
QuickChecking Refactoring Tools

Dániel Drienyovszky Dániel Horpácsi
University of Kent and Eötvös Loránd University

{dd210, dh254}@kent.ac.uk

Simon Thompson
University of Kent

S.J.Thompson@kent.ac.uk

Abstract
Refactoring is the transformation of program source code in a way
that preserves the behaviour of the program. Many tools exist for
automating a number of refactoring steps, but these tools are often
poorly tested. We present an automated testing framework based
on QuickCheck for testing refactoring tools written for the Erlang
programming language.

Categories and Subject Descriptors D. Software [D.2 SOFT-
WARE ENGINEERING]: D.2.5 Testing and Debugging: Testing
tools

General Terms Verification

Keywords refactoring, Wrangler, RefactorErl, Erlang, random
program generation, QuickCheck, attribute grammar, yecc, prop-
erty

1. Introduction
Refactoring [10, 15] is a process of rewriting program source code
without changing its meaning whilst improving properties such as
maintainability, clarity or performance. Refactorings range from
simple ones, like renaming a variable, to more complex ones, like
generalising a function. Refactoring transformations may affect
large parts of the code base for a project and in particular may
require modifications of more several different modules from a
project. Applying such code-to-code transformations are common
practice among software developers, consequently tool support for
refactoring is widespread in mainstream programming languages.
Refactoring tools/engines help to automate the routine aspects of
certain code transformations. For Erlang there are three refactoring
tools available: Wrangler [3] from the University of Kent, Refac-
torErl [2] from Eötvös Loránd University and last but not least,
Tidier [6, 18], a completely automatic code cleaning tool from the
National Technical University of Athens.

These tools are hard to test, as they require manually written
test cases aiming to cover every corner case of the language be-
ing refactored. Evidently, by using only such case-based testing we
never can provide a comprehensive check of the refactoring en-
gines. To increase confidence in these tools, a more efficient test-
ing approach has to be applied. We investigate automated testing
of refactoring tools by generating random programs and verifying
whether the refactorings preserve the meaning of these randomly-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Erlang’10, September 30, 2010, Baltimore, Maryland, USA.
Copyright c© 2010 ACM 978-1-4503-0253-1/10/09. . . $10.00

generated programs. We have chosen QuickCheck as our testing
tool and two Erlang refactoring tools, Wrangler and RefactorErl as
the tools to be tested.

In this paper we describe the difficulties of the testing of refac-
toring tools (Section 2) and we also present our contribution, which
is to make the entire testing process fully automated. The method
is composed of two separate parts.

• First, we have created a QuickCheck-based random generator
for producing Erlang programs which are used as the input of
the refactoring transformations. More precisely, we have for-
malised the programming language to be refactored (namely,
Erlang) with a proper grammar class and then based on this
description we have derived a corresponding QuickCheck gen-
erator for the syntactically and semantically correct programs
of the language (see Section 3).

• Second, we have created a definition of equivalence between
Erlang modules, which leans on the dynamic behaviour of the
programs. Furthermore, we have formalised this equivalence
relation by means of QuickCheck properties (see Section 4).

Using these two ideas together, we have built a fully automated
testing framework for Erlang code-to-code transformation tools.
The final sections of the paper comment on the results we have
derived, on related work, and our conclusions, where we note that
the tool we have built here is applicable to all the refactoring tools
for Erlang, and that the approach we outline could equally well be
applied to testing refactoring tools for other languages.

2. Validating refactoring tools
There are many ways of establishing program correctness, includ-
ing formal proof mechanisms as well as several testing strategies.
While developing software, evidently, we would like to be sure of
our program’s correctness. Since formal methods are mostly too
difficult to apply, despite some preliminary work reported in [20],
we focus on testing as a mechanism for validating and improving
the quality of our programs.

2.1 Case-based testing

There are many testing approaches, which aim to check as many
program parts as possible, as assessed in different ways. With test-
ing, basically, we are not able to prove the program’s correctness,
but we can establish that in numerous cases the program does what
we expect from it, and this can give us a degree of confidence that
it indeed satisfies its requirements.

Commonly, programmers apply simple use-case based testing
to check fundamental requirements. However, in the case of com-
plex software it is impossible to cover all the most common and
most interesting cases just by test cases written by hand. For in-
stance, in our specific case, there always may be found unusual
instances that are valid source code but that would seldom be writ-

ten by human programmers. The latter sort of code should also be
handled correctly by a practical refactoring tool.

Since refactoring tools can mess up or even corrupt our code
base by accident, they have to be well-tested. They can only be use-
ful accessories of the development process if they can be expected
to perform the transformation steps properly, without making any
mistakes. We apply such tools instead of performing transforma-
tions by hand because the refactoring software should be much
more precise than the human programmer can ever be. An effi-
cient and comprehensive testing method has to be used in order
to achieve a reasonable confidence in the reliability of the tool.

Testing of refactoring tools is difficult due to the complexity
of their input and output: both the input and the output of such
programs are program source code. Such code is a complex data
type, since it embodies not only syntactic well-formedness but also
semantic correctness too. Furthermore, defining the semantics of
the refactorings, namely, how a transformation has to be performed
on different input data, is not straightforward task either. By us-
ing case-based testing on the transformation steps we can cover the
main features of the functionality with a reasonable labour, how-
ever, more sophisticated approaches are also applicable, such as
property-based testing methods.

2.2 Property-based testing in QuickCheck

Property-based testing makes a generalisation of usual test cases
by eliminating the concrete input from the test case and replacing it
with randomly generated test data. So then, the test cases describe
only the properties (the main points) of the specified case rather
than describing a concrete input-output pair. The properties can
be efficiently checked on large number of randomly generated test
inputs.

Such testing methods may be regarded as a fusion of the formal
proof methods and the traditional test case based testing. When us-
ing property based testing, we do not define specific input-output
pairs that describe the requirements, but we specify in a logical
property the expected behaviour on inputs satisfying the specified
conditions. The expected behaviour is drawn in terms of specifi-
cation properties. During the test, these properties are checked in
a large number of test cases. Usually, the test input is randomly
generated by the framework, based on special data generators. The
data generators describe the structure and the essential properties
of the input data to be used for testing. Also, the distribution of the
random data can also be controlled through the generators.

QuickCheck is a well-designed implementation of the property-
based testing method for functional programs, including the Erlang
programming language. QuviQ QuickCheck [1, 4, 5], the com-
mercial QuickCheck implementation for Erlang, is a tool for au-
tomatic testing of Erlang programs against a user-written specifi-
cation. The testing method known as ’QuickChecking’ means the
checking of specification properties (that is the expected function-
ality) in a large number of randomly generated cases. QuickCheck
properties are expressed in standard Erlang code, using the macros
and functions defined in the QuickCheck library.

As we mentioned already, property-based testing involves two
kinds of activity.

• The first is the description of the testing data used as input for
the program being tested. Data generators describe the way that
the test data is generated, as well as the expected probability
distribution of the randomly generated data.

• The other is the specification of the properties expected of the
program. These are typically universally-quantified properties,
and the data produced by the generators are used as the actual
values of the universal variables.

Property-based testing can provide comprehensive testing of sev-
eral kind of software. In this paper we present property-based test-
ing of Erlang refactoring tools, which involves a definition of a data
generator for Erlang module source code as well as a property for
determining whether two modules, namely a module before and
after refactoring, are equivalent.

3. Random program generation
While creating data generators we can use built-in data generators
and in addition, QuickCheck allows the programmers to define
their own data generators to create more complex random values.
Generators for the built-in types are defined by the framework, so
we have to create generators only for our own types by combining
the built-in generators by using generator combinators.

In this paper, the term ’first-order generator’ means simple data
generators that are not parameterised with any other generators. On
the other hand, the term ’higher-order generator’ strands for the so-
called generator combinators, which are generators that may take
one or more generators as their arguments. First-order generators
only take simple Erlang terms as parameters. They are the core of
the generation (since they do not combine other generators but in-
deed create data values). On the other hand, higher-order generators
combine other data generators and may result in arbitrarily complex
data generators.

Despite the fact that QuickCheck generators provide a powerful
toolkit for defining test data, in the case of larger programs oper-
ating on complex input, writing generators by hand is tedious and
results in complicated source code, containing substantial ‘boiler
plate’, that is hard to maintain. With a more general notation, that
is, with a metalanguage more powerful than the QuickCheck gen-
erators, we can reduce the complexity of the description and the
amount of the wasted coding time. In this approach QuickCheck
generators are a low-level formalism and our meta-notation is a
high-level formalism that eases the description of the test data.

Attribute grammars

A formal grammar is a set of rules, which describes a formal
language [8], for example, the syntax of a programming language.
Usually programming language syntax is formalised with EBNF
(Extended Backus-Naur Form) [7], which is a meta-syntax notation
used to express context-free grammars (CFG). However, also to
describe the static semantics of a language – such as the binding
structure of variables and other identifiers – a more expressive
formalism is needed.

Attribute grammars (AG) [12, 16] are generalisations of context-
free grammars, where the grammar rules are extended with seman-
tic computation rules to calculate associated values or attributes.
With attribute grammars both the syntax and the semantics are
representable together. The attributes are divided into two groups:
synthesised attributes and inherited attributes. The former are com-
puted from constants and attributes attached to the children, the
latter depend only on constants and the parents or siblings.

Synthesised attributes are used to calculate and store results like
the value of an expression, whereas inherited attributes are used to
carry the context of a node, such as an environment of variable
bindings in scope at that point. In some approaches, synthesised
attributes are used to pass semantic information up the parse tree,
while inherited attributes help pass semantic information down and
across it.

There are important subclasses of attribute grammars, which
have some restrictions on the form of the attribute computa-
tion rules [13]. S-Attributed grammars involve synthesised at-
tributes only, L-Attributed grammars allow attribute inheritance
with the restriction that dependencies from a child to the child
itself or to the child’s right are not allowed. Formally, given a

rule A → X1X2 . . . Xn in the L-Attributed grammar, each inher-
ited attribute of Xj (1 ≤ j ≤ n) depends only on attributes of
X1, X2, . . . , Xj−1 and on inherited attributes of A. Furthermore,
synthesised attributes of Xj may depend on its own inherited at-
tributes. Synthesised attributes of A depend on inherited attributes
of A and on any attributes of the right hand side symbols. This def-
inition of L-attribution effectively means that there are no cycles
in the attribute calculation, and that calculation can conclude in a
single pass.

Grammars and testing

Test data may be defined by means of formal grammars. This kind
of testing is usually called grammar-based testing[19]. In this con-
cept, a test datum is a word of the language defining the domain of
the tested function and this language can be given by means of for-
mal grammars. We have created a grammar-based meta-notation
for QuickCheck data generators and in our experience, data de-
scribed in our notation usually is about 5 times more compact than
writing the same data with standard QuickCheck generators. For
example, in the case of a simple language (anbncn), compiling
some 10 lines of description results in about 55 lines of Erlang
code containing the QuickCheck generators.

In QuickCheck for Erlang there is already a module with similar
capabilities: eqc_grammar [1] is a library module of the QuviQ
QuickCheck distribution. This tool is able to create QuickCheck
generators from a yecc-like1 grammar description, but in contrast
to our work, it does not support attributes, EBNF notations and
many other features that are covered in detail in Dániel Horpácsi’s
master’s thesis [11].

The most significant difference from already available generator
generators is that in our work the data generators are generated not
from context-free grammars, but from L-attributed grammars. The
latter formal grammar class is much more expressive than the for-
mer one. The notation of the eqc_grammar is based on context-
free grammars and cannot be used to describe context-dependent
data. Since the Erlang language is in the latter group, a more ex-
pressive metalanguage is needed. The Erlang syntax and static se-
mantics can be conveniently described by using L-Attributed gram-
mars, so we decided to design a QuickCheck generator generator
for such grammars.

3.1 Generator metalanguage

A grammar-based generator generator takes a proper grammar de-
scription and produces data generators according to the grammar
rules, or in other words, to the grammar nonterminals. Then, the
generator belonging to the root symbol generates strings of the lan-
guage described by the grammar. We have to create a metalanguage
that can denote L-attributed grammars and can be efficiently com-
piled into data generators.

As already noted, the notation aims to express L-Attributed
grammars, which are able to describe inheritance in the grammar.
For those who are familiar with the usual attribute grammar nota-
tion, we present a very simple attribute grammar in both the usual
and the new notation to illustrate the difference. The example de-
scribes the anbncn language, which is one of the simplest non-
context-free languages. Figure 1 shows it in usual notation and Fig-
ure 2 shows it in our EBNF-like notation.

The main structure of the both descriptions are similar. The
grammar is written as a group of rules and inside the rules there
may be alternatives. The main difference lies in the place where
the attribute computations are written. In the usual notation the
semantic rules are separated from the common grammar rules. In

1 Yecc is an LALR-1 parser generator for Erlang, similar to yacc.

〈abcSeq〉 ::= 〈aSeq〉 〈bSeq〉 〈cSeq〉
InSize(〈bSeq〉)← Size(〈aSeq〉)
InSize(〈cSeq〉)← Size(〈aSeq〉)

〈aSeq〉 ::= a
Size(〈aSeq〉)← 1

| 〈aSeq〉2 a
Size(〈aSeq〉)← Size(〈aSeq〉2) + 1

〈bSeq〉 ::= b
Condition: InSize(bSeq) = 1

| 〈bSeq〉2 b
InSize(〈bSeq〉2)← InSize(〈bSeq〉) - 1

〈cSeq〉 ::= c
Condition: InSize(cSeq) = 1

| 〈cSeq〉2 c
InSize(〈cSeq〉2)← InSize(〈cSeq〉) - 1

Figure 1. anbncn grammar in usual AG notation

1 abc_seq -> a_seq
2 ~> b_seq [@size = ’$1’.size]
3 c_seq [@size = ’$1’.size].
4

5 %% a_seq -> a :: [@size = 1]
6 %% | a_seq a :: [@size = ’$1’.size + 1].
7 a_seq -> {a} :: [@size = length(’$1’)].
8

9 %% b_seq -> (when size_is_1) b
10 %% | b_seq [@size = ’$0’.size - 1] b.
11 b_seq -> {’$0’.size, b}.
12

13 c_seq -> {’$0’.size, c}.

Figure 2. anbncn grammar in our notation

contrast, in our notation the attribute computation rules are written
on the spot, just after the entity to which the attributes belong.

This kind of formalism fits well with the constraints of L-
Attributed grammars, where, due to the restrictions of the inher-
itance, attribute computations may refer only to their left. In our
notation, the attribute computation section can refer only to sym-
bols being on its left. This approach is similar to the sequential
programming style, in which a statement may only refer already
declared variables.

Due to the fact that attribute computations are written just af-
ter the symbol that they affect, the nonterminals do not have to be
indexed on the right hand side, since the position of the attribute
computation rule determines on which symbol it is defined. Syn-
thesised attributes are given separately at the end of the rule.

In line 7 (Figure 2) in comparison with the usual formalism
we can see a useful simplification, that is, one can use repetition
(lists) instead of primitive recursion, which will be shorter and
easier to understand. In yecc (and therefore in eqc_grammar) rule
alternatives and repetition are not supported, so with our formalism
it is easier to express grammars, because it is closer to EBNF rather
than to BNF.

Moreover, as can be seen in line 9, in order to make the notation
express conditions based on attribute values, we added support for
guards in rule alternatives. In line 2 and line 3 the setting of the
inherited attributes is shown, and then in line 11 and line 13 it can
be seen how the attributes can be accessed. To ease the attribute
computation, one can use any kind of Erlang expression to compute
the attribute value. As should be evident, the notation is concise and
is similar to the usual AG formalisms.

Special grammar rules: embedded rules

Generating the right hand side belonging to a grammar rule theoret-
ically is a single atomic step. That is, every value belonging to the
symbols on the rule’s right-hand side are generated simultaneously.
While generating, for example, an Erlang function clause, appar-
ently the generation of the clause patterns and of the clause body
may not be simultaneous, since the body may well depend on the
patterns, or formal parameters, in the function head. In such cases
the right hand side values of the grammar rule may not be generated
together in a single round. To denote this, we use a special arrow
symbol in the grammar description, which separates the different
parts of the rule. In other words, productions may be regarded as
sequences of separately generated right hand side element groups,
where the groups are separated by ~> symbols. After every such
(possibly empty) group one can write any Erlang code and can ma-
nipulate the current attributes.

Consider a simple definition of Erlang clauses, in which a clause
consists of a formal parameter list (patterns) and a body (expres-
sions). Obviously, the formal parameters and the body of a clause
are semantically interdependent, since the variables bound in the
patterns might be used inside the clause body. Therefore, the gen-
eration of the expressions is embedded into the generation of the
patterns. In other words, the two generation steps are performed in
sequence. After generating the proper pattern and expression lists, a
subtree is synthesised that accords to the function clause, like this:.

function_clause -> {~ N, pattern}
~> {~ M, bodyexpr}
:: create_clause(’$1’, ’$2’).

The embedded rules are compiled into applications of the bind
built-in QuickCheck generator combinator. By using this combi-
nator, we get a monadic-style execution of the value generators (in
Haskell QuickCheck this feature is implemented with monads).

Special grammar rules: recursive rules

As explained, earlier, formal grammars mainly consist of grammar
rules. Basically, a grammar rule has a nonterminal on its left hand
side and a list of either terminals or nonterminals on its right
hand side. The rule defines the meaning, the way of production
of the nonterminal being on the left. If that symbol also appears
on the right, the rule is said to be recursive. Recursion might be
indirect as well, that is, the rule’s right contains a nonterminal
whose definition refers to the current rule. Some of the recursive
rules can be eliminated by using repetition, the others have to be
handled or modified properly in order to avoid infinite recursions.

Repetition By applying EBNF-style repetition, many primitive
recursive rules can be eliminated from grammar descriptions. Usu-
ally, when generating lists of entities, in BNF one has to create a
primitive recursive rule, which has both a ’productive’ and a ’base’
alternative. Consider the following example which may generate
lists of expressions. You can see that the recursion can be elimi-
nated by using repetition.

The recursive description:

exprs -> expr exprs
| expr

And the same rule by using repetition:

exprs -> {expr}

According to the actual context, one can use repetition in two
different ways depending on the way of handling the attributes.
Also, lists of entities may be generated with a given (fixed) size or
else a randomly generated size. The generation of repeated parts is

basically implemented by using QuickCheck’s list and vector gen-
erator combinators, the former for variable sized lists and the latter
for lists with a given size (the size parameter can be either a vari-
able name, a constant or a macro/function call). However, if the
generation of the list elements may be interdependent, that is, cer-
tain list elements may depend semantically upon each other, then
the generation gets more difficult. In the latter case, special aux-
iliary generator combinators are included into the resulting source
code, which help the generation of dependent lists.

While independent list elements are generated simultaneously
and all elements inherit the same attribute list from their parent (in
other words, every list element is generated over the same attribute
list and cannot affect each other), in dependent list generation,
elements are generated one after the other and each one inherits the
attributes from the previous one. That is, the generated attributes
flow through the list and the currently generated elements can affect
the following siblings. The method and the notation is quite similar
to rule embedding. In this case, we would say that all sublists are
embedded. Dependent repetition symbols and embedded rules can
be seen in the following example.

module -> {attribute} {~ ?M, function}.
function -> {?N, clause}.
clause -> {~ pattern} {~ expr}.

Controlling recursion While using a grammar description for
parser generation, the alternatives are equivalent in the respect of
applicability, since the input string determines which alternatives
have to be used for reduction. During a random generation, in the
case of rules built up from many alternatives the framework should
somehow choose one of them. In our solution, the generator ran-
domly makes a choice among the alternatives and the selected one
is going to be used for generating the current subtree. Obviously, if
the alternatives are equivalent, the mentioned choice is totally ran-
dom, all the alternatives have the same chance to be chosen. How-
ever, in some cases it is expected to make a kind of priority order
among the rule alternatives in order to control the structure and the
properties of the randomly generated data.

In a rule, all rule alternatives may be associated with a frequency
(or weight), based on which they will be chosen. Obviously, by
adjusting the probability of the different alternatives the generated
data structure accordingly changes. An alternative’s weight can
mean its relevance as well as the complexity of the subtree that may
be generated by its application. In the case of primitive recursive
rules (for example, generating list data structures) the weight of the
rule alternatives may affect the size of the generated data.

Theoretically, recursive generation should terminate by a proper
setting of probabilities. However, in practice, structurally recursive
generation processes may not terminate, instead, infinitely enlarge
the generated structure. To avoid infinitely recursive application
chains, a recursion depth limit was injected into the generation
process. The current depth of the recursion is registered during the
rule applications, more precisely, a counter registers the number of
the available recursive calls before hitting the limit. The counter
is decreased every time when a recursive call is performed. If
the limit is hit (in other words, the counter becomes zero), then
only simple (usually non-recursive) alternatives can be applied.
Thus, the generation terminates on the current subtree. This integer
expression generator shows this in action:

intexpr(0) -> int :: erl_syntax:integer(’$1’).

intexpr(N) ->
intexpr(0)

| intexpr(decr(N)) infixop intexpr(decr(N))
:: erl_syntax:infix_expr(’$1’,

erl_syntax:operator(’$2’), ’$3’).

The ’simple’ rule alternatives could be found by analysing the re-
cursiveness of the right hand side, but in our metalanguage the pro-
grammer has to mark the non-recursive, simple cases. In our for-
malism the rules are written in a function-like format and in partic-
ular they can have arguments. The mentioned counter registering
the depth of the recursion is manually decreased and passed to the
(directly or indirectly) recursive symbols. This solution gives the
programmer full control over the recursive generation.

3.2 An Erlang grammar definition

The generator generator framework is applicable to produce any
kind of data that can be described using formal grammars. In our
case, we have used the framework to generate Erlang programs.
Consequently, we have created a grammar definition of the Erlang
language, more precisely, a definition of the sequential program-
ming language elements.

First of all, we had to decide, at what abstraction level to gener-
ate programs, since source code can have many kinds of represen-
tation, such as the well-known textual representation, token stream,
or abstract syntax tree (AST). This decision will in turn determine
the further difficulties of the description, because different repre-
sentations may introduce different problems during the generation
process.

We decided to use the latter representation, namely Erlang Syn-
tax Trees. Such trees can easily be represented and handled using
the Erlang Syntax Tools library, which is included in the standard
Erlang distribution and includes modules declaring useful types and
functions helping in construction and pretty-printing such syntax
trees. With the functions of the erl_syntax module it is sim-
ple to create ASTs in a bottom-up strategy. By using the Syntax
Tools application we only have to focus on the generation of ab-
stract syntax trees instead of the textual program code. Compiling
the grammar description we can get a QuickCheck generator that
can produce random, compilable Erlang source code. In the back-
ground, the generation method creates an Erlang syntax tree which
is then pretty-printed.

Using the current language definition we can generate any num-
ber of modules containing random function definitions that may re-
fer functions from another generated modules. Functions may have
randomly one or more function clauses, which do not shadow each
other and have randomly generated patterns. The function bodies
may contain many kinds of Erlang expressions, including IO state-
ments, case expressions and match expressions as well. Moreover,
generated code may invoke library functions. Match expressions
can bind variables, and other expressions may refer those variables
(but cannot re-bind them) afterwards.

Every generated language element is well-typed, since types are
managed by storing related informations in attributes. The types
used during the generation are randomly generated as well.

Finally, many properties of the generated code can be parame-
terised, such as the number of the generated functions, the difficulty
of the generated expressions and the maximum level of nested case
expressions. By adjusting the grammar and the parameters we can
make the generated code quite similar to real-world programs.

3.3 Transformation

We have implemented a compiler (a generator generator) for our
grammar definition, which produces a single Erlang module con-
taining functions returning QuickCheck generators for each pro-
duction rule preserving its meaning. The compiler uses the standard
Erlang scanner (with some extensions) and a yecc-generated parser.
After scanning and parsing the grammar definition, firstly it checks
some constraints on the grammar (for example, every declared non-
terminal is defined as a rule, the are no symbol duplications, every
right hand side symbol is defined in the file), then generates the

1 -module(prop).
2

3 -export([prop/0]).
4

5 -include_lib("eqc/include/eqc.hrl").
6

7 prop() ->
8 test:prop_beh_eqv(rename_mod,
9 fun gen_rename_mod_args/1).

10

11 gen_rename_mod_args(Filename) ->
12 ?LET(Atom, test:gen_atom(),
13 [Filename, Atom, [], 8]).

Figure 3. Example of rename module property

output Erlang module: if the input file is abc.eyrl, then the out-
put file will be abc.erl, which is constructed of the generator
functions belonging to the grammar rules, the attached Erlang code
cut from the grammar definition file (without any changes) and fur-
ther essential function and macro definitions being for the notation
features.

The generated output file is checked whether it compiles or
not (using the Erlang compiler strong validation). If the module
is compilable, with the erl_tidy module (included in Erlang
Syntax Tools) it is tidied (unused functions are removed from the
code, some syntax constructs are rewritten in a more readable form)
and then compiled again, for reasons of optimisation.

Despite the fact that in the generated Erlang module every func-
tion can be called from the outside (that is, they all are exported),
only the function belonging to the root symbol can be used without
any parameters (the others require parameters carrying information
about the attributes). The return value of this function is a valid
QuickCheck generator and passing this generator to QuickCheck
results in the expected random data.

4. Properties
If a refactoring was performed correctly, the behaviour of the

program should not have changed: it should return the same output
for the same input, throw the same exceptions, send the same
messages in the same order. We say that the original and refactored
versions are behaviourally equivalent.

To test behavioural equivalency we follow these steps: generate
random programs, perform the refactoring, pick a function, gen-
erate random arguments guided by type information, evaluate the
function and then compare the result of the two versions.

Since Erlang programs contain many functions, and a refactor-
ing may only modify a single function we could pick an irrelevant
function to test and miss an error. This is natural, and the solution
is to run many tests to minimize the chance that we miss the erro-
neous function. A similar thing happens with arguments when the
function has multiple clauses, which is fairly typical.

To minimize the chance of missing an error, we have to run
a large number of test, so test execution speed matters. The two
slowest phases are program generation and the refactoring itself. By
running the later phases more than once after every refactoring we
can reduce the chance of missing errors without having to execute
the slower steps repeatedly as many times.

Erlang is a dynamically typed language, which means that we
can supply any term as argument to a function, and at the worst
case we get a runtime exception. Arguably this doesn’t help with
catching real bugs. The dialyzer tool [17] can infer type information
for functions from a codebase. This makes it possible to generate
proper arguments for the function under test, so that we can avoid
programs under test failing for reasons of data being ill-typed.

In Erlang I/O uses message passing under the hood, hidden from
the user. The messages are in a certain format and are sent to an I/O
device, which is a separate process. The format of the messages
is well documented, and any process that can handle them can be
used as an I/O device. The testing framework uses an I/O device
which behaves like a ram file that is initially empty. This I/O device
additionally keeps track of the messages received.

To test behavioural equivalency we evaluate both the old and the
new version of a function, and compare the outputs and I/O traces.
This can be done concurrently, saving us time. This is particularly
true when the functions are non terminating due to the random
nature of them. In this case we halt the evaluation after a given
time. Concurrent execution means we only have to wait for this
timeout only once, halving the time needed to test.

4.1 Example property

In order to define a behavioural equivalence property for a refac-
toring, the user has to call test:prop_beh_eqv/2 with the
appropriate arguments. The first argument is an atom, which is the
name of the function in the wranglermodule that implements the
refactoring. The second parameter is a callback function, that given
a filepath should return suitable arguments for the refactoring func-
tion. In the simplest case the callback returns a list containing the
arguments. If the testing should be restricted to a specific function,
the return value should be a three-tuple with the function name and
arity for the said function and the argument list for the refactoring
function.

There is another version of test:prop_beh_eqv, which
takes an additional third argument. This is a callback function that
receives the result of the previous callback function and returns a
boolean indicating whether to proceed with the test or not.

The simplest property is for the rename module refactoring, the
whole code is given in Figure 3.

5. Results
We have designed and implemented a notation for L-Attributed
grammars and created a compiler for it. So far we have formalised
a subset of the Erlang language with it and got promising results.

Moreover, by using random generation we have implemented
the testing of four refactoring steps provided by Wrangler: rename
variable, rename function, generalise function and tuple function
arguments. We have found two bugs, one in rename variable re-
garding incorrectly handling patterns in function parameters, and
one in generalise function regarding incorrectly transforming the
function leading to compiler errors. Both of these errors are fixed
in the latest release of Wrangler.

6. Related work
[9] is a similar study done for refactoring engines integrated in
IDEs for mainstream languages. The program generator described
is specific to the language they use and it can be parametrized by
code fragments, so it would be difficult to adapt to other domains.
They test the results of refactorings in a different way too: they
test hand written structural properties as opposed to behavioural
equivalence, and do this by testing the results of two different
refactoring engines against each other, rather than testing the old
and new code directly.

[14] describes previous work using QuickCheck for testing
Wrangler. They did not use random program generation, refac-
toring a static codebase instead, and the only property formulated
is successful compilation of the refactored program.

7. Conclusions and future work
We have demonstrated that automated, property-based random test-
ing of refactoring tools is able to discover new bugs, and therefore
it is a useful addition to the testing processes of tool developers.

How to check behavioural equivalence of arbitrary message
passing programs, or refactorings which have wider ranging effects
is still an open question.

Our main contribution is random program generation and be-
havioural equivalence testing, which together give much wider cov-
erage, scalability and maintainability to the testing of refactoring
engines.

References
[1] Quviq QuickCheck, June 2010. http://www.quviq.com/.

[2] RefactorErl, June 2010. http://plc.inf.elte.hu/erlang/.

[3] Wrangler, June 2010. http://www.cs.kent.ac.uk/projects/forse/.

[4] T. Arts and J. Hughes. Erlang/QuickCheck. In In Ninth International
Erlang/OTP User Conference, November 2003.

[5] T. Arts et al. Testing Telecoms Software with Quviq QuickCheck. In
ACM SIGPLAN workshop on Erlang. ACM Press, 2006.

[6] T. Avgerinos and K. F. Sagonas. Cleaning up erlang code is a dirty job
but somebody’s gotta do it. In Erlang Workshop, pages 1–10, 2009.

[7] J. W. Backus et al. Revised report on the algorithmic language
ALGOL 60. 1997.

[8] N. Chomsky. Three models for the description of lan-
guage. Information Theory, IRE Transactions on, 1956. doi:
10.1109/TIT.1956.1056813.

[9] B. Daniel et al. Automated testing of refactoring engines. In
ESEC/FSE, pages 185–194, New York, NY, USA, 2007. ACM Press.
ISBN 978-1-59593-811-4.

[10] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts. Refactor-
ing: Improving the Design of Existing Code. Addison-Wesley Profes-
sional, July 1999. ISBN 0-201-48567-2.

[11] D. Horpácsi. Testing refactoring tools by generating random Erlang
modules. Master’s thesis, ELTE, Budapest, Hungary, 2010.

[12] D. E. Knuth. Semantics of context-free languages. Theory of Comput-
ing Systems, 1968. doi: 10.1007/BF01692511.

[13] P. M. Lewis et al. Attributed translations (Extended Abstract). In
STOC ’73. ACM, 1973.

[14] H. Li and S. Thompson. Testing Erlang Refactorings with
QuickCheck. In IFL, pages 19–36, Berlin, Heidelberg, 2007. Springer-
Verlag. ISBN 978-3-540-85372-5.

[15] W. F. Opdyke. Refactoring object-oriented frameworks. Technical
report, 1997.

[16] J. Paakki. Attribute grammar paradigms—a high-level methodology
in language implementation. ACM Comput. Surv., 1995. ISSN 0360-
0300.

[17] K. F. Sagonas. Experience from Developing the Dialyzer: A Static
Analysis Tool Detecting Defects in Erlang Applications. In Workshop
on the Evaluation of Software Defect Detection Tools (Bugs’05), 2005.

[18] K. F. Sagonas and T. Avgerinos. Automatic refactoring of erlang
programs. In PPDP, pages 13–24, 2009.

[19] L. P. Sobotkiewicz. A New Tool for Grammar-based Test Case Gen-
eration. Technical report, University of Victoria, 2008. MSc thesis.

[20] N. Sultana and S. Thompson. Mechanical Verification of Refactorings.
In ACM SIGPLAN Workshop on Partial Evaluation and Program Ma-
nipulation. ACM Press, 2008.

