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ABSTRACT
Real-time Java is becoming a viable platform for real-time
applications, bringing new challenges to a garbage collector.
A real-time collector has to be incremental as not to cause
deadline misses by suspending an application for too long. In
particular, a real-time collector has to relocate objects in the
heap, incrementally and transparently to the application.
This is usually achieved via an indirection that has to be
followed on every read and write to the heap.

We present an alternative solution, based on object repli-
cation, which does not need any special handling for mem-
ory reads, but writes are more expensive: every value is
written twice. As writes are less frequent than reads, the
total overhead is reduced. With our implementation in a
research real-time Java VM and DaCapo, pseudo-jbb, and
SPEC JVM 98 benchmarks, we observe an average speed-up
of 3%.

A similar technique was implemented in Sapphire, a copy-
ing concurrent collector targeting highly parallel systems.
Sapphire requires that all accesses to non-volatile shared
variables in applications are protected by locks. Our uni-
processor non-concurrent mostly non-copying collector, tar-
geting green-threading embedded systems, does not have
this requirement. The mutator barriers supporting our col-
lector are simpler and more predictable.

1. INTRODUCTION
Java is on the rise as a platform for real-time applica-

tions. Several real-time Java VMs implementing Real-time
Specification for Java (RTSJ) [8] are available [28, 17, 1, 2,
23], and real-time Java has been used to implement appli-
cations in avionics [3], shipboard computing [18], industrial
control [12] and music synthesis [4, 19]. Although RTSJ
provides memory abstractions that can bypass a garbage
collector, immortal and scoped memory, these abstractions
are very hard to use, and thus commonly applications in-
stead rely on a real-time garbage collector (RTGC), which
is not part of the RTSJ.
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Requirements on an RTGC differ for different domains
(i.e. hard real-time avionics, soft real-time music synthesis
or interactive graphic environments). Every RTGC however
must be incremental, not preventing the mutator from run-
ning for more than a very small and bounded amount of
time. Any collector should control the amount of memory
fragmentation, either preventing it or dynamically reduc-
ing it, such that a long-running system does not run out of
memory due to excessive fragmentation. Known solutions to
controlling the fragmentation are preventing it by splitting
objects into equally-sized blocks, reducing it by relocating
objects, or fighting it by splitting objects into arbitrary-sized
blocks. Efficient object relocation is still a challenging task,
as demonstrated by the fact that many current real-time
Java production VMs do not implement relocation in their
incremental RTGCs.

We present a new variant of replication, which allows to
ensure heap consistency in the presence of incremental ob-
ject relocation. The platform for our work is an open-source
VM implementing RTSJ and RTGC [23], which targets
real-time embedded systems, in particular the RTEMS and
LEON architecture used by European Space Agency [20].
The solution is bound to uni-processors, as they still rep-
resent the majority of embedded systems. It is also bound
to green threading (or some other mechanism allowing fast
implementation of atomic barriers).

The contributions of this paper are:

• Simple replication: We propose a new variant of
replication that improves performance of embedded
real-time Java applications. It reduces the overhead
imposed on the mutator due to object relocation. Be-
ing bound to uni-processors with green threading, our
variant has simpler and more predictable barriers than
an earlier variant proposed in [16, 14]. In addition, we
do not require applications to strictly synchronize ac-
cesses to non-volatile fields.

• Implementation: We implement an RTGC with
replication in Minuteman RTGC framework, allowing
further comparisons against additional RTGC config-
urations supported by the framework.

• Evaluation: We empirically compare our solution to
Brooks forwarding pointers [9], both with and with-
out arraylets. We use a set of non-trivial application
benchmarks: DaCapo [7], pseudo-jbb, and SPEC JVM
98 [26]. The performance speedup is 3%.

The source code of the implementation and scripts used to run
the benchmarks can be downloaded from http://www.ovmj.
net/replication



1.1 Brooks Forwarding Pointers
A common approach for achieving consistency during ob-

ject relocation in an incremental collector is via Brooks for-
warding pointers [9, 13, 5]. With Brooks forwarding point-
ers, all memory operations are executed exactly once and
always in to-space (Figure 1(a)).

The header of each object is extended by a forwarding
pointer, which always points to an up-to-date representa-
tion of the object. If an object only exists in a single copy,
the forwarding pointer points to itself. Thus, a non-null
pointer can be always translated to its up-to-date version
unconditionally by following the forwarding pointer. This
translation has to be performed before each memory read
and write. An example pseudo-code for read and writes is
shown in Table 1.

1.2 Our Replication
In our version of replication, which is similar to that of [16,

14], a memory read operation does not need any special han-
dling by the mutator. The mutator performs memory read
using the pointer it has, ignoring the forwarding pointers. In
other words, whenever the mutator can have pointers both
to the old and the new location of a relocated object, the
two copies are always in sync.

If there are two copies of an object, the forwarding pointer
of each copy points to the other copy. If there is only a single
copy, the forwarding pointer points to itself (Figure 1(b)).

The mutator has to perform every write twice. First using
the pointer it has, and second using the forwarding pointer.
The write operation is again unconditional once the pointer
is known not to be null: the two writes are always executed,
even if to the same location. Note that memory caches typi-
cally present in current processors can execute two successive
writes of the same value to the same location very quickly.
An example pseudo-code for read and writes is shown in
Table 1.
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Figure 1: Forwarding pointers.

1.3 Related Work

Replication
Sapphire [16, 14] is a non-parallel concurrent copying collec-
tor which implements a replication scheme similar to ours.
An old copy of an object has a forwarding pointer to the
new copy, but the reverse mapping has to be stored in a
hash table.

A read operation of a non-volatile field does not require
a barrier. A write operation requires a different barrier at
different collection phases. The most complex one is needed
during the flip phase, when pointers both to new and old
copies are reachable by the mutator. The write barrier will
first write using the pointer it has, and then it would en-
queue the write operation for the other copy; this involves
a branch checking if the pointer points to new or old copy,
and then either a pointer dereference or a hash-table look-
up. The enqueued write operation is executed before the
next synchronization point (acquisition or release of a lock,
read or write of a volatile field). Although the fact that the
memory is consistent only at synchronization points poses a
clear difficulty for applications, the authors argue that their
GC only requires applications to conform to Java Memory
Model (JMM). Sapphire is targeting highly parallel systems.
The main motivation for replication in Sapphire is incremen-
tality of object copying, and thus short collector pauses.

Our collector targets embedded systems with uni-
processors and green threading. The main motivation for
replication is speed-up. Our collector thus does not have
the synchronization issues: barriers are always atomic, and
writes are executed instantly. Also, our barriers (described
later in the text) are much simpler than those of Sapphire.
In particular, the non-pointer write operation using a non-
null pointer has no branch at all. The barriers are designed
to be the same during all phases of a GC cycle (including
when GC is not running), so they have a more predictable
overhead. The fixing of pointers (making them point to new
copies of objects) in thread stacks is also simpler: in Sap-
phire, a single thread’s stack may have to be fixed multiple
times in each cycle to assure convergence, depending on the
mutator activity. Our collector avoids this problem by us-
ing a Yuasa barrier for the heap (as we describe later in the
text), thus each thread only has to be fixed once regardless
of the mutator.

A replication scheme proposed for ML language in [21]
requires all reads to be executed in from-space. Writes are
also executed in from-space and are logged into a mutation
log. The mutation log is later read by the collector, which
applies the modifications also to to-space. The solution is
proposed for a two-space copying collector and implemented
in a three-space generational collector in SML/NJ. By forc-
ing the mutator to use from-space while the collector is copy-
ing objects, the solution removes the object copy overhead
from mutator write operations and also removes the need for
special handling of read operations. The design was highly
influenced by the specifics of ML and the SML/NJ garbage
collector. In particular, the mutation log was easy to incor-

f.x=g.y

Brooks Forwarding Replication
f.fwd.x=g.fwd.y f.x=g.y

f.fwd.x=g.y

Table 1: Pseudo-code for memory reads and writes.



porate as the generational collector already had one. The
log was processed atomically, which worked well as ML pro-
grams had many immutable objects and as soft real-time
guarantees were only required. Although the authors claim
that making the log processing incremental would be easy,
there are finalization issues: the processing may never stop
if the mutator is updating frequently [13]. The solution is
also different from ours in implementation details related to
the language, such as that ML does not have stack and ML
programs have a lot of small objects (few bytes).

A technique related to [21] is proposed in [15]. The tech-
nique aims at allowing incremental copying of a single ob-
ject, which is also possible by replication from [21] or by our
replication. The technique is however much closer to Brooks
forwarding pointers. Both reads and writes are always exe-
cuted in to-space. It is the responsibility of the mutator to
restart an operation (read or write) if the target object has
just been copied by the collector, potentially interfering with
the operation. The mutator may thus end up both reading
twice as well as writing twice, and both the read and write
code includes branches. The work is in the context of ML.

Yet another ML collector related to replication is proposed
in [11]. The collector uses private thread-local heaps for im-
mutable objects, which are common to ML. No pointer from
outside a private heap can point into it, simplifying collec-
tion of the private heaps. To enforce this restriction, when-
ever a write operation would introduce such a pointer, the
immutable object is copied into a shared heap. The shared
heap also includes mutable objects. This copy operation
does not require pointer updating: the local copy of the im-
mutable object is still being used by the particular thread.
Forwarding pointers are only needed in the private heaps.
The shared heap uses a non-moving mark-sweep collector.
The fundamental difference from our replication scheme is
that only immutable objects are being copied.

Incremental Object Copying
A common motivation for replication is that it is suitable
for incremental copying of a single object. Incremental ob-
ject copy was however also implemented in specialized hard-
ware [24, 30]. A hardware memory controller that relocates
the objects then also directs memory reads and writes to the
correct locations.

Our replication barrier supports incremental object copy-
ing, which we demonstrate by implementing it. However, in
our GC, incremental object copying is not necessary as the
GC only relocates small objects. Our GC benefits from the
replication solely on performance grounds.

Fighting Fragmentation
The RTGC of Jamaica VM uses fixed-sized blocks of 32
bytes for all allocated objects, including arrays [25]. Larger
non-array objects are split into lists of blocks, arrays are rep-
resented by blocks organized as trees. This solution trades
the external fragmentation for internal fragmentation and
execution overhead due to access to the split structures. If
the allocator is able to find a contiguous region for array
data, the internal tree nodes are not needed. The support
for contiguous arrays does not impose any slow-down on the
array access barriers. However, a worst-case analysis of a
system must assume that the memory is fragmented, and
thus arrays have to be allocated as trees.

The RTGC of Sun’s RTS [10] uses a split representation

for an array or an object only if contiguous representation
is not possible due to fragmentation. The splitting does not
necessarily have to be into blocks of equal size. It seems
that the worst case run-time overhead of this solution can
be high, but we are not aware of a study that would analyze
it.

In Metronome RTGC [5], regular objects are allocated in
contiguous blocks and relocated. Arrays have split represen-
tation. Array data are stored in 2K blocks called arraylets,
which are not relocated. Array meta-data and pointers to
arraylets are stored in a contiguous array spine. Regular
objects larger than 16K are not relocated, but such objects
do not really exist in applications in the first place. Objects
smaller than 16K are relocated, protected by the Brooks for-
warding pointers. Our GC in the configuration we use for
this study is similar to Metronome and implements both the
Brooks barrier and replication. The commercial implemen-
tation of Metronome in IBM WebSphere Real-Time however
does not have defragmentation.

Aonix’s PERC Java Virtual Machine [2, 22] has a collector
with object relocation.

2. MINUTEMAN RTGC FRAMEWORK
We use the Minuteman RTGC framework in the Ovm Java

Virtual Machine, which is an open-source RTSJ implementa-
tion from Purdue University [23]. Ovm is an ahead-of-time
compiling VM, written mostly in Java. At build time, it
compiles all Java bytecode of the application, the VM it-
self, and all needed Java libraries into C, which can be then
compiled by a C compiler (GCC). All reflective calls an ap-
plication could make thus have to be specified at compile
time. The main target platform is real-time Linux with x86
processors, but Ovm has been ported to several other plat-
forms, including RTEMS/LEON. The version of Ovm we use
for this study has green threads scheduler, which means that
all Java threads are executed using a single native thread.
Preemption points are inserted at every back-branch. In par-
ticular, they are not inserted into barriers, and thus barriers
are atomic. An earlier study reported that the latency (time
between occurrence of an event and preemption of current
Java thread) is below 6 µs [3].

The Minuteman RTGC framework can be configured to
implement RTGCs of many different kinds with a range of
profiling options. The key configurable features are RTGC
scheduling, incrementality, defragmentation, predictability
of barriers and representation of arrays. Multiple time-
based scheduling modes are supported: slack-based schedul-
ing such as [13], periodic scheduling as in Metronome [5], and
a combination of both. The collector can be stop-the-world
or incremental. Incrementality can be enabled selectively for
individual phases of the collection. Defragmentation is sup-
ported using Brooks barrier with atomic object copy and
using replication both with atomic and incremental copy.
Also, a non-moving collector can be built. Arrays can either
be contiguous, or use arraylets. Barriers can be optimized
either for throughput, or for predictability.

For this study, we use periodic scheduling, fully incremen-
tal collector, predictable barriers, and arraylets. Parameters
that we vary are replication/Brooks forwarding, incremen-
tal/atomic object copy and arraylets/contiguous arrays.

The collector is a mostly non-copying, mark-and-sweep
snapshot-at-the beginning Yuasa style [29] collector with
weak tri-color invariant. Further we describe our collector



focusing on aspects important for integration of the replica-
tion and the listed parameters that we vary. The core of the
algorithm is described in Section 2.3, building on concepts
explained in Sections 2.1 and 2.2.

2.1 Memory Allocator
The heap is divided into 2K pages. There is a small ob-

ject allocator for objects smaller than 2K (including object
header), large object allocator for larger objects, and a spe-
cial allocator for arrays if arraylets are enabled. Each page
is used by a single allocator, or is unused. The small object
allocator divides pages into slots of predefined sizes, each
page containing only slots of the same size. Freed slots can
be re-used, but only by objects of a given size. When the
amount of free slots in pages reserved for a particular size
is too large, there may not be enough memory for alloca-
tion of an object of different size (fragmentation). This is
solved by defragmentation, during which mostly free pages
are evacuated to mostly full pages reserved for the same size.

The large object allocator has to find a block of free pages
large enough for an object it needs to allocate. This op-
eration is very slow, which is why arraylets are supported.
Also, external fragmentation may prevent allocating a large
object, even if there was enough free memory.

With arraylets enabled, arrays are allocated as shown in
Figure 2(a). An array is represented by a spine, which con-
tains object meta-data (header), array length, pointers to
external arraylets, and optionally also inline arraylets. Each
external arraylet takes a whole 2K page, which is fully filled
with array data. If the size of array data is not an exact
multiple of 2K, there is an internal arraylet included in the
spine with a size smaller than 2K. The spine is allocated
as a regular object (as a small object or as a larger object,
depending on its size). Thus, a very large array still would
have a spine represented via a large object. With arraylets
enabled, each array in the system has this structure. All ar-
ray accesses include barriers which direct the access to the
required arraylet.

Note that arrays smaller than 2K are always allocated as
contiguous, with a single arraylet that is internal in the ar-
ray spine. The compiler sometimes knows that a particular
array is smaller than 2K and can bypass the arraylet pointer
calculation. Also, the scheme allows even larger arrays to be
contiguous by inlining all arraylets into the spine, which is
important for internal VM structures, in particular for large
arrays out of the heap.

As the arraylets already introduce one level of indirec-
tion to every array access, there is no need for any special
barrier for supporting defragmentation of arrays. External
arraylets don’t move. The only array data that may move
is stored in internal arraylets. As only small objects can
move, if an array spine moves, it contains at most one in-
ternal arraylet (2K is both the arraylet size and the page
size). When copying an array spine, we thus redirect the in-
ternal arraylet pointer to the new copy of the spine, getting
Brooks forwarding with no additional runtime overhead for
the mutator (Figure 2(b)). We therefore use this solution
even with replication enabled.

A further optimization for allocation of small objects is
bump-pointer allocation for the youngest generation. When
a fresh page is allocated for objects of a particular size, it
is enabled for bump-pointer allocation. Free lists are only
created at sweep time if some, but not all objects, in the

page die.

2.2 Barriers
The collector requires several barriers to be inserted into

mutator code. They allow incremental collection, object re-
location, and split representation of arrays using arraylets.
In addition to the barriers, the runtime code of the VM also
requires certain modifications, such as array copy functions,
interface to native code, I/O, and reflective access to data
structures in the heap.

In the following text, a clean pointer is a pointer that
points to an up-to-date location of an object and a dirty
pointer points to the old location of a relocated object. Ob-
ject colors are white, grey, black. During marking, reach-
able scanned objects are black, reachable not-yet-scanned
objects are grey (they are stored in a list of reachable not-
yet-scanned objects), and not reached objects are white. Af-
ter marking, no objects are grey, white objects are unreach-
able, and black objects are a superset of reachable objects.
By a white (grey,black) pointer we understand a pointer to
a white (grey,black) object. By “marking” we always mean
marking if the object is white.

Read Barrier
With Brooks forwarding pointers, every read from an ob-
ject has to follow the forwarding pointer of the object, as
shown in Table 1. The same applies to arrays, if arraylets
are disabled.

With arraylets enabled, an array read operation has to
(a) calculate the arraylet index based on array element in-
dex, (b) calculate offset within the arraylet, (c) read the ar-
raylet pointer, (d) read the requested value from the given
arraylet and offset. The arraylets are designed such that
these calculations only need integer division and remainder.
In particular, branches are not needed.

If the value being read is a pointer, it is not forwarded in
our collector, as we use lazy forwarding.

Non-Pointer Write Barrier
With Brooks forwarding pointers, every write to an ob-
ject has to be preceded by dereferencing of the forwarding
pointer (Table 1). With replication, every write is executed
twice, first on the current pointer location, and then on for-
warded location (Table 1). When arraylets are disabled, this
applies also to arrays.

When arraylets are enabled, the write has to be redirected
to the correct address within the correct arraylet. The same
calculation as for the read barrier is used.

If a pointer type is being written, the barrier is more com-
plex as we describe later.

Pointer Comparison Barrier
Sometimes, the mutator can have pointers to two different
copies of the same object. Pointer comparison barrier is thus
needed to hide the fact that objects can have multiple copies
from the mutator. Note that the barrier is only needed when
both of the compared pointers are non-null.

The barrier is optimized for the typical case when both
objects being compared only have a single location. The op-
timization relies on an observation that if the pointers point
to the same copy of an object, they indeed represent the
same object and should compare as equal. The compari-
son is first attempted on unforwarded objects. If not equal,
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Figure 2: Array representation with arraylets.

one of the pointers is forwarded and another comparison is
made. If not equal, the other pointer is forwarded as well
and the last comparison is made. If not equal, we know that
the pointers represent different objects, both with Brooks
forwarding and with replication. With replication, we can
actually skip the second pointer forwarding1. Pseudo-code
for the barrier is shown in Figure 3. It already includes
optimizations explained later in this section.

Pointer Write Barrier
Pointer write barrier has to do additional work compared to
the non-pointer write barrier. To let the collector do its job,
it is (sometimes) needed to update pointers before they are
written. Sometimes, a pointer that is being overwritten has
to be marked grey (Yuasa barrier [29]). And sometimes, a
new pointer being written has to also be marked grey (Dijk-
stra barrier). When these operations are needed depends on
the current state of the GC. However, in predictable config-
uration and atomic object copy, these operation are always
performed even when not needed, targeting predictable over-
head. One exception is needed to this rule: with incremental
object copy, the pointer updating on writes has to be dis-
abled when objects are being relocated.

The Yuasa and Dijkstra barriers ensure that no reach-
able object is accidentaly hidden from the collector and re-
claimed. To do this, the barriers arrange that a pointer
modification never breaks the weak tri-color invariant, which
states that if a white object is pointed to by a black object,
it is also reachable from a grey object through a chain of
white objects. The Yuasa barrier marks the pointer being
overwritten to make sure that it is not white, and thus it does
not matter if it is reachable from “a grey object through a
chain of white objects” (see pseudo-code in Figure 3). The
Yuasa barrier cannot however easily mark pointers that are
being overwritten on the stack and in local variables. This is
why we need the Dijkstra barrier. The Dijkstra barrier, by
marking a new pointer value when written to the heap (the
value always comes from stack in Java), ensures that a black
object can never point to a white object, and thus it again
does not matter if such a white object would be reachable
from “a grey object through a chain of white objects” (see
pseudo-code in Figure 3). Even with Dijkstra barrier, the
stack of a single thread has to be scanned atomically. This
is however a very fast operation on Ovm, as pointers are

1The experiments we show later had been run before this
optimization was implemented.

stored in a separate pointer stack. [6].
Pointers being written have to be updated to point to new

locations. Otherwise, dirty pointers could spread without
control in the heap, making it impossible to have the point-
ers in the heap completely cleaned by the collector. With
Brooks forwarding, pointer update is simply an indirection
of the forwarding pointer. With replication, the barrier uses
the old bit in object header which identifies the old location.
This bit is, in addition to the barrier, only used by mark-
ing and sweeping code. The mutator only accesses it in this
barrier, which is not as frequent as other barriers.

Pseudo-code for the barrier is shown in Figure 3. The
code in the figure is indeed simplified for readability. The
full version can be found in the source code, which is publicly
available.

Optimizations
Barriers are implemented in Java, translated to C by Ovm’s
Java-to-C compiler, and are always inlined when compiled
by GCC (by the GCC inliner). Compiling ahead of time
and knowing that barriers will always be inlined allows us to
specialize the barriers based on properties of pointers known
by static analysis to the Java-to-C compiler, based on the
context in which a particular barrier instance is used. The
Java-to-C compiler automatically adds a bitmap of asser-
tions (an integer constant) known to hold for any pointer
passed to a barrier. The barrier code, written in Java, can
then freely use branches for these assertions. The conditions
in the branches will, at every barrier instance, be turned into
bit-operations on constants, and thus the branches will al-
ways be eliminated by the GCC compiler.

Most usable assertions for the barrier code are
KNOWN_NONNULL (pointer is known not to be null) and
KNOWN_NULL, which allow to significantly optimize all of the
mentioned barriers. Ovm also has a special memory area
for static data named image, which is treated specially by
the GC – objects are neither reclaimed nor moved in the im-
age. With the support for assertions on pointers, it is often
known by static analysis that a pointer is in the image, and
thus cannot have multiple copies. Sometimes, the Java-to-C
compiler also knows statically that an array is so small that
it can only have a single arraylet, which simplifies the array
access barrier. The use of assertions in the barrier code is
shown in Figure 3. We omit the assertions related to the
image, as they are rather specific to our VM.

To speed up compilation of large applications, we have



identified the most common combinations of assertion val-
ues for the pointer write barrier and erased (zeroed) the
assertions known for the less frequent combinations. By a
wrapper method call at Java level for each specialized com-
bination of the assertions and special pragmas controlling
inlining, we made the GCC do most of the work only once
for each combination, as opposed to repeat it at every bar-
rier call site. The combinations could be easily reconfigured
by modifying the Java code of the GC.

This said, further compiler optimizations could be imple-
mented to elide unnecessary forwarding in Brooks-style read
and write barriers, especially if we further exploit the pres-
ence of the green-threads scheduler and the knowledge where
yield points are inserted.

2.3 Collection Cycle
The algorithm and invariants on clean and dirty pointers

are different for atomic and incremental object copy. We
first describe the GC cycle with atomic object copy, both
for Brooks forwarding and replication.

Atomic Object Copy
1. waitUntilMemoryIsScarce The GC thread sleeps.

Pointers are black, objects are allocated black. Point-
ers in the heap and stacks (and local variables) can be
both clean and dirty. Dirty pointers can exist because
objects might have been moved during defragmenta-
tion at the end of the previous cycle. For every relo-
cated object, there can be pointers to both its old and
new location.

2. scanStacks The meaning of black and white is in-
verted, making all objects white. Allocation color is
again made black. Stacks of threads are scanned and
discovered pointers are marked grey (this also stores
the pointers into a list of reachable not-yet-scanned
pointers). The mark operation always marks the up-
to-date location (cleans its copy of the pointer before
dereferencing it). The pointers in the stacks however
cannot be cleaned yet, as the heap is dirty.

3. markAndCleanHeap For each pointer from the list of
grey (reachable not-yet-scanned) pointers, the target
object is marked black, scanned for pointers, and re-
moved from the list. The scanning involves cleaning
each pointer in the heap representation of the object
and marking it grey if it is still white. The list im-
plements a FIFO queue, and thus this is a depth-first-
search traversal. Note that breadth-first-search traver-
sal would typically require a longer list.

4. cleanStacks As all pointers in the heap are clean, ob-
jects on the stack can now be cleaned. This is done
incrementally similarly to stack scanning.

5. sweep All pointers in reachable objects and on the
stacks are clean. All white objects are unreachable,
and thus are reclaimed. With Brooks forwarding, the
old locations of live relocated objects are reclaimed
naturally as they are white (unreachable). With repli-
cation, the forwarding pointer of the new copy has to
be updated when the old copy is being reclaimed, so
that the mutator stops writing to the old copy. After
sweep, all objects in the heap are black. All pointers
are clean.

6. defragment If the free memory is below a given thresh-
old, defragmentation is started, relocating objects from
less occupied pages to more occupied pages. After the
next sweep, the evacuated pages will become free, un-
less they were in the meantime used by the mutator.
Forwarding pointers are updated atomically with copy-
ing.

Incremental Object Copy
The invariants on clean an dirty pointers differ from atomic
object copy as follows

1. waitUntilMemoryIsScarce There may be relocated
objects in the system, but all pointers always point to
the old locations. Clean pointers are thus only those
that point to objects with a single copy. Pointer up-
dating in pointer write barrier is not active.

2. scanStacks Pointer updating is activated. From now
on, clean pointers to objects with two copies can spread
both to the heap and to stacks. It is important that
newly allocated objects will from now on only contain
clean pointers.

3. markAndCleanHeap Pointer updating is still active. At
the end, all reachable objects in the heap are clean.

4. cleanStacks Pointer updating is still active. At the
end, all reachable pointers in the heap and on the
stacks are clean. The pointer updating is thus deacti-
vated.

5. sweep Pointer updating is still inactive.

6. defragment It is crucial that pointer updating is still
inactive, and thus the mutator does not have pointers
to new locations of relocated objects. The size of the
increments by which objects are copied is controlled
by a build-time constant (number of bytes that can be
touched atomically). Note that external arraylets are
not copied (there is no need to do so as arraylet size is
the same as page size). Array spines with an internal
arraylet have to be copied atomically, because as we
have shown they always use Brooks forwarding.

3. EVALUATION
The goal of the evaluation is to empirically compare per-

formance of Brooks forwarding pointers and replication in
Ovm with Minuteman RTGC framework.

3.1 Benchmarks
We run 8 benchmarks from the DaCapo [7] suite (antlr,

bloat, fop, hsqldb, luindex, lusearch, pmd, and xalan), the
pseudo-jbb modification of the SPEC JBB 2005 [27], and 7
benchmarks from the SPEC JVM 98 [26] suite (compress,
db, jack, javac, jess, mpegaudio, and mtrt). These are all
application benchmarks and most of them even use libraries
and code base that is/was being deployed and tested in real
applications. The benchmarks are unfortunately all non-
realtime, but we use them as we do not have access to
any sufficiently complex real-time application benchmarks.
We use periodic time-based RTGC scheduling, so that the
benchmarks can be run unmodified even though they do not
have slack.



// with assignment ”f.x = y”, where f.x and y are pointers to objects
// oldPtr is f.x, newPtr is y
// aNewPtr are statically known assertions about y
// storeToAddr is address at which f.x is stored
void pointerWriteBarrier( Address oldPtr, Address newPtr, int aNewPtr, Address storeToAddr ) {

/∗ Yuasa ∗/
if (oldPtr != null) {

oldPtrUpd = updateNonNullPtr(oldPtr);

markFromBarrier(oldPtrUpd);

}

if ( KNOWN_NONNULL(aNewPtr) || ( !KNOWN_NULL(aNewPtr) && newPtr!=null )) {

/∗ Dijkstra ∗/
newPtrUpd = updateNonNullPtr(newPtr);

markFromBarrier(newPtrUpd);

/∗ The write itself, with pointer updating ∗/
if (REPLICATION && INCREMENTAL_OBJECT_COPY && !updatingPointersOn) {

storeToAddr.store(newPtr);

forwardNonNullPtr(storeToAddr).store(newPtr);

} else {

storeToAddr.store(newPtrUpd);

if (REPLICATION) { forwardNonNullPtr(storeToAddr).store(newPtrUpd); }

}

} else {

/∗ newPtr is null ∗/
storeToAddr.store(null);

if (REPLICATION) { forwardNonNullPtr(storeToAddr).store(null); }

}

}

// with comparison ”A==B”, where A and B are pointers to objects
// ptrA is A, aPtrA are statically known assertions about A
// returns true iff ”A==B”
boolean pointerComparisonBarrier( Address ptrA, Address ptrB, int aPtrA, int aPtrB ) {

if (KNOWN_NULL(ptrA) && KNOWN_NULL(ptrB)) {

return true; /∗ null == null ∗/
}

if ((KNOWN_NONNULL(ptrA) && KNOWN_NULL(ptrB)) || ((KNOWN_NULL(ptrA) && KNOWN_NONNULL(ptrB))) {

return false; /∗ null != !null ∗/
}

if (KNOWN_NULL(ptrA) || (!KNOWN_NONNULL(ptrA) && ptrA==null)) { /∗ A is null ∗/
return (ptrB==null);

}

if (KNOWN_NULL(ptrB) || (!KNOWN_NONNULL(ptrB) && ptrB==null)) { /∗ B is null ∗/
return (ptrA==null);

}

if (ptrA==ptrB) { return true; }

ptrAFwd = forwardNonNullPtr(ptrA);

if (ptrAFwd==ptrB) { return true; }

if (REPLICATION) { return false; } else {

ptrBFwd = forwardNonNullPtr(ptrB);

return (ptrAFwd==ptrBFwd);

}

}

Address updateNonNullPtr( Address ptr ) {

if (REPLICATION) {

if (ptr.isOldBitSet()) { return forwardNonNullPtr(ptr); }

else { return ptr; }

} else { return forwardNonNullPtr(ptr); } /∗ Brooks forwarding ∗/
}

Figure 3: Pseudo-code for pointer write and pointer comparison barriers.



3.2 Configurations
We evaluate the following configurations, identified by fea-

tures present (A stands for arraylets, B for Brooks forward-
ing, R for replication, I for incremental copy):

·A· Arraylets, no defragmentation
B·· Brooks forwarding, atomic copy
BA· Brooks forwarding, arraylets, atomic copy
R·· Replication, atomic copy
R·I Replication, incremental copy
RA· Replication, arraylets, atomic copy
RAI Replication, arraylets, incremental copy

The two highlighted configurations, RA· and BA·, are the
two one would really use with our collector, and thus al-
low the most realistic performance comparison of replication
and Brooks. These configurations are most natural with our
collector, because objects larger than 2K are never defrag-
mented. Thus, while non-array objects larger than 2K don’t
exist in real applications, we need arraylets to avoid frag-
mentation due to large arrays. Since only objects smaller
than 2K are copied, there is no need for incremental object
copy. The other configurations allow to quantify overheads
of replication and incremental object copy, which might ap-
ply when our replication is incorporated into different types
of collectors. They also show overheads of the collector.

3.3 Results
The percentage overheads of replication of Brooks for-

warding are shown in Table 3. With arraylets, the repli-
cation is on average by 3% faster than Brooks forward-
ing. Without arraylets, it is faster by 4.3%. The maximum
speedup is 8.6% with mtrt benchmark from SPEC JVM 98.
The maximum and only slowdown is with pmd benchmark
from DaCapo (2.6%).

Confidence intervals for mean execution time with differ-
ent configurations and benchmarks are shown in Table 2.
With the exception of the bloat benchmark from the Da-
Capo suite and pseudo-jbb, the results are very stable. The
table columns are ordered such that pairs of configurations
interesting for comparison are in adjacent columns.

3.4 Ratios of reads and writes
The ratios of read and write operations in the Dacapo and

SPEC JVM 98 benchmarks are shown in Table 4. On geo-
metric average, there were 5.2 times more reads than writes.
However, the overheads of individual barriers for reads and
writes depend on the context in which the barriers are in-
serted, as the context determines the efficiency of optimiza-
tions performed by the Java-to-C and GCC compilers. Also,
the impact of replication on the total execution time also de-
pends on the actual rate of the read/write operations in the
benchmark.

3.5 Comparability to Products
To verify that the performance of our VM is within a

reasonable margin of state-of-the-art production systems, we
run some of the benchmarks also with IBM WebSphere Real-
Time. We use both the hard real-time version (WRT) and
the soft real-time version (SRT) of the product. Both SRT
and WRT have a Metronome RTGC with a scheduler that
we configured with the same parameters as Ovm (10 ms
window, 500 µs quantum, 1 ms maximum pause time).

RA·/ BA· R··/ B·· RAI/ BA· R·I/ B··
Antlr -2.3 -2.7 2.9 -4.9
Bloat -6.1 -11.8 -5.2 -5.5
Fop -2.4 -3.5 -2.1 -3.4
Hsqldb -3.6 -4.4 -4.2 -3.7
Luindex -3.0 -4.0 -0.4 -1.3
Lusearch -1.8 -5.6 0.1 -5.2
Pmd 2.6 -4.5 -0.5 -6.1
Xalan -3.7 -3.8 -3.9 -3.0
Geo-mean -2.6 -5.1 -1.7 -4.1
Pseudojbb -2.9 -4.5 3.2 -8.3
Compress -4.4 13.8 -4.5 -7.3
Db -2.5 -3.8 -2.8 -3.6
Jack -1.1 -5.9 -1.3 -8.0
Javac -1.7 -6.4 -1.8 -5.2
Jess -3.5 -6.5 -0.1 -5.7
Mpegaudio -3.0 -6.4 -3.2 -7.6
Mtrt -8.6 -7.0 -7.8 -8.2
Geo-mean -3.6 -3.4 -3.1 -6.5
Geo-mean -3.0 -4.3 -2.0 -5.4

Table 3: Percentage overhead of replication over
Brooks forwarding. In the natural configuration for
our collector (first column), the speedup is 3%.

FR/FW AR/AW R/W
Antlr 8.4 2.3 6.5
Bloat 4.5 6.3 4.6
Fop 6.4 5.4 6.2
Hsqldb 6.6 7.0 6.7
Luindex 5.3 1.7 3.8
Lusearch 4.7 2.0 4.0
Pmd 3.2 2.2 3.0
Xalan 6.8 3.7 5.8
Compress 5.0 2.2 4.0
Db 15.4 7.6 11.7
Jack 4.5 3.0 4.1
Javac 4.4 3.4 4.2
Jess 7.5 5.8 7.1
Mpegaudio 6.0 6.1 6.0
Mtrt 4.6 4.5 4.6
Geo-mean 5.8 3.8 5.2

Table 4: Ratio of reads and writes (F=field,
A=array, R=read, W=write).
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Figure 4: Pseudo-jbb with 2x400,000 transactions,
mean execution time.



RAI RA· BA· ·A· B·· R·· R·I
Antlr 30.72± 0.99 29.15± 0.05 29.85± 0.03 22.23± 0.06 29.47± 0.1 28.67± 0.05 28.04± 0.09
Bloat 472.36±30.17 467.96±29.46 498.39±27.68 298.92±19.87 508.12±28.55 448.13±28.03 480.09±27.78
Fop 6.21± 0.01 6.19± 0.01 6.34± 0.01 5.12± 0.01 6.22± 0.01 6.0 ± 0.01 6.01± 0.01
Hsqldb 21.02± 0.04 21.17± 0.05 21.95± 0.04 16.43± 0.03 20.69± 0.06 19.77± 0.04 19.93± 0.03
Luindex 31.26± 0.02 30.47± 0.04 31.4 ± 0.08 24.59± 0.02 29.44± 0.03 28.27± 0.1 29.05± 0.03
Lusearch 92.12± 0.03 90.41± 0.17 92.04± 0.08 69.24± 0.09 109.94± 0.84 103.81± 0.8 104.22± 0.73
Pmd 77.52± 0.2 79.92± 0.29 77.91± 0.11 64.27± 0.26 77.36± 0.36 73.86± 0.26 72.67± 0.23
Xalan 718.89± 2.57 719.79± 1.95 747.76± 2.19 650.72± 2.78 734.19± 2.02 706.38± 1.12 712.39± 1.37
Pseudojbb 613.3 ± 2.06 577.35± 1.56 594.36± 1.61 457.5 ±16.57 615.11± 1.48 587.38± 3.18 564.2 ±20.17
Compress 8.09± 0.02 8.1 ± 0.02 8.47± 0.02 7.74± 0.02 7.55± 0.01 8.59± 0.01 7.0 ± 0.02
Db 13.0 ± 0.01 13.05± 0.01 13.38± 0.02 11.75± 0.03 12.94± 0.04 12.45± 0.03 12.48± 0.03
Jack 11.71± 0.01 11.74± 0.01 11.87± 0.0 9.03± 0.01 12.34± 0.01 11.61± 0.01 11.35± 0.01
Javac 10.11± 0.03 10.12± 0.05 10.3 ± 0.05 7.4 ± 0.02 10.23± 0.03 9.58± 0.04 9.7 ± 0.04
Jess 10.62± 0.05 10.26± 0.01 10.63± 0.01 7.68± 0.01 10.45± 0.01 9.77± 0.01 9.85± 0.02
Mpegaudio 9.03± 0.02 9.05± 0.03 9.33± 0.02 7.93± 0.01 7.93± 0.01 7.42± 0.02 7.33± 0.02
Mtrt 3.33± 0.01 3.3 ± 0.01 3.61± 0.01 3.03± 0.03 3.41± 0.0 3.17± 0.0 3.13± 0.0

Table 2: Benchmark execution times in seconds, averages with 95% confidence intervals.
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Figure 5: SPEC JVM 98, mean execution time.

Unfortunately, we were not able to run the Dacapo bench-
marks with the amount of physical memory available on our
system (Ovm could run, because it needed less memory than
SRT and WRT).

The results for the pseudo-jbb benchmark are shown in
Figure 4. The benchmark run 2 warehouses and 400,000
transactions, which is the combination that would have been
reported by the original SPEC JBB 2005 benchmark on our
system. As we checked on several other configurations, dif-
ferent numbers of warehouses and transactions lead to very
different performance results. We used the same GNU Class-
path implementations of Java collection classes with Ovm,
SRT, and WRT, to focus the comparison more on the VM
and the GC itself rather than the class libraries. With this
setting, the ·A· configuration is faster than WRT, but slower
than SRT. Note that the ·A· configuration is by its RTGC
features closest to SRT and WRT, as SRT and WRT use
arraylets, but not defragmentation. The RAI configuration
is, however, still faster than WRT in this benchmark.

The results for SPEC JVM 98 benchmarks are shown in
Figure 5. When running WRT and SRT, we had to enable
the synchronous non-incremental GC on out-of-memory con-
dition to be able to run the SPEC JVM 98 benchmarks on

our system with the same heap size we used with Ovm. We
used the original IBM class libraries. Assuming that the
poor results of SRT with mpegaudio and javac were due to
a bug or misconfiguration, let’s for every benchmark com-
pare Ovm to the faster of SRT and WRT. At worst, Ovm
was 2.6x slower, it was against SRT with mtrt. On geometric
average, it was 1.7x slower. We believe this is still an accept-
able margin with which relative performance measurements
within Ovm can be regarded as credible.

3.6 Conclusion
We present a defragmenting real-time garbage collector

for Java, which uses replication instead of Brooks forward-
ing pointers. Compared to Brooks forwarding, replication is
faster. In our implementation within Ovm and the Min-
uteman RTGC framework, we have observed 3% perfor-
mance improvement on average. We measured with Da-
Capo, pseudo-jbb, and SPEC JVM 98 benchmarks. Our
version of replication is a natural choice for a uniprocessor
VM with green threading model, which is in turn a natural
choice for embedded systems.

Our work complements Sapphire [16, 14], a replicating
garbage collector for highly parallel systems. In Sapphire,
the support for parallelism comes at a high price of the mem-
ory being consistent only at accesses to volatile fields and
releases/acquisitions of locks. This limitation is argued to
be in-line with Java Memory Model (JMM), but it indeed
at least complicates development and use of legacy appli-
cations. Our collector allows replication on uni-processors
(with green threading) without this limitation. Moreover,
the barriers involved are much simpler and incur more re-
peatable overhead.
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