the effective ARP, and only those that are permitted to 
be released are included the response. If the same attribute is simultaneously 
Permitted in one rule (say in the site’s ARP) and Denied in another rule (say in the 
user’s ARP), then it will be denied from being released.  

We can see that attribute release policies provide a flexible and powerful tool for 
preserving the privacy of a user’s attributes, and they are one of the strengths of the 
Shibboleth infrastructure. 

4.2 CardSpace 

 
Figure 7. The CardSpace Identity Selector 
 
Information Cards are the core component of Microsoft’s CardSpace identity 
management and authorisation system. A good high level overview of CardSpace can 
be found in [15]. Information Cards are a representation of a person’s online digital 
identity. Information Cards have some excellent features in terms of both usability 
and security. From a usability perspective, the metaphor that Information Cards use 
for electronic credentials is the plastic card that everyone is familiar with. These are 
displayed on the user’s desktop so that the user can select the card he wants to use in 



Federated Identity Management      21 

any transaction (see Figure 7). Cards that are acceptable to the service provider (SP), 
and hence selectable, appear in full colour, whilst cards that are incompatible with the 
SP’s requirements are greyed out and hence not selectable. Cards can be self 
generated or managed by an IdP. Self generated cards contain information (attributes) 
asserted by the user himself, whereas managed cards contain attributes that are 
asserted by the IdP. Microsoft calls attribute assertions “claims”. The fact that the 
attribute assertions (or claims) of the managed cards do not actually reside on the 
user’s desktop, but are pulled from the IdP on demand, is largely hidden from the 
user. The only telling feature is that the user has to enter his login credentials with the 
IdP in order for the claim to be picked up and sent to the SP. This could be seen as a 
usability disadvantage or inconvenience to users, since the user is distracted from 
his/her primary task, which is accessing a service provider, into providing 
authentication credentials to an alternative party, the identity provider. But this is 
really not that much different to users entering their PINs today in order to activate 
their plastic cards. 

From a security and privacy perspective, CardSpace contains some excellent 
features. It has been designed specifically to conform to Kim Cameron’s 7 Laws. 
Firstly it is resistant to phishing attacks, unlike Shibboleth for example where an SP 
could redirect users (via its fraudulent WAYF service) to a malicious entity 
masquerading as the user’s identity provider. This is subverting the discovery 
procedure in order to point to a malicious IdP. In CardSpace the discovery 
information is stored securely on the user’s PCs in the meta-information of their 
information cards. Phishing can only succeed if the attacker can subvert the user’s PC 
without the user’s knowledge, in order to plant subversive information cards in the 
user’s identity selector. Besides the fact that it would be extremely hard to do, the user 
would most likely recognize this if it did happen. Secondly there is nothing of high 
value in the user’s identity selector that can be stolen by an adversary, since the 
managed cards don’t contain the actual credentials or claims; these are only generated 
on demand by the IdPs when asked to do so. The credentials/claims are short lived, 
cryptographically protected, designed to be transferred as quickly as possibly from the 
IdP to the SP via the user’s desktop, and as an additional protection can be encrypted 
to be read by the SP only. So there is little opportunity for an attacker to steal them 
whilst in transit. However, some researchers from Germany have already shown that 
the credentials can be captured and stolen from the user’s desktop and then effectively 
used to masquerade as the user [16]. Fortunately they also show how the vulnerability 
can be protected against with only a small change to the CardSpace protocols. This 
requires the SSL channel ID of the connection between the user and the SP, to be 
included in the credentials sent from the IdP. In this way the credentials cannot be 
used by any system other than the user’s PC. Self asserted claims/credentials can also 
be stolen in the same way, and also protected in the same way. 

4.2.1  CardSpace in more detail 
Figure 8 shows the data flows in more detail. 
1. The user contacts a web site using his web browser, and is invited to sign in. The 

user chooses to use information cards for this and selects Send Information Card. 
2. The web site displays the login page to the browser and embeds in this page, as 

an object, the site’s CardSpace Security Policy (see 4.2.2).  



22      David W Chadwick 

Identity

Provider 1

Identity

Provider 2

Identity

Provider 3

Service

Provider

Self-issued

Identity Provider (SIP)

Identity Selector and internal

Self-issued IdP

Application Client

e.g. Web Browser

1.

3.

2.

Shows 
relationship 

between an Info 
Card and IdP

4.

5.

6. 7.
8.

 
Figure 8. CardSpace message flows 
 

3. The browser passes the Security Policy to the Identity Selector application which 
evaluates it and brightly displays the Information Cards that match the policy. 
Cards that do not match are greyed out. Cards that have been sent to the site 
before are placed in the top half of the Identity Selector, cards which have not 
been sent before are placed in the bottom half. 

4. The user decides to send a managed card this time (as opposed to the self issued 
card which was sent last time). He selects the card and can then choose to either 
send the card straightaway or click Preview to check its contents before sending. 
If the card is self issued it could be protected with a PIN, in which case the user 
will be asked to enter this now. If the card is managed, the user may be asked to 
enter her password or X.509 key PIN, depending upon the authentication 
mechanism being used. 

5. When the user clicks Send, the Identity Selector fetches the security policy from 
the IdP (see section 4.2.3) and from this determines the security parameters that 
are needed in order to request an attribute assertion (claim) for this information 
card. The card itself says how the user is to be authenticated to the IdP. 
CardSpace currently supports four authentication mechanisms for managed cards: 
username and password, KerberosV5 token, X.509 public key certificate and a 
self-issued token. No authentication is needed for the SIP to issue a self-issued 
card. 

6. The Identity Selector requests an attribute assertion (claim) from the IdP using 
the security parameters from the IdP’s policy and the credentials specified in the 



Federated Identity Management      23 

information card. If username-password was specified, the user will have been 
prompted to provide his password, and this will be encrypted in the request to the 
IdP. The IdP returns the attribute assertion to the Identity Selector. 

7. The Identity Selector returns the attribute assertion/credential to the web browser. 
8. The web browser POSTs the credential to the SP (web site). 

4.2.2  Service Provider’s Security Policy 
The SP’s policy is an XML document which describes its requirements for the 
authorization credential that is to be presented. It uses XML elements defined in WS-
SecurityPolicy [17] and WS-Trust [19]. Expressing its credential requirements is done 
through the following policy parameters: 

- the issuer – this is the WS-Addressing [18] Endpoint Reference of the Identity 
Provider who is to issue the credential. This is usually the logical name of the IdP 
specified as a URI e.g. https://kent.ac.uk/idp. This must match the name of an IdP in 
one of the information cards stored in the user’s Identity Selector. This field can be 
blank, indicating that any issuer is acceptable to the SP, or it can take the specific 
value of self-issued (http://schemas.xmlsoap.org/ws/2005/05/identity/issuer/self), 
meaning that a self issued card is acceptable; 

- the token type – this is the type of credential that should be issued and presented 
e.g. a SAML attribute assertion or an X.509 attribute certificate; 

- the attributes (or claims) that the credential should contain. Each one of these 
attributes can be flagged as mandatory or optional, and 

- the proof key – this is used by the SP to prove that the credential presenter is 
entitled to present this credential. The default value for this is PublicKey, meaning 
that the credential should contain the pubic key of the holder (user), but it can also 
take the value of Bearer, meaning that no proof of ownership is required, or 
symmetric, meaning that the user should hold the symmetric key that is inside the 
credential. 

The SP’s policy can also contain a URL pointing to where its privacy policy can be 
found so that the user can read it before deciding whether to send his credentials to 
this SP. No automated support for privacy policy enforcement is provided. This is 
currently a research topic. 

The SP’s policy can also contain details of how the message should be secured 
when the credential is sent, for example, the message should be signed by the user if it 
contains a PublicKey proof key. 

The policy is retrieved using the WS-MetadataExchange protocol [20]. 

4.2.3  Identity Provider’s Security Policy 
The IdP’s policy is used to tell the Identity Selector how it can retrieve a credential 
from the IdP. The policy is contained within the WSDL that specifies the protocol 
messages for accessing the IdP’s credential issuing web service (called a Security 
Token Service (STS) in the WS* specifications). The policy contains details of the 
security that should be applied to the request and response messages, for example 
whether the XML messages should be digitally signed, or encrypted, or whether 
security should be performed at the transport level by SSL/TLS. An alternative is that 



24      David W Chadwick 

the XML messages are symmetrically encrypted using a short lived session key. The 
policy will always contain the X.509 public key certificate of the IdP. 

4.2.4 Information Card Contents 
Information cards are formatted as an XML document, signed by the IdP that issued 
them. They contain the following fields: 

- the logical name of the issuer as a URI. SPs should ensure that the issuer 
name they use in their policies matches this name, 

- an optional image and language dependent friendly name that can be 
displayed by the Identity Selector to the user, 

- a unique reference number for this card (unique to the issuer) 
- the issuing and expiry dates of the card, 
- a list of Endpoint References, in decreasing order of preference, from where 

the associated credential can be obtained and the authentication mechanism 
that is needed to obtain it. If the authentication mechanism is 
username/password then the card contains the username of the user whose 
card this is. Each Endpoint Reference also contains the location of the IdP’s 
security policy that controls access to this endpoint. 

- the token types that can be issued, e.g. SAML assertion or X.509 attribute 
certificate, 

- the list of attribute types (claim types) that can be issued, 
- whether the name of the recipient SP must be provided or not. If this is 

required, then the issued credential will be encrypted specifically for this SP 
so that no-one else can read its contents, 

- an optional pointer to the privacy policy of the IdP, 
- a flag to indicate whether the SP must have been identified by an X.509 

public key certificate or not. This prevents the IdP from issuing a 
confidential credential that could be sent to an unidentified SP. 

4.2.5  Limitations of Information Cards 
Good as they are, information cards currently have a number of limitations. Firstly 
they only support 4 authentication mechanisms: username/password, Kerberos V5 
ticket, X.509 public key certificate and a self issued token (key pair). Other popular 
mechanisms such as one time passwords are not supported. Secondly it is not 
specified how a user collects her information cards for inclusion in her identity 
selector. This is left up to the individual IdPs to determine. The Identity Selector 
simply provides an interface for importing Info Cards into it from the local filestore, 
but how they get to the local filestore is not standardized.  However, the biggest 
limitation of Information Cards is that the user can only select one card to present to a 
service provider for any given session. In many cases this is insufficient; for example, 
consider trying to purchase a car road tax license over the Internet. You may need to 
provide the following credentials: a credit card, a road worthiness certificate for your 
car, an insurance certificate, and a driving license. Each of these may be issued to you 
by different authoritative sources (IdPs). The current CardSpace model will only 
allow you to present one of these credentials to the SP. Research conducted by the 
University of Kent has devised and implemented a solution to this using a new 



Federated Identity Management      25 

component called a Linking Service [21]. This allows the user to link his various IdPs 
together in a privacy preserving manner, by interacting with the Linking Service prior 
to service provision. It appears to work well with the Shibboleth model as it uses the 
Shibboleth style of interaction with the user. But it does not employ the CardSpace 
interface, and integrating this with CardSpace means that the user still only selects 
one card at service provision time, with the Linking Service providing the remainder. 
So there is still research to do to design a system which will allow the user to 
dynamically select several cards at service provision time. 

5. Conclusion 

This chapter has provided an introduction to the complex topic of federated identity 
management. FIM is still very much an active research topic and is likely to continue 
to be so for many years to come. This is because there are so many different issues to 
consider, some of which are competing or diametrically opposed to each other. Issues 
include: ease of use, user privacy, strong security, single sign on, total cost of 
ownership, user profiling and retention of users by service providers, scalability, fine 
grained access control, personalization of services, and anonymity. Whilst we have 
not covered all of these issues in this chapter, nevertheless I hope this chapter has 
been informative and enjoyable to read. 

References 

1. ITU-T. “NGN identity management framework”. Recommendation Y.2720 
2. ITU-T. “Baseline capabilities for enhanced global identity management trust and 

interoperability”. Draft New Recommendation ITU-T X.1250 (X.idmreq), Feb 2009. 
3. ISO/ITU-T. “The  Directory: Models” ISO 9594-2/ITU-T Rec. X.501 (2009) 
4. R. L. "Bob" Morgan, Scott Cantor, Steven Carmody, Walter Hoehn, and Ken Klingenstein. 

“Federated Security: The Shibboleth Approach”. Educause Quarterly.Volume 27, Number 
4, 2004 

5. Arun Nanda, Michael B Jones. “Identity Selector Interoperability Profile v1.5” Microsoft 
Corporation, July 2008. see http://download.microsoft.com/download/1/1/a/11ac6505-e4c0-
4e05-987c-6f1d31855cd2/Identity_Selector_Interoperability_Profile_V1.5.pdf 

6. Kim Cameron. “The Laws of Identity”, May 2005. Available from 
http://www.identityblog.com/?p=352/#lawsofiden_topic3 

7. OASIS “SAML 2.0 profile of XACMLv2.0”. OASIS standard. 1 February 2005 
8. OECD “Guidelines on the Protection of Privacy and Transborder Flows of Personal Data”. 

23rd September, 1980  
9. Liberty Alliance Project. “Liberty ID-WSF Web Services Framework Overview” Version: 

2.0” Available from http://www.projectliberty.org/specifications__1 
10. OASIS. "Level of Assurance Authentication Context Profiles for SAML 2.0" Working 

Draft 01. 01 July 2008 
11.  OpenID Authentication 2.0 – Final. Dec 5th 2007. Available from 

http://openid.net/specs/openid-authentication-2_0.html 
12. OASIS “eXtensible Access Control Markup Language (XACML) Version 2.0” OASIS 

Standard, 1 Feb 2005 



26      David W Chadwick 

13. David Chadwick, GansenZhao, Sassa Otenko, Romain Laborde, Linying Su and Tuan Anh 
Nguyen. “PERMIS: a modular authorization infrastructure”. Concurrency And 
Computation: Practice And Experience. Volume 20, Issue 11, Pages 1341-1357, 10 August 
2008. 

14. For info about ShARPE see  http://www.mams.org.au/confluence/display/SHA/ShARPE 
and http://www.federation.org.au/twiki/bin/view/Federation/ShARPE 

15. David Chappell. “Introducing Windows CardSpace”. MSDN. April 2006. Available from 
http://msdn.microsoft.com/en-us/library/aa480189.aspx 

16. Sebastian Gajek, Jorg Schwenk, and Chen Xuan. "On the Insecurity of Microsoft's Identity 
Metasystem". Technical Report TR-HGI-2008-003, Ruhr-Universitat Bochum, June 2008. 
Available from http://demo.nds.rub.de/cardspace/GaScXu08_CardSpaceTR.pdf 

17. OASIS. “WS-SecurityPolicy 1.2”, OASIS Standard,1 July 2007 
18. W3C. “Web Services Addressing (WS-Addressing)”. W3C Member Submission, 10 

August 2004 
19. OASIS, “WS-Trust 1.3”, OASIS Standard, 19 March 2007 
20. BEA Systems, Computer Associates, IBM, Microsoft, SAP, Sun Microsystems, and 

webMethods. “Web Services Metadata Exchange (WS-MetadataExchange)” Version 1.1 
August 2006  

21 David W Chadwick, George Inman. “Attribute Aggregation in Federated Identity 
Management”. IEEE Computer, May 2009, pp 46-53 

 
 
 
 


