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a b s t r a c t

Euler diagrams are used in a wide variety of areas for representing information about
relationships between collections of objects. Recently, several techniques for automated
Euler diagram drawing have been proposed, contributing to the Euler diagram generation
problem: given an abstract description, draw an Euler diagram with that description
and which possesses certain properties, sometimes called well-formedness conditions.
We present the first fully formalized, general framework that permits the embedding of
Euler diagrams that possess any collection of the six typically considered well-formedness
conditions. Our method first converts the abstract description into a vertex-labelled graph.
An Euler diagram can then be formed, essentially by finding a dual graph of such a graph.
However, we cannot use an arbitrary plane embedding of the vertex-labelled graph for
this purpose. We identify specific embeddings that allow the construction of appropriate
duals. From these embeddings, we can also identify precisely which properties the drawn
Euler diagram will possess and ‘measure’ the number of times that each well-formedness
condition is broken. We prove that every abstract description can be embedded using
our method. Moreover, we identify exactly which (large) class of Euler diagrams can be
generated.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Many diagrams are based on finite collections of (usually simple) closed curves; such a collection of closed curves is
called an Euler diagram [1], of which Venn diagrams are examples. To illustrate, the Euler diagram in Fig. 1 contains three
closed curves, P , Q and R, which represent collections of objects (sets); it asserts that P and Q are disjoint, and that Rmay
intersect with either P or Q . Areas in which they are used include the visualization of statistical data [2,3], displaying the
results of database queries [4] and representing non-hierarchical computer file systems [5]. They have been used in a visual
semanticweb editing environment [6] and for viewing clusterswhich contain concepts frommultiple ontologies [7]. Another
application area is formal object oriented specification [8]. For further application areas, see [9–15]. In all of these areas,
automated Euler diagram layout has the potential to bring huge benefits and it is unsurprising that, with the computing
power now available, considerable research effort is focused on this topic.
Various methods for automatically generating Euler diagrams have been developed, each concentrating on a particular

class of Euler diagrams; for example, see [2–4,16–18]. Ideally, such generation algorithms will produce diagrams with
effective layouts in an efficient way. The generation algorithms developed so far produce Euler diagrams that have certain
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Fig. 1. An Euler diagram.

Fig. 2. Generation using a dual graph.

Fig. 3. Properties of Euler diagrams.

sets of properties, sometimes called well-formedness conditions (further discussed below). Each generation method starts
with an abstract description of the required diagram and proceeds to seek a layout.
One approach constructs a Venn diagram (a special type of Euler diagram in which all intersections between the curves

are present) and removes minimal regions in order to produce the required Euler diagram [19]; this algorithm generates
the restricted class of so-called monotonic Euler diagrams which must have a minimal region contained by all of the curves.
Euler diagrams can also be inductively generated, adding one curve at a time [20]. This is an intuitive generationmethod,

since it matches how people typically draw Euler diagrams (at least, based on our experience). This approach to Euler
diagram generation can be seen as extending the construction Venn provided in his original paper, where he described
how to add curves to Venn diagrams [21]. Edwards also developed an inductive construction for Venn diagrams [22].
Other existing approaches, such as [23,24], construct a so-called dual graph from the abstract description, which is

embedded in the plane, and ‘wrap’ closed curves around the dual graph, as illustrated in Fig. 2; a curve labelled L encloses
precisely the vertices that include the label L. Once an appropriate embedding of the dual graph has been found, a layout for
each curve in the diagram is determined. It is this graph based generationmethod that we significantly extend in this paper.
In particular, we develop a very general, formalized framework that allows the generation of an Euler diagram given any

abstract description. Moreover, we identify a very large class of Euler diagrams that our method can generate; each abstract
description corresponds to many Euler diagrams. In more detail, we define a family of vertex-labelled graphs whose duals
give rise to Euler diagrams with the required abstractions. However, we cannot construct arbitrary vertex-labelled graphs
for this process and present conditions such that if the graph satisfies those conditions then it will generate an Euler diagram
with the correct abstraction. We proceed to use these vertex-labelled graphs to identify properties that the generated Euler
diagram will possess. This allows us to choose a vertex-labelled graph from which to generate an Euler diagram based on
the properties we wish that diagram to possess.
Two such properties include all curves being simple (simplicity) and each curve having a different label (unique labels).

In addition, diagrams may possess curves which never run concurrently (no concurrency), have only connected zones, have
no n-points (for some specified integer n) of intersection between curves, and have curves which never ‘brush’. To illustrate,
in Fig. 3, the curves b and c run concurrently. The zone inside a only is not connected (it consists of two minimal regions).
There is a 3-point of intersection between the curves d, e and f , which means this diagram does not possess the no 3-points
property (although it does possess the no 4-points property). Finally, the curves b and d intersect at a brushing point; these
points are where two curves intersect, but not as part of a concurrent line segment, and do not cross.
Large subsets of these properties are often imposed in generation methods, with the embedded diagrams required to

possess the imposed properties. Euler diagrams that possess many of these properties tend to be more visually pleasing
or more easily interpreted. However, not every abstract description (formalized below) can be realized under particular
collections of these properties (see, for example, [25]). This leads to the necessity of being able to embed Euler diagrams
under varying sets of these properties, in part to accommodate user preference when not all of them can hold. A feature
of our generation method is the ability to determine which properties hold prior to generation. Moreover, we can select a
vertex-labelled graph that allows us to generate a diagram with the required properties, provided such a diagram exists.

Please cite this article in press as: G. Stapleton, et al., A graph theoretic approach to general Euler diagram drawing, Theoretical Computer Science (2009),
doi:10.1016/j.tcs.2009.09.005
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Fig. 4. An Euler diagram.

Fig. 5. An Euler diagram with a non-simple curve.

Fig. 6. An Euler diagram with a repeated label.

Section 2 overviews the syntax of Euler diagrams and details properties theymay possess and their abstractions. Section 3
introduces a range of graph theoretic concepts that will be required throughout the paper. Section 4 describes how to
convert the so-called appropriate embeddings of vertex-labelled graphs into Euler diagrams.We observe various properties
possessed by the graph that establish properties that will be possessed by the yet to be generated diagram; this is done in
Section 5. We sketch a naive algorithm for generating a family of graphs in Section 6, from which we can generate Euler
diagrams with specified properties. Finally, Section 7 presents a prototype implementation of our work, which constructs
an Euler diagram given a vertex-labelled graph. Some output from the software is included.

2. Euler diagrams

An Euler diagram is a collection of closed curves, each of which has a label which we assume is drawn from a fixed set
L. There are many definitions of Euler diagrams, each asserting well-formedness conditions that the diagrams must satisfy,
such as the curves should be simple, for example [2–4,23,26]; we give a very general definition.

Definition 1. An Euler diagram, d, is a pair, (Curve, l)where

(1) Curve is a finite collection of closed curves each with codomain R2,
(2) l: Curve→ L is a function that returns the label of each curve.

Fig. 4 shows an Euler diagram with three curves labelled a, b and c. It is easy to determine the interior or exterior of the
(simple) curves in this diagram. However, some Euler diagrams contain non-simple curves. A non-simple curve is onewhich
self-intersects. For example the curve c in Fig. 5 is non-simple. This diagram indicates that c is a subset of the symmetric
difference of a and b. We now define the interior points of such curves, by appealing to winding numbers. Thus, we assume
that the curves in Euler diagrams allow the computation of winding numbers.

Definition 2. Let c be a closed curve and let p be a point in R2 − im(c). The point p is interior to c if the winding number
of c with respect to p, denotedwind(c, p), is odd, with the set of all such points denoted int(c). All points in R2 that are not
interior to c are exterior to c , with the set of all such points denoted ext(c).

The labelling function l is need not be injective and it is necessary to consider the set of all curves that have the same
label; we call this a contour. Curves with the same label represent the same set.

Definition 3. Let d = (Curve, l) be an Euler diagram and let Con(L) be the set of all curves in d with the label L. The set
Con(L) is a contour of d with label L. A point p is inside Con(L) whenever the number of curves in Con(L) that p is inside is
odd. The set of interior points is denoted int(Con(L)). All points in R2 that are not interior to Con(L) are exterior to Con(L),
the set of which is denoted ext(Con(L)).

The Euler diagram in Fig. 6 has two contours. The label a is associated with two of its curves. The shaded regions of the
diagram indicate the interior of the contour with label a.

Please cite this article in press as: G. Stapleton, et al., A graph theoretic approach to general Euler diagram drawing, Theoretical Computer Science (2009),
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Fig. 7. A connected planar graph with vertices labelled by zones.

Definition 4. Let d = (Curve, l) be an Euler diagram and let CON ⊆ {Con(L) : L ∈ im(l)}. If the set

z =
⋂

Con(L′)∈CON

int(Con(L′)) ∩
⋂

Con(L′)∈{Con(L):L∈im(l)}−CON

ext(Con(L′))

is non-empty then z is a zone of d, with the set of such zones denoted Z(d).
The diagram in Fig. 4 has five zones, including that inside both a and b but outside c. The diagram in Fig. 6 has four zones;

the zone inside b but outside a consists of two disjoint regions, as does the zone inside both a and b.
Our attention now turns to descriptions of diagrams. We can provide an abstract description of an Euler diagram by

considering its zones, as has been well documented in the literature. A zone can be represented by the labels of the curves
that contain it.

Definition 5. Elements of Z = PL are called abstract zones (or, simply, zones). An abstract description, D, is a set of
abstract zones, D ⊆ Z such that ∅ ∈ D.

Definition 6. Given an Euler diagram d = (Curve, l), we map d to ab(d) = D, called the abstract description of d, where D
contains exactly one abstract zone for each zone in d; in particular, given a zone, z, in d, the set D contains the abstract zone

ab(z) = {l(c) : c ∈ C(z)}

where C(z) is the set of curves in d that contain z.

In Fig. 4, the Euler diagram has abstract description

{∅, {a}, {b}, {a, b}, {b, c}}.

However, for ease of readability, we will abuse the notation by representing this abstraction as {∅, a, b, ab, bc}.
In its simplest form the Euler diagram generation problem can be summarized as: given an abstract description, D, find an

Euler diagramwith abstract description D. Research efforts in this area have focused on a restricted notion of the generation
problem: given D, find an Euler diagram with abstraction D that possesses certain specified properties. Ideally, we would
have a generation algorithm that produced an Euler diagram when an arbitrary set of properties (chosen from the six
described in the introduction) is specified. The framework presented in this paper provides a basis for the development
of sophisticated generation algorithms that achieve this. Moreover, if an abstract description can be visualized as an Euler
diagram with a certain set of these six properties then our method is able to generate such a diagram. However, without
heuristics to guide the search for an appropriate graph this process will have exponential time complexity. We are able
to adapt the graph we use for layout, by adding or deleting edges or vertices, in order to change the properties that the
embedded Euler diagram will possess.

3. Graph theory concepts

Wewill show that an Euler diagram can be generated from any connected planar graph whose vertices are labelled with
the zones from an abstract description. For example, consider the abstract descriptionD = {∅, a, b, ab, ac, abc}. Fig. 7 shows
a connected planar graphwhose vertices are labelledwith the zones ofD. Each zone ofDmust occur as a label and a zone can
label multiple vertices. We draw closed curves around the vertices containing common labels, shown on the left in Fig. 8.
Throwing away the graph we obtain the required Euler diagram, shown on the right in Fig. 8. We notice that the diagram
obtained can be constructed froma dual of the graph, ignoring the infinite face, as shown in Fig. 9. Our strategy for generating
an Euler diagram d from an abstract description D is to construct a dual of a connected planar graph, G, whose vertices are
labelled with the abstract zones of D. However, given an arbitrary G, not every dual gives rise to a diagramwith the required
abstraction, making the generation task more challenging than merely constructing a dual graph.
Indeed, if we want to find an Euler diagram with specified properties then we must take into account various factors. In

particular, given an abstract description, D, if we want to find an embedding of Dwith certain properties then this amounts
to finding a graph with related properties. In this paper, we take the important first step towards addressing this challenge
by identifying properties of the embedded graph that correspond exactly to properties that the embedded Euler diagram
will posses. We give formal definitions of the graphs we require.

Please cite this article in press as: G. Stapleton, et al., A graph theoretic approach to general Euler diagram drawing, Theoretical Computer Science (2009),
doi:10.1016/j.tcs.2009.09.005
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Fig. 8. Contours containing vertices and the resulting Euler diagram.

Fig. 9. The dual of the graph.

Fig. 10. A vertex-labelled graph.

Definition 7. A vertex-labelled graph, G = (V , E, lV , lE), is such that

(1) (V , E) is a graph with vertex set V and edge set E,
(2) each vertex, v, in V is labelled by a zone, that is lV : V → Z, and
(3) the vertex labelling induces an edge labelling, lE : E → Z, defined by

lE(e) = (lV (v1)− lV (v2)) ∪ (lV (v2)− lV (v1))

where v1 and v2 are the vertices incident with e.

Fig. 10 shows a vertex-labelled graph. The label on an edge is the symmetric difference of the labels of its incident
vertices. The induced edge labelling is redundant, and we may frequently exclude it in examples. However, it will be useful
for obtaining the labels of the edges in dual graphs, as will become clear below.

Definition 8. An edge-labelled graph, G = (V , E, lE), is such that

(1) (V , E) is a graph with vertex set V and edge set E,
(2) each edge, e, in E is labelled by a zone, that is lE : E → Z.

We are labelling edges with a set of labels from PL (that is a zone, but not necessarily a zone that occurs in the abstract
description we are considering or as a vertex label on a vertex-labelled graph) and, for each L ∈ Lwe say that L is a label of
e if the label L is in the set lE(e). We now define further concepts that we will require throughout the paper. In particular, we
need access to certain subgraphs, edge sequences around faces, and the number of components of which a graph consists.

Definition 9. Let G be a graph. Then comp(G) denotes the number of components of G.

Definition 10. Let G = (V , E, lV , lE) be a planar graph with an embedding, Ĝ. Let f be a face of Ĝ. Then an edge sequence
around f is a minimal sequence of edges, ES(f ) = (e1, . . . , en) such that

(1) each edge in ES(f ) bounds f ,
(2) each edge that bounds f occurs in ES(f ), and
(3) ES(f ) is a closed walk.

Please cite this article in press as: G. Stapleton, et al., A graph theoretic approach to general Euler diagram drawing, Theoretical Computer Science (2009),
doi:10.1016/j.tcs.2009.09.005



ARTICLE  IN  PRESS
6 G. Stapleton et al. / Theoretical Computer Science ( ) –

Fig. 11. Face cycles.

Fig. 12. L-edge and L-vertex subgraphs.

Fig. 13. Two distinct dual graphs.

To illustrate, f1 in Fig. 11 has edge sequences (e1, e2, e5, e12, e11, e4, e3) and (e2, e5, e12, e11, e4, e3, e1) among others (note
the ‘labels’ used on the edges are not edge labels, merely names for the edges so that we can identify them). The closed
walk (e1, e2, e5, e12, e11, e3) is not an edge sequence around f1 since it does not contain e4. The face f2 has edge sequence
(e10, e3, e11, e9, e9, e12, e2); notice that the bridge e9 occurs twice in the walk.

Definition 11. Let G = (V , E, lE) be a vertex-labelled graph and let L be a label inL. The subgraph of G obtained by deleting
all edges whose labels do not contain L (along with any isolated vertices), denoted GE(L), is the L-edge subgraph of G given
L. The subgraph of G obtained by deleting all vertices whose labels do not contain L, denoted GV (L), is the L-vertex subgraph
of G given L. Let az be an abstract zone. The subgraph of G obtained by deleting all vertices whose labels are not az, denoted
GV (az), is the az-vertex subgraph of G given az.

Note that the above definition of GE(L) extends to edge-labelled graphs in the obvious manner. To illustrate these
concepts, the graph G in Fig. 11 has GE(a) and GV (a) as illustrated in Fig. 12. Finally, since our embedding method relies
on constructing a specific dual graph, we define an edge-labelled dual.

Definition 12. Let G = (V , E, lV , lE) be a planar, vertex-labelled graph with a plane embedding Ĝ. Let Ĝ∗ = (V ∗, E∗, lE∗)
be an edge-labelled geometric dual of Ĝ such that for each edge, e∗ ∈ E∗, lE∗(e∗) = lE(e) where e∗ crosses e. The (plane,
embedded) graph Ĝ∗ is called an edge-labelled dual of Ĝ.

Fig. 13 shows two distinct geometric duals of G in Fig. 11. The duals are different, up to isotopy of R2 less the images of
G’s vertices. For example, the vertex in G next to the infinite face of G∗1 is distinct from that next to the infinite face of G∗2.
This is an important observation since we use a dual, G∗, of a graph, G, to embed an Euler diagram. If that Euler diagram is
to have the required abstraction, the vertices of G have to be enclosed by the correct curves (further examples will be given
below). This means that not every dual need give rise to an Euler diagram with the required abstraction.

Please cite this article in press as: G. Stapleton, et al., A graph theoretic approach to general Euler diagram drawing, Theoretical Computer Science (2009),
doi:10.1016/j.tcs.2009.09.005



ARTICLE  IN  PRESS
G. Stapleton et al. / Theoretical Computer Science ( ) – 7

Fig. 14. The generation process.

4. Embedding Euler diagrams

Our attention now turns to the challenge of converting a graph into an Euler diagram. The generation process is outlined
in Fig. 14. We start with an abstract description, D, that we want to embed. We then turn D into a vertex-labelled graph, G,
such that every abstract zone in D appears as a vertex label in G and every vertex label is an abstract zone in D. We proceed
to embed G, giving Ĝ, in such a manner that G has only vertices and edges labelled ∅ next to the infinite face; if this is not
possible then we can add edges to G so that it becomes possible (note that we never need to add vertices, but we can choose
to if we wish).
At the next stage, we construct an edge-labelled dual, Ĝ∗, of Ĝ. The fact that every edge next to the infinite face is labelled

∅ ensures that Ĝ∗ will give rise to a diagram with abstraction D (explained and justified below). The labels on the edges of
Ĝ∗ indicate that curves with those labels run along that edge. Hence, edges labelled ∅ will not be traversed by any curves
and are deleted, to give a graph SĜ∗. At this point, SĜ∗ has the same image as the Euler diagram we will create. The final
step is to turn this graph into the Euler diagram (i.e. a set of closed curves together with a labelling function). The method
we develop to produce a set of curves ensures that they have the correct containment properties. That is, a vertex labelled
az is embedded in a zone with abstraction az.
When producing an embedding of a plane graph, typically the embedded edges, e, are injective functions with codomain

R2, say ê: [x, y] → R2. Moreover, ê(x) and ê(y) are the points in R2 where the vertices incident with e are embedded. We
assume that this is the case in all that follows.
We nowdevelop a series of results that are required (a) to show thatwe can covert the dual graph into curves, and (b) that

the result is an Euler diagram with the required abstraction. We note that the following property of vertex-labelled graphs
follows trivially from the manner in which edges are labelled.

Property 1. Let G = (V , E, lV , lE) be a planar, vertex-labelled graph. Let p = (e1, . . . , en) be a path in G with associated vertex
sequence (v0, . . . , vn). Let L ∈ L. If

(1) L ∈ lV (v0) and L ∈ lV (vn), or
(2) L 6∈ lV (v0) and L 6∈ lV (vn)

then the maximal subsequence of p that contains only edges, e, for which L ∈ lE(e) has even length.

Weuse this property in the proof of the next result,which asserts that components of Ĝ∗E(L) (the subgraph of Ĝ
∗ containing

exactly the edgeswith L in their label) are Eulerian.We require this to be the case in order to convert Ĝ∗E(L) to curves: a closed
curve can be formed by traversing an Eulerian cycle, for instance.

Lemma 1. Let G = (V , E, lV , lE) be a planar, vertex-labelled graph with a plane embedding Ĝ. Let L ∈
⋃
e∈E lE(e) (i.e. the L label

that appears on an edge of G). Then each component of the graph Ĝ∗E(L) is Eulerian.

Proof. The task is to show that each vertex, v, in Ĝ∗E(L) has even degree. By construction, v is embedded in a face, f , of Ĝ.
From Property 1, the maximal subsequence, S, of edge sequence ES(f ) that consists of those edges that contain the label L
has even length (since v0 = vn in this case). Any edge, e, in S that occurs twice is a bridge and, therefore, gives rise to a loop
in the dual graph Ĝ∗. Thus, such an edge contributes two to the degree of v whenever L is in lE(e). No edge occurs more than
twice. Denote the subsequence of S that does not contain any bridges by Snb. Then Snb also has even length and each edge in
Snb contributes one to the degree of v. Therefore v has even degree and each component of Ĝ∗E(L) is Eulerian. �

As a simple illustration of the process of converting an Eulerian cycle to a curve, consider the graph, Ĝ, in Fig. 15, together
with its dual Ĝ∗. The graph Ĝ∗(a) is shown and a curve labelled a can, intuitively, be formed by traversing the edges of
Ĝ∗(a), following an Eulerian cycle. In the following definition, êi|[i−1,i) denotes the function êi with the domain is restricted
to [i− 1, i).

Please cite this article in press as: G. Stapleton, et al., A graph theoretic approach to general Euler diagram drawing, Theoretical Computer Science (2009),
doi:10.1016/j.tcs.2009.09.005
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Fig. 15. Converting cycles to curves.

Fig. 16. Finding appropriate embeddings.

Definition 13. Let Ĝ be a plane (and, therefore, embedded), Eulerian graph and let C = (e1, . . . , en) be an Eulerian cycle in
G. For each edge, ei, we denote the injective function that embeds ei in R2 by êi and assume that the domain of êi is [i− 1, i],
that is êi: [i− 1, i] → R2. Then the closed curve associatedwith Ĝ given C , is defined to be

ĜC =
⋃
1≤i≤n

êi|[i−1,i) ∪ ên(n).

So ĜC : [0, n] → R2 is a closed curve with a finite number of self-intersection points. These self-intersection points
coincide precisely with the vertices in the cycle that have degree greater than two. We are now in a position to state how to
convert a vertex-labelled graph into an Euler diagram.

Definition 14. Let G = (V , E, lV , lE) be a planar, vertex-labelled graph with a plane embedding, Ĝ. An Euler diagram, d =
(Curve, l), generated from Ĝ, given a dual Ĝ∗, is such that for each label L ∈

⋃
e∈E lE(e) and for each component EC of Ĝ

∗

E(L)
the closed curve ECC is in Curve given some Eulerian cycle, C , in EC; the label of C is L. No other curves are in Curve.

Later, we widen the range of Euler diagrams that can be generated by considering decompositions of Eulerian cycles into
sets of cycles. This corresponds directly to decomposing curves into sets of curves.

4.1. The correctness of the generation method

As stated above, to ensure we generate an Euler diagram with the required abstraction, we must impose certain con-
straints on our vertex-labelled graphs. In particular, when we embed them, we require the infinite face to be next to only
edges that are labelled ∅.
Suppose, for example, wewant to embed the abstract descriptionD = {∅, a, ab}. A vertex-labelled graph,G, with suitable

vertex labels can be seen in Fig. 16; this embedding does not have only edges labelled ∅ embedded next to the infinite face
of G. The dual graph G∗1 of G gives rise to an Euler diagram with abstract description {∅, a, b} which is not as required.
However, G∗2 gives rise to a diagram with the correct abstraction. We observe that there are choices about how the edges of
dual graphs are embedded that impact the containment properties of the resulting curves. However, there are only choices
(up to isotopy) for edges of the dual that are embedded in either the infinite face or other faces that are not simply connected
(i.e. they contain holes).
In the case of a dual vertex, v, embedded in the infinite face, f , of the original graph, if we know that all of the edges in

G next to f are labelled ∅ then every edge incident with v is also labelled ∅. Such edges do not form part of any curve in
the generated Euler diagram. Therefore, any choice made when embedding these edges does not matter. We also stipulate
that our embedded graphs have only vertices labelled ∅ next to the infinite face. As a consequence of these constraints on
G, vertices will be in zones whose abstraction matches the label of the vertex.

Please cite this article in press as: G. Stapleton, et al., A graph theoretic approach to general Euler diagram drawing, Theoretical Computer Science (2009),
doi:10.1016/j.tcs.2009.09.005
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Definition 15. Let G = (V , E, lV , lE) be a planar, vertex-labelled graphwith an embedding, Ĝ. If Ĝ is plane, every edge, e ∈ E,
embedded next to the infinite face of Ĝ has label lE(e) = ∅ and is incident with a vertex, v, whose label is lV (v) = ∅, then Ĝ
is called an appropriate embedding of G.

The case where a face is not simply connected is easily overcome: we require G to be connected. Any connected graph
has only simply connected faces. Given a connected, planar vertex-labelled graph with an appropriate embedding, Ĝ, we
can establish that Ĝ generates an Euler diagram with the required abstraction. Theorem 1 is a prerequisite to establishing
this result.

Theorem 1. Let G = (V , E, lV , lE) be a connected, planar, vertex-labelled graph with an appropriate embedding, Ĝ. Let d =
(Curve, l) be an Euler diagram generated from Ĝ. Let L ∈ im(l) and let v ∈ V . Then L ∈ lV (v) if and only if v is inside the contour
of d with label L.

Proof. By definition, Con(L) arises from the graph Ĝ∗E(L) which has the property that all of its components are Eulerian
graphs. From this property, it follows that Ĝ∗E(L) is two face-colourable. Choose such a colouring of Ĝ

∗

E(L). Let v1 and v2 be
vertices of Ĝ that are embedded in faces of Ĝ∗E(L) that have the same colour. Since Ĝ is connected, there exists a path, P , from
v1 to v2. Now, every edge, e, in P that crosses an edge in Ĝ∗E(L) has L in its label, that is L ∈ lE(e). Since v1 and v2 are in faces
with the same colour, there are an even number of such edges in P . Moreover, each edge, e, in P that contains L in its label
has exactly one incident vertex with L in its label (by definition). From this it follows that v1 and v2 either both have L in
their label or neither have L in their label.
Now consider the infinite face of Ĝ∗E(L). The vertex, v

∗, of Ĝ∗ embedded in the infinite face of Ĝ is incident only with edges
that have label ∅, since every edge, e ∈ E(Ĝ), embedded next to the infinite face of Ĝ has label lE(e) = ∅. Therefore the edges
incident with v∗ are not in Ĝ∗E(L) and, therefore, v

∗ is not a vertex of Ĝ∗E(L). From this, it follows that some vertex, v, of Ĝ
incident with an edge embedded next to the infinite face of Ĝ is embedded in the infinite face of Ĝ∗E(L). This vertex has label
lV (v) = ∅, since Ĝ is an appropriate embedding. Therefore, any vertex in a face of Ĝ∗E(L) coloured the same as the infinite
face of Ĝ∗E(L) does not contain L in its label. Those coloured differently from the infinite face of Ĝ

∗

E(L) all contain L in their
labels.
A point is inside Con(L) precisely when it is inside a face of Ĝ∗E(L) that is coloured differently from the infinite face of Ĝ

∗

E(L)
in some two colouring. Hence, L ∈ lV (v) if and only if v is inside the contour of dwith label L. �

Corollary 1. Let G = (V , E, lV , lE) be a connected, planar, vertex-labelled graph with an appropriate embedding, Ĝ. Let d =
(Curve, l) be an Euler diagram generated from Ĝ. Let v ∈ V . Then lV (v) = ab(z)where z is the zone of d in which v is embedded.

Therefore, we generate diagrams with the required abstractions.

Theorem 2. Let G = (V , E, lV , lE) be a connected, planar, vertex-labelled graph with an appropriate embedding, Ĝ. Let d =
(Curve, l) be an Euler diagram generated from Ĝ. Then ab(d) = im(LV ).

4.2. Curve decomposition

Given an embedded Euler diagram,we can find alternative Euler diagrams that have the same drawn image and the same
abstraction. Here, we show how to use the techniques of the previous section to enlarge the class of Euler diagrams that can
be embedded using our method. We start by observing that an Eulerian graph can have its edges partitioned into sets, each
of which is essentially a cycle in the graph.

Definition 16. Let G be an Eulerian graph and let C be a set of cycles in G. If every edge in G is in at exactly one cycle in
C then C is called a decomposition of G. If every cycle in a decomposition C is simple1 then we say that C is a simple
decomposition. Let c be the closed curve associated with G. Then a decomposition of c is a set of curves, dec(c), where
each cycle in C is associated with exactly one curve in dec(C). Similarly, dec(c) is a simple decomposition of c whenever
C is a simple decomposition.

Definition 17. Let G = (V , E, lV , lE) be a planar, vertex-labelled graphwith an appropriate embedding, Ĝ. Let d = (Curve, l)
be an Euler diagram generated from Ĝ. For each curve, c ∈ Curve, let dec(c) be a decomposition of c. Then a decomposition-
transformation of d is a diagram, d′ = (Curve′, l′), where

Curve′ =
⋃
c∈Curve

dec(c)

and l′(c ′) = l(c)where c ′ is in dec(c).

1 A simple cycle is one that does not pass through any vertex more than once.

Please cite this article in press as: G. Stapleton, et al., A graph theoretic approach to general Euler diagram drawing, Theoretical Computer Science (2009),
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Theorem 3. Let d be an Euler diagram with a decomposition-transformation d′. Then ab(d) = ab(d′). That is, decomposing
curves does not change the abstraction.

The results above allow us to generate a wider class of Euler diagrams by decomposing their curves. In particular, we
point out every abstraction can be drawn using only simple curves, justified below.

Lemma 2. Let G be an Eulerian graph and let C be a decomposition of G. If C is a simple decomposition then all curves in a simple
decomposition of c, the curve associated with G, are simple.

Lemma 3. Let G be an Eulerian graph. Then G has a simple decomposition.

Proof. We provide a constructive method to produce a simple decomposition. Clearly, one can always find a simple cycle
in an Eulerian graph. Given a simple cycle, C1, in G, the graph G− C1 has only Eulerian components (since deleting edges in
C1 leaves all vertices with even degree). Continuing in this manner, we can keep removing simple cycles, Ci, from G until no
edges remain. Therefore there is some integer, n, such that removing n simple cycles results in a graph with no edges. The
set of removed simple cycles, C = {C1, . . . , Cn}, is a simple decomposition of G. �

Corollary 2. Let G be an Eulerian graph. Then the curve associated with G has a simple decomposition.

Theorem 4. Every Euler diagram generated using our method can be transformed into an Euler diagram containing only simple
curves.

4.3. Sufficiency and classification

Trivially, it can be shown that for every abstract description there is a connected, planar vertex-labelled graph that yields
an Euler diagram with that abstract description. For instance, taking D = {∅, a, b, bc}, define V = D as the vertex set, with
lV (v) = v. Join the vertices by edges until the graph is connected, whilst maintaining planarity. Embed this graph. Now
add additional vertices and edges to the embedded graph, again whilst maintaining planarity, until all vertices next to the
infinite face are labelled ∅; this graph is an embedding of a connected, planar, vertex-labelled graph that generates an Euler
diagram with abstraction D.

Theorem 5. Let D be an abstract description. Then there exists a connected, planar, vertex-labelled graph, G with an appropriate
embedding, Ĝ, that generates an Euler diagram with abstraction D.

Consequently, our method is sufficiently general that we are guaranteed to be able to embed any abstract description.
This is not the case for the majority of the previously existing methods in the literature. We are also able to describe exactly
which class of Euler diagrams can be generated using our method, captured in Theorems 6 and 7. First, we define minimal
regions.

Definition 18. Aminimal region of an Euler diagram, d = (Curve, l), is a connected component of R2 −
⋃
c∈Curve im(c).

It follows that a zone is simply a union of minimal regions.

Definition 19. Let d be an Euler diagram such that

(1) d has a finite number of minimal regions,
(2) no curve in d runs self-concurrently, and
(3) for any contour in d, no pair of its curves run concurrently.

Then we say that d is generatable.

Theorem 6. Let d be a generatable Euler diagram. Then there exists a connected, planar, vertex-labelled graph that generates d.

Theorem 7. Let G be a connected, planar, vertex-labelled graph. Then any Euler diagram generated from G is generatable.

From a visualization perspective, this means that our method generates the vast majority of diagrams one would want
to consider (one would not be able to accurately visualize an Euler diagram with an infinite number of minimal regions, for
instance).
From Theorems 6 and 7, it follows that if an abstract description can be realized as a generatable diagram that possesses

some specified collection of the six properties described in Section 5 then our method is able to generate such a diagram.

Please cite this article in press as: G. Stapleton, et al., A graph theoretic approach to general Euler diagram drawing, Theoretical Computer Science (2009),
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5. Properties of graphs and Euler diagrams

In this section, wewill show howwe can use an embedding of a vertex-labelled graph, Ĝ, to identify properties possessed
by a generated Euler diagram, d. To recap, the following are properties that Euler diagramsmay possess; they are formalized
in [27], but for completeness we include their formalization in the relevant subsections below.

Definition 20. Given an Euler diagram d = (Curve, l), the following are properties that dmay posses.

(1) No concurrency No pair of curves in Curve run concurrently.
(2) Connected zones Each zone in d is connected (i.e. consists of exactly one minimal region).
(3) No n-points There are no n-points of intersection between the curves in Curve.
(4) Simplicity All of the curves in Curve are simple.
(5) Unique labels The labelling function, l, is injective.
(6) No brushing points There are no brushing points between any curves in Curve.

In each case, we identify properties possessed by the graph Ĝ that correspond to the properties possessed by d. Using the
properties of Ĝwe can also count the number of times d violates each of the six properties. The ability to count violations has
advantages from a generation perspective. It is computationally hard to find a graph that generates a diagram possessing
a specified collection of properties. Current graph based methods for generating diagrams from any abstract description
take exponential time in the worst case [19]. Similarly our generationmethod has exponential timeworst case performance
relative to the number of zones in the abstract description. The computationally expensive part of the search is through the
space of vertex-labelled graphs, if we want to embed an Euler diagram with particular properties. If we do not mind which
properties our embeddedEuler diagrampossess, thenwehave alreadyprovided a trivialmethodof producing an appropriate
vertex-labelled graph. From an implementation perspective, after finding a vertex-labelled graph, we only need to then find
a dual of this graph which can be done in polynomial time.
Itmay be that certain properties are desirable, rather than necessary, for instance. Therefore,wemight be prepared to find

a graph that generates a diagram with a small number of violations for a particular property rather than no violations at all.
Indeed, not all abstraction descriptions can be embedded under particular sets of properties. This means that sometimes we
will necessarily have to choose graphs that generate diagrams with particular violations. We can utilize the ability to count
violations in heuristic searches to choose vertex-labelled graphs fromwhich to generate diagrams.We further discuss below
the use of heuristics to search through the space of vertex-labelled graphs in order to reduce the amount of computation
involved in finding a suitable vertex-labelled graph.

5.1. No concurrency

A diagram possesses no concurrency when none of its curves run concurrently. In the following definition (and at other
places in the paper) we assume that the domain of each curve in our Euler diagram is [0, 1] in order to simplify the notation.

Definition 21. An Euler diagram, d = (Curve, l), possesses the no concurrency property if for all c1, c2 ∈ Curve,

(1) if c1 6= c2 then image(c1)∩ image(c1) is a discrete set of points (equivalently, {x ∈ R2 : ∃a, b ∈ [0, 1] c1(a) = c2(b) = x}
is a discrete set of points) and

(2) if c1 = c2 then

{x ∈ R2 : ∃a, b ∈ [0, 1] a 6= b ∧ c1(a) = c1(b) = x}

is a discrete set of points.

Our generation method makes it very easy to identify when a graph gives rise to an Euler diagram that possesses the
no concurrency property, as follows. Consider an edge, e∗, in a dual, Ĝ∗, of an embedded vertex-labelled graph, G. Now, e∗

forms part of curves in dwhose label is in lE(e∗). Thus, d has concurrent curves precisely when Ĝ∗ contain an edge, e∗, with
|lE(e∗)| > 1. But the edge e∗ is labelled the same as the edge, e, with which e∗ intersects. Therefore, d contains concurrent
curves whenever Ĝ contains an edge with more than one curve label in its label. Since the edge labelling of Ĝ is independent
of its embedding, we can also detect the presence of concurrency from G.

Lemma 4. Let G = (V , E, lV , lE) be a connected, planar vertex-labelled graph with an appropriate embedding, Ĝ. Let d =
(Curve, l) be an Euler diagram generated from Ĝ. Then two distinct curves, c1 and c2, in Curve run concurrently if and only if
there exists an edge, e ∈ E, such that the label of e includes the labels of c1 and c2, that is l(c1) ∈ lE(e) and l(c2) ∈ lE(e).

Theorem 8. Let G = (V , E, lV , lE) be a connected, planar vertex-labelled graph with an appropriate embedding, Ĝ. Any Euler
diagram, d = (Curve, l), generated from Ĝ possesses the no concurrency property if and only if for all edges, e ∈ E, the label of e
contains at most one label, |lE(e)| ≤ 1.

Please cite this article in press as: G. Stapleton, et al., A graph theoretic approach to general Euler diagram drawing, Theoretical Computer Science (2009),
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Fig. 17. A diagram with connected zones but non-unique vertex labels in Ĝ.

Definition 22. Let G = (V , E, lV , lE) be a connected, planar, vertex-labelled graph with an appropriate embedding, Ĝ. The
concurrency measure for Ĝ is∑

e∈E

max(|lE(e)| − 1, 0).

The concurrency measure counts the number of concurrent curve segments in any Euler diagram generated from an
appropriate embedding of Ĝ. Thus, if we want to avoid or minimize concurrency, we can aim to find a graph from which to
embed with a low concurrency measure.

5.2. Connected zones

A zone is connected whenever it consists of exactly one minimal region.

Definition 23. An Euler diagram, d, possesses the connected zones property if all of the zones of d are alsominimal regions
of d, that is Z(d) = M(d).

When considering connected zones, we first observe that each vertex, v, of Ĝ is embedded in some face of Ĝ∗. Moreover,
v is embedded in a zone, z, whose abstraction is lV (v), as shown in Theorem 1. This might lead one to believe that d has
connected zones precisely when vertices of Ĝ (equivalently, G) have unique labels. However, this is not the case. If Ĝ has
unique vertex labels then d will have connected zones. There are examples of graphs which do not have unique vertex
labels that generate diagrams with connected zones.
To illustrate, the graph in Fig. 17 has two vertices labelled a but the diagram it generates possesses the connected zone

property. We observe that if two vertices, v1 and v2, have the same label and are connected by an edge, e, then e is labelled
∅. In turn, this implies that an edge in Ĝ∗ that intersects e does not form part of any curve in d. From this, it follows that v1
and v2 are in the same minimal region of d.

Lemma 5. Let G = (V , E, lV , lE) be a connected, planar, vertex-labelled graph with an appropriate embedding, Ĝ. Let d =
(Curve, l) be an Euler diagram generated from Ĝ and let z be a zone in d. Then z is connected if and only if the graph ĜV (ab(z))
is connected.

Proof. Let z be a zone in d and suppose that z is connected. Then z consists of exactly oneminimal region,m. Therefore each
vertex, v, in Ĝ with label lV (v) = ab(z) is embedded in m = z, by Corollary 1. Suppose that there are two vertices, v1 and
v2, embedded in z but for which there is no path in ĜV (ab(z)) from v1 to v2, as illustrated in Fig. 18. Now, in Ĝ∗, the dual of
Ĝ that gave rise to d, v1 and v2 are embedded in different faces of Ĝ∗ (by the definition of the dual). Therefore, there must be
a set of edges in Ĝ∗ embedded entirely within z that split z into two components, com1 and com2 which contain v1 and v2
respectively,2 as shown in Fig. 19. Since z is connected, these edges are all labelled ∅. Now, this means that there must be a
path, p, from v1 to some vertex, v3, of Ĥ embedded in com2, as shown in Fig. 20. But then one can show that com2 is further
subdivided in to two components (following the same strategy), with v3 joined to a vertex, v4 in the same component as
v2 and so forth, see Fig. 21. Since there are only a finite number of vertices (of Ĝ) embedded in z, eventually this process of
subdividing components will show that there is a path from v1 to v2, contradicting our initial assumption that no such path
existed. Hence, if z is connected, the graph ĜV (ab(z)) is connected.
For the converse, suppose that ĜV (ab(z)) is connected. Let v1 and v2 be vertices in ĜV (ab(z)) that are joined by an edge,

e. Then the edge, e∗, of Ĝ∗, that crosses e is labelled ∅. This means that no curve in d traverses e∗ and, therefore, v1 and v2
are in the same minimal region of d. Since ĜV (ab(z)) is connected, it follows that all vertices in ĜV (ab(z)) lie in the same
minimal region of d. By Corollary 1, and the definition of ĜV (ab(z)), this minimal region is the zone with abstraction ab(z).
Hence z is connected. �

2 Note: these edges need not form a path since z may not be simply connected.
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Fig. 18. A connected zone in which v1 and v2 are not connected.

Fig. 19. A path of edges across z separating v1 and v2 .

Fig. 20. The vertex v1 must be joined to v3 .

Fig. 21. The vertex v3 must be joined to v4 .

Theorem 9. Let G = (V , E, lV , lE) be a connected, planar, vertex-labelled graph with an appropriate embedding, Ĝ. Any Euler
diagram, d = (Curve, l), generated from Ĝ possesses the connected zones property if and only if for all az ∈ im(lV ), the graph
ĜV (az) is connected.

As with concurrency, we can detect the connectedness of zones from G, since the arguments above are independent of
the actual embedding Ĝ. To count the number of minimal regions of which a zone, z, consists, we can count the number of
components in GV (ab(z)), the subgraph of G that contains all and only vertices with label ab(z). The following disconnected
zones measure, therefore, counts the number of ‘extra’ minimal region of which each zones consist (each zone consists of
at least one minimal region).

Definition 24. Let G = (V , E, lV , lE) be a connected, planar, vertex-labelled graph with an appropriate embedding, Ĝ. The
disconnected zones measure for Ĝ is∑

az∈im(lV )

(|comp(ĜV (az))| − 1).

5.3. No n-points

An n-point in a diagram is one that is mapped to n times by the curves.

Please cite this article in press as: G. Stapleton, et al., A graph theoretic approach to general Euler diagram drawing, Theoretical Computer Science (2009),
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Definition 25. Let d = (Curve, l) be an Euler diagram and let p be a point in R2. We say that p is an n-point in d if∑
c∈Curve

∣∣{x ∈ [0, 1) : c(x) = p}∣∣ ≥ n.
Definition 26. An Euler diagram possesses the no n-points property provided each point in R2 is at most an (n− 1)-point
in d.

Unlike concurrency and disconnected zones, the presence of n-points needs to be determined from an actual embedding,
Ĝ. Given an embedding, however, it is relatively straightforward to identify n-points. In a generated Euler diagram, an n-
point arises from a vertex, v, in the dual graph, Ĝ∗, where v is incident with edges that, between them, contain at least 2n
occurrences of labels. This can be translated into a property of Ĝ by appealing to edge sequences around faces. Before we
proceed, it is useful to denote the bag of edges incident with v that includes each non-loop once and each loop twice by
incident(v).

Theorem 10. Let G = (V , E, lV , lE) be a connected, planar, vertex-labelled graph with an appropriate embedding, Ĝ. Any Euler
diagram, d = (Curve, l), generated from Ĝ possesses the no n-points property if and only if for each face, f , of Ĝ with ES(f ) =
(e1, . . . , ek),∑

1≤i≤k

|lE(ei)|
2

< n.

Proof. Suppose that d possesses the no n-points property. Let f be a face of Ĝ. The vertex, v, of Ĝ∗ embedded in f forms an
m-point in d, where

m =
∑

e∈incident(v)

|lE∗(e)|
2

.

Since there is a bijective correspondence between incident(v) and the edges in ES(f ) that preserves edge labelling, it follows
that

m =
∑
1≤i≤k

|lE(ei)|
2

.

Therefore, sincem < n, each face, f , of Ĝ satisfies∑
1≤i≤k

|lE(ei)|
2

< n.

Conversely, suppose that each face, f , of Ĝ satisfies∑
1≤i≤k

|lE(ei)|
2

< n

for some n. Suppose that d possesses them-point property but not the (m− 1)-point property. We must show thatm < n.
Clearly, a point, p, in

⋃
c∈Curve im(c) that is anm-point lies on a vertex, v, of Ĝ∗. The method used to convert the edges of Ĝ∗

into curves ensures any point such as p is an
∑
e∈incident(v)

|l∗E (ei)|
2 -point. But∑

e∈incident(v)

|l∗E(ei)|
2
=

∑
1≤i≤k

|lE(ei)|
2

< n

as required. �

We can use the above insights to define a measure to count the number of times the n-points measure is violated in a
generated Euler diagram.

Definition 27. Let G = (V , E, lV , lE) be a connected, planar, vertex-labelled graph with an appropriate embedding, Ĝ. The
n-points measure for Ĝ is

∑
fx∈face(Ĝ)

max
(( ∑
1≤i≤kx

|lE(ei)|
)
− 2(n− 1), 0

)
2

where face(Ĝ) is the set of faces in Ĝ and ES(fx) = (e1, . . . , ekx) is some edge sequence around f .
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5.4. Simple curves

The detection of non-simple curves also requires an embedding of G. Non-simplicity arises in d when a curve passes
through a vertex of Ĝ∗ more than once. As shown above, we can always decompose a non-simple curve into a set of simple
curves. We detect whether, if no decomposition takes place, the curves in the generated diagram are simple. We start by
noting that a contour that consists of entirely simple curves, for which no pair intersect, is called a simple contour. Under our
generation method (without any decomposition), all of the curves are simple if and only if all of the contours are simple.
Firstly, we formalize the simplicity property.

Definition 28. An Euler diagram, d = (Curve, l), possesses the simplicity property if and only if all of the curves in Curve
are simple.

Lemma 6. Let G = (V , E, lV , lE) be a connected, planar, vertex-labelled graph with an appropriate embedding, Ĝ. Let d =
(Curve, l) be an Euler diagram generated from Ĝ and let Con(L) be a contour in d. Then Con(L) is simple if and only if for each face
fx of Ĝ, where ES(f ) = (e1, . . . , ekx) is some edge sequence around fx, we have∑

1≤i≤kx

(lE(e) ∩ {L}) ≤ 2.

Proof. Let Con(L) be a simple contour in d. Then every face of Ĝ contains a vertex, v, of Ĝ∗ that is incident with at most two
edges that contain the label L (otherwise Con(L) would not be simple). Since there is a bijection between incident(v) and
those in ES(f )which preserves labelling, it follows that∑

1≤i≤k

(lE(e) ∩ {L}) ≤ 2.

For the converse, suppose that
∑
1≤i≤k(lE(e)∩{L}) ≤ 2. Then the vertex, v, in Ĝ

∗ embedded in f is incident with zero, one, or
two edges that contain L. In the first case, Con(L) does not pass through v. In the second case, the curve, c , labelled L passing
through v is essentially a loop and, therefore, simple. In the third case c passes through v exactly once (by the construction
of c from the edges of Ĝ∗. Clearly, the only places that a contour can self-intersect are at the vertices of Ĝ∗. Therefore Con(L)
is simple). �

The following theorem then follows trivially.

Theorem 11. Let G = (V , E, lV , lE) be a connected, planar, vertex-labelled graph with an appropriate embedding, Ĝ. Any Euler
diagram, d = (Curve, l), generated from Ĝ possesses the simplicity property if and only if for each label, L ∈

⋃
z∈im(lV ) z, and for

each face, f , in Ĝ, with ES(f ) = (e1, . . . , ek),∑
1≤i≤k

(lE(e) ∩ {L}) ≤ 2.

The non-simplicity measure counts the number of times each curve self-intersects in a generated diagram, d. If we
decompose the curves of d then the measure below counts the number of times each contour self-intersects. That is, the
measure is invariant under curve decomposition.

Definition 29. Let G = (V , E, lV , lE) be a connected, planar, vertex-labelled graph with an appropriate embedding, Ĝ. The
non-simplicity measure for Ĝ is

∑
L∈im(lV )

 ∑
fx∈face(Ĝ)

max

(( ∑
1≤i≤kx

|lE(ei) ∩ {L}| − 2
2

, 0

))
where face(Ĝ) is the set of faces in Ĝ and ES(fx) = (e1, . . . , ekx) is some edge sequence around fx.

5.5. Unique labels

Again, when detectingwhether our embedded diagram possesses unique labels, we assume that no curve decomposition
has taken place. However, to avoid any confusion, we will call the measure we derive at the end of the section the contour
componentsmeasure. This is because ourmeasure counts the number of components ofwhich a contour consists, regardless
of whether any decomposition has been performed.

Definition 30. An Euler diagram, (Curve, l), possesses the unique labelling property if the function l is injective.
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Fig. 22. Connected edges are in a common face.

Lemma 7. Let G = (V , E, lV , lE) be a connected, planar, vertex-labelled graph with an appropriate embedding, Ĝ. Let d =
(Curve, l) be an Euler diagram generated from Ĝ. Let L ∈ im(l). Then Con(L) consists of a single curve if and only if there exists a
face, f , of the graph Ĝ− {e ∈ E : L ∈ lE(e)} such that all of the edges in ĜE(L) are embedded in f .

Proof. Suppose that Con(L) consists of a single curve. This implies that Ĝ∗E(L) is connected. Consider the graph Ĝ− {e ∈ E :
L ∈ lE(e)}. We note that the edges of ĜE(L) are embedded in f if and only if all of the edges of Ĝ∗E(L) are embedded in f . Let
e∗1 and e

∗

2 be edges of Ĝ
∗

E(L). We show that e
∗

1 and e
∗

2 are embedded in the same face of Ĝ− {e ∈ E : L ∈ lE(e)}. Suppose first
that e∗1 and e

∗

2 are both incident with a common vertex, v
∗. Then v∗ is in a face of Ĝ bounded by edges which include e∗1 and

e∗2 , say e1 and e2 respectively. Since e
∗

1 and e
∗

2 both contain L in their labels, so do e1 and e2. This implies that e1 and e2 are
not in the graph Ĝ− {e ∈ E : L ∈ lE(e)}. Moreover, deleting e1 and e2 from Ĝ places the edges e∗1 and e

∗

2 in the same face of
the resulting graph; see Fig. 22, where the dashed lines indicate the edges of Ĝ that bound the faces containing the vertices
incident with e∗1 and e

∗

2 . Therefore, e
∗

1 and e
∗

2 are in some common face, f , of Ĝ−{e ∈ E : L ∈ lE(e)}. Since Ĝ
∗

E(L) is connected,
it follows that all of its edges are embedded in f and so, therefore, are those of ĜE(L).
Conversely, suppose that there exists a face, f , of the graph Ĝ − {e ∈ E : L ∈ lE(e)} such that all of the edges in ĜE(L)

are embedded in f . To prove that Con(L) consists of a single curve, it is sufficient to show that the graph Ĝ∗E(L) is connected.
Suppose that v∗1 and v∗2 are edges of Ĝ

∗

E(L) but for which there is no path in Ĝ
∗

E(L) from v∗1 to v∗2 . The argument to show that
this leads to a contradiction is similar to that constructed in Lemma 5. Hence d possesses the unique labels property. �

Theorem 12. Let G = (V , E, lV , lE) be a connected, planar, vertex-labelled graph with an appropriate embedding, Ĝ. Any Euler
diagram, d = (Curve, l), generated from Ĝ possesses the unique labels property if and only if for all L ∈ im(l) there exists a face,
f , of the graph Ĝ− {e ∈ E : L ∈ lE(e)} such that all of the edges in ĜE(L) are embedded in f .

Definition 31. Let G = (V , E, lV , lE) be a connected, planar, vertex-labelled graph with an appropriate embedding, Ĝ. The
contour components measure for Ĝ is∑

L∈im(lV )

(|face(Ĝ− {e ∈ E : L ∈ lE(e)}, L)| − 1)

where face(Ĝ−{e ∈ E : L ∈ lE(e)}, L) is the set of faces in Ĝ−{e ∈ E : L ∈ lE(e)} that contain at least one edge, e, of Ĝwhere
L ∈ lE(e).

5.6. No brushing points

Detecting the presence of brushing points is the most challenging case, out of all six properties. In fact, we only present
partial results here, in that we can sometimes detect such points. In Fig. 23, the generated diagram d has a brushing point
between a and c. This brushing point arises from the vertex of Ĝ∗ that is embedded in f (the figure does not show Ĝ∗). Each
edge sequence around f gives rise to a label sequence (reading the labels of the edges rather than the edges themselves):
(c, a, a, c). This tells us that curves labelled a and c embedded across f will not cross. If that edge sequence had instead given
rise to (c, a, c, a) then this would indicate that the curves labelled a and c cross in f . In general, edges are labelled by sets of
curve labels, rather than single curve labels, and these two sequences are strictly ({c}, {a}, {a}, {c}) and ({c}, {a}, {c}, {a}).
To formalize the notion of a brushing point, we also consider when two curves cross. As an example, the curves in the

left-hand diagram in Fig. 24 cross at the point p. To identify this formally, we can consider a disc neighbourhoodN(p) around
p: it contains four regions, one for each of the four combinations of being ‘inside’ or ‘outside’ c1 and c2. However, had c1, say,
possessed self-concurrency it need not have had an interior. Thus, we cannot use the notion of interior to define a crossing
point in general Euler diagrams. Given c1, N(p) is cut into two pieces and we can arbitrarily assign positive and negative
to each of these two pieces respectively. The curves in the right-hand diagram brush at p. Here, the positive and negative
regions do not correspond to each of the four combinations of being positive or negative to the two curves.

Please cite this article in press as: G. Stapleton, et al., A graph theoretic approach to general Euler diagram drawing, Theoretical Computer Science (2009),
doi:10.1016/j.tcs.2009.09.005



ARTICLE  IN  PRESS
G. Stapleton et al. / Theoretical Computer Science ( ) – 17

Fig. 23. Detecting transverse crossings.

Fig. 24. Crossing and brushing curves.

Definition 32. Let c: [x, y] → R2, where the notation [x, y] denotes any closed interval of R2. Let p be a point in im(c) and
let N(p) be a disc neighbourhood of p. If N(p) − im(c) consists of exactly two connected components then N(p) is called a
splitting neighbourhood of p for c .

Definition 33. Let c1: [x, y] → R2 and c2: [a, b] → R2 be two curves such that there is a unique point p in im(c1) ∩ im(c2).
If there exists a disc neighbourhood N(p) such that

(1) N(p) is a splitting neighbourhood of p for c1; arbitrarily call one of the two connected components Pos(c1) and the other
Neg(c1),

(2) N(p) is a splitting neighbourhood of p for c2; arbitrarily call one of the two connected components Pos(c2) and the other
Neg(c2),

(3) N(p) contains a point in Pos(c1) ∩ Pos(c2),
(4) N(p) contains a point in Pos(c1) ∩ Neg(c2),
(5) N(p) contains a point in Neg(c1) ∩ Pos(c2) and
(6) N(p) contains a point in Neg(c1) ∩ Neg(c2)

then c1 and c2 are said to cross at p. Otherwise c1 and c2 brush at p.
Let c1: [0, 1] → R2 and c2: [0, 1] → R2 be two closed curves such that there is a point p in im(c1)∩ im(c2). If there exists

I1, I2 ⊆ [0, 1] such that

(1) im(c1|I1) ∩ im(c2|I2) contains exactly p,
(2) the curves c1|I1 and c2|I2 brush at p

then c1 and c2 brush at p.

Definition 34. An Euler diagram, d, possesses the no brushing points property if and only if no pair of curves brush at any
point.

Definition 35. Let G be a connected, planar, vertex-labelled graph with an appropriate embedding Ĝ. Let f be a face in Ĝ
with an edge sequence ES(f ) = (e1, . . . , en). Then the label sequence given labels L1 and L2 in L, derived from ES(f )
is (lE(e1) ∩ {L1, L2}, . . . , lE(en) ∩ {L1, L2}). The reduced label sequence, (a1, . . . , an), derived from ES(f ) is the maximal
sequence obtained from (lE(e1) ∩ {L1, L2}, . . . , lE(en) ∩ {L1, L2}) by removing all occurrences of ∅. Given a reduced label
sequence, a brushing test sequence for f is (b1, . . . , bm)where

(1) a1 gives rise to b1 ∈ a1 and if |a1| = 2 then b2 = a1 − {b1}, and
(2) each remaining aj gives rise to
(a) bx where bx ∈ aj, and
(b) if |aj| = 2, then bx+1 = aj − {bx}
where bx−1 arose from aj−1.
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Fig. 25. A graph that does not have detectable brushing points but generates a diagram with a brushing point.

To illustrate, a face edge sequence ({a, c}, {a, b}, {b}, {c}) has a label sequence, given a and b, ({a}, {a, b}, {b}, {}). In turn,
this gives rise to the reduced label sequence ({a}, {a, b}, {b}). From this, we can generate two brushing test sequences:
(a, a, b, b) and (a, b, a, b); the set {a, b} gives rise to the middle two labels in the sequence, one a and one b, in either order.
We can use brushing test sequences to (partially) test for the presence of brushing points.

Definition 36. Let G = (V , E, lV , lE) be a connected, planar vertex-labelled graph with an appropriate embedding, Ĝ. Let f
be a face in Ĝ. Let L1 and L2 be labels in

⋃
az∈im(lV ) az. If, for all brushing test sequences, b = (b1, . . . , bm), for f given L1 and

L2, there exists a subsequence b′ = (by, by+1, . . . , by+m2 −1) where the number of occurrence of L1 in b
′ is greater than half

the number of occurrences of L1 in b then f is said to have a detectable brushing point for L1 and L2.

Theorem 13. Let G = (V , E, lV , lE) be a connected, planar vertex-labelled graph with an appropriate embedding, Ĝ. Then in any
Euler diagram that is generated from Ĝ, two curves, c1 and c2, in d meet at a brushing point in a face f of Ĝ if f has a detectable
brushing point for l(c1) and l(c2).

Unfortunately, a graph may have faces that have no detectable brushing points for labels L1 and L2 but curves passing
through that facewith those labels brush. However, this only happenswhenwe have a curve passing through a facemultiple
times (i.e. that curve has a non-simple point in that face). To illustrate, in Fig. 25, the graph Ĝ has faces that have no detectable
brushing points, given a (i.e. both L1 and L2 are a). However, no matter howwe traverse the curve a, shown in the generated
diagram below, we will create a brushing point. In a more complex example, we might have two curve labels a and b for
which some face has a brushing test sequence (a, b, a, a, b, a). From such a sequence we cannot detect whether a and b
cross or brush.

Theorem 14. Let G = (V , E, lV , lE) be a connected, planar, vertex-labelled graph with an appropriate embedding, Ĝ. If for any
pair of labels, L1 and L2, in im(lV ) and for any face fx in Ĝ,

(1) fx has no detectable brushing point for L1 and L2,
(2)

∑
1≤i≤kx(lE(e) ∩ {L1}) ≤ 2 where ES(fx) = (e1, . . . , ekx) (a condition which is equivalent to saying the curves with label L1

are simple), and
(3) similarly for L2,

∑
1≤i≤kx(lE(e) ∩ {L2}) ≤ 2

then any Euler diagram, d = (Curve, l), generated from Ĝ possesses the no brushing points property.

Our brushing points measure will provide a lower bound on a count of the number of times an embedded diagram d
violates this property. It is possible for the measure to be zero and yet dmay not possess the no brushing points property.

Definition 37. Let G = (V , E, lV , lE) be a connected, planar, vertex-labelled graph with an appropriate embedding, Ĝ. Let
L1 and L2 be labels in

⋃
az∈im(lV ) az. The brushing points score for L1 and L2 is the number of faces in Ĝ for which there is a

detectable brushing point for L1 and L2.
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Fig. 26. An incorrect embedding for a dual of a vertex-labelled graph.

Definition 38. Let G = (V , E, lV , lE) be a connected, planar vertex-labelled graph with an appropriate embedding, Ĝ. The
brushing points measure for G is the sum of the brushing point scores3 for all pairs of labels L1 and L2.

6. Producing vertex-labelled graphs

So far, we have mainly considered how to covert graphs into Euler diagrams and how to use those graphs to identify
properties that will be possessed by those diagrams. Largely, we have not discussed how to convert abstract descriptions
into vertex-labelled graphs. This is a key step in the generation process and, when proving that every abstract description,
D, can be realized as an Euler diagram, d, we illustrated a method to convert D into a vertex-labelled graph that generates
such a d.
Here, we sketch a naive algorithm to produce a wider class of vertex-labelled graphs fromwhichwe can embedded Euler

diagrams. First, take an arbitrary set of vertices, V , with the same cardinality as D. Define an arbitrary bijection from V to D,
labelling each vertex with an abstract zone. Clearly the graph, G, with this vertex set and labelling function is a subgraph of
any vertex-labelled graph that generates an Euler diagram with abstraction D. We can add edges and vertices to this graph
in order to generate all vertex-labelled graphswith up to some arbitrary finite number of vertices. Given a connected, planar
graph in this vertex set, we can embedded it in all possible ways and discard any embeddings that are not appropriate. For
each of these embeddings, we can determine what properties the embedded Euler diagram will possess.
Thus, if we want to generate an Euler diagram, d, with abstraction D and some specified set of properties, we can search

through this finite set of graphs to see whether any generate such a d. Of course, this naive search algorithm is likely to be
infeasible to implement in practice, due to the very large search spacewe are likely to generate. This issue is further discussed
in the conclusion, in the context of heuristic searches through the space, an area in which we have already produced some
results [24].

7. Implementation

We now describe prototype software that implements a method for embedding an Euler diagram from a vertex-labelled
graph. This implementation relates to Section 4, which described how a diagram can be formed from a subgraph of a dual
of the vertex-labelled graph. The formation of the abstract dual is not problematic: there is a dual vertex for each face in
the vertex-labelled graph and a dual edge for each edge in the vertex-labelled graph. Hence the focus of this section is on
routing the edges in the dual in to produce the required diagram.
The routing of the dual edges is not trivial. Firstly, the dual edges must remain in the face between cutting (the vertex-

labelled graph) Ĝ’s edges and joining to the vertices of Ĝ∗, otherwise inadvertent edge crossings could occur, leading to a
non-plane dual and an incorrectly embedded diagram. Even when routing edges in the same face, inadvertent crossings of
dual edges can appear. This is illustrated in Fig. 26: the edge crossings in the topmost face mean the dual is non-plane (the
dual vertices are shown as solid rectangles).
Our approach to avoid these difficulties is to triangulate the faces in the vertex-labelled graph. Edge routing can be then

be performed by connecting edge segments as straight lines between evenly spaced cut points on triangulation edges. The
triangles are concave and, hence, the dual edges cannot leave the triangles, and so cannot leave the face. However, this

3 We do not count the brushing point score for L2 and L1 if we have already counted the brushing point score for L1 and L2 .
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Fig. 27. The triangulated edge (shown unlabelled) needs to be ordered.

Fig. 28. Ordering labels on dual edges.

means that multiple edges may pass through a triangle, and to ensure that dual edges do not cross inside a face, we can
arrange the cuts points for a triangle so that when read around the triangle, no intersections will occur. This is done using
an ordering method for the edge cuts along the triangulated edge.
Figs. 27 and 28 show how the dual edge cut points on triangulation edges are found for a single face. Dual edges labelled

b and bc must pass through this triangulated edge. In Fig. 28, these edges have been ordered on the triangulated edge so
that they will pass through the triangles without crossing.
In our construction of a dual, we first determine the position of each dual vertex. Given a face of Ĝ, it is placed at the

centroid of the triangle which contains themiddle of the face (or triangle closest to the centre of the face, in the case of some
convex faces). The dual vertex, v, is shown as a solid rectangle in Figs. 27 and 28. The dual edges incident with v must then
be routed from the vertex-labelled graph edges to v. There is no need to order cut points through triangulation edges with
zero or one dual edges cutting them, so in Fig. 27 the labels for these edges are shown, placed in the middle of the edges.
There is one remaining triangulated edge, which has two dual edges cutting it, labelled b and bc. Such triangulated edges can
be ordered, as long as they belong to a triangle that has two edges which have already been assigned an order. It is easy to
show that such a triangulated edge will always exist, and so the dual edge routing always terminates. The order that avoids
any edge crossings in the triangle not containing the dual vertex can be seen in Fig. 28, as drawing the edge segments as
straight lines between the label positions leads to no crossing.
The final Euler diagram, after all dual edge routing, is shown in Fig. 29; the dual vertices are omitted this diagram for

clarity. The straight line dual edge segments that join up the cut points on triangulation edges can be seen. The final Euler
diagram is given in Fig. 30.

7.1. Choosing a vertex-labelled graph

The implementation described above constructs an Euler diagram from an embedded, vertex-labelled graph. There are
challenges in choosing a vertex-labelled graph that generates an Euler diagram with specified properties, or low numbers
of violations of properties. It is possible to define heuristic searches through the space of vertex-labelled graphs in order
to decrease the time taken to find a suitable graph, at the possible expense of not finding a ‘best’ graph. We have already
developed one such heuristic search and implemented it [24]. That particular search yields a graph that generates Euler
diagrams under a prioritized selection of the properties. In particular, that implementation generates diagrams which have
connected zones, simple contours (contours for which no pair of curves intersect), and it attempts to minimizes the amount
of concurrency and number of brushing points. Here, to indicate the scalability of that implementation, we include some
data on the time taken to find a vertex-labelled graph, given an abstract description, that generates such a diagram. The
code was written and run using Java 1.6 in 32 bit Vista SP1 on a Intel Core 2 Duo CPU running at 2.4 GHz with 4 GB of RAM.
Each randomly generated abstract description had 6 curve labels and between 4 and 23 zones. We randomly generated 10
abstract descriptions with each zone set cardinality (i.e. 4 ≤ |Z(D)| ≤ 23), giving a total sample size of 200. As can be seen
in Fig. 31, the process is approximately linear in the number of zones; the times given in the chart are the average times
taken to find graphs for each of the 10 abstract descriptions.
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Fig. 29. Vertex-labelled graph, triangulation and Euler diagram drawn from the dual graph.

Fig. 30. Final Euler diagram.
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Fig. 31. Generating vertex-labelled graphs.

8. Conclusion and further work

In this paper, we have produced the first fully formalized framework for generating an Euler diagram given any abstract
description. Our method takes the abstract description and, first, converts it into a vertex-labelled graph. Secondly, after
finding an appropriate embeddingwe construct a dual graphwhich allows us to generate an Euler diagramwith the required
abstraction. We have identified properties of the embedded graph that correspond to properties that the generated Euler
diagram will possess. Moreover, we have shown how to use the embedded graph to count violations of these properties in
the embedded Euler diagram. A particular feature of our generation method is that it is capable of producing an embedding
of any Euler diagram that has curves with only a finite number of self-intersections, contours that are not self-concurrent,
and a finite number of minimal regions. Finally, we produced a naive implementation of the method to justify its utility.
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Further work includes allowing more general edge labelling to occur in vertex-labelled graphs. At present, our graphs do
not generate Euler diagrams that include any self-concurrent curves. Whilst there are usability reasons for not allowing
such curves (one cannot necessarily identify the interior of such curves from their images alone, for instance) it is a
limitation of ourmethod and sometimes drawing such curves can be advantageous. For example, in an automated reasoning
environment, such as [28], one may want to draw one diagram so that it looks similar to another (after the application of
an inference rule). Such a requirement may necessitate the use of a self-concurrent curve. Each edge label would need to
reflect the number of times each curve was to pass through the respective edge.
The work in this paper also provides the essential foundations for further significant avenues of future research. In

particular, we have set up a framework that will allow heuristic searches to take place that allow the generation of Euler
diagrams that have specified arbitrary subsets of the properties investigated in this paper. As discussed above, we have
already begunwork along these lines, producing amore sophisticated implementation than that described in this paper [24].
We plan to extend this work to include a user specified prioritization of the properties, which represents a considerable
challenge.
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