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Abstract
Concurrent and incremental collectors require barriers to ensure
correct synchronisation between mutator and collector. The over-
heads imposed by particular barriers on particular systems have
been widely studied. Somewhat fewer studies have also compared
barriers in terms of their termination properties or the volume of
floating garbage they generate. Until now, the consequences for lo-
cality of different barrier choices has not been studied, although lo-
cality will be of increasing importance for emerging architectures.
This paper provides a study of the locality of concurrent write bar-
riers, independent of the processor architecture, virtual machine,
compiler or garbage collection algorithm.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors—Memory management (garbage collection);
C.4 [Performance of Systems]: Measurement techniques

General Terms Measurement, Performance, Languages.

Keywords Language implementation, Memory management,
Garbage collection, Java.

1. Introduction
Multicore and multiprocessor platforms are becoming ubiquitous,
from large servers through desktops and laptops and even in em-
bedded systems. In order to avoid becoming a bottleneck, it is es-
sential that garbage collection algorithms take advantage of parallel
hardware resources. There are a number of ways in which collec-
tors can exploit parallelism. In a stop-the-world context, all mutator
(user) threads may be stopped while a parallel collection is carried
out by multiple garbage collector threads. This is likely to be the
best solution if the goal is to achieve the highest throughput pos-
sible [35]. It is also the most straightforward way to harness the
power of parallel hardware requiring no more synchronisation with
mutator threads than a uniprocessor collector.

However, stop-the-world collection may lead to unacceptable
pause times, especially if heaps are very large or worst case bounds
are required. In order to reduce or bound pause times, either collec-
tor threads may be run concurrently with mutators, or each mutator
thread may be required to perform some incremental garbage col-
lection work. Both incremental and concurrent collection break the
atomicity of garbage collection with respect to mutation of the ob-
ject graph; object topology can change from one increment to the
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next or different threads’ views of the topology may not be con-
sistent. Unless care is taken to ensure that mutators and collectors
share a coherent view of the heap, we risk mutators ‘hiding’ live
objects from collector threads or, in the case of copying and com-
pacting collectors, collectors moving objects behind the mutators’
backs. We discuss this problem in more detail in Section 2. In ei-
ther case, synchronisation between mutator and collector threads is
essential.

Synchronisation is achieved through barriers that allow the mu-
tator to communicate with the collector [22]. Barriers may be im-
plemented by emitting code to instrument pointer loads or stores,
or with operating system or hardware support [2, 11]. Moving col-
lectors have typically intercepted pointer loads (with a read bar-
rier) [4, 28]. Collectors that do not move objects use write barriers
to intercept pointer stores [17, 33, 42]. Read barriers are gener-
ally considered to be more expensive than write barriers because of
the prevalence of loads over stores [7]. The focus of this paper is
software write barriers used by concurrent or incremental tracing
collectors.

The role of a write barrier is to inform the collector of changes
to the object graph topology. Let us consider how to barrier a write
of a pointer p to the field f of an object o. Depending on policy, the
barrier may notice either the insertion of the new pointer p into o
or the deletion of the old pointer o.f . We give an outline of write
barrier policies and mechanisms in Section 2. In each case, some
object is marked (added to the collector’s work list of objects to
trace). Insertion barriers may advance the collector’s wavefront of
objects to trace by marking the new target p, or retreat it by marking
the source o. Deletion barriers must mark the old target of o.f .

No collector can guarantee to trace only live objects (i.e. those
that will be used in the future by the mutator); the problem is
undecidable. Instead, tracing collectors approximate the set of live
objects with the set of objects that are transitively reachable from
the set of roots (local and global variables) by following pointers.
If tracing is not atomic with respect to the mutators, the traced set
will be larger than that obtained with a stop-the-world collector:
concurrent/incremental tracing is less precise than stop-the-world
tracing. The choice of barrier has profound consequences on the
precision of the collector: deletion barriers are less precise than
advancing insertion barriers which are in turn less precise than
retreating insertion barriers [37]. The choice of barrier also affects
how the collector must treat mutators’ stacks and hence termination
of the collector.

Barriers of different styles have different locality as they touch
different objects, o, p or o.f . Locality has significant effects on
performance, and designers of garbage collection algorithms take
considerable care to optimise this [10, 14, 18]. Locality is likely
to become more important as memory access becomes increas-
ingly non-uniform. Blackburn and McKinley [7] observed that “the
write barrier is a key to the efficiency of many modern garbage
collectors.”. Common folklore is that, despite their advantages in
terms of ease of termination, deletion barriers lead to significantly



worse cache behaviour than installation barriers. In this paper, we
seek to answer this question definitively by investigating the lo-
cality of different styles of concurrent write barriers. We seek to
answer the question: what is the consequence of the choice of write
barrier for the mutator? By abstracting from the details of any par-
ticular garbage collection algorithm, virtual machine or hardware
platform, we provide empirical results and advice that is broadly
applicable.

Structure of this paper Section 2 provides background on con-
current garbage collection and the challenges it faces in ensuring
synchronisation between mutators and collectors. Section 3 pro-
vides an overview of existing write barriers and the subtle differ-
ences between them. Section 4 reviews related work and discusses
the background to this research. Section 5 describes our methodol-
ogy; results follow in Section 6. Further work and conclusions are
presented in Section 7 and Section 8.

2. Barriers for concurrent GC
A correct collector must satisfy two properties.

• Safety: the collector retains at least all reachable objects;
• Liveness: the collector terminates, allowing it to free garbage.

Concurrent collectors are correct insofar as they are able to con-
trol mutator and collector interleavings. These are often most eas-
ily reasoned about by considering invariants that the collector and
mutator must preserve based on the tricolour abstraction. All con-
current collectors preserve some realisation of these invariants, but
they must retain at least all the reachable objects (safety) even as
the mutator modifies objects.

2.1 The tricolour abstraction
The tricolour abstraction [17] is a useful characterisation of tracing
collection that permits reasoning about collector correctness in
terms of invariants that the collector must preserve. Using the
tricolour abstraction, tracing collection partitions the object graph
into black (live) and white (possibly dead) objects. Initially, every
object is white; when an object is first encountered during tracing
it is coloured grey; when it has been scanned and its children
identified, it is shaded black. Conceptually, an object is black if the
collector has finished processing it, and grey if the collector knows
about it but has not yet finished processing it (or needs to process it
again).

Tracing progress of the collector in the heap occurs by moving
the collector wavefront (the grey objects) separating black objects
from white objects until all reachable objects have been traced
black. At the end of the trace there are no references from black
to white (unreachable) objects, so they can safely be reclaimed.
Concurrent mutation of the heap while the collector is working to
advance the grey wavefront by scanning objects may destroy this
invariant.

2.2 Tricolour invariants
To ensure that at the end of concurrent tracing there are no black
objects that contain references to white objects, it is necessarily to
preserve one of two invariants at all times.

The weak tricolour invariant: All white objects pointed to by a
black object are reachable from some grey object through a
chain of white objects.

Of course, since problems can occur only when the mutator inserts
a white pointer into a black object, it is sufficient simply to pre-
serve:

The strong tricolour invariant: There are no pointers from black
objects to white objects.

Clearly, the strong invariant implies the weak invariant, but not
the other way round. The strong invariant also means that a black
mutator’s roots can refer only to objects that are grey or black but
not white. Under the weak invariant, a black mutator can hold white
references so long as their targets are protected from deletion.

2.3 Precision
Different collector algorithms, which achieve safety and liveness in
different ways, will have varying degrees of precision, efficiency,
and atomicity. Precision is defined by the set of objects retained at
the end of collection. A stop-the-world collector obtains maximal
precision (all unreachable objects are collected) at the expense of
any concurrency with the mutator. Finer grained atomicity permits
increased concurrency with the mutator at the expense of possibly
retaining more unreachable objects. Unreachable objects that are
nevertheless retained at the end of the collection cycle are called
floating garbage. It is important, though not necessary for correct-
ness, that a concurrent collector also ensure completeness in col-
lecting floating garbage at some later collection cycle.

2.4 Allocation colour
Mutator colour also influences the colour objects receive when
they are allocated. Allocation results in the mutator holding the
pointer to the newly allocated object, which must satisfy whichever
invariant applies given the colour of the mutator. The allocation
colour also affects how quickly a new object can be freed once it
becomes unreachable. If an object is allocated black or grey then it
will not be freed during the current collection cycle (since black
and grey objects are considered to be live), even if the mutator
drops its reference without storing it into the heap. A grey mutator
can allocate objects white and so avoid unnecessarily retaining new
objects. A black mutator cannot allocate white (whether the strong
or weak invariant applies), unless (under the weak invariant) there
is a guarantee that the white reference will be stored to a live object
ahead of the wavefront so the collector will retain it. Otherwise,
there is nothing to prevent the collector from reclaiming the object
even though the black mutator retains a pointer to it. Initially, new
objects contain no outgoing references so allocating black is always
safe.

2.5 Incremental update solutions
Solutions that preserve the strong invariant are called incremental
update techniques [39] since they inform the collector when the
mutator tries to install a white pointer in a black object (behind
the wavefront). Incremental update solutions conservatively treat
an object as live (non-white) if a pointer to it is ever installed behind
the wavefront, speculating that the mutator may yet delete all other
paths to the object ahead of the wavefront. They use a mutator
write barrier to protect against insertion of white pointers in black
objects.

2.6 Snapshot-at-the-beginning solutions
Solutions that preserve the weak invariant are called snapshot-at-
the-beginning techniques [39] since they inform the collector when
the mutator deletes a white pointer from a grey or white object
(ahead of the wavefront). Snapshot-at-the-beginning solutions con-
servatively treat an object as live (non-white) if a pointer to it ever
existed ahead of the wavefront, speculating that the mutator may
have also inserted that pointer behind the wavefront. Snapshot-
at-the-beginning techniques use a mutator write barrier to protect
against deletion of grey or white pointers from grey or white ob-
jects.

Under the weak invariant, deleting a grey or white reference
from a black mutator is never a problem. However, deleting a white
reference from a grey mutator might be, since that may remove the



1 atomic Write(src, fld, ref):
2 *fld ← ref
3 if is_black(src)
4 if is_white(ref)
5 revert(src)

(a) Steele [33]

1 atomic Write(src, fld, ref):
2 *fld ← ref
3 if is_black(src)
4 revert(src)

(b) Boehm et al. [11]

1 atomic Write(src, fld, ref):
2 *fld ← ref
3 if is_black(src)
4 shade(ref)

(c) Dijkstra et al. [17]

Figure 1: Grey mutator barriers.

last link ahead of the wavefront to a chain of white objects that
are otherwise reachable from black objects. However, we cannot
prevent the mutator from deleting references it holds directly (that
is, dropping objects). The only solution is to preempt the lost
deletion by avoiding ever inserting a white reference in a black
object, which degenerates to maintaining the strong invariant. Thus,
snapshot collectors operate only with a black mutator.

3. Barrier techniques for concurrent collection
Barrier techniques that maintain one of the two tricolour invariants
rely on a number of actions to cope with insertion or deletion of
pointers. They can:

• Add to the wavefront by shading a white object grey. Shading
an already grey or black object has no effect.
• Advance the wavefront by scanning an object to make it black.
• Regress the wavefront by reverting an object from black back

to grey.

The only other actions — reverting an object to white or shading an
object black without scanning — would break the weak or strong
invariant.

Following Pirinen [27], Figures 1 and 2 enumerate the range of
classical barrier techniques for concurrent collection.

3.1 Grey mutator techniques
We first consider approaches that operate with a grey mutator. All
these techniques preserve the strong invariant by using an insertion
write barrier to protect from storing white pointers into black
objects. Because the mutator is grey they do not need a read barrier.
They are incremental update techniques.

• Steele’s barrier [33] (Figure 1a) yields the most precision of all
the techniques because it simply notes the source object being
modified. It does not change any decision about reachability
of any object, but regresses the wavefront by changing the
modified source object from black back to grey.
• Boehm et al. [11] implemented a variant of the Steele [33] bar-

rier which ignores the colour of the inserted pointer (Figure 1b).
Boehm et al. used virtual memory dirty bits to record pages
modified by the mutator yielding a less precise barrier, and a

1 atomic Read(src, fld):
2 ref ← *fld
3 if is_grey(src)
4 ref ← shade(ref)
5 return ref

(a) Baker [4]

1 atomic Read(src, fld):
2 if is_grey(src)
3 scan(src)
4 return *fld

(b) Appel et al. [2]

1 atomic Write(src, fld, ref):
2 if is_grey(src) or is_white(src)
3 shade(*fld)
4 *fld ← ref

(c) Abraham and Patel [1], Yuasa [42]

Figure 2: Black mutator barriers.

stop-the-world phase to terminate collection (at which time the
dirty pages are rescanned).
• Dijkstra et al. [17] designed a barrier (Figure 1c) that yields

less precision than Steele’s since it commits to shading the
target of the inserted pointer reachable (non-white), even if the
inserted pointer is subsequently deleted. This loss of precision
aids progress by advancing the wavefront.

3.2 Black mutator techniques
The first two black mutator approaches apply incremental update
techniques to maintain the strong invariant using an insertion read
barrier to protect the mutator from acquiring white pointers. The
third, a snapshot technique, uses a deletion write barrier to preserve
the weak invariant. Under the weak invariant even a black mutator
can contain white references. It is black only in that its roots have
already been scanned by the collector — at the time they were
scanned all the mutator roots became grey as their target objects
were shaded (if they were not already black), but the mutator may
have since loaded additional white pointers from the heap, adding
them to its roots.

• Baker’s read (mutator insertion) barrier [4] (Figure 2a) has less
precision than Dijkstra et al., since it retains otherwise white
objects whose references are loaded by the mutator at some
time during the collection cycle, as opposed to those actually
inserted behind the wavefront.
• Appel et al. [2] implemented a coarse-grained (less precise)

variant of Baker’s read barrier (Figure 2b), using virtual mem-
ory page protection primitives of the operating system to trap
accesses by the mutator to grey pages of the heap without hav-
ing to mediate those reads in software.
• Abraham and Patel [1] and Yuasa [42] independently devised

the deletion barrier of Figure 2c which offers the least precision
of all the techniques. Any unreachable object to which the last
pointer was deleted during the collection cycle is retained.

3.3 Completeness of barrier techniques
Pirinen [27] argues that these barrier techniques cover the range of
all possible approaches, with the exception a barrier that combines
an insertion read barrier on a black mutator with a deletion read



barrier on the heap to preserve a weak invariant. All of the barrier
techniques enumerated here cover the minimal requirements to
maintain their invariants, but variations on these techniques can be
obtained by short-circuiting or coarsening.

4. Related Work
The literature contains many studies of barriers for generational and
concurrent/incremental collection and of the impact of particular
barriers on the performance of particular systems [8, 12, 16, 19–21,
32, 34, 36, 40, 43]. However, few studies have compared different
styles of barrier. Zorn counted proportions of loads and stores by
large Franz Lisp programs in order to estimate the overhead of read
and advancing write barriers. His work differs from ours in that he
needed to trap all stores since Lisp is untyped. Note also that Franz
Lisp was interpreted. Hosking et al. [20] compare barriers based on
hash tables, sequential store buffers, card tables and virtual memory
traps for generational collectors.

The work most closely related to ours is the study of Blackburn
and Hosking [6] that measures the costs of a variety of read and
write buffers for Jikes RVM. They compared the costs of barriers
generated by an adaptive, optimising compiler for different Jikes
RVM collection algorithms on different hardware platforms. In
contrast, our work seeks to measure the locality of different write
barriers independent of the platform, virtual machine or garbage
collector used. Similarly to us, Blackburn and Hosking consider
only the barrier itself and not the cost of manipulating work lists
(sequential store buffers or card tables in their case).

Vechev et al. [37] start from an abstract specification of write
barriers and derive Dijkstra’s and Steele’s insertion barrier [17, 33],
the deletion barrier of Yuasa [42] and a hybrid of the two. They
compare the space usage of the four barriers for a subset of the
SPEC jvm98 benchmarks and conclude as expected that the Steele
barrier is the most precise, followed by Dijkstra’s and that the
deletion barrier is significantly less precise than the others.

Locality is critically important to performance on modern archi-
tectures. In contrast to the work reported here, most studies have
concentrated either on improving the locality of the tracing loop of
mark-sweep collectors or on improving mutator locality by rear-
ranging the layout of objects in the heap. Boehm [10] observes that
marking dominates collection time (the cost of fetching the first
pointer from an object accounted for a third of marking time on
an Intel Pentium III), so he prefetches objects when a reference to
them is added to the marking stack. Cher et al. [14] insert a FIFO
queue in front of the mark-stack to better match the order that cache
lines are fetched. Garner et al. [18] restructure the usual tracing
loop to enqueue edges rather than nodes [22]: although this leads
to more work as Java applications have about 40% more edges than
nodes, this is outweighed by the reduction in cache misses. Several
authors have considered how to use copying collection to improve
the locality of mutators. Depth-first or pseudo depth-first copying
can improve over breadth-first copying [24, 25, 31, 41]. The col-
lector can also be proactively invoked to improve locality [13, 15].
Objects can also be reordered statically by type in order to colocate
related objects or hot fields of objects [24, 26, 30, 41].

5. Methodology
We wish to explore the consequences for mutator locality of three
different concurrent write barriers:

• Dijkstra’s advancing insertion barrier [17];
• Steele’s retreating insertion barrier [33]; and
• Yuasa’s deletion barrier [42].

In each case we are interested in the number of cache misses a
mutator running with a particular write barrier would incur that it
would not have suffered if the mutator had run without the barrier.
However, the number of cache misses incurred is specific to the
environment in which a benchmark is run: the hardware, virtual
machine and compiler as well as barrier and the benchmark used.
Because we want to provide a platform-independent answer to the
question of mutator/barrier locality, we abstract from these details
by measuring those objects accessed by the write barrier that would
not have been accessed by the benchmark otherwise.

5.1 Notice and use
Any write barrier must intercept pointer stores in order to add work
to a tracing collector’s work list. In this case, we say that the barrier
has noticed the object. The user program (excluding barrier code)
may also access the object. We say that the object has been used
if a value is stored in or loaded from a field of the object. We
include any mutator access to an object’s header fields (e.g. to get
an array’s length, for type queries, method dispatch, hashing or
locking). In order to ensure termination (without stopping the world
unnecessarily), we shall assume that the barrier is filtering and
that the colour of the object is stored in the object header: it must
access an object to test and set its colour rather than unconditionally
setting a byte in a card table [16]. We would expect our results to be
different if the object colour was stored separately from the object.
Algorithm 1 shows how we emulate the barriers.

• Write(src,fld,new) stores new in field fld of object src. If
this is a reference write, one of the objects is noticed, depending
on the barrier used. The src is always used.
• markNoticed is parameterised by the barrier-style under test

to record either the object modified (src), the new target (new)
or the old target (old). An objects is stamped with the time
(bytes allocated) that it is first noticed. If is already used, we
log the last used to noticed distance. A pointer stored to a static
is treated similarly except that we only notice the static’s old or
new target.
• The first time that an object is used after it has been noticed

(marked by the barrier), markUsed stamps its used field with
the current time, and again logs this reuse distance. Note that
as statics are never ‘noticed’, they can never be ‘used’. The
logs are post-processed to identify the minimum use-notice or
notice-use distance for each object.

5.2 Barrier abstractions
We now describe the object access behaviour of concurrent write
barriers using the Write operation of Algorithm 1. As we saw in
Section 2, Dijkstra’s barrier modifies src (to write the reference),
reads src (to check its colour), tests and may grey new. Steele’s
barrier also modifies src, reads src, tests new, tests and may grey
src. Yuasa’s barrier tests src, tests and may grey old and modifies
src. We summarise these in the following table (R = reads, W =
writes).

src old new

Dijkstra RW RW?
Steele RW R
Yuasa RW RW?

All three barriers access the src object: no extra cache misses
on src will occur. Both Dijkstra and Steele access new, and Yuasa
accesses old. In each of these cases, an extra cache miss will occur
if the barrier causes the loading of new (old) which then becomes
evicted from the cache before the mutator accesses it. We treat



Algorithm 1: Pseudocode for the write barrier.

1 Write(src, fld, new):
2 if (referenceType(new))
3 old = *fld
4 markNoticed(src, old, new)
5 markUsed(src)
6 ...// write the new value
7

8 Read(src, field):
9 markUsed(src)

10 ...//return the value of the field
11

12 markNoticed(src, old, new):
13 ref = ...// select src, old or new
14 if (ref = null) return
15 if (gcInProgress()) return
16 atomic
17 if (ref.noticed = UNNOTICED)
18 ref.noticed = now
19 notice_count++
20 if ref.used = USED
21 log(ref.used−now, ref.id)
22 ref.used = UNUSED
23

24 markUsed(ref):
25 if (ref = null) return
26 if (gcInProgress()) return
27 atomic
28 if (ref.noticed = NOTICED)
29 if (ref.used = UNUSED)
30 ref.used = now
31 log(now−ref.noticed, ref.id)
32 else
33 ref.used = now
34

35 New(): // allocate black
36 ref = allocate()
37 ref.noticed = now
38 ref.used = now
39

40 clearNotice(ref)
41 ref.noticed = UNNOTICED
42 ref.used = UNUSED

the locality behaviour of the two insertion barriers as equivalent.
In the next section, we measure the locality performance of (a)
Dijkstra/Steele by setting ref=new (line 13) and (b) Yuasa by
setting ref=old.

5.3 Garbage collector independence
An important principle of this study is that it is not dependent
on any hardware platform, virtual machine or garbage collection
algorithm. However, we do want to study the effect that a collector
would have. For example, by the end of a garbage collection cycle,
all live objects will have been marked and their colours reset to
white in preparation for the next cycle, during which they may be
touched again by the write barrier.

We also measure the effect on write barrier locality of varying
the period of garbage collection cycles. Concurrent and incremen-
tal algorithms are usually tuned or self-adjusting to ensure that they
complete all tracing work before the mutators run out of space.
Garbage collection threads or increments are scheduled more fre-
quently, for longer, or to do more work. The corollary is that the
mutator makes less progress between collection cycles. We emulate
this by running our measurement framework on top of a standard
stop-the-world, non-generational collector but invoking the collec-

tor more or less frequently by varying the amount of allocation al-
lowed between each GC. Whenever the underlying collector’s trac-
ing loop marks an object, it calls clearNotice to reset the object’s
noticed and used fields. Thus, we vary the window in which a
mutator can notice and use an object.

5.4 Allocation colour
Objects can be allocated in different colours depending on the
colour of the mutator [27]. Black mutators usually allocate black,
even under the weak tricolour invariant. Grey mutators offer more
possibilities, though again a common policy is to allocate black
during the marking phase in order to speed termination [23, 38].
Similarly, we choose also to allocate objects as noticed (New in
Algorithm 1).

6. Results
In this section, we describe our experimental platform, the bench-
marks used, and present and evaluate our results.

6.1 Platform and Benchmarks
To measure the locality of the barriers, we instrumented Jikes
RVM, an open source Java virtual machine written in Java. Its well-
defined memory management toolkit, MMTk [9], allows easy mod-
ification of existing garbage collectors (or implementation of new
ones). The version used was 3.1.0+trunk15808. In order to measure
the benchmarks’ mutator behaviour platform-independently, and to
improve consistency between runs, we choose to omit the adaptive
compiler and use the baseline compiler to reduce VM meta-data.
We do not believe that the validity of our results is compromised
by the choice of compiler. First, a goal of this work is to understand
the locality behaviour of barriers independent of any compiler used.
Second, common compiler optimisations like redundant load elim-
ination do not affect our results: by definition RLE removes a load
only because the value has already been loaded. Finally, the com-
piler’s ability to optimise code across safe-points is restricted in a
managed environment because the collector may move objects. We
ran the BaseBaseMarkSweep configuration using a mark-sweep
collector.

Object and array writes were intercepted using pre-existing
support for write barriers within Jikes RVM and MMTk. Prim-
itive writes marked the src object as used before updating the
slot. Reference writes called markNoticed before marking the
src object as used and updating the slot. The baseline compiler
was modified to call markUsed on the tgt object via modi-
fied getField, arrayLoad, monitorenter, invokevirtual,
invokeinterface and Object.hashCode() implementations.
Marking objects as noticed or used during the underlying GC is
disabled by each markNoticed and markUsed call checking a
global flag.

6.2 Benchmarks
Our benchmarks were drawn from the DaCapo suite, 2006–10–
MR2 [5], a set of real-world Java benchmarks with non-trivial
and well known memory loads. In each case we use the default
input and measure the objects noticed and used during the second
iteration. Multiple iterations of each benchmark were performed to
improve the robustness of the measurements.

6.3 Results
We investigated the number of objects noticed (and hence size of
the work lists generated) by the barriers, the proportion of objects
noticed by the barriers that were subsequently used by the mutator
within the same collection cycle, and the reuse distance between
noticing and using an object.
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Figure 3: Number of objects noticed by mutator write barriers.



Figure 3 shows the number of objects noticed by an insertion or
a deletion barrier. For both barriers, the number of noticed objects
tends to drop as the interval between collections increases. More
frequent collections increase the number of times the mark-bits
of long-lived objects are set and reset, leading to higher noticed
counts. Although one might expect each barrier to touch the same
number of objects (since Write inserts one pointer and deletes
another), in most cases, insertion barriers touch fewer objects than
deletion barriers. Any imbalance indicates that either (a) one barrier
is applied to more pointers to shared objects than the other, (b)
one barrier is more likely to try to notice new objects (which
we allocated black) than the other, or (c) pointer writes cause
work for one barrier but not the other, for example, by exchanging
pointers to a young and old object (in either direction). For antlr,
chart and luindex the difference is large. However, hsqldb, jython
and lusearch notice more objects with the insertion barrier. The
frequency of collection affects the predominance of either barrier
in eclipse and xalan.

Figure 4 shows the fraction of objects that the mutator noticed
and used in the same collection cycle. The tendency for most
objects to be uniquely referenced means that once a pointer has
been deleted its target cannot be accessed again. We had therefore
expected deletion barriers to lead to lower proportion of noticed
objects also being used. Surprisingly, in all cases except jython
and lusearch, use of a deletion barrier leads to a larger proportion,
suggesting better temporal locality. We note that the target of an
inserted pointer may be not be accessed subsequently for some
time, for instance not until after a further collection cycle (at which
point the mark-bits will have been reset). However, the proportions
for both barriers are typically high (over 90%). The exception
is the insertion barrier for chart, which performs badly until the
collection frequencies are increased to 16MB or more. With jython,
the proportion with both barriers tends to rise slowly.

Figure 5 shows the reuse distance of noticed objects. A point
(x, y) indicates that y% of the noticed objects are used by the
mutator within x bytes of allocation. We have plotted the curves
for all the collection frequencies in order to give an impression of
the distributions. The cache behaviour induced by a barrier will be
better for curves above and to the left in the figure. For example,
the reuse with the deletion barrier is much better in antlr than
it is in jython. Deletion barrier typically tend to lead to shorter
reuse distances. In most cases, these distance are very short (e.g.
less than a kilobyte). However, varying the collection frequency
does effect the reuse distance. This is particularly noticeable for
the insertion barrier in hsqldb and both barriers in pmd. Chart
stands out: its insertion barrier has much worse reuse behaviour
than its deletion barrier. The reuse distances for both pmd barriers
at the 512MB collection frequency is large: we are uncertain why
this is. We were surprised that most of the benchmarks showed
the deletion barrier to have better reuse than the insertion barrier.
This suggests that, contrary to popular folklore, although deletion
barriers may notice more objects, this will not necessarily lead to a
degradation of cache performance for the barrier, given a suitable
(i.e. cache-friendly) mechanism for remembering noticed objects.
Furthermore, the deletion barriers appear to be less sensitive to
collection frequency. Again, we suggest that this may be because
the last reference to an objects is deleted only once but that a
reference to an object may be inserted many times. Whether the
subsequent insertions shade the object depends on its colour which
is reset at each collection.

7. Further work
This paper raises several interesting questions that could be ex-
plored in the future.

• Allocating black and/or the use of concurrent barriers leads to
an over-estimate of the live heap. By implementing a full con-
current tracing collector on top of our concurrent barrier, it
would be possible to measure the amount of floating garbage
that each barrier preserves and the time taken for correct termi-
nation.
• Our experiments only measured the locality behaviour of the

barriers themselves, and not their payloads. A further study
would investigate different implementations of remembered
sets for the noticed objects.
• The allocation time between noticing and using an object serves

as a proxy for cache behaviour. Our results could be validate by
measuring the real cache behaviour of the barriers on a variety
of hardware architectures.

8. Conclusion
We have compared the cache behaviour of mutator insertion and
deletion write barriers, for concurrent/incremental collectors, mak-
ing efforts to ensure our results are VM, GC and hardware agnostic.

Generally we confirm that deletion barriers generate more work
for a concurrent GC than insertion barriers. For some benchmarks
the amount of work generated largely depends on the selected bar-
rier and the heap size. The ratio between used and noticed is
greater than 0.9 for both barriers and most benchmarks. Generally
the deletion barrier has a higher use ratio. The time between notic-
ing and subsequently using an object can be much lower with a
deletion barrier than an insertion barrier, suggesting that deletion
barriers may lead to better cache performance than has hitherto
been expected.
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Figure 4: Number of objects noticed & used by mutators / number of objects noticed by mutator write barrier.
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Figure 5: The distribution of minimum distance between noticing an object and using the object. A point (x, y) indicates that y% of the
noticed objects are used by the mutator within ±x bytes of allocation. The figures show curves for each barrier and for each collection
frequency.
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