
REAL-TIME JAVA IN SPACE: POTENTIAL BENEFITS AND OPEN CHALLENGES

Tomas Kalibera(1), Marek Prochazka(2), Filip Pizlo(1), Martin Decky(4), Jan Vitek(1), Marco Zulianello(3)

(1)Purdue University, Dept. of Comp. Science, 305 North University St., West Lafayette, IN 47907, USA,

Tel +1 765 494 6531, Fax +1 765 494 0739, Email:{kalibera, filip, jv}@cs.purdue.edu
(2)SciSys UK Ltd, 23 Clothier Road, Bristol, BS4 5SS, United Kingdom,

Tel +44 117 916 5179, Fax +44 117 916 5299, Email: marek.prochazka@scisys.co.uk
(1)ESA/ESTEC, Keplerlaan 1 - P.O Box 299, 2200 AG Noordwijk, The Netherlands,

Tel +31 71 565 8933, Fax +31 71 565 5420, Email: marco.zulianello@esa.int
(1)Charles University, Dept. of SW. Engineering, Malostranske nam. 25, 118 00 Praha 1, Czech Republic,

Tel +420 221 914 266, Fax +420 221 914 323, Email: martin.decky@dsrg.mff.cuni.cz

ABSTRACT

In this paper we analyze potential benefits of using the

Java programming language in spacecraft on-board

applications as well as problems with current Real-Time

Java implementations that would have to be solved to

make this possible. We base our experience on porting

the Ovm Real-Time Java Virtual Machine to

RTEMS/LEON2 and also our findings in the Real-Time

Java Assessment Project funded by ESA.1

1 INTRODUCTION

Java is a popular, mature, widely accepted programming

language; it features extensive library support, high

quality implementations, tool support for the complete

software development cycle, and it has the benefit of

being familiar to a large segment of the programmer

population. While Java has traditionally been relegated

to non-safety-critical software, the acceptance of real-

time and safety-critical Java technologies is increasing

steadily. The Real-Time Specification for Java (RTSJ)

[4] has largely met its promises – commercial

implementations exist, real applications are being

deployed (including the DDG-1000 Zumwalt class

destroyer [9], multiple UAVs [1], audio applications

[2,10], and numerous uses for industrial control [13]).

New technologies such as real-time garbage collection

(RTGC) allow for an even easier programming model

than the one originally stipulated by the RTSJ, and are

already implemented and in use.

A natural question thus is: Can Java be used in space?

This question has been asked in the past, but we believe

it is valid to ask it again due to two reasons. Firstly,

progress has been made in the past years (several RT

Java implementations have been ported to

RTEMS/LEON and they also have been evaluated

systematically). Secondly, our reasoning about this issue

is somewhat more practical and combines points of

view of RT Java VM developers, spacecraft on-board

1 Porting of Ovm to the RTEMS/LEON2 platform has

not been funded by ESA, however ESA provided

support to make this effort possible.

software developers and customers. In this paper we

analyze potential benefits of using Java in space

applications and summarise our findings gathered

during the Real-Time Java Assessment Project. We also

point out technical issues of current Java

implementations that have to be solved to make this

possible.

2 HOW CAN SPACE APPLICATIONS BENEFIT

FROM JAVA

Space applications can benefit both from features in the

Java language itself and the Java ubiquity. The Java

virtual machine lifts much of the burden of unnecessary

low-level details from the programmer. The ubiquity of

Java leads to broader tool support and a greater

availability of programmers familiar with the language.

The wide spread of Java suggests that Java is a well

balanced environment. Java itself is a simple language –

much simpler than for instance C, C++ or Ada. Its

syntax and semantics were specified after decades of

research and practical experience. It is coherent, yet

powerful and easy to use for most programmers. Java

has a built-in support for class-based object-oriented

programming, generics (a safer and simpler replacement

for C++ templates), exception handling, and vertically

integrated thread management. Java has a wide range of

libraries as part of its thorough standard API, making it

unnecessary for software engineers to seek out third-

party libraries for most tasks. Furthermore, Java allows

dynamic allocation and has automatic garbage

collection, which takes even more burden as well as

opportunities to make mistakes from programmers. Java

has been proven by experience to be suitable for a wide

range of applications.

The Java language is type safe. Type safety provides a

solid ground for both security and spatial partitioning of

different threads running in an application. Thanks to

reference safety each thread can only access its properly

allocated memory. Type safety is largely enforced at

compile time and partially by the runtime environment –

the Java Virtual Machine. In particular, type safety

allows for the implementation of spatial partitioning

without hardware support, such as a hardware MMU.

The spatial separation is not of a great concern when

Java runs on top of a general-purpose OS with memory

protection, but it is vitally important for real-time

operating systems such as RTEMS, which do not

support hardware memory protection, even when

running on hardware that provides it (i.e. LEON3).

Moreover, type safety and further bytecode checking of

the Java Virtual Machine makes the Java platform safer

compared to native applications – attacks such as stack

overflow exploits are not possible if the JVM

implementation is bug free and can afford to perform

on-line bytecode checking [16].

The Java Virtual Machine supports dynamic class

(code) loading, providing a base mechanism for

updating applications at run-time or loading needed

components at start-up time. Conceptually this is not

different from dynamic linker support present in most

general purpose operating systems, except that safety is

ensured: whereas a dynamic linker for C applications

will not check the compatibility of various loaded

modules, the Java class loader will prove that at worst,

compatibility issues will be isolated and will not result

in a failure of the system at large. In the COrDeT project

funded by ESA [6], support for dynamic updates of

software components at runtime has been identified as

one of the requirements for future spacecraft on-board

software. Dynamic class loading would therefore be an

important feature, as RTEMS does not support dynamic

libraries and it adds the aforementioned benefits

comparing to dynamic linking. Java on-board software

can thus in principle be updated at run-time.

Since Java programs conceptually all run on the same

platform, the Java Virtual Machine, most of the

portability issues are taken away from the application

programmers. This is also known as WORA (Write

Once Run Anywhere). In the case of space applications

this has the nice feature that most of the code (except

hardware-dependent parts) does not need to be

developed and debugged in specialized, expensive and

usually slow simulators, but instead in a fairly common

desktop environment.

The actual portability of the Java applications then

depends on how well the individual virtual machine

implementations follow the specification. The API is

part of the specification, so the programmers cannot

accidentally use virtual machine specific features.

However, it is their responsibility to make sure they

only rely on the specified behavior of the API. With

new Java releases, issues affecting portability in both

the specification and implementations are being fixed –

specification is being clarified, methods with unfixable

portability issues deprecated and complemented by

better ones. As a result, it is in general easier to write

portable programs in Java than in languages like C or

even C++, but still programs should be tested on

multiple virtual machine implementations. Similar

observations apply to the portability of Ada language,

however, as Java is being recently used in more areas,

the progress of portability issues clarification is swifter.

Despite the good supply of Java libraries, applications

sometimes need to interact with native code, mainly to

access low-level OS dependent functionality or native

libraries. Java provides an interface to native code for

applications that need it. Spacecraft on-board

applications thus can potentially be formed by both

native code and Java code. This could be exploited for

instance in the development of Basic Software (Fig. 1).

According to an experimental study published in [11],

programmers are more productive in Java than in C++

and they also create less bugs in Java than in C++. We

are not aware of any similar study that would compare

Java and Ada.

A language-level comparison of Ada and RT Java in the

context of safety critical applications is given in [5].

Unlike Ada, dynamic memory allocation and automatic

garbage collection are integral parts of standard Java.

3 CHALLENGES FOR SPACE READY RT JAVA

In order to provide suggestions for using RT Java in

spacecraft on-board software, an analysis of this domain

has to be taken into account. This work has been

performed recently in projects funded by ESA, e.g.

CorDeT [6] and DOMENG [7]. In the Real-Time Java

Assessment Project [14] funded by ESA and carried out

by SciSys with help by Charles University, we took into

account high-level considerations only. We provided

suggestions for applicability of RT Java for platform

and payload applications based on our evaluation of

selected RT Java products, which followed the

guidelines drawn in [12]. We used a high-level

spacecraft on-board software architecture as shown in

Fig. 1.

Data Handling

Hardware

RTOS BSW

Application 1

(AOCS)

Application 2

(Payload)

Application 3

(OBCP)

Figure 1. On-board software high-level architecture

Our benchmarking results in the project suggested that

although RT Java system latencies on RTEMS/LEON

were above acceptable limits, they were comparable to

C on platforms for which RT Java implementations have

been better optimised (e.g. Linux/x86). From the

perspective of using RT Java for particular spacecraft

on-board software applications, our summary was as

follows:

- Basic Software:

1. Adequate support in RT Java to access

hardware is missing (e.g. interrupt handling);

2. Too high system latencies (on the target

RTEMS/LEON platform);

3. It is worth considering using JNI or other

mechanisms to access Basic Software written

in C. The difference in performance between

BSW written in Java on one side and written in

C and accessed via JNI/other tools on the other

side should be quantified.

- Data Handling:

1. RT Java appears being close to provide all

necessary functionality;

2. Improvements in performance and

predictability are needed on the target platform.

- AOCS:

1. RT Java appears being close to provide all

necessary functionality (attention must be paid

to implementing the trigonometric functions

with higher precision as in the

java.lang.StrictMath library which should use

algorithms compliant to the Freely

Distributable Math Library (fdlibm), but also

make a faster but less precise implementation

relying on hardware support in

java.lang.Math);

2. Improvements in performance are yet

needed.

- OBCP

1. RT Java dynamic class loader combined

with an interpreter provides the necessary

functionality;

2. Doubts remain as to whether using the

Java interpreter as the OBCP interpreter is

actually beneficial;

3. In our experience, dynamically loaded

interpreted code performs up to two orders of

magnitude worse than the AOT-compiled code

on the target platform. Just-in-time compilation

is not a solution, as it requires huge amount of

computation time and memory.

- Payload Software:

1. No specific obstacles have been found;

however all the general observations apply;

2. Improvements in performance and

predictability are needed on the target platform.

We complement these earlier results based on Purdue’s

experience with porting their Ovm [1] RT Java

implementation to RTEMS/LEON and RTEMS/x86. In

this paper we focus more on memory management, as

this appears to be a critical aspect for real-time

guarantees in Java.

In standard Java, the garbage collector could cause

pause times as large as 100 ms or more. The garbage

collector is however an integral part of Java and cannot

be bypassed. An additional problem is that the base Java

thread scheduler does not fully enforce priorities. Real-

Time Specification for Java (RTSJ), an extension to

standard Java, provides real-time scheduling features as

well as different modes of using memory that bypass the

garbage collector: scoped memory and immortal

memory. The new programming model requires explicit

distinction of these types of memory. Immortal memory

is never released. Scoped memory is similar to stack-

allocated local variables of a function: variables are

allocated when a function is entered and freed when it is

left. The difference is that in RTSJ a scope is orthogonal

to a function: a scope is entered explicitly as well as it is

explicitly left. To preserve type safety, references from

outside a scope cannot point into a scope, as they would

be turned invalid when the scope is left.

RTSJ has been implemented both in commercial and

open-source virtual machines (Java RTS, WebSphere

Real Time, PERC, Ovm, and JamaicaVM/AeroVM). It

is known to be used in a battleship computing

environment (US Navy Zumwalt-class Destroyer by

Raytheon/IBM, 5 mil. lines of Java code, Aegis Weapon

System Open Architecture Program [9,3]), avionics

(Zedasoft's Java flight simulator, Boeing ScanEagle

UAV [1], EADS Barracuda UAV), audio processing

[2,10], industrial control [13], trading and visualization.

However, to the best of our knowledge none of these

systems uses scoped memory – in each application,

developers opted to use either a provider-specific real-

time garbage collector or statically allocated memory.

This is largely due to the fact that scoped memory takes

away the simplicity of the base Java – explicit

entering/leaving the scopes and keeping the invariant

that references do not point to scopes from the outside

introduces hassles that arguably make Java no better

than C or C++. Real-time garbage collectors strive to

avoid the need for scoped memory: although less

efficient than the non-real-time ones, they currently

provide pause times in hundreds of microseconds. Even

shorter pause times seem theoretically possible. A real-

time GC is a part of JVM implementations of IBM, Sun,

Aicas, and Purdue's Ovm.

A unique restriction for spacecraft on-board software is

the amount of memory. Due to extensive costs of

radiation hardened RAM, future ESA systems are

expected to have only 32M of RAM, although the

hardware could support 128M. The limit of 32M is very

restrictive for any realistic Java application. If we only

focus on the heap, due to the use of GC, we typically

need 3 times more memory than the live data really

spans. It seems that space applications would benefit

from a GC that would require less memory, most likely

for the price of decreased performance. Compression

techniques or just reduction of extensive aligning are

obvious candidates to be explored, as well as

modification of the GC algorithm to reduce the three-

fold overhead. On the other hand, existing C or Ada

space applications also incur space overheads due to the

use of static memory allocation or memory pooling,

which introduces an a priori fragmentation of the heap.

The memory pool code is often heavily used by most

subsystems of the on-board software and not enough

attention is paid to its efficiency and flawlessness. Thus,

it is possible that performance of existing RTGCs is

already comparable with legacy space applications in

memory usage.

Code size is also an issue with respect to memory usage

– the future ESA hardware has (only) 8M of non-

volatile memory in addition to the 32M of RAM. Even

if we restrict the dynamic class loading to classes

known at compilation/deployment time, the amount of

code used just by the start-up of class libraries can be

significant. Although much of the initialisation may not

be used in a particular application execution, stripping

down the Java features would make us lose most of the

benefits of Java. Potential solutions to apply include

rewriting the class libraries to initialise more lazily,

while keeping real-time properties, as well as

code/bytecode compression.

Lastly, the VM footprint itself can be significant. Non-

RT JVMs implement just-in-time compilation, which is

hardly applicable in small embedded devices due to

limited memory and computational power. Ahead-of-

time compilation is usually preferred. However, the

binary code is significantly larger than the bytecode.

Space applications could greatly benefit from dynamic

updating of a running application by loading code not

present when the application was started. The built-in

Java support for this represents much safer and

technically more sound option comparing to the current

practice of patching binary images of software

applications. A sensible solution with respect to

available memory would probably thus be based on

ahead-of-time compilation of most of the classes and on

interpreting bytecode of the dynamically loaded classes.

Our experience from the RT Java Assessment project

shows that we can identify pieces of on-board software

where the performance penalty of the interpreted code is

not significant (e.g. the time to perform a system call is

– not surprisingly – comparable in both native and

interpreted execution modes).

4 THE OVM EXPERIENCE

Purdue Ovm is a research JVM that implements most of

the RTSJ specification and has a real-time garbage

collector. It was primarily designed for Linux and

worked on similar POSIX systems with x86, SPARC,

and PowerPC processors. It can employ the Xenomai

RT-Linux to expose hardware interrupts and I/O devices

to Java programs. The core of Ovm has also been ported

to RTEMS/LEON2, RTEMS/LEON3 and RTEMS/x86.

We were able to run the SPEC JVM 98 compress

benchmark on a system with 8M flash memory and

32M RAM.

Ovm provides an ahead-of-time compiler that compiles

Java bytecode into C code, which is in turn compiled by

GCC into machine code. The same compiler is used for

the application bytecode, the Java libraries bytecode,

and the bytecode of the VM runtime itself (the majority

of the VM is implemented in Java). The use of C as the

output language has the advantage of leaving some low-

level optimizations (register allocation, instruction

selection, redundant code elimination, some of inlining)

to GCC as well as making the VM more portable.

Additionally, the generated C code is relatively easy to

debug.

As Ovm already had support for SPARC, porting to

LEON2 and LEON3 CPUs did not require much work;

only some calling convention details had to be resolved.

On the other hand, porting to the RTEMS operating

system required new threading control code, some I/O

fixes, fixes to the boot process and extensions of the

build system. The build system had to be extended for

cross-compilation and for running code in an emulator.

Because Ovm already used GNU Autotools, this did not

require massive changes. The VM boot code had to be

adapted for RTEMS memory layout. Ovm uses a pre-

compiled memory image with the VM code, which has

to be at fixed memory address. As RTEMS does not

have MMU, some relatively minor changes were needed

to make this possible.

The port of Ovm to RTEMS brought to light limitations

that have to be eliminated to make the use of Java for

the development of spacecraft on-board software

possible. The memory usage is still too large, due to

both the binary (the VM code and pre-compiled class

libraries) and heap requirements. The problem of the

large binary cannot be alleviated through interpretation,

as our real-time configuration of Ovm currently does

not support bytecode interpretation (earlier versions of

Ovm supported a simple interpreter which was used for

debugging). Ovm has also a very limited support for

interfacing C and Java code; this is both beneficial (full-

fledged C-to-Java interfaces such as JNI tend to be quite

large) and detrimental: end-users cannot quite easily

write their own C code and link it with an Ovm

program.

5 ROADMAP TO JAVA IN SPACE

Spacecraft on-board software could benefit from Java

once Java is improved in certain aspects. Some of the

suggested improvements are generally accepted as

requirements for RT embedded Java systems – shorter

RTGC pause times, better CPU utilization. Somewhat

unforeseen are the stringent memory requirements due

to hardened RAM (up to 8M for code, up to 32M for

heap). An important factor is also a limited timer

resolution due to limited clock rate, as compared to

desktop systems. The limited timer resolution makes

RTGC implementation more challenging.

In short time, it is unlikely that with current Java

implementations the whole spacecraft on-board

software could be written in Java. However, Java could

be used as an isolation platform for software that has not

been assigned the highest criticality, while the critical

code would still be written in Ada or C. The Ada/C code

will communicate with the Java code using well defined

native interface, allowing both calls from Java to Ada/C

and vice versa. Java could never bypass the native

interface to corrupt or break the Ada/C code thanks to

the Java type-safety. Indeed, the Ada/C code still would

have to be robust against erroneous or adversary use of

the native interfaces it would provide to Java. The Java

code could be updated in flight (thanks to dynamic class

loading). And indeed the Java code could use all

mentioned Java features that make programming easier

and safer.

This scenario of Java as an isolation platform would still

require some engineering of the Java VM. The Java

native interface should be fast and the Java VM,

especially the RTGC, should not consume excessive

resources when not in use. The dynamic class loading

would require an interpreter with reasonable

performance and limited memory requirements. A

logical partitioning approach could be used to make the

memory and CPU utilisation of Java under control. One

possible solution to this is to use a separation

microkernel such as PikeOS, which was recently

selected for Securely Partitioning Spacecraft Computing

Resources, a project funded by ESA [15]. In addition to

the separation of Java control code from critical native

code, this scenario can be employed for isolation of

different Java control applications from one another.

Surprisingly, certain limitations of hardware for

spacecraft on-board applications can be exploited by the

JVM. In particular, SMP or multi-core systems are not

expected to fly in the short term (ESA is only starting

projects to investigate the consequences of the use of

multi-core systems). The lack of real parallelism makes

the VM implementation simpler and puts unique

requirements for the GC as well. The extremely small

heap size (up to 32M as opposed to gigabytes in desktop

systems) would also impact decisions on GC design.

Also, limitations of software, such as the limited SMP

support found in RTEMS, can also be overcome by the

VM; VMs typically implement much of the heavy-

lifting required to support SMPs, potentially allowing

parallel Java code to run on top of not fully parallel-

aware operating systems.

Once the sandbox scenario is proven to work and the RT

GC technology allows writing code with acceptable

latencies, more and more parts of the space systems

could be implemented in Java.

We also believe that Java design and coding patterns

should be investigated for the real-time embedded

systems development. For instance, our experiments

with different implementations of the System Data Pool

have shown that simple design issues such as method

signatures could have significant influence on the

overall throughput and response times. Attention has to

be paid when Java exceptions or synchronisation are

used.

6 CONCLUSIONS

In the future, we would like to focus on two parallel

tracks.

One of them is developing a RT Java VM for

RTEMS/LEON, which meets the requirements of

spacecraft on-board software. Ovm can run on RTEMS/

LEON, but has two important drawbacks: does not

presently support dynamic loading and it's footprint is

too large. Adding dynamic loading to Ovm would be

possible since it existed in earlier versions for

debugging, but reducing the footprint will require

significant changes or writing a new virtual machine

from scratch. We would like to focus on Safety Critical

Java [6], an updated subset of the Real-Time

Specification for Java and to explore optimizations

reducing footprint in this context.

The second track is the evaluation of existing RT Java

VMs for their suitability for spacecraft on-board

software. This will include incremental building of code

base of prototype on-board software in RT Java. Here

we would like to build upon our efforts in the Real-Time

Java Assessment project, as well as other studies. At the

same time, this will include further benchmarking of

different RT Java products such as Ovm, AeroVM and

PERC Pico. We currently have a test suite available

which we can easily port to the other VMs in order to

compare their performance and predictability.

7 REFERENCES

1. Armbruster, A., Baker, J., Cunei, A., Flack, C.,

Holmes, D., Pizlo, F., Pla, E., Prochazka, M. &

Vitek, J. (2007). A Real-Time Java with

Applications in Avionics. Trans. on Embedded

Computing Sys. 7(1), 1-49.

2. Auerbach, J., Bacon, D. F., Bömers, F. & Cheng, P.

(2007). Real-Time Music Synthesis in Java Using

the Metronome Garbage Collector. In Proc.

International Computer Music Conference (ICMC).

3. Berry, R. F., McKenney, P. E. & Parr, F. N. (2008).

Responsive Systems: An Introduction. IBM

Systems Journal. 47(2), 197-206.

4. Bollella, G., Gosling, J., Brosgol, B., Dibble, P., Furr,

S. & Turnbull, M. (2000). The Real-Time

Specification for Java, Version 1.0.2, Addison-

Wesley.

5. Brosgol, B. M. & Wellings, A. (2006). A Comparison

of Ada and Real-Time Java for Safety-Critical

Applications. Reliable Software Technologies –

Ada-Europe 2006, LNCS 4006, Springer, 13-26.

6. Component-Oriented Development Techniques

(COrDeT) (2007-2009), ESA/ESTEC Contract Nr

20464/06/NL/JD and ESA/ESTEC Contract Nr

20463/06/NL/JD.

7. Domain Engineering (DOMENG) (2007-2008), ESA/

ESTEC Contract Nr. 20001/06/NL/JD/jk.

8. Henties, T., Hunt, J. J., Locke, D., Nilsen, K.,

Schoeberl, M. & Vitek, J. (2009). Java for Safety-

Critical Applications. In Proc. 2nd International

Workshop on the Certification of Safety-Critical

Software Controlled Systems (SafeCer), Elsevier.

9. IBM (2007). IBM and Raytheon Deliver Technology

Solution for DDG 1000 Next Generation Navy

Destroyers. Online at http://www.ibm.com/press/

us/en/pressrelease/21033.wss (as of 18 May 2009).

10. Juillerat, N., Arisona S. M. & Schubinger-Banz, S.

M. (2007). Real-Time, Low Latency Audio

Processing in Java. In Proc. International

Computer Music Conference (ICMC), 99-102.

11. Phipps, G. (1999). Comparing observed bug and

productivity rates for Java and C++. Softw. Pract.

Exper. 29(4), 345-358.

12. Prochazka, M., Ward, R. & Wellings, A. (2007). A

First Step towards Using Real-Time Java for

Spacecraft On-board Software. In Proc. Data

Systems in Aerospace Conference (DASIA) (Ed. L.

Ouwehand), ESA SP-638 (CDROM), ESA

Publications Division, European Space Agency,

Noordwijk, The Netherlands.

13. Robertz, S. G., Henriksson, R., Nilsson, K.,

Blomdell, A. & Tarasov, I. (2007). Using Real-

Time Java for Industrial Robot Control. In Proc. 5th

International Workshop on Java Technologies for

Real-Time and Embedded Systems (JTRES), ACM,

104-110.

14. RT Java Assessment Project. (2008). Final Report,

Contract ESTEC 20474/06/NL/JD/na.

15. Securely Partitioning Spacecraft Computing

Resources Resources (2009-2010), ESA SoW TEC-

SWS/08-163/SOW.

16. Vertanen, O. (2006). Java Type Confusion and Fault

Attacks. In Proc. 3rd Workshop on Fault Diagnosis

and Tolerance in Cryptography (FDTC), LNCS

4236, Springer, 237-25.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

