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INFINITARY REWRITING: FOUNDATIONS REVISITED
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Abstract. Infinitary Term Rewriting allows to express infinitary terms and infinitary
reductions that converge to them. As their notion of transfinite reduction in general, and
as binary relations in particular two concepts have been studied in the past: strongly and
weakly convergent reductions, and in the last decade research has mostly focused around
the former.

Finitary rewriting has a strong connection to the equational theory of its rule set: if
the rewrite system is confluent this (implies consistency of the theory and) gives rise to a
semi-decision procedure for the theory, and if the rewrite system is in addition terminating
this becomes a decision procedure. This connection is the original reason for the study of
these properties in rewriting.

For infinitary rewriting there is barely an established notion of an equational theory.
The reason this issue is not trivial is that such a theory would need to include some form
of “getting to limits”, and there are different options one can pursue. These options are
being looked at here, as well as several alternatives for the notion of reduction relation
and their relationships to these equational theories.

1. Introduction

Infinitary rewriting deals with infinite terms, which are defined through the metric
completion of finite terms through some metric. In the simplest case (metric d∞) this is
equivalent to a co-inductive definition of terms, i.e. the set of infinitary terms Ter∞(Σ) is
the largest set such that every t in this set has some root symbol F taken from the signature
Σ and n direct subterms ti (1 ≤ i ≤ n) that are all in Ter∞(Σ), where n is the arity of
F as defined by the signature. In other words, infinitary terms are defined co-inductively
through the way they unfold, without a guarantee that this unfolding ever comes to an end.
Infinite terms are indeed those where it does not.

Metric completion is a general-purpose semantic construction on metric spaces which
“adds” to a metric space limits to all its Cauchy-sequences, in the sense that there is
a dense isometric embedding of the orginal space into a complete metric space. Using
metric completion with other metrics on terms than d∞ can restrict the infinite terms
under consideration (but not add others) [6], as Ter∞(Σ) can also be seen as a final co-
algebra. For the purposes of this paper the choice of metric is (largely) immaterial, i.e. as
long it allows for infinite terms at all.
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Reductions that only involve finite terms can still approximate infinite terms “in the
limit” by moving arbitrarily close (in terms of the distance function) to some such infinite
term.

That is the idea behind infinitary rewriting. The problem is then to decide how exactly
the limit is reached. For transfinite reductions we may expect something similar to metric
completion, some kind of closure operation, allowing us to reach limit terms in the limit
of... what? Here we encounter our first problem: what is the structure to which we need to
add limits and what kind of limits?

Traditionally [3], the answer to this is: (i) the structure to which we add limits are
(infinite) reduction sequences. As these are functions with ordinals as their domain, we
can ensure that the limits are connected to “what came before” by demanding that these
functions are (ii) continuous. The result of these choices is the notion of (weakly) convergent
reduction ։w. There are alternatives to continuity; we can strengthen the condition further,
or weaken it by aiming for something like adherence rather than convergence. We are also
not forced to stick to reduction sequences as our starting point: in particular, we may just
as well use the reduction relation as a whole.

The initial interest in the subject of (finitary) term rewriting was triggered by a number
of observations that led to the Knuth-Bendix completion procedure [9], deriving (if and when
it succeeds) a decision procedure for a given equational theory. These observations establish
links between the many-step rewrite relation and the equational theory. What happens to
those links in infinitary rewriting?

Before we can even pose this question meaningfully we need a notion of an equational
theory for infinitary rewriting. There is none in the literature, although there are ideas
approximating it. One is the specific equivalence relation ∼hc [8] (the so-called equivalence
“modulo hyper-collapsing terms”). Its construction is not easy to generalise as it relies
upon being used in connection with orthogonal iTRSs: in the presence of overlapping rules
the top of a hyper-collapsing term could form a redex with the context, undermining the
idea that such terms are unsolvable in the sense of the λ-calculus [1]. Another idea comes
from the concept of equational model [2, 3, 10], since a notion of syntactic equivalence can
be derived from that: t =R u iff the equation t = u holds in all equational models of R. As
we shall see, the notion of equational theory derived from such classes of models is quite
strong.

The reason the definition of the equational theory is an issue at all is this: on finite terms
we can define the equivalence relation =R as the smallest equivalence relation that includes
all the rules, is substitutive, and for which F (t1, . . . , tn) =R F (u1, . . . , un) holds whenever
∀i. ti =R ui and F is an n-ary function symbol from the signature. But for infinitary terms
this definition is not suitable, because it does not allow for any form of limit-taking: from
A =R B we could not deduce that the infinite term t = C(A, t) is =R-equivalent to the
infinite term u = C(B, u), since the equivalence closure only permits a finite number of
equation applications. For the same reason, the transfinite reduction relation ։ (in any of
the variations we consider) would not be a subrelation of =R.

Thus some form of limit-taking needs to be incorporated into a suitable notion of
equational theory. There are several ways in which one can allow for limit-taking that lead
to different notions of equivalence:

• the conservative approach: form the equivalence closure of ։, for any given notion
of transfinite reduction relation ։;
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• defining an equivalence relation: take the blue and equivalence closure of the single-
step rewrite relation →, where “blue” is a placeholder for properties that ensure
that certain limits are included in the relation.

• inducing an equivalence from a class of models

The conservative approach is pragmatic and makes the connection to the reduction relation
straightforward, but it denies rules true equational status. For example, it does not permit
us to form an infinite sequence by applying rules forwards as well as backwards and conclude
that the limit of the sequence is equivalent to its beginning.

2. Preliminaries

We need several notions from Topology and Infinitary Rewriting. This section contains
those definitions, to make the paper self-contained.

A property P on subsets of a set A is said to be closable if the intersection
⋂

i∈I Ai of
any family of subsets Ai ⊆ A, i ∈ I that each satisfy P itself satisfies the property. As I
may be empty, A has to satisfy P too. If P is closable we can form the P -closure of any
subset K ⊂ A, the smallest subset of A that contains K and satisfies P . In particular, this
concept will be used on relations, viewing them as sets of pairs. Clearly, the conjunction of
closable properties is closable.

2.1. Topology

A topological space is a pair (S,O) where S is a set and O a subset of ℘(S) such that
it is closed under finite intersections and arbitrary unions, and ∅, S ∈ O. The elements of
O are called open sets, their complements w.r.t. S are called closed sets. The closure of a
subset A ⊂ S is the intersection of all closed sets that contain A, and is written Cl(A). A
neighbourhood of x ∈ S is a set N ⊆ S for which there is an A ∈ O such that x ∈ A ⊆ N .
A point z ∈ S is called discrete iff {z} is open.

A topological space S is called T0 iff ∀x, y ∈ S. x ∈ Cl({y}) ∧ y ∈ Cl({x}) ⇒ x = y. It
is called T1 iff all singleton sets are closed. It is T2 (or Hausdorff) iff any two distinct points
in S have disjoint neighbourhoods.

A function f : A → B between topological spaces is called continuous iff f−1(X) is
open whenever X is open. A function f : A → B between topological spaces is an open map
iff it preserves open sets; it is a closed map iff it preserves closed sets. A relation R between
topological spaces A and B is called lower semi-continuous (or lsc) if R−1 preserves open
sets, and upper semi-continuous (or usc) if R−1 preserves closed sets.

A subset F of a topological space is called compact iff whenever
⋃

i∈I Ai ⊇ F , where
each Ai is open, then there is a finite subset J ⊆ I such that

⋃
i∈J Ai ⊇ F .

A metric space is a set (M, d) where M is a set and d : M × M → R a distance
function such that for all x, y, z ∈ M : (i) d(x, y) = 0 ⇐⇒ x = y and (ii) d(x, z) ≤
d(x, y)+d(z, y). For an ultra-metric space (ii) is replaced by the stronger condition d(x, z) ≤
max(d(x, y), d(z, y)). The topology of a metric space is defined as follows: A ⊆ M is open
iff ∀x ∈ A. ∃ǫ > 0.∀y ∈ M. d(x, y) < ǫ ⇒ y ∈ A.

The metric completion of (M, d) is the unique (up to isomorphism) metric space (M•, d•),
with a function e : M → M•, such that e preserves distances and Cl(e(M)) = M•.

A function between metric spaces A and B is uniformly continuous iff ∀. ǫ > 0. ∃δ >
0. ∀x, x′ ∈ A. dA(x, x′) < δ ⇒ dB(f(x), f(x′)) < ǫ. Uniformly continuous functions have
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unique continuous extensions to the respective metric completions. A special case are non-
expansive functions where δ = ǫ.

2.2. Infinitary Term Rewriting

A signature is a pair Σ = (F , #) where F is a set (of function symbols) and # : F → N
is the function assigning each symbol its arity. We assume an infinite set Var of variables,
disjoint from F . The set of finite terms over Σ is called Ter(Σ) and it is defined to
the smallest set such that (i) Var ⊂ Ter(Σ) and (ii) F (t1, . . . , tn) ∈ Ter(Σ) whenever
F ∈ F ∧ #(F ) = n ∧ {t1, . . . , tn} ⊂ Ter(Σ). The root symbol of a term F (t1, . . . , tn) is F ,
the root symbol of a variable x is x.

A Σ-algebra is a set A together with functions FA : An → A for every F ∈ F with
#(F ) = n. A valuation into A is a function ρ : Var → A. Any Σ-algebra A determines an
interpretation function [[ ]]A : Ter(Σ) × (Var → A) → A as follows:

[[x]]ρA = ρ(x), if x ∈ Var

[[F (t1, . . . , tn)]]ρA = FA([[t1]]
ρ
A, . . . , [[tn]]ρA)

Infinitary terms are defined through a metric completion process. For this paper we
focus on the metric d∞ which is defined as follows inductively on finite terms: d∞(t, u) = 1
iff t and u have different roots; d∞(t, t) = 0; otherwise, d∞(F (t1, . . . , tn), F (u1, . . . , un)) =
1/2∗max1≤i≤n d∞(ti, ui). (Ter(Σ), d∞) is an ultra-metric space and we write (Ter∞(Σ), d∞)
for its metric completion, which is also a Σ-algebra [6]. There is a more general notion of
term metric m from which distance functions dm and the corresponding metric completions
Term(Σ) can be derived [6].

A rewrite rule is pair (l, r), usually written l → r, such that l ∈ Ter(Σ) \ Var , r ∈
Ter∞(Σ) and all variables occurring in r also occur in l.

An iTRS is a pair (Σ, R) where Σ is a signature and R a set of rewrite rules for that
signature. The rewrite step relation →R relates C[σ(l)] →R C[σ(r)], where l → r is a
rewrite rule in R, σ a substitution, and C[ ] a context. Substitution application and context
application are uniquely derived from their respective concepts on finite terms [6], and can
also be defined in terms of the [[ ]]Ter

∞(Σ) interpretation.

3. Transfinite Sequences

In the following we are looking at several notions of transfinite reduction relations X(→R).
These are all functions of the single step reduction relation →R. We call X(→R) infinitarily
transitive if X(→R) = X(X(→R)), i.e. if it is a fixpoint of X. Usually, we take →R to be
clear from the context and write ։x for X(→R) and ։xx for X(X(→R)). We also write
ևx for ։

−1
x , ↓x for ։x ; ևx, and ↑x for ևx ; ։x.

The reason the property “infinitarily transitive” is desirable is similar to wanting that
→∗

R is the same as (→∗
R)∗; the property also features in the proofs of [7].

Transfinite sequences of terms can be defined as functions from an ordinal (the index
domain) to the set of (infinitary) terms, viewing ordinals as von Neumann ordinals, i.e. the
ordinal α is the set of all ordinals strictly smaller than α. Reduction sequences of an iTRS
are those where neighbouring elements are within the single-step reduction relation, i.e. if
f : α → Ter∞(Σ) is our reduction sequence then f(n) →R f(n + 1), provided n + 1 < α.
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This works fine for finite sequences. For infinite sequences this definition fails to put
any constraints whatsoever what happens at f(λ), for limit ordinals λ.

3.1. Standard solution: weak convergence

The traditional choice to fix this is to demand that the function f is continuous w.r.t.
the usual order topology. Effectively, this means that f(λ) must be the (unique) limit of
f(γ), as γ approaches λ from below. To express it in terms of distances:

∀ǫ > 0. ∃γ. ∀γ′. γ ≤ γ′ < λ ⇒ d∞(f(γ′), f(λ)) < ǫ

If the indexing set of a transfinite reduction sequence is a successor ordinal then we
have a closed sequence, because it is a sequence with a last element: if α + 1 is the domain
of f then the last element of the sequence is f(α).

This also gives us a way of defining the relation ։w: t ։w u iff there is some ordinal α
and some closed reduction sequence f : α+1 → Ter∞(Σ) such that f(0) = t and f(α) = u.

In the infinitary rewriting literature this is often called “weak convergence” [8], where
“strong convergence” requires that the sequences converges solely due to the positioning of
redexes, i.e. if f(γ) = Cγ [σγ(lγ)] →R f(γ + 1) = Cγ [σγ(rγ)] we can build a new sequence
g(γ) = Cγ [x] (i.e. replacing all contracted redexes with the variable x); f is then strongly
converging if g converges too, and to the same limit as f . Expressing strong convergence
as a function of →R (rather than R) would require to recover a minimal rule set from the
relation →R — a slightly delicate issue that goes beyond the scope of this paper.

Example 3.1. Consider the iTRS with rules

F (A, x) → F (B, D(x))

B → A

We have F (A, x) →2
R F (A, D(x)), but we do not have F (A, x) ։w F (A, D∞), because A

would change to B at every other step. If we add the rule F (A, x) → F (A, D(x)) to the
system then →∗

R does not change, but ։w would change and now include F (A, x) ։w

F (A, D∞).

Proposition 3.2. ։w is in general not infinitarily transitive (though it is on converging
iTRSs [7]).

Proof. See example 3.1. Since F (A, x) →2
R F (A, D(x)) we also have F (A, x) ։w F (A, D(x))

and consequently F (A, x) ։ww F (A, D∞).

Incidentally, this contradicts theorem 1(c) in [2].

3.2. Adherence

Instead of asking for convergence we can ask for adherence: t ։a u is defined like t ։w

u, except for one thing: instead of requiring that the witnessing indexing function f is
continuous at limit ordinals λ we require that it is “adherent”: This is in a certain sense
a concept dual to convergence, because instead of demanding that a sequence is eventually
always within a neighbourhood, the definition asks instead that it always eventually goes
there. Formally:

∀ǫ > 0. ∀γ < λ. ∃γ′. γ ≤ γ′ < λ ∧ d∞(f(γ′), f(λ)) < ǫ
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The difference is that adherence merely requires that (any neighbourhood of) an accu-
mulation point is visited by the sequence for index positions arbitrarily close to λ, without
demanding that the sequence stays there. Intuitively, adherence requires that a cofinal
subsequence of a reduction sequence converges to the limit, allowing for other terms in the
sequence as computational noise.

The result of this is that a sequence can adhere to more than one limit. Certainly, any
sequence converging to a limit adheres to it and therefore:

Proposition 3.3. ։w ⊆ ։a

Clearly, ։a is (finitary) transitive, ։a;։a ⊆ ։a, because the adherence condition
never stops adherent sequences from being concatenated. One peculiarity of adherence over
convergence is that the notion is less sensitive to the notion of the single-step relation, in
the sense that if →∗

R = →∗
S then the adherence relations of →R and →S are identical too.

Also:

Proposition 3.4. ։a is infinitarily transitive.

Proof. Let f : α + 1 → Ter∞(Σ) be the sequence witnessing t ։aa u. We need to show
t ։a u. This can be proved by induction on α.

If α = 0 then t = u and the result follows by reflexivity.
If α = β + 1 then there is a t′ such that t ։aa t′ ։a u, where the sequence witnessing

t ։aa t′ has length β. By induction hypothesis t ։a t′, and the result follows by (finitary)
transitivity of ։a.

If α is a limit ordinal then the restriction of f to domain α has a cofinal subsequence
[7] g : β → α such that f ◦ g converges to f(α). Once we expand every ։a step in f to
a new sequence h we have that f = h ◦ g′ for some cofinal subsequence g′ of h and thus
f ◦ g = (h ◦ g′) ◦ g = h ◦ (g′ ◦ g) where g′ ◦ g is a cofinal subsequence of h.

By implication proposition 3.4 also shows that the inclusion ։w ⊂ ։a is (in general)
proper, as witnessed by example 3.1.

Adherence can also be characterised as follows: let W be the function mapping a relation
→R to its weak convergence relation ։w. Then ։a is the least fixpoint of W that contains
the single-step relation.

4. Relations

Instead of completing sequences by adding limits or accumulation points, we can define
։ more directly through closable properties of relations. There are the following notions
of interest:

4.1. Pointwise Closure

We can view relations as set-valued functions, and add limits to their range. This leads
to the following concept:

Definition 4.1. A relation R between topological spaces is called pointwise closed iff the
sets Rx = {y | x R y} are all closed.

Proposition 4.2. Being pointwise closed is a closable property of relations.

Proof. Let A =
⋂

i Ri. Then Ax = {y | x A y} = {y | ∀i. x Ri y} =
⋂

i Rx
i . Hence Ax is an

intersection of closed sets and therefore closed.



FOUNDATIONS REVISITED 7

This allows us to use pointwise closure as a relation-constructing property.

Definition 4.3. The relation P (→R) =։p is defined as the smallest reflexive, transitive
and pointwise closed relation containing →R.

That ։p is infinitarily transitive is trivial by construction. We can explain t ։p u as
“t can rewrite to something arbitrarily close to u”, but if we want to get any closer we may
have to start all over again from t.

Proposition 4.4. ։a ⊆ ։p.

Proof. By induction on the indexing ordinals for the sequences witnessing t ։a u. The
interesting case for f : α + 1 → Ter∞(Σ) is when α is a limit ordinal. By induction
hypothesis, f(0) ։p f(γ), for all γ < α. The restriction of f to α has to contain a
subsequence that converges to f(α). But then f(α) has to be in the closure of the f(γ) and
as ։p is pointwise closed the result follows.

However, the relations ։a and ։p are not always the same:

Example 4.5.

A → B(A)

A → C

B(C) → D(C)

B(D(x)) → D(D(x))

In this system we have A →∗
R Dn(C) for any finite n and therefore A ։p D∞. But there

is no single adherent (or convergent) sequence that can build up to that limit; as soon as a
D appears in a reduct of A the reduction sequence is guaranteed to terminate.

Usually we can construct ։p more directly, as the pointwise closure of →∗
R (call it

։p0).

Theorem 4.6. If →R is lsc then ։p=։p0.

Proof. It suffices to show that ։p0 is transitive. Since →R is lsc so is →∗
R [6]. Suppose

A ։p0 B ։p0 C.
We need to show A ։p0 C, which means that for any ǫ > 0 there is a Cǫ such that

A →∗
R Cǫ and d∞(Cǫ, C) < ǫ. Because →∗

R is lsc and B →∗
R C for every ǫ > 0 there is a

δ > 0 such that for all B′ with d∞(B′, B) < δ there is a Cǫ(B
′) with B′ →∗

R Cǫ(B
′) and

d∞(Cǫ(B
′), C) < ǫ. Since A ։p0 B we can find Bδ with d∞(Bδ, B) < δ and A →∗

R Bδ.
Hence A →∗

R Cǫ(Bδ).

In [6] a number of conditions are given under which the relation →R is uniformly lsc,
for a variety of term metrics. For the much weaker condition that →R is lsc it suffices to
require that the rules are left-linear, and in that case this is even independent of the term
metric.

4.2. Topological Closure

The pointwise closure add limits to a relation at the “result side”, and stays in this
respect still very much within the intuition behind infinitary rewriting. Going beyond that
and allowing the input side to change as well leads to fairly unintuitive relations.
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For example, another closable property on relations between topological spaces A and
B is that their set of pairs (their graph) is closed in the product space A × B.

Definition 4.7. The relation C(→R) =։t is the smallest reflexive and transitive relation
containing →R such that its graph is closed.

This means: if tn and un are sequences converging to t and u, respectively, and if for
all i: ti ։t ui, then t ։t u.

Clearly, closed relations are also pointwise closed and therefore ։p ⊆ ։t. Again, the
inclusion is proper:

Example 4.8.

LEQ(0, x) → T

LEQ(S(x), 0) → F

LEQ(S(x), S(y)) → LEQ(x, y)

The infinite term t = LEQ(S∞, S∞) only reduces to itself, in a single step, and thus also
∀u. t ։p u ⇒ t = u. But we also have t ։t T and t ։t F , because the sequences
an = LEQ(Sn(0), Sn(0)) and bn = LEQ(Sn+1(0), Sn(0)) both converge to t, but an ։t T
and bn ։t F .

In contrast to ։p we usually cannot construct ։t as the topological closure of →∗
R

(call it ։t0), because that relation is often not transitive:

Example 4.9. Add the rule INF → S(INF) to example 4.8. Then LEQ(INF, INF) ։t0

LEQ(S∞, S∞) ։t0 T , but we do not have LEQ(INF, INF) ։t0 T .

5. Notions of Equivalence

When using rewrite relations to (semi-)decide an equivalence we want that equivalent terms
have common reducts. Hence:

Definition 5.1. A pre-order ։x is called a semi-decider for an equivalence =E iff (i)
։x ⊆ =E and (ii) =E ⊆ ↓x.

The first condition gives us soundness (if terms have common reducts they are equiva-
lent), the second completeness. If =E is the equivalence closure of ։x then (i) is trivial and
(ii) is equivalent to infinitary confluence, ↑x ⊆ ↓x. However, for infinitary rewriting this is
a big “if”.

In the presence of infinite terms, ordinary congruence relations fail to capture what is
needed for equational reasoning in infinitary rewriting as equivalence closure is an inductive
concept, not a coinductive one. This problem shows up in two separate ways: (i) for
including transfinite reductions in the equivalence, and (ii) for allowing infinitely many
subterm changes in a term of infinite size.

However, any equivalence relation ∼ on a topological space A induces a canonical
topology on the quotient A/∼: a set of equivalence classes is open iff their union is open
in the topology of A. This condition is the finest topology that makes the projection map
[ ]∼ : A → A/∼ continuous. This also means that if we have any converging sequence f(n)
in A then [f(n)]∼ is converging in A/∼.
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Example 5.2. Consider the iTRS with the single rule C → S(C). Take as equivalence ≈
the congruence closure of the equation C = S(C). The reduction sequence C → S(C) →
S(S(C)) → ... converges to S∞. By continuity, the sequence [C]≈, [S(C)]≈, [S(S(C))]≈, ...
converges to [S∞]≈. However, [C]≈ = [S(C)]∼ = [S(S(C))]≈, ... and [C]≈ 6= [S∞]≈.

Example 5.2 shows that quotient spaces can have very poor separation properties, e.g.
in the example Ter∞(Σ)/≈ is not T1. These separation properties closely correspond to
properties of equivalence relations, in the sense that they indirectly provide recipes for
adding limits to an equivalence. This leads to the following concepts:

Definition 5.3. An equivalence relation ∼ on a topological space A is called weakly sepa-
rating, iff:

∀x, y ∈ A. x ∈ Cl([y]∼) ∧ y ∈ Cl([x]∼) ⇒ x ∼ y

Proposition 5.4. A/∼ is a T0 space iff ∼ is weakly separating.

Proof. Let ∼ be weakly separating and [x]∼ and [y]∼ be accumulation points of each other.
Then [x]∼ ∈ Cl({[y]∼}) which is equivalent to [x]∼ ⊆ Cl([y]∼), hence x ∈ Cl([y]∼); the same
argument gives y ∈ Cl([x]∼). As ∼ is weakly separating x ∼ y and so [x]∼ = [y]∼.

If ∼ is not weakly separating then any witnessing counterexample is also a counterex-
ample against A/∼ being T0.

Given any relation R, we can form the “weakly separating equivalence closure” due to
the following property:

Proposition 5.5. Being weakly separating is a closable property.

Proof. Clearly, the intersection ∼=
⋂

i ∼i gives another equivalence where each equivalence
class [a]∼ is the intersection of the equivalence classes [a]∼i

. Now assume x ∈ Cl([y]∼) and
y ∈ Cl([x]∼). x ∈ Cl([y]∼) = Cl(

⋂
i[y]∼i

) ⊆
⋂

i Cl([y]∼i
). Hence, for all i, x ∈ Cl([y]∼i

), and
by the dual argument y ∈ Cl([x]∼i

). Since each ∼i is weakly separating this implies x ∼i y,
for all i, and so x ∼ y.

T0 is a very weak form of separation and we do not have that ։w would be included
in the weakly separating equivalence closure of its rules. Often, the weakly separating
equivalence closure makes no difference, but there are cases where it does:

Example 5.6. Consider the following specification of equality and logical negation:

E(x, x) = T

E(0, S(x)) = F

E(S(x), 0) = F

E(S(x), S(y)) = E(x, y)

N(T ) = F

N(F ) = T

Instantiating the first equation we have E(S∞, S∞) = T . We can also derive E(Sn(0), S∞) =
F , for any finite n. Thus [T ]∼ is in the closure of [F ]∼, where ∼ is the equivalence closure of
→R. Moreover, for any finite n, N(E(Sn(0), S∞)) = N(F ) = T ; hence the closure of [T ]∼
will also contain N(E(S∞, S∞)) = N(T ) = F . Therefore, the weakly separating closure of
∼ will relate T and F .
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Without the first equation the weakly separating closure would not change the relation:
E(S∞, S∞) would be in an equivalence class of its own; both the closures of [T ]∼ and [F ]∼
would contain that class, but not vice versa.

Definition 5.7. An equivalence relation ∼ on a topological space A is called separating iff
all its equivalence classes are closed.

Again, we can use this concept as a closure principle:

Proposition 5.8. Being separating is a closable property.

Proof. The equivalence classes of ∼ are closed iff ∼ is pointwise closed, hence this follows
from proposition 4.2.

Example 5.9. If we remove the first equation E(x, x) = T from example 5.6 then T and
F would not be related by the weakly separationg closure of ∼, but they would be by the
separating closure: since E(S∞, S∞) is in the closure of both [T ]∼ and [F ]∼, T , F and
E(S∞, S∞) would all be equivalent under the separating closure of ∼.

Thus “separating” is a much stronger property than “weakly separating”. If an iTRS
(over metric d∞) contains a collapsing rule C[x, . . . , x] → x then the sequence x0 = x,
xn+1 = C[xn, . . . , xn] converges to a limit C∞. The same is true if we start the sequence
with x0 = y instead. Hence, x ∼ y if ∼ is the separating closure of →R. For other metrics
dm collapsing rules may not cause that problem, as the sequence xn could be diverging
under dm.

In finitary term rewriting, the derivability of x =R y is used as the standard criterion for
inconsistency. For infinitary rewriting (over metric d∞) this becomes trivial for separating
equivalences: the separating closure of →R contains the pair (x, y) iff R contains a collapsing
rule. The reason: if it does contain a collapsing rule then the previous argument applies, if
it does not then each set {x} remains an equivalence class of its own, since x is a discrete
point in Ter∞(Σ): thus {x} is closed and no set not containing x has it in its closure. In
particular, even example 5.6 is consistent despite T ∼ F .

Separating equivalences characterise T1 spaces:

Proposition 5.10. A/∼ is T1 iff ∼ is a separating equivalence.

Proof. Folklore[5, p. 207].

In a T1 space, a sequence that is eventually constant can only converge to that constant,
because all singleton sets in a T1 space are closed. That also means that if all elements of a
converging sequence are equivalent to each other then that also applies to the limit. More
generally:

Theorem 5.11. Let ∼ be the separating equivalence closure of →R. Then ։p ⊆ ∼.

Proof. Immediate, because ∼ is pointwise closed, reflexive, transitive, and contains →R,
and ։p is by definition the smallest such relation.

Theorem 5.12. A pre-order ։x is a semi-decider for the separating closure of ։x iff (i)
↑x ⊆ ↓x and (ii) ↓x is pointwise closed.

Proof. Let =x be the separating closure of ։x. The “only if” part of the theorem is trivial.
For the “if” part, =x can be computed by repeatedly (and alternatingly) applying the

equivalence closure and pointwise closure, starting with ։x. The result can be shown by
induction on the number of closures needed to derive a particular equation t =x u.
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Suppose t =x u is derived from an equivalence closure with t = t1 =x t2 =x, . . . , =x tn =
u, where each equation ti =x ti+1 has a shorter derivation. Then by induction hypothesis
ti ↓x ti+1, and by repeatedly applying condition (i) we have t ↓x u.

Alternatively t =x u is derived from the pointwise closure, i.e. u is in the closure of the
set of all ti with t =x ti and where these equations have shorter derivations. Then, for all
i, t ↓x ti by induction hypothesis and t ↓x u by condition (ii).

Although trivial in the proof, the “only if” part of the theorem shows that confluence
alone (condition (i)) is insufficient to make ։x a semi-decider. Confluence properties of
։x aside (for ։a and ։p this is entirely new territory), when is its joinability relation
pointwise closed? A sufficient condition is the following:

Theorem 5.13. If ։x is pointwise closed and usc then ↓x is pointwise closed.

Proof. Let t ։x ai ևx ui with i ∈ I for some index set I. Let u ∈ Cl({ui | i ∈ I}).
Let A = Cl({ai | i ∈ I}) then t ։x a for any a ∈ A since ։x is pointwise closed. The

set ։
−1
x (A) clearly contains all the ui and as ։x is usc it must be a closed set, so it does

contain u too. Hence u ։x a′ for some a′ ∈ A and thus t ↓x u.

In the previous examples in this section the separating closure of →R was not just
pointwise closed but also closed. While this is often the case there are exceptions, which
means that we do not have that ։t is always included in the separating closure of →R; for
example, if the original equivalence just contained F (An(x)) ∼ F (Bn(x)) for all n then the
separating closure would not add F (A∞) ∼ F (B∞), so it would not be closed.

Definition 5.14. An equivalence relation ∼ on a topological space A is called strongly
separating iff its graph is closed.

Proposition 5.15. Being strongly separating is a closable property.

Proof. Trivial, as any intersection of closed sets is closed.

Equally trivially, the strongly separating closure of →R contains ։t, by the analogous
argument to theorem 5.11. Strongly separating equivalences (almost) characterise Hausdorff
spaces:

Proposition 5.16. If A/∼ is T2 then ∼ is strongly separating. If ∼ is strongly separating
and [ ]∼ is an open map then A/∼ is T2. Or: if A is compact and ∼ is strongly separating
then A/∼ is T2.

Again, these are well-established results in topology. The first part of Proposition 5.16
can influence our choice for the class of algebraic models: if all our algebraic models are
Hausdorff (e.g. metric spaces) then their induced equational theory is automatically strongly
separating. Regarding the second part, open maps are functions that map open sets to open
sets. For infinitary rewriting, the map [ ]∼ (where ∼ is the strongly separating equivalence
closure of →R) is typically not open though, e.g.:

Example 5.17. Take the iTRS with rule: F (x) → G(x, x). Take as open set an ǫ-ball
around F (S∞). Let ∼ be the strongly separating equivalence closure of →R. The union
of the ∼-equivalence classes of all terms in the ǫ-ball contains G(S∞, S∞); it is not open,
because it does not contain G(S∞, Sn(x)) for any finite n.

However, one can argue that strongly separating equivalence characterise T2 separation
for infinitary rewriting in most cases, because of the third part of Proposition 5.16 and the
following:
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Theorem 5.18. If the signature Σ is finite the set of ground terms of Ter∞(Σ) is compact.

Proof. Let f : ω → Ter∞(Σ) be a sequence of infinitary ground terms. Because Σ is finite at
least one function symbol F occurs infinitely often as root symbol in f . Within the infinite
subsequence of f that always has F as root, infinitely many times at least one function
symbol G will occur infinitely many times in the first argument position. Iterating this
argument leads to an accumulation point of f which is a ground term.

This argument fails for any term metric m such that Term(Σ) is not homeomorphic to
Ter∞(Σ), because sequences of finite ground terms that converge under d∞ but not under
dm have no accumulation point in Term(Σ).

Without the finiteness of Σ the pigeon-hole principle in the proof fails. The restric-
tion to ground terms is necessary as there are infinitely many variables: take the associa-
tive and commutative theory of a binary function symbol G, then the equivalence class of
G(x1, G(x2, . . .)) is not compact.

Theorem 5.19. A pre-order ։x is a semi-decider for the strongly separating closure of
։x iff (i) ↑x ⊆ ↓x and (ii) ↓x is closed.

Proof. Analogous to Theorem 5.12.

Again, this raises the issue under which conditions ↓x is closed.

Theorem 5.20. If ։x is closed and usc then ↓x is closed.

Proof. Let ai ։x ci ևx bi for all i ∈ ω and let a and b limits of the sequences an and bn,
respectively. We need to show a ↓x b.

Let C = Cl({ci | i ∈ ω}) and A = {a′ | a ։x a′}. A is closed because ։x is a closed
relation, and therefore C ′ = C ∩ A is closed too. Because ։x is usc the set ։

−1
x (C) must

contain a and thus C ′ is non-empty. If C ′ contains ci for infinitely many i then ։
−1
x (C ′)

also contains the corresponding bi and (by the usc property) their limit b, hence a ↓x b.
Otherwise, we can w.l.o.g. assume that all elements c ∈ C ′ arise as limits of subsequences
of cn and thus b ։x c for any such c by closedness of ։x, and thus again a ↓x b.

6. Models

The concept of a model allows to reason semantically about term rewriting. The lit-
erature has focussed on algebraic models which are more difficult to get right — several
notions of model in the literature are indeed flawed, see below. The reason they are tricky
is that in order for semantic reasoning through an algebraic model A to be sound there
needs to be a unique and continuous interpretation of Ter∞(Σ) into A, and for that it does
not suffice for A to be a Σ-algebra, since this does not account for infinite terms.

In [2] the issue of interpreting infinite terms was side-stepped: only interpretations of
finite terms were provided a priori (thus rules were not allowed infinite terms in their right-
hand sides). In fact, in the special case of equational models (rather than partially ordered
ones), the construction in [2] specialises exactly to ordinary Σ-algebras satisfying a set of
equations.

A class of algebraic models induces an equivalence relation on Ter∞(Σ), i.e. t and u are
equivalent iff they are the same in any model of that class. When looking at the equivalence
derived from all models satisfying a set of equations we get the congruence closure of this
set — when looking at models of Ter(Σ). This is different for models of Ter∞(Σ), because
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the extra structure required in this class to guarantee for (unique) interpretations of infinite
terms makes more equations true.

In [10] Zantema interpreted iTRSs in weakly monotone Σ-algebras with some extra
structure. A special case are ordinary Σ-algebras since the ordering can be chosen to be
equality. The extra structure required on a model A comprised there of: (i) a metric dA;
(ii) continuity of fA for every function symbol f , w.r.t. the topology induced by the metric;
(iii) the interpretation of the sequences trunc(t, n) in A converges for every infinite ground
term t. Here, trunc(t, n) replaces all subterms of t at depth n with the fixed constant c.

As a notion of model this is flawed (see [4]) because the interpretation function from
Ter∞(Σ) to A derived from that is in general not continuous. Indeed, even the fix provided
in [4] is insufficient because it is only expressed for ground terms, and any infinite term has
non-ground terms in any neighbourhood; if a ∈ A is arbitrary then the sequence t0 = a,
tn+1 = fA(tn) could converge to a value different from the interpretation of f∞, making the
interpretation function non-continuous at f∞.

This can be fixed by relating the notions of distance in A and Ter∞(Σ): we can require
the following condition for the distance function dA on A:

dA(fA(a1, . . . , an), fA(b1, . . . , bn)) ≤
1

2
· max
1≤i≤n

dA(ai, bi)

This seemingly arbitrary condition derives as a special case from a more general condition
we can set for metric models of other continuous term metrics [6].

Definition 6.1. Given a signature Σ = (F , #) and continuous term metric m, a metric
model is a Σ-algebra A, equipped with a metric dA : A × A → [0, 1] such that (A, dA) is a
complete metric space and

dA(fA(a1, . . . , an), fA(b1, . . . , bn)) ≤ fm(dA(a1, b1), . . . , dA(an, bn))

for each f ∈ F , n = #(f), ai, bi ∈ A.

Here, fm is the ultra-metric map associated with function symbol f in term metric m
[6]. The condition on the order ensures that each fA is continuous, but more importantly
it leads to the following result:

Lemma 6.2. Let A be a metric model (for Σ and m). Then the (unique) Σ-algebra homo-
morphism [[ ]]A : Ter(Σ) → A is non-expansive.

Proof. We need to show dA([[t]]A, [[u]]A) ≤ dm(t, u) for all finite terms t and u (note that
Ter(Σ) is the set of finite terms). The argument goes by induction on the size of t. If
t is a constant then either dm(t, u) = 0 which implies t = u and thus [[t]]A = [[u]]A and
dA([[t]]A, [[u]]A) = 0; or dm(t, u) = 1 which is an upper bound for dA.

Otherwise, t = F (t1, . . . , tn). Again, if dm(t, u) = 1 the condition holds because 1 is
an upper bound for dA. If dm(t, u) 6= 1 then u must be of the form u = F (u1, . . . , un)
and dm(t, u) = Fm(dm(t1, u1), . . . , dm(tn, un)). Using the induction hypothesis on the ti,
monotonicity of Fm (all ultra-metric maps are monotonic) and the metric model order
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property we get:

dm(t, u) =dm(F (t1, . . . , tn), F (u1, . . . , un))

=Fm(dm(t1, u1), . . . , dm(tn, un))

≥Fm(dA([[t1]]A, [[u1]]A), . . . , dA([[tn]]A, [[un]]A))

≥dA(FA([[t1]]A, . . . , [[tn]]A), FA([[u1]]A, . . . , [[un]]A))

=dA([[F (t1, . . . , tn)]]A, [[F (u1, . . . , un)]]A)

=dA([[t]]A, [[u]]A)

Lemma 6.2 implies that [[ ]]A can be uniquely lifted to the respective metric completions
(maintaining continuity), because non-expansive maps are uniformly continuous. Since A is
already complete this lifts [[ ]]A to type Term(Σ) → A. Therefore we get an interpretation
of infinite terms “for free”.

Definition 6.3. The metric theory of a set of Term(Σ)-equations E is the set of all pairs
(t, u) ∈ Term(Σ)×Term(Σ) such that the equation t = u holds in all metric models (w.r.t.
signature Σ and term metric m) that satisfy the equations in E.

Theorem 6.4. The metric theory of E w.r.t. Σ and m is strongly separating.

Proof. We need to show that the theory is closed under limits of converging sequences.
A sequence of pairs is converging in Term(Σ) × Term(Σ) iff the sequences of its first and
second projections to Term(Σ) are. Suppose p is a sequence of pairs in the metric theory
and that it is converging. Let the sequences ln and rn be their first and second projections,
with limits l and r, respectively. Consider any metric model A of E. Using lemma 6.2 it is
clear that the interpretation preserves convergence, hence [[ln]]A and [[rn]]A converge to [[l]]A
and [[r]]A. Since each pair pi = (li, ri) is in the metric theory we have [[li]]A = [[ri]]A for all
i. Therefore these sequences are identical in A and thus [[l]]A = [[r]]A. As this holds for any
metric model A the pair (l, r) must be in the metric theory too.

In general, we cannot always construct an initial model for E (from its theory), but a
sufficient condition is that Term(Σ) (restricted to ground terms) is compact.

Theorem 6.5. Any set of Ter∞(Σ)-equations E has an initial model, if Σ is finite.

Proof. The proof goes by constructing the model I; most of the argument works any metric
m and signature Σ: we can quotient the ground terms of Term(Σ) by the metric theory
of E and set a distance function dI as the pointwise supremum of all distance functions of
models satisfying E.

Since E is included in its metric theory I clearly satisfies E.
Checking the triangle inequality: ∀A.dA(t, u) ≤ dA(s, t)+dA(s, u) implies ∀A.dA(t, u) ≤

dI(s, t) + dI(s, u) and thus also dI(t, u) = supA(dA(t, u)) ≤ dI(s, t) + dI(s, u).
Checking the zero-axiom: dI(t, u) = 0 if dA(t, u) = 0 for all A, i.e. if t = u in all models.

Hence t = u in I too. If t = u in I then t = u in all A, hence dA(t, u) = 0 in all A and so
dI(t, u) = 0.
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Checking the metric model inequation:

dI(fI([[a1]]I , . . . , [[an]]I), fI([[b1]]I , . . . , [[bn]]I))

= dI([[f(a1, . . . , an)]]I , [[f(b1, . . . , bn)]]I)

= sup
A

(dA([[f(a1, . . . , an)]]A, [[f(b1, . . . , bn)]]A))

= sup
A

(dA(fA([[a1]]A, . . . , [[an]]A), fA([[b1]]A, . . . , [[bn]]A)))

≤ sup
A

fm(dA([[a1]]A, [[b1]]A), . . . , dA([[an]]A, [[bn]]A))

≤ fm(sup
A

(dA([[a1]]A, [[b1]]A), . . . , sup
A

(dA([[an]]A, [[bn]]A))))

= fm(dI([[a1]]I , [[b1]]I), . . . , dI([[an]]I , [[bn]]I)

We still need to show that the metric space (I, dI) is complete, and for this we need
theorem 5.18, and thus specialise the metric. The semantic interpretation [[ ]]I is continuous,
and as its domain is compact and codomain T2, it is also a closed map. Hence the limit of
any Cauchy-sequence in (I, dI) is in the image of that interpretation.

7. Conclusion and Remark

We had a look at large number of alternative notions for transfinite reduction relations
and transfinite equivalences. Of particular interest are the relations ։p and ։t, as they are
the ones most tightly coupled with transfinite equivalences, i.e. the separating and strongly
separating equivalence closures of rewrite steps.

Notice that several of the examples show “undesirable” consequences in equational
reasoning. This is due to the equational constraints implicit in Ter∞(Σ), e.g. that all
functions F have unique fixpoints F∞. These problems can be addressed by a different
choice of term metric that disallows certain infinite terms, because F can have multiple (or
no) fixpoints in the absence of F∞.
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