
NEW ANT COLONY OPTIMISATION ALGORITHMS

FOR HIERARCHICAL CLASSIFICATION OF PROTEIN

FUNCTIONS

a thesis submitted to

The University of Kent at Canterbury

in the subject of computer science

for the degree

of doctor of philosophy.

By

Fernando Esteban Barril Otero

January 2010

Abstract

Ant colony optimisation (ACO) is a metaheuristic to solve optimisation problems

inspired by the foraging behaviour of ant colonies. It has been successfully ap-

plied to several types of optimisation problems, such as scheduling and routing,

and more recently for the discovery of classification rules. The classification task

in data mining aims at predicting the value of a given goal attribute for an exam-

ple, based on the values of a set of predictor attributes for that example. Since

real-world classification problems are generally described by nominal (categori-

cal or discrete) and continuous (real-valued) attributes, classification algorithms

are required to be able to cope with both nominal and continuous attributes.

Current ACO classification algorithms have been designed with the limitation of

discovering rules using nominal attributes describing the data. Furthermore, they

also have the limitation of not coping with more complex types of classification

problems—e.g., hierarchical multi-label classification problems.

This thesis investigates the extension of ACO classification algorithms to cope

with the aforementioned limitations. Firstly, a method is proposed to extend the

rule construction process of ACO classification algorithms to cope with contin-

uous attributes directly. Four new ACO classification algorithms are presented,

as well as a comparison between them and well-known classification algorithms

from the literature. Secondly, an ACO classification algorithm for the hierarchical

problem of protein function prediction—which is a major type of bioinformatics

problem addressed in this thesis—is presented. Finally, three different approaches

to extend ACO classification algorithms to the more complex case of hierarchical

multi-label classification are described, elaborating on the ideas of the proposed

hierarchical classification ACO algorithm. These algorithms are compare against

state-of-the-art decision tree induction algorithms for hierarchical multi-label clas-

sification in the context of protein function prediction.

The computational results of experiments with a wide range of data sets—

including challenging protein function prediction data sets with very large number

ii

of class labels—have shown that the proposed ACO classification algorithms are

competitive to well-known classification algorithms from the literature, for both

conventional (flat single-label) classification and hierarchical multi-label classifica-

tion problems. These algorithms address unexplored research areas in the context

of ACO classification algorithms to the best of our knowledge, and are therefore

original contributions.

iii

Acknowledgements

Firstly, I would like to thank my supervisors Alex Freitas and Colin Johnson

for the opportunity of undertaking this work, and for their excellent supervision,

support and guidance throughout my PhD.

Furthermore, I owe a big thank you to my family, for always being there. A

special thanks to my parents for the opportunities and the support they have

given me in all my endeavours. I am also very grateful to Carin Tun̊aker for all

her help, patience, love and support.

Many friends made my time in Canterbury highly enjoyable. I would like to

thank Abigail Smith, Beatriz Martinez, Ben Robert, Claire Harris, Cristiano Can-

tore, Dolores Castaneda, Eva Barbazan, Gisele Pappa, Javier Valbuena, Mariola

Esteban and Miguel Leon-Ledesma for all the time that we spent together. My

thanks also go to my friends and colleagues from the School of Computing at

the University of Kent, in special to Carlos Silla, Lingfang Du, Mudassar Iqbal,

Sebastian Marion and Siddhartha Ghosh.

Finally, I would like to gratefully acknowledge the financial support received

from the European Union’s INTERREG project (Ref. No. 162/025/361) as well

as the continuous financial support received from the School of Computing at the

University of Kent, during the course of my PhD.

iv

Contents

Abstract ii

Acknowledgements iv

List of Tables ix

List of Figures xiii

List of Algorithms xix

1 Introduction 1

1.1 Original Contributions . 5

1.2 Structure of the Thesis . 6

1.3 Publication List . 7

2 Data Mining 9

2.1 Common Data Mining Tasks . 12

2.1.1 Regression . 12

2.1.2 Clustering . 12

2.1.3 Association Rule Learning 12

2.2 The Conventional (Flat) Classification Task 13

2.2.1 Decision Tree Induction 14

2.2.2 Rule Induction . 17

2.2.3 Multi-Label Classification 21

2.3 The Hierarchical Classification Task 23

2.3.1 Basic Concepts of Hierarchical Classification 24

2.3.2 Hierarchical Multi-Label Classification 35

2.4 Evaluation Measures for Classification 36

2.5 Evaluation Measures for Hierarchical Classification 37

v

2.5.1 Hierarchical Measures of Precision, Recall and F-measure . 38

2.5.2 Precision-Recall Curves . 39

2.6 Summary . 42

3 Ant Colony Optimisation 43

3.1 The ACO Metaheuristic . 44

3.1.1 Problem Representation 46

3.1.2 Building Solutions . 47

3.1.3 Pheromone Trails . 48

3.2 ACO applied to Classification: Ant-Miner 49

3.2.1 Construction Graph . 51

3.2.2 Rule Construction . 52

3.2.3 Heuristic Information . 54

3.2.4 Rule Evaluation . 55

3.2.5 Rule Pruning . 55

3.2.6 Pheromone Trails . 56

3.2.7 Classifying New Examples 58

3.3 Ant-Miner Extensions . 58

3.4 Summary . 62

4 Bioinformatics 64

4.1 Biological Background . 66

4.1.1 Proteins . 66

4.2 Protein Databases . 70

4.2.1 UniProt Knowledgebase 72

4.2.2 InterPro . 72

4.2.3 IntAct . 73

4.3 Protein Functional Classification Schemes 73

4.3.1 Gene Ontology . 74

4.3.2 FunCat . 75

4.4 Protein Function Prediction . 78

4.4.1 Protein Features as Predictor Attributes 81

4.5 Summary . 85

5 Handling Continuous Attributes in Ant Colony Classification Al-

gorithms 86

5.1 Ant-Miner Coping with Continuous Attributes 88

vi

5.1.1 Construction Graph . 89

5.1.2 Heuristic Information . 89

5.1.3 Rule Construction . 92

5.1.4 Pheromone Updating . 94

5.2 Minimum Description Length-based Discretisation 94

5.3 Encoding Attribute Interaction as Pheromone Levels: Associating

Pheromones with Edges . 98

5.4 Combining Pheromone Associated with Edges and Minimum De-

scription Length-based Discretisation 103

5.5 Summary . 103

6 Computational Results for Ant-Miner Coping with Continuous

Attributes 105

6.1 Data Sets . 106

6.2 Experimental Setup . 108

6.3 Results . 110

6.4 Summary . 119

7 Hierarchical and Multi-Label Ant Colony Classification Algo-

rithms 121

7.1 Hierarchical Classification Ant-Miner 122

7.1.1 Construction Graphs . 124

7.1.2 Rule Construction . 127

7.1.3 Rule Evaluation . 129

7.1.4 Rule Pruning . 130

7.1.5 Pheromone Trails . 132

7.1.6 Heuristic Information . 133

7.1.7 Using a Rule List to Classify New Examples 136

7.2 Coping with Multi-Label Data . 136

7.2.1 Multi-Label Rule Consequent 138

7.2.2 Distance-based Heuristic Information 140

7.2.3 Distance-based Discretisation of Continuous Values 142

7.2.4 Hierarchical Multi-Label Rule Evaluation 146

7.2.5 Simplified Rule Pruning 146

7.3 Pittsburgh-based Approach . 147

7.3.1 Extended Sequential Covering Strategy 149

7.3.2 Updating Pheromone Values Based on the Rule List Quality 153

vii

7.4 A Baseline Approach for Hierarchical Multi-Label Classification

with Ant-Miner: Building One Classifier per Class 153

7.4.1 The Baseline Ant Colony Algorithm 154

7.4.2 Class-specific Heuristic Information 157

7.4.3 Class-specific Interval Selection for Continuous Attributes 158

7.4.4 Rule Quality Measure . 159

7.4.5 Classifying New Examples 160

7.5 Summary . 161

8 Computational Results for Hierarchical and Multi-Label Ant-

Miner 163

8.1 Initial Work on Protein Function Prediction—the hAnt-Miner al-

gorithm . 164

8.1.1 Data Preparation . 164

8.1.2 Experimental Setup . 166

8.1.3 Results and Discussion . 168

8.2 Hierarchical Multi-Label Protein Function Prediction in Yeast . . 170

8.2.1 Data Sets . 170

8.2.2 Experimental Setup . 171

8.2.3 Results and Discussion . 173

8.3 Summary . 182

9 Conclusions and Future Research 186

9.1 Contributions . 187

9.2 Future Research . 190

References 193

A Software Availability 207

viii

List of Tables

2.1 The data set for the artificial ‘weather’ problem [97], where each

row corresponds to a different ‘saturday morning’ observation and

the ‘Class’ indicates if whether or not (‘P’ or ‘N’, respectively) it is

a good day to play tennis. 10

2.2 An example of a multi-label data set, where each example is asso-

ciated with one or more different class labels. In this example, the

predictor attributes are omitted and the class attribute has three

different values {sports, politics, entertainment}. 22

4.1 Summary of biological databases publicly available online, mainly

containing protein information. 71

4.2 Main (top-level) FunCat categories. All categories, with the excep-

tion of 98 and 99, represent a root category of a tree-structured

hierarchy. 77

6.1 Summary of the classification algorithms used in the experiments.

Ant-Miner is described in chapter 3; cAnt-Miner variations are de-

scribed in chapter 5; J48, JRip and PART are implemented in Weka

workbench [133] and briefly described in chapter 2. 106

6.2 Summary of the data sets used in the experiments. The first col-

umn of the table gives the data set abbreviation, the second gives

the dataset name, the third and forth columns give the number

of nominal and continuous attributes respectively, the fifth column

gives the number of class labels, the sixth column gives the number

of examples in the original dataset and the seventh column gives the

number of examples in the discrete dataset (after the discretisation

of continuous attributes and removal of duplicated examples). . . 107

6.3 Summary of the user-defined parameter values used in Ant-Miner

and cAnt-Miner variations in all data sets. 109

ix

6.4 Predictive accuracy (mean ± standard deviation) obtained with

the ten-fold cross-validation procedure in the eighteen data sets

by Ant-Miner, cAnt-Miner, cAnt-Miner-MDL and cAnt-Miner2,

respectively. The last row of the table indicates the rank-based

score—the higher the score, the better the ranking—according to

the non-parametric Friedman test [34, 54]. 111

6.5 Predictive accuracy (mean ± standard deviation) obtained with

the ten-fold cross-validation procedure in the eighteen data sets

by cAnt-Miner2-MDL, J48, JRip and PART, respectively. The

last row of the table indicates the rank-based score—the higher

the score, the better the ranking—according to the non-parametric

Friedman test [34, 54]. 112

6.6 Model size (mean ± standard deviation) obtained with the ten-fold

cross-validation procedure in the eighteen data sets by Ant-Miner,

cAnt-Miner, cAnt-Miner-MDL and cAnt-Miner2, respectively. The

last row of the table indicates the rank-based score—the lower the

score, the better the ranking, since smaller models are preferred—

according to the non-parametric Friedman test [34, 54]. 115

6.7 Model size (mean ± standard deviation) obtained with the ten-

fold cross-validation procedure in the eighteen data sets by cAnt-

Miner2-MDL, J48, JRip and PART, respectively. The last row of

the table indicates the rank-based score—the lower the score, the

better the ranking, since smaller models are preferred—according

to the non-parametric Friedman test [34, 54]. 116

6.8 Summary of the pairwise comparisons in terms of predictive accu-

racy amongst Ant-Miner and cAnt-Miner variations conducted in

order to evaluate the influence of each individual Ant-Miner’s ex-

tensions proposed in chapter 5. For each row, the ‘⊕’ (‘⊖’) symbol

indicates that the first algorithm performs better (worse) than the

second algorithm, followed by the sum of positive/negative ranks

(Score column) and the corresponding p-value, according to the

Wilcoxon signed rank test. The significant differences at the 0.01

level are shown in bold. 117

x

8.1 Summary of the data sets used in the experiments evaluating hAnt-

Miner. The first column (‘Data Set’) gives the data set name, the

second column (‘Size’) gives the data set size, the third column

(‘Attributes’) gives the number of attributes and the forth column

(‘Classes’) gives the number of class labels in the class hierarchy. . 166

8.2 Summary of the user-defined parameter values used by hAnt-Miner

for all data sets. No attempt was made to tune either parame-

ter value for individual data sets. The first column (‘Parameter’)

gives the parameter name, the second column (‘Description’) gives

a short description and the third column (‘Value’) gives the value

used in our experiments. 167

8.3 Hierarchical measures of precision (hR), recall (hR) and F-measure

(hF) values (mean ± standard deviation) obtained with the ten-

fold cross-validation procedure in the five data sets. An entry in

the ‘hF’ column is shown in bold if the hierarchical F-measure value

obtained by one of the algorithms was significantly greater than the

other algorithm—according to a two-tailed Student’s t-test with

99% confidence. 169

8.4 Summary of the data sets used in our experiments. The first column

(‘Data Set’) gives the data set name, the second column (‘Train-

ing Size’) gives the number of training examples, the third column

(‘Test Size’) gives the number of test examples, the forth column

(‘Attributes’) gives the number of attributes and the fifth column

(‘Classes’) gives the number of class labels in the class hierarchy. . 172

8.5 The average number of class labels in the hierarchy and the aver-

age number of class labels per example of both FunCat and Gene

Ontology data sets. 173

8.6 Summary of the user-defined parameter values used by hmAnt-

Miner, hmAnt-MinerPB and cAnt-MinerHM for all data sets. The

first column (‘Parameter’) gives the parameter name, the second

column (‘Description’) gives a short description and the third col-

umn (‘Value’) gives the value used in our experiments. The param-

eter max number lists (marked with a symbol ‘*’) is only applied

to hmAnt-MinerPB. 174

xi

8.7 The AU(PRC) value obtained on the test set by hmAnt-Miner,

hmAnt-MinerPB and cAnt-MinerHM across all data sets used in our

experiments. The value of each row represents the average value

obtained over fifteen runs of the algorithm, followed by the standard

deviation (average ± standard deviation). The last row of the table

indicates the rank-based score—the higher the score, the better the

ranking—according to the non-parametric Friedman test [34, 54]. 176

8.8 The AU(PRC) value obtained on the test set by Clus-HMC,

Clus-HSC and Clus-SC across all data sets used in our experi-

ments. Recall that these algorithms are deterministic and therefore

they are run just once for each data set. The last row of the table

indicates the rank-based score—the higher the score, the better the

ranking—according to the non-parametric Friedman test [34, 54].

The results in this table are taken from Vens et al. [127]. 177

8.9 The classification model size (number of rules) of hmAnt-Miner,

hmAnt-MinerPB and cAnt-MinerHM across all data sets used in our

experiments. The value of each row represents the average model

size over fifteen runs of the algorithm, followed by the standard

deviation (average ± standard deviation). The last row of the table

indicates the rank-based score—the lower the score, the better the

ranking—according to the non-parametric Friedman test [34, 54]. 179

8.10 The classification model size (number of tree leaves) of Clus-

HMC, Clus-HSC and Clus-SC across all data sets used in our

experiments. Recall that these algorithms are deterministic and

therefore they are run just once for each data set. The last row of

the table indicates the rank-based score—the lower the score, the

better the ranking—according to the non-parametric Friedman test

[34, 54]. The results in this table are taken from Vens et al. [127]. 180

xii

List of Figures

2.1 Example of a decision tree for the data set presented in Table 2.1,

adapted from [97]. Internal nodes (including the root node) are rep-

resented by attribute names and branches originating from internal

nodes correspond to different values of the attribute in a node; leaf

nodes are represented by different class labels. Note that it is not

required that an algorithm uses all predictor attributes to build

a decision tree, only those that are relevant for the classification

problem in hand—e.g. the attribute ‘Temperature’ was not used in

this example. 16

2.2 Example of a set of classification rules representing a classification

model equivalent to the decision tree presented in Figure 2.1. An

example that satisfies the antecedent of a rule (IF part) has the

class label of the consequent predicted (THEN part). 18

2.3 Single-label data sets derived from the multi-label data set pre-

sented in Table 2.2: (a) represents the data set for the class label

‘sport’; (b) represents the data set for the class label ‘politics’; (c)

represents the data set for the class label ‘entertainment’. In the

column ‘Class’, the values ‘P’ and ‘A’ represent the presence or

absence of the corresponding class label, respectively. 23

2.4 Example of the different types of structures used to represent a class

hierarchy: (a) the class labels are organised in a tree structure, with

a single parent for each node except the root node; (b) the class

labels are organised in a directed acyclic graph (DAG) structure,

with potentially multiple parents for each node except the root

node. The node ‘any’ corresponds to the root of the class hierarchy

and it represents the case where the class label of an example is

unknown. 25

xiii

2.5 An example of how hierarchical classification problems can be trans-

formed into flat classification problems: in (a) the hierarchical clas-

sification problem could be transformed into the problem of predict-

ing the class labels of the second level of the hierarchy; in (b) the

hierarchical classification problem could be transformed into the

problem of predicting the class labels that represent leaf nodes of

the hierarchy. The shaded area represents the scope of the clas-

sifier—i.e. the class labels predicted by the classification model. . 28

2.6 Examples of the top-down approach applied to a tree-structured

class hierarchy: in (a) flat classification algorithm(s) is(are) used to

produce classification model(s) for each level of the class hierarchy;

in (b) flat (binary) classification algorithms are used to produce

a classification model for each class label of the class hierarchy.

The shaded area represents the scope of the classifier—i.e. the

class labels predicted by the classification model. A classification

model is required for the class label ‘2.1.1’ only in optional leaf-node

prediction problems; in the case of mandatory leaf-node prediction

problems, the prediction of class label ‘2.1’ implies the prediction

of class label ‘2.1.1’. 32

2.7 The contingency table, also known as confusion matrix, for binary

(flat single-label) classification problems. 37

2.8 Examples of precision-recall curves: in (a) a PR curve showing

that higher precision values are generally associated with lower re-

call values; (b) a PR curve illustrating the shaded area of the curve,

which corresponds to the area under the averaged PR curve mea-

sure, denoted as AU(PRC). 41

3.1 Ants are able to find the shorter path between a food source and the

nest: in (a) ants in a pheromone trail between nest and food; (b) an

obstacle interrupts the trail; (c) ants find two paths to go around

the obstacle; (d) a new pheromone trail is formed along the shorter

path. Adapted from (http://iridia.ulb.ac.be/∼mdorigo/ACO/). . 44

3.2 Example of graph representations used in ACO: in (a) a fully con-

nected graph, where every pair of vertices is connected by an edge;

(b) a not fully connected graph, where two vertices may not be

connected by an edge. 47

xiv

3.3 The construction graph of Ant-Miner, given a data set containing

three nominal attributes, namely ‘age’, ‘gender ’ and ‘smoke’. This

example assumes that the ‘age’ attribute was originally a contin-

uous attribute, which was discretised into three different intervals

{young, adult, senior} in a preprocessing step. 52

4.1 The central dogma’s information flow: from DNA to RNA to pro-

tein: (a) in the transcription step, the genetic information stored

in a segment of the DNA is used to create a mRNA (messenger

RNA) molecule; (b) in the translation step, the mRNA molecule is

used as a template in the synthesis of a protein molecule. 67

4.2 In (a) basic amino acid structure; (b) the peptide bond between

two amino acids (thick line). Amino acids are linked together by a

peptide bond between their amino and carboxyl groups, constitut-

ing the protein’s backbone. This process is repeated many times

for polypeptide proteins. 68

4.3 The four levels of organisation in the structure of a protein: (a)

the sequence of amino acids is known as the primary structure; (b)

common folding patterns β-sheet and α-helix constitute the sec-

ondary structure; (c) the full three-dimensional structure is known

as the tertiary structure; (d) the assembly of complex structures

by joining multiple polypeptide chains together is known as the

quaternary structure. 69

4.4 Subset of the Gene Ontology (GO) ion channel hierarchy. The

ion channel activities are part of the ‘molecular function’ ontology

within the GO. 76

5.1 The construction graphs of Ant-Miner and cAnt-Miner, given a

training set containing one continuous attribute (‘age’) and two

nominal attributes (‘gender ’ and ‘smoke’). In (a) Ant-Miner’s con-

struction graph, considering that the continuous attribute ‘age’ was

discretised into three different discrete intervals in a preprocessing

step; (b) cAnt-Miner’s construction graph, which includes a vertex

for the continuous attribute ‘age’. 90

xv

5.2 Illustration of the recursive nature of the MDL-based discretisation

procedure: (1) a binary discretisation procedure is applied to se-

lect the best threshold value for a hypothetical continuous attribute

‘age’ with values in the range of 0 to 100. Given that the value 21

satisfies the MDL criterion, the binary discretisation procedure is

recursively applied to the intervals 0-20 and 21-100; (2) Another

two threshold values are selected, one for each of the candidate in-

tervals. The value 18 satisfies the MDL criterion and the discreti-

sation procedure is further applied to the intervals 0-17 and 18-20.

The value 65 does not satisfies the MDL criterion and therefore it is

rejected; (3) Both selected values 8 and 19 do not satisfy the MDL

criterion and they are rejected. Since no more intervals are avail-

able, the MDL-based discretisation procedure stops; (4) The result

of the MDL-based discretisation procedure comprises the threshold

values that satisfied the MDL criterion—in this example, the values

18 and 21. 97

5.3 Illustration of discrete intervals that could have been created by

selecting two threshold values for a continuous attribute age. At

the end of the MDL discretisation procedure, the interval associated

with the lowest entropy value is selected. 98

5.4 The construction graph of cAnt-Miner when pheromone values are

associated with edges. In (a) cAnt-Miner’s construction graph with

a dummy ‘start ’ vertex; (b) a directed path (‘start ’→ ‘smoke = no’

→ ‘age’) is highlighted. 101

6.1 Influence of colony size values {1, 10, 30, 60, 100} on both predictive

accuracy and execution time. In (a) Ant-Miner using the ‘anneal’

and ‘bcl’ data sets; (b) cAnt-Miner using the ‘auto’ and ‘wine’ data

sets. 110

6.2 Comparison of the predictive accuracy achieved by the classification

algorithms used in our experiments across all data sets, according

to the non-parametric Friedman test with a Scheffé’s post-hoc test

at the 0.01 significant level [34, 54]. Two rank-based scores—the

higher the score, the better the ranking—are significantly different

if their intervals are disjoint and are not significantly different if

their intervals overlap. 113

xvi

6.3 Comparison of the size of the classification model discovered by the

algorithms used in our experiments across all data sets, according

to the non-parametric Friedman test with a Scheffé’s post-hoc test

at the 0.01 significant level [34, 54]. Two rank-based scores—the

lower the score, the better the ranking—are significantly different

if their intervals are disjoint and are not significantly different if

their intervals overlap. 114

6.4 Example of a list of rules discovered for the ‘anneal’ data set by

Ant-Miner, cAnt-Miner and cAnt-Miner-MDL, respectively. The

‘anneal’ data set contains steel annealing data, described by 38

predictor attributes and distributed in 6 class labels. This example

illustrates the differences in how continuous attributes (‘carbon’,

‘hardness’, ‘len’, ‘strength’, ‘thick’ and ‘width’ in this example) are

handled in: (a) Ant-Miner: continuous attributes are discretised

in a preprocessing step; (b) cAnt-Miner: a binary entropy-based

discretisation procedure is used to dynamically create discrete in-

tervals during the rule construction process; (c) cAnt-Miner-MDL:

a MDL-based discretisation procedure is used (instead of a binary

one) to allow the creation of intervals with lower and upper thresh-

old values. 120

7.1 Example of an antecedent construction graph in hAnt-Miner (‘IPR-

005821 ’ and ‘IPR001693 ’ are nominal attributes, and ‘length’ is a

continuous attribute). The dummy vertex ‘start ’ is unidirection-

ally connected to all vertices to allow the association of pheromone

values on the edge of the first term of an ant’s path. 125

7.2 Example of a consequent construction graph in hAnt-Miner, which

is defined by the class hierarchy of the problem at hand. In this

example, the class hierarchy is represented by a subset of the Gene

Ontology’s ion channel hierarchy. 126

xvii

7.3 Example of the consequent of a rule in hmAnt-Miner. In this ex-

ample, the predictor attributes in the antecedent of the rule cor-

respond to amino acid ratios from the protein’s sequence and the

class labels in the consequent of the rule are represented by Gene

Ontology terms—the number following the colon of a class label

in the consequent corresponds to the probability of predicting the

associated class label. Only a subset of the class labels predicted

by the rule are shown. 139

7.4 Illustration of the class-specific weights—according to Equation

(7.18)—for the class hierarchy presented in Figure 7.2. Note that

the class label ‘GO:0005215’ does not have a weight associated,

since it represents the root of the class hierarchy. 143

8.1 Comparison of the predictive accuracy—measured as the area un-

der the averaged PR curve—achieved by the algorithms used in our

experiments across all data sets, according to the non-parametric

Friedman test with a Scheffé’s post-hoc test at the 0.01 significant

level [34, 54]. Two rank-based scores—the higher the score, the

better the ranking—are significantly different if their intervals are

disjoint and are not significantly different if their intervals overlap. 178

8.2 Comparison of the size of the classification model discovered by the

algorithms used in our experiments across all data sets, according

to the non-parametric Friedman test with a Scheffé’s post-hoc test

at the 0.01 significant level [34, 54]. Two rank-based scores—in

this case the lower the score, the better the ranking, since smaller

classification model size is preferred—are significantly different if

their intervals are disjoint and are not significantly different if their

intervals overlap. 181

8.3 Overall precision-recall curves of hmAnt-Miner, hmAnt-MinerPB

and Clus-HMC for: (a) ‘cellcycle’ ‘expr’ and ‘pheno’ FunCat data

sets; (b) ‘church’, ‘eisen’ and ‘seq’ Gene Ontology data sets. . . . 184

8.4 Overall precision-recall curves of cAnt-MinerHM, Clus-HSC and

Clus-SC for: (a) ‘cellcycle’ ‘expr’ and ‘pheno’ FunCat data sets;

(b) ‘church’, ‘eisen’ and ‘seq’ Gene Ontology data sets. 185

xviii

List of Algorithms

2.1 High-level pseudocode of the sequential covering approach to create

a list of rules. 20

3.1 High-level pseudocode of a basic ACO algorithm. 46

3.2 High-level pseudocode of the Ant-Miner algorithm [94]. 50

3.3 High-level pseudocode of Ant-Miner’s rule pruning procedure. . . . 56

5.1 Threshold-aware rule pruning procedure pseudocode. 102

7.1 High-level pseudocode of the sequential covering procedure employed

in hAnt-Miner. 123

7.2 hAnt-Miner rule pruning procedure pseudocode. 131

7.3 hmAnt-Miner rule pruning procedure pseudocode. 147

7.4 High-level pseudocode of the Pittsburgh-based ACO procedure em-

ployed in hmAnt-MinerPB. 152

7.5 High-level pseudocode of the cAnt-MinerHM baseline algorithm. . . 156

7.6 High-level pseudocode of the procedure to create the vector of class

probabilities for a test example employed in cAnt-MinerHM. 160

xix

Chapter 1

Introduction

The exponential increase in the data available in biological databases has brought

biologists, mathematicians and computer scientists together, working on the cre-

ation of computational and statistical techniques and algorithms to support the

analysis of biological data—an area which is now referred to as bioinformatics

[60, 78]. The aim of this thesis is to present an interdisciplinary research encom-

passing three different areas, namely data mining, ant colony optimisation and

bioinformatics. The thesis investigates the design and implementation of new ant

colony optimisation algorithms for the classification task of data mining, in the

context of the important bioinformatics problem of protein function prediction.

Data mining is a research area concentrated on designing and employing com-

putational methods to discover (learn) a model (based on a given knowledge

representation) from real-world structured data [45, 96]. Since the advances in

computer technologies, allowing the storage of virtually any kind of data, have led

to an exponential growth of available information, (semi-)automated data anal-

ysis techniques and methods have received increased attention. One of the most

studied data mining tasks in the literature is the classification task. In essence,

the classification task consists of learning a predictive relationship between input

values and a desire output. Each example (data instance or record) is described

by a set of features (attributes)—referred to as predictor attributes—and a class

attribute. Given a set of examples, a classification algorithm aims at creating a

model, which represents the relationship between predictor attributes values and

class values, and which is able to predict the class of an example based on the

values of its predictor attributes.

In the vast majority of the classification problems addressed in the litera-

ture, each example is associated with one class value (label) and there are no

1

CHAPTER 1. INTRODUCTION 2

relationships—i.e. hierarchical relationships—between the different class values.

These problems are referred to as flat single-label classification problems. How-

ever, there are more complex classification problems where class values are or-

ganised in a hierarchical structure—defining parent/child relationships between

different class values—and examples may be associated with more than one class

value at the same time. In the latter case these classification problems are referred

to as hierarchical multi-label classification problems.

There has been an increasing interest in hierarchical multi-label classification,

where early applications have generally been found in text classification [21, 104,

117, 119, 129] and also more recently in the problem of protein function prediction

in bioinformatics [8, 13, 24, 89, 127]. The latter is a very active research area,

given the large increase in the number of uncharacterised (i.e. with unknown

function) proteins available for analysis and the importance of determining their

functions in order to improve the current biological knowledge. Proteins are large

and complex molecules, assembled from amino acids arranged in a linear sequence

using information encoded in genes. They perform most of the functions within

a cell and make up the majority of cellular structures.

Determining protein functions is a central goal of bioinformatics and it is

crucial for improving biological knowledge, diagnosis and treatment of diseases.

Biologists are provided with information about genome sequences, genes and their

protein products, but one question still remains—given a protein sequence, what is

its function? While biological experiments are the ultimate method to determine

the function of proteins, it is not possible to perform a functional assay for every

uncharacterised protein. A commonly used approach to predict the function of

uncharacterised proteins is to assign a function based on sequence similarity—i.e.

if there is a protein with known function similar to the uncharacterised protein,

in terms of their amino acid sequences, the function of the former protein is

assigned to the uncharacterised protein. It has been shown that the similarity-

based approach presents several limitations [51, 52] and it is even considered one of

the sources of functional assignment errors found in biological databases [19, 66].

An alternative approach to predict the function of uncharacterised proteins is

to induce a classification model from the data about proteins with known func-

tions. In the model-based approach, the protein function prediction problem is

cast as a classification problem—proteins correspond to examples to be classified,

protein features correspond to predictor attributes and the different functions that

a protein can perform correspond to class labels to be predicted—and a model is

CHAPTER 1. INTRODUCTION 3

induced by a classification algorithm. Since it is known that a protein can perform

more than one function and protein function definitions are usually organised in

a hierarchical structure, the classification problem in this case is an instance of a

hierarchical multi-label problem. It is important to emphasise that in the context

of protein function prediction, comprehensible classification models—which can

be interpreted and validated by the user—are preferred in order to provide useful

insights about the correlation of protein features and their functions [51].

Classification problems can be viewed as optimisation problems, where the

goal is to find the best model that represents the predictive relationships in the

data. A classification problem can be formally specified as: given training data

consisting of pairs {(e1, c1), . . . , (en, cn)}, find a function that maps each example

ei to its correspondent class label ci, where 1 ≤ i ≤ n and n is the total number of

training examples. A wide range of different paradigms of classification algorithms

have been used in the literature [45, 48, 85, 133]—e.g, statistical algorithms, neural

networks, decision tree induction, evolutionary algorithm and rule induction—and

more recently ant colony optimisation [39].

Ant colony optimisation (ACO) is a metaheuristic inspired by the foraging

behaviour of ant colonies [37, 38, 39]. Ant colonies, despite the lack of cen-

tralised control and the relative simplicity of their individuals’ behaviours, are

self-organised systems that can accomplish complex tasks by having their indi-

vidual ants interacting with one another and with their environment. Many ant

species, even with limited visual capabilities or entirely blind, are able to find

the shortest path between a food source and the nest. While walking from the

nest to a food source and vice-versa, ants deposit a chemical substance—called

pheromone—on the ground, creating a pheromone trail. The more ants use the

same path, the more pheromone is deposited on the trail. Since ants probabilisti-

cally choose a path to follow based on its pheromone concentration, the path with

higher concentration has a greater chance of being (re-)used—which in general

represents the shortest path between the nest and the food source. ACO algo-

rithms simulate the behaviour of real ants using a colony of artificial ants, which

cooperate in finding good solutions to optimisation problems. Each artificial ant,

representing a simple agent, creates candidate solutions to the problem at hand

and communicates indirectly with other artificial ants by means of pheromone. At

the same time that ants perform a global search for new solutions, the search is

guided to better regions of the search space based on the quality of solutions found

so far. The algorithm converges to good solutions as a result of the collaborative

CHAPTER 1. INTRODUCTION 4

interaction amongst the ants.

The motivation for applying ACO algorithms to classification problems is that

they perform a robust and global search, using pheromone values as a positive

feedback to converge to optimal or near-optimal solutions. Therefore, they are able

to cope better with the interaction of attributes than traditional deterministic1—

and usually greedy2—classification algorithms [94].

In the context of the classification task in data mining, ACO algorithms have

been successfully applied to different classification problems [50]. Since real-world

classification problems are generally described by both nominal (categorical or

discrete) and continuous (real-valued) attributes, classification algorithms are re-

quired to be able to cope with both nominal and continuous attributes in order to

build a classification model. However, most ACO classification algorithms have

the limitation of being able to cope with only nominal attributes. A commonly

used approach to overcome this limitation is to discretise continuous attributes

in a preprocessing step. One potential drawback of this approach is that less

information is available to the classification algorithm, since the discretisation

procedure creates a fixed number of intervals for each continuous attribute.

In this thesis, novel ACO classification algorithms tailored for hierarchical

multi-label classification are proposed to induce comprehensible classification mo-

dels in the context of protein function prediction. Firstly, an extension to ACO

classification algorithms is described in order to cope with continuous attributes

directly—i.e. without the need for a discretisation procedure in a preprocessing

step. Then, an ACO classification algorithm for the hierarchical single-label clas-

sification problem of protein function prediction is described. Finally, different

approaches to extend ACO classification algorithms to the more complex case of

hierarchical multi-label classification are described, elaborating on the ideas of the

proposed hierarchical classification ACO algorithm. All the proposed algorithms

are compared to other well-known classification algorithms in the literature by

performing experimental evaluation on real-world data sets.

Regardless of the ACO classification algorithms proposed in the literature, ex-

tending ACO classification algorithms to cope with continuous attributes directly

and to cope with the more complex case of hierarchical multi-label classification

1Deterministic algorithms are those that follow a predictable sequence of steps to produce
the same result—in this case, the same classification model—given a particular input.

2A greedy algorithm makes locally optimal choices at each step in the search for the optimal
solution, but it cannot reverse bad choices made at early steps even if previous local choices do
not lead to the optimal solution.

CHAPTER 1. INTRODUCTION 5

are unexplored research areas to the best of our knowledge.

The remainder of this chapter is organised as follows. Section 1.1 summarises

the main contributions the thesis and section 1.2 presents its organisation. Finally,

Section 1.3 is a list of the publications that have resulted from this research.

1.1 Original Contributions

A summary of the main contributions of this thesis is presented next.

• A method to cope with continuous attributes in ACO classifica-

tion algorithms: While current ACO classification algorithms do not cope

with continuous attributes directly, a method to cope with continuous at-

tributes directly is presented, taking full advantage of all continuous at-

tributes’ information and thereby not requiring a discretisation procedure

in a preprocessing step.

• ACO classification algorithms for coping with continuous attribu-

tes: New ACO classification algorithms are proposed following the method

for handling continuous attributes directly. They are compared with well-

known classification algorithms in the literature.

• An ACO classification algorithm for hierarchical single-label clas-

sification problems: A new ACO classification algorithm for hierarchical

classification, which extends the ideas of flat single-label ACO classification

algorithms to hierarchical classification problems.

• ACO classification algorithms for hierarchical multi-label classifi-

cation problems: Following the general ideas of the proposed ACO algo-

rithm for hierarchical classification, new ACO algorithms tailored for hierar-

chical multi-label classification problems are proposed, discussing the design

decisions made in each of them.

• Application of the proposed hierarchical multi-label classification

algorithms to protein function prediction problems: The proposed

ACO algorithms for hierarchical multi-label classification problems are em-

pirically evaluated in challenging data sets, comparing the results against

state-of-the-art algorithms.

CHAPTER 1. INTRODUCTION 6

1.2 Structure of the Thesis

The introductory chapter is followed by three background chapters, providing

additional information about the research areas related to the thesis.

Chapter 2 introduces the data mining background, focusing on the classification

task and common approaches for the discovery of comprehensible classifi-

cation models. The differences between the conventional (flat single-label)

classification problems and the more complex hierarchical multi-label clas-

sification problems are explained, providing a description of classification

algorithms proposed in the literature.

Chapter 3 introduces the ant colony optimisation (ACO) metaheuristic back-

ground. An overview of Ant-Miner—the first ACO classification algorithm—

and its variations proposed in the literature is presented, discussing current

limitations of ACO classification algorithms.

Chapter 4 introduces the bioinformatics background, focusing on the problem

of protein function prediction. An overview of protein databases containing

different protein information and protein functional classification schemes

publicly available is presented. Furthermore, two approaches commonly

applied to protein function prediction are discussed.

Following these background chapters, the research of the thesis is presented in

chapters 5 to 8.

Chapter 5 describes the proposed method for handling continuous attributes in

ACO classification algorithms. Furthermore, four novel ACO classification

algorithms are presented, extending the Ant-Miner algorithm to cope with

continuous attributes directly.

Chapter 6 presents the empirical evaluation of the proposed ACO classifica-

tion algorithms coping with continuous attributes, described in the previous

chapter. The proposed algorithms are compare against Ant-Miner and other

well-known classification algorithms in terms of predictive accuracy and sim-

plicity (size) of the discovered classification model.

Chapter 7 describes the proposed ACO classification algorithm for hierarchical

single-label classification problems. Furthermore, two extensions of the pro-

posed ACO algorithm for hierarchical classification tailored for the more

CHAPTER 1. INTRODUCTION 7

complex case of hierarchical multi-label classification and a baseline hierar-

chical multi-label ACO algorithm are presented.

Chapter 8 presents the empirical evaluation of the proposed algorithms de-

scribed in the previous chapter. The proposed algorithms are evaluated

in two different sets of experiments involving the prediction of protein func-

tions, and compared to other hierarchical multi-label algorithms proposed

in the literature in terms of predictive accuracy and simplicity (size) of the

discovered classification model.

Finally, the thesis is concluded in chapter 9. Furthermore, Appendix A provides

additional information about the implementation of the proposed algorithms.

Chapter 9 draws conclusions, providing a summary of the contributions and the

analysis of the results obtained, and presents future research directions.

Appendix A provides details about the implementation of the proposed algo-

rithms and their availability.

1.3 Publication List

The following list of publications has resulted from the research presented in this

thesis, comprising works published and submitted for publication in the scientific

literature.

Invited Book Chapter

• F.E.B Otero, M. Segond, A.A. Freitas, C.G. Johnson, D. Robilliard and C.

Fonlupt. An Empirical Evaluation of the Effectiveness of Different Types of

Predictor Attributes in Protein Function Prediction. Foundations of Com-

putational Intelligence: Volume 5—Function Approximation and Classifica-

tion, pages 339–357. Springer, July 2009.

Peer-Reviewed Conference Papers

• F.E.B. Otero, A.A. Freitas and C.G. Johnson. A hierarchical classification

ant colony algorithm for predicting gene ontology terms. In Proceedings of

the 7th European Conference on Evolutionary Computation, Machine Learn-

ing and Data Mining in Bioinformatics (EvoBio 2009), pages 68–79. Lec-

ture Notes in Computer Science 5483, Springer, April 2009.

CHAPTER 1. INTRODUCTION 8

• F.E.B. Otero, A.A. Freitas and C.G. Johnson. Handling continuous at-

tributes in ant colony classification algorithms. In Proceedings of the 2009

IEEE Symposium on Computational Intelligence in Data Mining (CIDM

2009), pages 225–231. IEEE Press, March 2009.

• F.E.B. Otero, A.A. Freitas and C.G. Johnson. cAnt-Miner: an ant colony

classification algorithm to cope with continuous attributes. In Proceedings

of the 6th International Conference on Ant Colony Optimization and Swarm

Intelligence (ANTS 2008), pages 48–59. Lecture Notes in Computer Science

5217, Springer, September 2008.

Journal Paper (under review)

• F.E.B Otero, A.A. Freitas and C.G. Johnson. A Hierarchical Multi-Label

Classification Ant Colony Algorithm for Protein Function Prediction. Sub-

mitted to the Memetic Computing journal—special issue on metaheuristics

for large-scale data mining.

Chapter 2

Data Mining

Over the past decades, there has been a huge increase in both collection and

storage of data. Advances in computer technologies have allowed the storage of

virtually any kind of data, from personal choices (e.g. supermarket purchases)

to scientific information (e.g. genome sequences). The scale of the stored data

has clearly overwhelmed our ability to manually analyse and extract knowledge

from it, creating a need for (semi-)automatic techniques and methods to assist

the analysis and extraction of useful knowledge, which has led to the emergence

of the field of knowledge discovery in databases (KDD) [45, 96].

Data mining is the core step of the broad process of knowledge discovery in

databases, responsible for extracting useful patterns and models from data, as

defined by Fayyad et al. [45, p. 4]:

“. . . the overall process of finding and interpreting patterns from data

is referred to as the KDD process, typically interactive and iterative,

involving repeated applications of specific data mining methods or

algorithms and the interpretation of the patterns generated by these

algorithms.”

Most data mining algorithms employ concepts and techniques mainly from the

machine learning and statistics areas, in order to discover (learn) a model from

structured data (data set)—i.e. a set of records (examples) described in terms of

fields (attributes), as illustrated in Table 2.1. There are generally two primary

‘high level’ goals of data mining: prediction and description [45]. In prediction,

the discovered model is used to predict unknown (unseen) values of an attribute

of interest, based on the values of other attributes. In description, the discovered

9

CHAPTER 2. DATA MINING 10

Table 2.1: The data set for the artificial ‘weather’ problem [97], where each row
corresponds to a different ‘saturday morning’ observation and the ‘Class’ indicates
if whether or not (‘P’ or ‘N’, respectively) it is a good day to play tennis.

No. Attributes Class

Outlook Temperature Humidity Windy

1 sunny 27 high false N

2 sunny 25 high true N

3 overcast 26 high false P

4 rain 17 high false P

5 rain 8 normal false P

6 rain 10 normal true N

7 overcast 9 normal true P

8 sunny 18 high false N

9 sunny 11 normal false P

10 rain 17 normal false P

11 sunny 18 normal true P

12 overcast 16 high true P

13 overcast 29 normal false P

14 rain 17 high true N

model is used to explain the data—e.g., show the correlation between different

attribute values.

There are three important design aspects of a data mining algorithm pertinent

to this thesis, as described next.

1. supervised vs. unsupervised learning strategy : in supervised learning, the

data mining algorithm has access to the value of an attribute of interest—

usually referred to as the class attribute—during the training (learning)

phase. For example, in the data set presented in Table 2.1, the data mining

algorithm would have access to the value of the ‘Class’ column, as well as

the value of the remaining attributes, for each example. On the other hand,

in unsupervised learning, the data mining algorithm has no information of

a class attribute. This is usually the case when trying to find correlations

between different attribute values, rather than trying to predict the value of

a particular class attribute.

CHAPTER 2. DATA MINING 11

2. comprehensible vs. ‘black box’ knowledge representation: data mining algo-

rithms may either build a comprehensible (human-readable) model or a

model whose inner workings are not interpretable—i.e., it is considered

as a ‘black box’. It should be noted that in some application domains,

the comprehensibility of the model plays an important role [32, 45, 51,

99]—e.g., in medical diagnosis the discovered knowledge needs to be val-

idated/interpreted by medical doctors.

3. nominal (discrete) vs. continuous attributes: nominal attributes are those

attributes that have a finite number of different values, where the ordering

is not relevant (categorical nominal)—e.g., the attribute ‘Outlook’ in the

data set presented on Table 2.1 is a categorical nominal attribute with three

different values {sunny, overcast, rain}—or where the ordering is relevant

(ordinal nominal)—e.g., the values {‘0’, ‘1’, ‘2’, ‘3 or more’} of a nominal at-

tribute representing the number of children in a family. On the other hand,

in data mining terminology, continuous attributes are those attributes that

have numeric values, either real or integer values, where the ordering is ob-

viously relevant—e.g., the attribute ‘Temperature’ in the data set presented

in Table 2.1 is a continuous attribute with values in the range of 8 and 29.

There are data mining algorithms that can only cope with nominal attribu-

tes, requiring the discretisation of continuous attributes’ values prior to the

application of the data mining algorithm, as will be discussed in chapter 5.

In this thesis we focus on the design of data mining algorithms that discover

comprehensible classification models, following a supervised learning strategy.

Therefore, in the remainder of this chapter we will concentrate on discussing

the classification data mining task and algorithms which fall both in the super-

vised learning and comprehensible knowledge representation categories. A wider

discussion of data mining tasks and algorithms can be found in [45, 133].

The remainder of this chapter is organised as follows. Section 2.1 presents an

overview of common data mining tasks, while section 2.2 presents an overview

of the classification task, which is the task investigated in this thesis. Section

2.3 presents a description of the more specific target task of this thesis, namely

the hierarchical classification task. A discussion of evaluation measures in the

context of the classification task is presented in section 2.4 and in the context of

the hierarchical classification task in section 2.5. Finally, section 2.6 presents the

summary of this chapter.

CHAPTER 2. DATA MINING 12

2.1 Common Data Mining Tasks

There are several different tasks derived from the area of data mining, which pose

different kinds of problems for data mining algorithms. This section presents a

brief overview of the common data mining tasks addressed in the literature. The

classification task, one of the most studied data mining tasks and the subject of

this thesis, is presented in greater detail in section 2.2. A more complete overview

of different data mining tasks can be found in [45, 133].

2.1.1 Regression

The regression task consists of finding a model—in most cases represented as a

function—that maps a given input (an example’s attributes values) to a numeric

prediction, usually involving data sets with continuous attributes. Typical regres-

sion applications can be found in forecasting (e.g. predicting the economy growth

based on market indicators) and medical diagnosis (e.g. predicting the length of

time a patient will live after undergoing a particular type of surgery).

2.1.2 Clustering

The clustering task consists of finding a finite set of categories (clusters) to describe

the data. The categories are created based on attributes’ values and, as a result,

similar examples are grouped together. Thus, a clustering algorithm aims at

grouping the examples into categories (clusters) so that the similarity of examples

in a cluster is maximised and the similarity of examples from different clusters is

minimised.

Clustering is a classical example of unsupervised learning, since there is no

predefined class attribute to be predicted. Examples of clustering applications

include the grouping of a population of consumers into market segments and

image segmentation techniques aiming at dividing an image into distinct regions

(e.g. border detection).

2.1.3 Association Rule Learning

The association rule learning task consists of finding rules that represent patterns

in the data, by identifying relationships (associations) between attributes. The

rules are not limited to find associations between a set of attributes and a class

CHAPTER 2. DATA MINING 13

attribute, since there is no class attribute predefined. Therefore, the association

rule learning task is an example of unsupervised learning.

For example, consider the data set presented in Table 2.1. Note that as orig-

inally defined, this data set has a class attribute (‘Class’ column), and therefore

it would be more naturally handled by a classification algorithm. However, it

is possible to apply an association rule learning algorithm to that data set, by

either removing the class attribute or ignoring its special status (as a prediction

target)—i.e., by considering the ‘Class’ attribute as any other attribute in the

data set. In this case, the following association rule could be discovered:

IF Temperature < 16 THEN Humidity = normal ,

which is found in 4 examples out of 14. The above rule states if an example has the

‘Temperature’ attribute value less than 16, then the ‘Humidity’ attribute value is

equal to ‘normal’. A classical example of the use association rules is from market

basket analysis, where the analysis of supermarket sales data provide insights of

which products customers tend to buy together.

2.2 The Conventional (Flat) Classification Task

The classification task consists of finding a model that is able to predict the value

of the class attribute of an example based on the values of a set of attributes.

Classification is a classical example of supervised learning, since the data mining

algorithm has access to the value of the class attribute. The main difference

between the classification and regression tasks is that in the classification task,

the class attribute to be predicted has a finite number of nominal or discrete

values, while in the regression task it has a numeric (continuous) value.

Given the data set presented in Table 2.1, the ‘Class’ column is called the class

attribute (the attribute whose value is to be predicted) and the columns marked

with ‘Attributes’ text are called predictor attributes (the attributes whose values

are used to predict the class attribute). A classification problem involves a set

of examples, where each example is described by predictor attributes’ values and

associated with a class label.1 Thus, the aim of a classification algorithm is to find

relationships between predictor and class attributes’ values. Note that in order for

a classification algorithm to successfully find relationships between predictor and

class attributes’ values, predictor attributes should represent relevant information

for the prediction of the class attribute. For instance, the column ‘No.’ in the data

1The term ‘class label’ is used to refer to a value of the class attribute.

CHAPTER 2. DATA MINING 14

set presented in Table 2.1 contains irrelevant information for prediction, since there

is a unique ‘No.’ value for each example of the data set, and such unique values

cannot be used to make generalised predictions to other examples—therefore the

column ‘No.’ is not used as a predictor attribute.

In general, the classification task involves two phases. In the first phase, the

data set being mined is randomly split into training and test sets. Then, a clas-

sification model that represents the relationships between predictor and class at-

tributes’ values is built by analysing the examples from the training set. Note that

the algorithm has access to the information of both predictor and class attributes

from the training set. In the second phase, the classification model is used to

classify—i.e. predict the value of the class attribute—the examples from the test

set. Considering that the classification model was built using only the examples

from the training set, the algorithm has no information about the class label of

the examples from the test set. The value of the class attribute of a test example

is only verified after the classification algorithm predicted its value, in order to

evaluate the created classification model. A prediction is considered correct when

the predicted value is the same as the actual value of the example; otherwise it is

considered incorrect. The more correct predictions on the test set, the better the

classification model.

One of the main goals of a classification algorithm is to build a model which

maximises the predictive accuracy—i.e. the number of correct predictions divided

by the total number of predictions—in the test set, although in some application

domains (e.g. credit approval, medical diagnosis and protein function prediction)

the comprehensibility of the model plays an important role. For instance, both

neural networks and support vector machines (SVMs) are successful methods in

term of predictive accuracy when applied to classification, but they produce clas-

sification models that are not easily interpretable.2 Since the focus of this thesis is

on the discovery of comprehensible as well as accurate classification models, two

types of classification techniques commonly employed to produce comprehensible

and accurate classification models are reviewed next.

2.2.1 Decision Tree Induction

Decision trees provide a comprehensible graphical representation of a classification

model, where the internal nodes correspond to attribute tests (decision nodes) and

2 There are techniques for extracting comprehensible models from the ones produced by
neural networks [67] and support vector machines [36].

CHAPTER 2. DATA MINING 15

leaf nodes correspond to the predicted class labels. In order to classify an example,

the tree is traversed in a top-down fashion from the root node towards a leaf node,

moving down the tree by selecting branches according to the outcome of attribute

tests represented by internal nodes until a leaf node is reached. At this point,

the class label associated with the leaf node is the class label predicted for the

example.

A decision tree for the data set presented in Table 2.1 is illustrated in Figure

2.1, adapted from [97]. Internal nodes (including the root node) are represented

by attribute names and branches originating from internal nodes correspond to

different values of the attribute in a node; each leaf node is represented by a

class label. Note that it is not required that an algorithm uses all predictor

attributes to build a decision tree, only those that are relevant for the classification

problem in hand—e.g. the attribute ‘Temperature’ was not used in the decision

tree illustrated in Figure 2.1. In this example, the first decision is made based on

the value of the attribute ‘Outlook’. If the value is equal to ‘sunny’ (left branch),

there is a need to test the value of the attribute ‘Humidity’, which will result

in predicting the class label ‘N’ if the attribute’s value equals to ‘high’ or the

class label ‘P’ if the attribute’s value equals to ‘normal’. If the value of ‘Outlook’

is equal to ‘overcast’ (center branch), a leaf node is reached and the class label

predicted is ‘P’. If the value is equal to ‘rain’ (right branch), there is a need to test

the value of the attribute ‘Windy’, which will result in predicting the class label

‘N’ if the attribute’s value equals to ‘true’ or the class label ‘P’ if the attribute’s

value equals to ‘false’.

A common approach to create decision trees automatically from data is known

as the divide-and-conquer approach, which consists of an iterative top-down pro-

cedure of selecting the best attribute to label an internal node of the tree. It starts

by selecting an attribute to represent the root of the tree. After the selection of

the first attribute, a branch for each possible value of the attribute is created

and the data set is divided into subsets according to the examples’ values of the

selected attribute. The selection procedure is then recursively applied to each

branch of the node using the corresponding subset of examples—i.e. the subset

with examples which have the attribute’s value associated with the branch—and

it stops for a given branch when all examples from the subset have the same class

label (or another stopping criterion is satisfied), creating a leaf node to represent a

class label to be predicted. The divide-and-conquer approach represents a greedy

CHAPTER 2. DATA MINING 16

sunny

Outlook

Humidity WindyP

NN PP

overcast rain

high normal true false

Figure 2.1: Example of a decision tree for the data set presented in Table 2.1,
adapted from [97]. Internal nodes (including the root node) are represented by
attribute names and branches originating from internal nodes correspond to differ-
ent values of the attribute in a node; leaf nodes are represented by different class
labels. Note that it is not required that an algorithm uses all predictor attributes
to build a decision tree, only those that are relevant for the classification problem
in hand—e.g. the attribute ‘Temperature’ was not used in this example.

strategy3 to create a decision tree, since the selection of an attribute at early it-

erations cannot be reconsidered at later iterations—i.e. the selection of the best

attribute is made locally at each iteration, without taking into consideration its

influence over the subsequent iterations.

The main aspect of creating decision trees following the divide-and-conquer

approach is how attributes are selected to compose a tree. The selection criterion

of attributes varies from algorithm to algorithm. For example, an entropy-based

criterion is used in the well-known C4.5 [99], whereas a distance-based criterion is

used in Clus [10]. More details of C4.5 and Clus algorithms are provided next.

C4.5

The C4.5 algorithm, probably the most known decision tree induction algorithm,

employs an entropy-based criterion in order to select the best attribute to create

3A greedy strategy makes locally optimal choices at each step in the search for the optimal
solution, but it cannot reverse bad choices made at early steps even if previous local choices do
not lead to the optimal solution.

CHAPTER 2. DATA MINING 17

a node. In essence, the entropy measures the (im)purity of a collection of exam-

ples relative to their values of the class attribute, where higher entropy values

correspond to more uniformly distributed examples, while lower entropy values

correspond to more homogeneous examples (more examples associated with the

same class label). Hence, at each iteration of the top-down procedure, C4.5’s

selection criterion favours attributes that minimise the entropy of the generated

subsets—i.e., the subsets created according to the examples’ value of the selected

attribute. C4.5 has been successfully applied to a wide range of classification

problems and it is usually used on evaluative comparisons of new classification

algorithms. Further details of C4.5 can be found in [99, 100].

CLUS

Following the predictive clustering trees (PCT) method [12], wherein a decision

tree is viewed as a hierarchy of clusters, Clus induces decision trees in a top-down

fashion by selecting attributes based on a distance measure. The basic idea is to

map the set of an example’s possible class labels onto vectors in an Euclidean

space, where each component of the vector indicates the presence/absence of a

particular class label. Then, attributes are selected to compose the decision tree

based on the variance of the generated subsets (clusters), relative to the exam-

ples’ class vectors—i.e., it favours the attribute whose test outcome minimises the

intra-cluster variance of the generated subsets of examples. An advantage of the

distance-based selection criterion employed in Clus, combined with the represen-

tation of examples as class vectors into an Euclidean space, is that it can also

be applied to more complex classification problems—e.g. hierarchical multi-label

classification problems4—given a suitable distance measure. Further details of

Clus can be found in [10, 13, 127].

2.2.2 Rule Induction

An alternative type of comprehensible representation to decision trees is a set/list

of IF-THEN classification rules. An IF-THEN classification rule is composed

by antecedent and consequent parts: the antecedent part contains attribute-value

conditions (terms), which represent tests of particular attributes values, while

the consequent contains the class label to be predicted by the rule. It can be

graphically represented as

4An overview of hierarchical multi-label classification is presented in subsection 2.3.2.

CHAPTER 2. DATA MINING 18

IF term1 AND term2 AND . . . AND termn THEN class label ,

where the IF part represents the antecedent and the THEN part represents the

consequent. An example that satisfies all the attribute-value conditions (terms)

of the rule antecedent is covered by the rule and, consequently, is predicted to

have the class label of the rule consequent. The quality of a classification rule

is usually calculated based on the number of correctly covered training examples

(the training examples covered that have the class label predicted by the rule)

relative to the total number of covered training examples. Therefore, the aim of

a classification rule is to cover as many training examples as possible, correctly

classifying as many training examples as possible at the same time.

Although classification rules have a similar representation to association rules,

they differ in two important ways. In association rules, the consequent of a rule

can contain any attribute, as well as more than one attribute—i.e. an association

rule can predict the value of more than one attribute and there is no predefined

class attribute. In contrast, the consequent of a classification rule can only contain

the class attribute, since a classification rule predicts the value of a (single) class

attribute.

A set of classification rules is illustrated in Figure 2.2, which represents a

classification model equivalent to (making the same predictions as) the decision

tree presented in Figure 2.1. It is important to emphasise the difference between

sets and lists of classification rules. In general, the approaches to create a set

or a list of classification rules are very similar. The difference lies in how a set

or a list is applied to classify a test example. In a set of classification rules,

there is no particular order between rules; therefore, a test example may receive

multiple candidate classifications, if it satisfies more than one rule’s antecedent.

IF Outlook = sunny AND Humidity = high THEN N

IF Outlook = sunny AND Humidity = normal THEN P

IF Outlook = overcast THEN P

IF Outlook = rain AND Windy = true THEN N

IF Outlook = rain AND Windy = false THEN P

Figure 2.2: Example of a set of classification rules representing a classification
model equivalent to the decision tree presented in Figure 2.1. An example that
satisfies the antecedent of a rule (IF part) has the class label of the consequent
predicted (THEN part).

CHAPTER 2. DATA MINING 19

Hence, there is a need for a decision criterion in order to deal with ambiguous

cases—e.g., the cases where a test example is covered by rules predicting different

class labels. A simple approach is to choose the rule with the highest quality

(classification accuracy) measured during the training phase. On the other hand,

in a list of rules5, the order in which rules are organised is relevant when classifying

test examples. Given a test example, the prediction of its class label is made by

the first rule that covers the example, following the order of the list of rules.

Therefore, the example is shown to the rule at the beginning of the list and if the

rule does not cover the test example, it is shown to the next rule and so on, until

a rule that covers the example is found.

In order to automatically create a list of rules from data, a commonly used

approach is to create one rule at a time, removing the training examples covered

by the rule, until there are no uncovered training examples. As a result, the

problem of creating a list of rules is reduced to a sequence of simpler problems

of creating a single rule. This iterative one-rule-at-a-time approach is referred to

as sequential covering, since it sequentially creates a list of rules that covers the

complete training set. Algorithm 2.1 presents the high-level pseudocode of the

sequential covering approach to create a list of rules (ordered rules). A similar

approach can be employed to create a set of rules (unordered rules), as presented

by Witten and Frank [133].

According to Algorithm 2.1, the sequential covering starts with an empty list

of rules and a training set that comprises all training examples. Then, it enters an

iterative process of creating a rule until there are no uncovered training examples

(while loop). In general, the rule created at each iteration is the best rule according

to a quality measure that can be computed given the training set. The created

rule is added to the list of rules and the training examples covered by the rule are

removed from the training set. This one-rule-at-a-time iterative process continues

until there are no training examples left in the training set, and at the end of this

process, the list of rules created is returned as the discovered rules.

There are alternative approaches to create a set/list of rules, as presented by

[48, 133]. For example, PART [47] creates a set of rules by using a combination of

a sequential covering procedure and decision tree induction; RIPPER [27] employs

a global post-processing optimisation step to adjust or replace individual rules in

order to increase the accuracy of the set of rules. More details of PART and

5There are authors that use the term ‘decision list’ to denote a list of rules (ordered rules)
[103, 133].

CHAPTER 2. DATA MINING 20

Algorithm 2.1: High-level pseudocode of the sequential covering approach
to create a list of rules.
input : training examples
output: list of rules

begin1

training set← all training examples;2

rule list← ∅;3

while |training set| > 0 do4

// creates the best rule given a quality measure5

rule← CreateRule();6

rule list← rule list + rule;7

// removes the training examples covered by the rule8

training set← training set− Covered(rule, training set);9

end10

return rule list;11

end12

RIPPER algorithms are provided next.

PART

Following a sequential covering approach, PART extracts rules from partial de-

cision trees in order to create a set of rules. In essence, to create a single rule

at each iteration of the sequential covering approach, a partial decision tree is

built using the current training examples—i.e. the training examples that have

not been covered by a previous rule—and the path from the leaf node that covers

the greatest number of examples towards the root node is used to create a rule.

Then, the rule is added to the set of rules and the remainder of the partial tree

is discarded, completing an iteration. In order to build a decision tree, PART

employs the same C4.5’s heuristic to select attributes to create the nodes of the

tree. Note that PART’s decision tree induction recursively expands the tree by

following branches in an increasing order of the entropy value associated with the

branch’s subset of examples (the subset created according to the examples’ value

of the selected attribute). The motivation for this bias is that subsets with lower

entropy are more likely to produce small subtrees, which in turn produce more

general rules. Therefore, the generated (partial) tree can contain branches that

are not explored (expanded), since branches corresponding to subsets with higher

entropy values may not be expanded. Further details of PART can be found in

[47, 133].

CHAPTER 2. DATA MINING 21

RIPPER

Implementing a rule induction procedure with a reduced error pruning strategy

[98], RIPPER sequentially creates a set of rules that is subject to a global post-

processing step. It starts by designating a fraction of the training examples as the

pruning set, which is used to remove terms from rules in order create simpler and

more accurate rules. Then, the procedure to create a set of rules can be divided

into two steps. In the first step, rules are individually created using a reduced error

pruning strategy covering all training examples (excluding the training examples

comprising the pruning set). In the second step, a global post-processing step

adjusts or replaces rules guided by a performance measure of the modified set of

rules achieved in the pruning set. The performance measure takes into account

both accuracy and simplicity (size of the rules) of the set of rules. Further details

of RIPPER can be found in [27].

2.2.3 Multi-Label Classification

As described in section 2.2, although class attributes in conventional (flat) classi-

fication problems—usually referred to as flat single-label classification problems—

can have two or more different values, each example is associated with at most

one class label. On the other hand, in flat multi-label classification problems each

example can be associated with one or more (different) class labels. Therefore, a

multi-label classification algorithm needs to be able to predict two or more class

labels for a test example. An example of a multi-label data set is presented in

Table 2.2, wherein the class attribute has three different values and the examples

are associated with one or more (up to three) different class labels.

A common approach to deal with multi-label classification problems is to

treat each class label individually, transforming the multi-label problem into a

set of single-label (binary6) classification problems. This process is divided in two

phases. First, for each class label n (n = 1, ..., L, where L is the total number of

class labels), a new data set Dn is created out of the original data set using only

the information of the class label n. This process will create L data sets, where

each data set contains all examples from the original data set. In the n-th data

set, each example contains all predictor attributes of the original data set, but

just the information of the presence/absence of the n-th class label. In the second

6A binary classification problem refers to the problem of classifying examples into two class
labels: positive and negative.

CHAPTER 2. DATA MINING 22

Table 2.2: An example of a multi-label data set, where each example is associated
with one or more different class labels. In this example, the predictor attributes
are omitted and the class attribute has three different values {sports, politics,
entertainment}.

Ex. Class

value #1 value #2 value #3

1 sports entertainment

2 sports politics

3 sports politics entertainment

4 politics

5 entertainment

6 sports

7 politics entertainment

8 entertainment

9 politics

10 sports politics

phase, a single-label (binary) classification algorithm is applied to each data set to

build a classification model for each class label n. Figure 2.3 shows the data sets

derived from the multi-label data set presented in Table 2.2, using the approach

described above. Transforming a muti-label classification problem into a set of

binary classification problems is (very) computationally expensive, given that it

requires a run of a single-label classification algorithm for each class label. It also

has the limitation of not being able to detect correlations between different class

labels—i.e., the presence of a particular class label can increase the chance of the

presence of another class label, given that they occur frequently together in the

training set.

As an alternative to transforming the multi-label classification problem into

a set of single-label (binary) classification problems, some authors have proposed

classification algorithms tailored to multi-label classification. For example, Clare

and King [25] have presented an extension to the well-known C4.5 decision tree

induction algorithm, where each leaf of the decision tree can predict more than

one class label at the same time and the entropy formula was modified to cope

with multi-label data. Other examples can be found in [106, 136].

CHAPTER 2. DATA MINING 23

Ex. Class

1 P

2 P

3 P

4 A

5 A

6 P

7 A

8 A

9 A

10 P

(a) sports

Ex. Class

1 A

2 P

3 P

4 P

5 A

6 A

7 P

8 A

9 P

10 P

(b) politics

Ex. Class

1 P

2 A

3 P

4 A

5 P

6 A

7 P

8 P

9 A

10 A

(c) entertainment

Figure 2.3: Single-label data sets derived from the multi-label data set presented
in Table 2.2: (a) represents the data set for the class label ‘sport’; (b) represents
the data set for the class label ‘politics’; (c) represents the data set for the class
label ‘entertainment’. In the column ‘Class’, the values ‘P’ and ‘A’ represent the
presence or absence of the corresponding class label, respectively.

2.3 The Hierarchical Classification Task

In the vast majority of classification problems addressed in the literature, each

example is associated with only one class label and class labels are unrelated—

i.e. there are no relationships between class labels. These kind of classification

problems are usually referred to as flat (non-hierarchical) single-label problems

and addressed by the (conventional) classification task as described in section 2.2.

However, there are more complex classification problems where the class labels

to be predicted are hierarchically structured and, at the same time, examples may

be associated with more than one class label at the same time. The former case

is referred to as hierarchical classification, wherein there are hierarchical relation-

ships (e.g. parent/child relations) between different class labels. The prediction

of a particular class label implies that all its ancestor class labels are predicted.

Therefore, it is expected that the classification algorithm take into account the

dependencies between class labels in order to make predictions consistent with

CHAPTER 2. DATA MINING 24

the hierarchy of class labels (class hierarchy). The latter case is referred to as

hierarchical multi-label classification, wherein the class labels are structured in a

hierarchy and examples may be associated with more than one different (non-

hierarchically related) class label. Therefore, the classification algorithm must be

able to predict more than one class label for each example, while satisfying the

dependencies (hierarchical relationships) between class labels.

The next subsections present details of hierarchical and hierarchical multi-

label classification problems, and discusses different techniques and algorithms

that have been proposed in the literature.

2.3.1 Basic Concepts of Hierarchical Classification

In hierarchical classification problems, the class labels are organised in a hierar-

chical structure, referred to as the class hierarchy. In general, there are two main

types of structures used to represent a class hierarchy: tree and directed acyclic

graph (DAG) structures. Figure 2.4 illustrates these structures, in two scenarios:

(a) for the case of a tree structure and (b) for the case of a DAG structure. In

Figure 2.4, the nodes represent the different class labels, while the edges represent

the hierarchical relationship (e.g. parent/child) between class labels—nodes with

child nodes are denominated internal nodes and nodes without child nodes are

denominated leaf nodes. Given the hierarchical relationships between nodes in a

class hierarchy, nodes at deeper levels of the class hierarchy represent more spe-

cific (specialised) class labels and nodes at the top of the class hierarchy represent

more generic class labels. The root of the hierarchy, representing the case where

the class label is unknown since it does not contain any knowledge about the class

label of an example, corresponds to the node labelled ‘any’.

As illustrated in Figure 2.4, the main difference between tree and DAG struc-

tures lies in the number of parents a node can have—with the exception of the

root node, which does not have any parent node. In the case of tree structures, a

node has at most one parent label. Therefore, there is a single path from a node

towards the root node. On the other hand, in the case of DAG structures, a node

can have more than one parent node. Therefore, there are multiple paths from

a node towards the root node. For this reason, DAG structures are considered a

more challenging case of hierarchical classification.

When compared to flat classification problems, hierarchical classification prob-

lems are considered more complex, having different properties that should be taken

CHAPTER 2. DATA MINING 25

2.1.1

2.32.1 2.21.21.1

21

any

(a)

D

E

G

C F

BA

any

(b)

Figure 2.4: Example of the different types of structures used to represent a class
hierarchy: (a) the class labels are organised in a tree structure, with a single
parent for each node except the root node; (b) the class labels are organised in
a directed acyclic graph (DAG) structure, with potentially multiple parents for
each node except the root node. The node ‘any’ corresponds to the root of the
class hierarchy and it represents the case where the class label of an example is
unknown.

CHAPTER 2. DATA MINING 26

into account when designing hierarchical classification algorithms [49, 117, 118,

129]. Firstly, the number of different class labels in hierarchical classification

problems tend to be much greater when compared to flat classification problems,

mainly due to the hierarchical class structure.

Secondly, the classification algorithm has to exploit the hierarchical relation-

ship between class labels in order to make predictions that satisfy hierarchical

parent-child relationships. For example, considering the tree-structured class hi-

erarchy in Figure 2.4(a), the prediction of class label ‘2.1’ indirectly implies the

prediction of parent class label ‘2’, but not the child class label ‘2.1.1’. There-

fore, a hierarchical classification algorithm should be flexible in order to classify

examples at different nodes of the class hierarchy. Note that the class hierarchy

information is also used when evaluating the predictive accuracy of the hierarchi-

cal classification algorithm—i.e., predicting the class label ‘1.1’ when the example

belongs to class label ‘2.2’ should be more penalised than predicting class label

‘2.3’ when the example belongs to class label ‘2.2’, since class label ‘2.2’ and ‘2.3’

are more similar (closer) according to the class hierarchy.

Thirdly, it is generally more difficult to discriminate between class labels at

the bottom of the hierarchy than class labels at the top of the hierarchy, since

the number of examples per node (class label) at the bottom tends to be smaller

compared to nodes at the top. Recall that nodes at the bottom of the hierarchy

represent more specific class labels, which tend to be more informative than nodes

at the top of the hierarchy. Therefore, a hierarchical classification algorithm may

have to deal with the trade-off between more reliable predictions (i.e. predic-

tions at higher levels of the class hierarchy) and more informative predictions (i.e.

predictions at lower levels of the class hierarchy).

Concerning the level (depth) of the predicted class labels, hierarchical clas-

sification problems can be divided into two groups, namely mandatory leaf-node

prediction and optional leaf-node prediction problems [49].7 In mandatory leaf-

node prediction problems, the classification algorithm is require to predict a leaf

class label (leaf node of the class hierarchy) for a test example. In optional leaf-

node prediction problems, the classification algorithm has the flexibility to decide

the class label to be predicted independently of its level (depth) in the class hier-

archy. Hence, the classification algorithm—based on a confidence measure (e.g.,

7There are authors that use the terminology virtual category tree and virtual directed acyclic

category graph for tree-structured and DAG-structured mandatory leaf-node prediction prob-
lems, respectively; category tree and directed acyclic category graph for tree-structured and
DAG-structured optional leaf-node prediction problems, respectively [117, 119].

CHAPTER 2. DATA MINING 27

predictive accuracy)—can either predict a leaf or internal class label as the most

specific class label for a given test example. Note that in both types of problems,

the classification algorithm is indirectly predicting all the ancestor class labels

(internal nodes of the class hierarchy) of the predicted class label.

There are several approaches available for dealing with hierarchical classifica-

tion problems, varying from transforming the hierarchical problem into a flat one

to more elaborate strategies that build a hierarchical classification model [49, 117].

These approaches are discussed next.

Transforming a Hierarchical Classification Problem into a Flat Classi-

fication Problem

The simplest approach to deal with a hierarchical classification problem is to

transform the problem into a flat classification problem by selecting one class

level8 or set of class labels (e.g. the set of class labels representing the leaf nodes

of the class hierarchy) to represent the class labels to be predicted. After the

transformation step, a conventional flat classification algorithm can be applied to

solve the new (flat) classification problem.

Figure 2.5 presents two examples of how a hierarchical classification problem

can be transformed into a flat classification problem. In the case of the tree-

structured class hierarchy in Figure 2.5(a), the hierarchical classification problem

could be transformed into the problem of predicting the class labels of the second

level—i.e. the set of class labels {1.1, 1.2, 2.1, 2.2, 2.3}, represented by the

shaded area in Figure 2.5(a). Note that the set of examples associated with class

label ‘2.1’ comprises examples associated with both class labels ‘2.1’ and ‘2.1.1’,

since all examples associated with class label ‘2.1.1’ are also associated with class

labels ‘2.1’ according to the class hierarchy. In the case of the DAG-structured

class hierarchy in Figure 2.5(b), the hierarchical classification problem could be

transformed into the problem of predicting the class labels that represent leaf

nodes of the hierarchy—i.e. the set of class labels {C, E, D}, represented by the

shaded area in Figure 2.5(b).

As illustrated in Figure 2.5, transforming the hierarchical classification prob-

lem into a flat classification problem avoids the complexity of dealing with a class

8The level notion in DAG structures is somewhat ambiguous, since a node (representing a
class label) has potentially multiple parents and, therefore, it may be considered in multiple
levels—e.g. class label ‘G’ in Figure 2.5(b) can be either considered in the second level, since it
is a child of class label ‘B’, or in the third level, since it is a child of class label ‘F’.

CHAPTER 2. DATA MINING 28

2.1.1

2.32.1 2.21.21.1

21

any

level 1

level 2

level 3

classifier scope

(a)

D

E

G

C F

BA

any

(b)

Figure 2.5: An example of how hierarchical classification problems can be trans-
formed into flat classification problems: in (a) the hierarchical classification prob-
lem could be transformed into the problem of predicting the class labels of the
second level of the hierarchy; in (b) the hierarchical classification problem could
be transformed into the problem of predicting the class labels that represent leaf
nodes of the hierarchy. The shaded area represents the scope of the classifier—i.e.
the class labels predicted by the classification model.

CHAPTER 2. DATA MINING 29

hierarchy. However, the class hierarchy information is lost after the transforma-

tion and each class label is regarded as a distinct value to be predicted. The

choice of the set of class labels or the level whose class labels are to be predicted

is a difficult one. Depending on the selected level or set of class labels of the class

hierarchy, this approach presents a trade-off between predicting more generic class

labels (top of the hierarchy) or more specific class labels (bottom of the hierarchy).

Moreover, a potentially large number of class labels has to be discriminated in a

single run of a flat classification algorithm, since the number of class labels tend

to be larger at deeper levels of the class hierarchy. Examples of this approach can

be found in [69, 131].

Transforming a Hierarchical Classification Problem into a Set of Binary

Classification Problems

A more elaborated approach, less extreme than transforming the hierarchical clas-

sification problem into a single flat classification problem, is to transform the

hierarchical classification problem into a set of binary (also flat) classification

problems, one per class label of the class hierarchy. Then, for each binary clas-

sification problem, a flat classification algorithm is applied in order to predict

the presence/absence (positive/negative value) of a particular class label. This

approach is similar to the approach which transforms a multi-label classification

problem into a set of binary classification problems described in subsection 2.2.3

and, consequently, shares the same limitations—as will be discussed shortly.

Given the tree-structured class hierarchy in Figure 2.4(a), the hierarchical clas-

sification problem could be transformed into a set of binary classification problems

by training a flat classification algorithm for each class label, which predicts the

presence/absence of the corresponding class label. In this case, the class hierarchy

is used to define the set of positive/negative training examples used by each clas-

sification algorithm. For example, assuming that each example is associated with

at most one class label per level, the positive training examples for the class label

‘2.1’ comprise the examples associated with class labels ‘2.1’ and ‘2.1.1’, since ex-

amples associated with class label ‘2.1.1’ are indirectly associated with class label

‘2.1’ according to the class hierarchy. Consequently, the negative training exam-

ples for the class label ‘2.1’ comprise the examples that are not associated with

class labels ‘2.1’ and ‘2.1.1’—i.e. the examples associated with class labels ‘1’,

‘1.1’, ‘1.2’, ‘2’ (as the most specific class label), ‘2.2’ and ‘2.3’. It should be noted

that not all examples associated with class label ‘2’ are considered as negative

CHAPTER 2. DATA MINING 30

examples, only those that have the class label ‘2’ as the most specific known class

label. On the other hand, examples associated with class labels ’2.1’ and ‘2.1.1’

and, consequentially, with class label ‘2’ are considered positive examples, since

their most specific known class label is ‘2.1’ and ‘2.1.1’, respectively. After build-

ing a classification model for each class label, the predictions of each (individually

trained) classification model are combined in order to classify a test example. In

this way, a test example can be assigned to more than one class label at any level

of the class hierarchy.

As discussed in [13], predicting each class label individually has several disad-

vantages. Firstly, it is slow, since a classifier needs to be trained n times (where

n is the number of class labels in the class hierarchy). Secondly, some class la-

bels could potentially have few positive examples in contrast to a much greater

number of negative examples, particularly class labels at deeper levels of the hi-

erarchy. Many classifiers have problems with imbalanced class distributions [68].

Thirdly, individual predictions can lead to inconsistent hierarchical predictions,

since parent-child relationships between class labels are not imposed automatically

during the training. However, more elaborate approaches can correct the individ-

ual predictions in order to satisfy hierarchical relationships—e.g., a Bayesian net-

work is used to correct the inconsistent predictions of a set of independent SVM

classifiers in [8]. Lastly, the discovered knowledge identifies relationships between

predictor attributes and each class label individually, rather than relationships

between predictor attributes and the class hierarchy as a whole, which could give

more insight about the data.

Top-Down Approach

Following a similar divide-and-conquer approach used to induce decision trees, the

top-down approach for hierarchical classification combines the output of several

flat classification algorithms in order to make hierarchically consistent predictions.

In general, each set of class labels at a given level is associated with a classification

algorithm, producing a classification model that predicts the presence/absence of

the corresponding class labels of the class hierarchy. Figure 2.6 illustrates two

examples of the top-down approach applied to a tree-structured class hierarchy.

In Figure 2.6(a), a flat classification algorithm(s) is(are) used to produce a clas-

sification model(s) for each set of sibling (with a common parent node) nodes at

each level of the class hierarchy; while in Figure 2.6(b), flat (binary) classification

algorithms are used to produce a classification model for each class label of the

CHAPTER 2. DATA MINING 31

class hierarchy.

As illustrated in Figure 2.6, the set of classification models are naturally or-

ganised in a hierarchical structure, referred to as the classifier hierarchy, where

the term classifier is a synonym for classification model. The process of classifying

a test example follows the classifier hierarchy in a top-down fashion, where higher

levels guide the classification towards lower levels. In essence, the new example

is first presented to the classifier(s) at the first level. Then, the next classifier(s)

is(are) chosen based on the class label predicted by the previous classifier(s), and

so on, until the test example reaches a leaf classifier or it cannot be classified into

any of the lower-level class labels—if the target problem is an optional leaf-node

prediction problem.

To illustrate this top-down classification procedure, consider the class hierarchy

(and the corresponding classifier hierarchy) illustrated in Figure 2.6(b). In this

case, a test example would be first classified by the binary classifiers ‘1’ and ‘2’.

Assuming that the test example was assigned to class label ‘2’ and not to class

label ‘1’, it would be then passed to classifiers ‘2.1’, ‘2.2’ and ‘2.3’. Note that there

is no need to show the test example to classifier ‘1.1’, since it was already rejected

(i.e. it was classified as a negative example) by classifier ‘1’. If both classifiers

‘2.1’ and ‘2.3’ reject the test example, while classifier ‘2.2’ accepts (i.e. predicts

the class label ‘2.2’), the classification of the test example is completed and the

final set of predicted class labels would be {2, 2.2}.

A variation of the top-down approach is presented in [62], where a hybrid

particle swarm optimisation/ant colony optimisation (PSO/ACO) algorithm is

used to select, out of a set of predefined candidate classification algorithms, the

best (most accurate) classification algorithm to be used at each node of the class

hierarchy in order to build the classification hierarchy. This selective top-down

approach is based on previous work presented in [107], where the selection of the

best algorithm at each node is done in a greedy fashion, rather than using the

PSO/ACO algorithm.

Although the predictions in a top-down approach are consistent with the class

hierarchy, this approach shares the same limitation of requiring multiple (indi-

vidual) runs of classification algorithms of the previous approach that transforms

the hierarchical classification problem into a set of binary classification problems.

However, in some cases the number of classifiers to be built is given by the num-

ber of internal nodes, rather than the total number of nodes (internal and leaf

CHAPTER 2. DATA MINING 32

2.1.1

2.32.1 2.21.21.1

21

any

level 1

level 2

level 3

classifier scope

(a)

2.1.1

2.32.1 2.21.21.1

21

any

level 1

level 2

level 3

(b)

Figure 2.6: Examples of the top-down approach applied to a tree-structured class
hierarchy: in (a) flat classification algorithm(s) is(are) used to produce classifica-
tion model(s) for each level of the class hierarchy; in (b) flat (binary) classification
algorithms are used to produce a classification model for each class label of the
class hierarchy. The shaded area represents the scope of the classifier—i.e. the
class labels predicted by the classification model. A classification model is re-
quired for the class label ‘2.1.1’ only in optional leaf-node prediction problems; in
the case of mandatory leaf-node prediction problems, the prediction of class label
‘2.1’ implies the prediction of class label ‘2.1.1’.

CHAPTER 2. DATA MINING 33

nodes) of the class hierarchy. In this case this approach potentially saves a con-

siderable time, compared to building a classifier for each node (class label of the

class hierarchy). In any case, this approach presents two additional drawbacks, as

follows.

Firstly, misclassifications at higher levels are propagated to lower levels, given

that when a test example is (wrongly) rejected by a given parent classifier, it

is not shown to its child classifiers. Therefore in the conventional usage of this

approach, it is not possible to recover from a misclassification at deeper levels of

the classifier hierarchy. This problem is known as the blocking problem [119, 120]

and there are strategies to reduce the blocking effect, as discussed in [120].

Secondly, the top-down classification procedure, as described above, naturally

fits a tree-structured class hierarchy, where each node of the class hierarchy has at

most a single parent node. Hence, if the parent classifier rejects the test example,

a child classifier does not receive the test example. When dealing with DAG-

structured class hierarchies, where each node has one or more parent nodes, the

top-down procedure requires a modification (extension) to cope with the multiple

parents property of a DAG structure. For example, consider the DAG-structure

class hierarchy in Figure 2.4(b), where a classifier at the node ‘C’ would have

two parent classifiers ‘A’ and ‘B’. Supposing that classifier ‘A’ accepts a test

example and classifier ‘B’ rejects it, it is not clear whether the test example should

be passed to the (child) classifier ‘C’ or not. Thus, the top-down classification

procedure needs to incorporate a ‘conflict resolution’ strategy to be able to cope

with DAG-structured hierarchies. An example of a top-down approach extended

to DAG-structured hierarchies can be found in [127], where each classifier outputs

a probability instead of a binary (accept/reject) value and a pessimistic bias of

selecting the lowest probability value across all parent nodes is used as an upper

limit for the class label probability to be assigned by its child classifiers, in order

to produce consistent predictions—i.e. if any of the parents nodes rejects the test

example by assigning a probability equal to zero, the child node would also assign

a probability equal to zero.

Big Bang Approach

The hierarchical classification approaches described so far rely on existing flat clas-

sification algorithms and employ a strategy to combine their output (predictions)

in a hierarchically meaningful manner. In order to mitigate the aforementioned

limitations of previous approaches, the big bang approach aims at building a

CHAPTER 2. DATA MINING 34

classification model using a single run of a hierarchical classification algorithm.

While implementations of hierarchical classification algorithms following the

big bang approach are intuitively more complex, since all the class labels of the

class hierarchy are taken into account at once, producing a single classification

model that is capable of predicting class labels at any level of the class hierarchy

has several advantages, as highlighted by Blockeel et al. [10]:

“. . . learning a single model for all classes has the advantage that the

total size of the predictive theory is typically smaller, and dependencies

between different classes w.r.t. membership can be taken into account

and may even be explicitated. Advantages of learning a single model

for multiple related prediction tasks have been reported several times

in the literature (see e.g. [11] for decision trees, [7, 20] for neural

networks, [129] for text classification).”

In addition, the previously-mentioned blocking problem of the top-down ap-

proach is avoided since a single classification model is employed during the clas-

sification of a test example, predicting all class labels of a test example at once

while satisfying hierarchical parent/child relationships.

An example of a hierarchical classification algorithm following the big bang

approach can be found in [26], where an extension of the well-known C4.5 decision

tree algorithm is proposed to deal with hierarchical class labels. The basic idea

of their hierarchical C4.5 extension is the modification of the entropy formula—

used to decide which attribute is chosen to compose the decision tree—to take

into account the class hierarchy, assigning lower entropy values to class labels at

higher levels of the hierarchy and higher entropy values to class labels at lower

levels of the hierarchy. Also, the leaf nodes of the decision tree were extended to

predict a vector of Boolean values, indicating the presence/absence of a particular

class label. The hierarchical C4.5 extension was applied to tree-structured class

hierarchies [26] and further to DAG-structured class hierarchies [24].

Another example is the Clus decision tree induction algorithm [10], briefly

described in Subsection 2.2.1, where the hierarchical (multi-label9) variant of the

Clus classification algorithm following a big bang approach is dubbed Clus-

HMC. Using a weighted Euclidean distance measure, which considers similarities

at higher levels of the class hierarchy more important than at lower levels, Clus-

HMC was applied to tree-structured [10, 13] and DAG-structured [127] class

9An overview of hierarchical multi-label classification is presented in Subsection 2.3.2.

CHAPTER 2. DATA MINING 35

hierarchies.

As a further example of a hierarchical (multi-label) classification algorithm

following the big bang approach, Rousu et al. [104] proposed a kernel-based algo-

rithm, representing the classification model as a variant of the Maximum Margin

Markov Network framework [122, 124], and it was applied to tree-structured class

hierarchies.

2.3.2 Hierarchical Multi-Label Classification

Hierarchical multi-label classification problems combine the characteristics (and

challenges) of both hierarchical and multi-label classification problems: (1) class

labels are organised in a hierarchical structure (e.g. a tree or DAG structure);

(2) examples may be associated with more than one (non-hierarchically related)

class labels. For example, considering the DAG-structured class hierarchy in Fig-

ure 2.4(b), an example in a hierarchical multi-label classification problem can be

associated with the set of class labels {C, E}—where class labels ‘C’ and ‘E’ are

not hierarchically related. Therefore, the set of class labels of an example may

represent multiple paths in the class hierarchy.

Intuitively, hierarchical multi-label classification presents a more complex pro-

blem for a data mining algorithm. Vens et al. [127] have presented the state-

of-the-art in this area, which includes several of the previously-mentioned clas-

sification algorithms [8, 13, 26, 104], emphasising that hierarchical multi-label

classification problems with DAG-structured class hierarchies have not been thor-

oughly studied in the literature. They proposed three decision tree inductions

algorithms for the hierarchical multi-label classification problem capable of coping

with both tree-structured and DAG-structured class hierarchies, namely Clus-

HMC, Clus-HSC and Clus-SC. These algorithms are used in the evaluation of

the hierarchical multi-label classification algorithms proposed in this thesis.

Kiritchenko et al. [73] presented an alternative approach, where the hierar-

chical classification problem is cast as a multi-label problem by expanding the

set of class labels of an example with all their ancestor class labels. As a result,

the hierarchical data set is transformed into a multi-label data set. Subsequently,

a multi-label classification algorithm—the AdaBoost.MH [106]—is applied to the

(new) multi-label data set. Although this approach requires a single run of a

classification algorithm, there is still a need for a post-processing step to resolve

inconsistencies in the class labels predicted, since the parent/child relationships

CHAPTER 2. DATA MINING 36

are not automatically imposed by the multi-label predictions.

2.4 Evaluation Measures for Classification

As discussed in section 2.2, after the classification model is built by a classification

algorithm, it is evaluated on the test (hold-out) set. There are many evaluation

measures for flat single-label classification [133]. The most widely used evaluation

measures in flat single-label classification are the predictive accuracy and the

complementary error rate, given by

Accuracy =
number of correct predictions in the test set

total number of examples in the test set
,

ErrorRate = 1−Accuracy .

(2.1)

According to Equation (2.1), the higher the number of the correct predic-

tions (out of the total number of prediction), the higher predictive accuracy and,

consequently, the lower is the error rate.

Other common evaluation measures, particularly for binary classification prob-

lems, are the information retrieval concepts of precision and recall. In the case

of binary classification problems, precision corresponds to the number of correct

positive predictions divided by the total number of positive predictions; recall

corresponds to the number of correct positive predictions divided by the total

number of positive examples. These evaluation measures can be summarised by

a contingency table (also known as confusion matrix), as presented in Figure 2.7.

The precision is given by

Precision =
TP

TP + FP
, (2.2)

where TP is the number correct predictions (the number of positive examples cor-

rectly predicted as positive) and FP is the number of negative examples wrongly

predicted as positive. The recall is given by

Recall =
TP

TP + FN
, (2.3)

where FN is the number of positive examples wrongly predicted as negative. The

TN value of the confusion matrix in Figure 2.7, which is not involved in the

calculation of precision and recall, is the number of negative examples correctly

predicted as negative.

CHAPTER 2. DATA MINING 37

true

positives

(TP)

false

negatives

(FN)

false

positives

(FP)

true

negatives

(TN)

predicted

class label

actual

class label

+

+

−

−

Figure 2.7: The contingency table, also known as confusion matrix, for binary
(flat single-label) classification problems.

2.5 Evaluation Measures for Hierarchical Clas-

sification

In the case of hierarchical and multi-label classification there is no general con-

sensus regarding which measure is more appropriate. Several researchers evaluate

hierarchical and multi-label algorithms based on flat single-label measures, such

as predictive accuracy or precision/recall values, computed individually for each

class label (e.g. [9, 26]) or each level (e.g. [62, 104]) of the class hierarchy. Ex-

ploiting the hierarchical relationships between class labels in a class hierarchy,

Sun et al. [117, 119] propose two measures tailored for hierarchical classification

problems derived from the similarity and distance between class labels, respec-

tively. The basic idea of the similarity measure is to define pairwise class labels

similarity values, either manually or computed automatically, in order to compute

the similarity between the predicted set of class labels and the actual set of class

labels for each test example. Intuitively, the prediction of a set of class labels that

is more similar to the actual set of class labels of a test example is considered

better than predicting a completely unrelated set of class labels. The distance

CHAPTER 2. DATA MINING 38

measure uses a rather simpler idea, which consists of calculating the distance be-

tween predicted and actual class labels based on the number of edges in the class

hierarchy between them—the shorter the distance (number of edges), the closer

the class labels. A distance-based evaluation measure is also used in [10], where

weights are used on the edges to give more importance to edges at higher levels of

the class hierarchy—i.e. edges at higher levels are associated with higher weights

than edges at lower levels of the class hierarchy.

A more detailed discussion about evaluation measures can be found in [125]

for multi-label classification and in [29, 49, 117, 119] for hierarchical classification.

A wider discussion on evaluation measures used in different kinds of classification

problems—e.g. flat, multi-label and hierarchical—can be found in [114]. Subsec-

tions 2.5.1 and 2.5.2 discuss the hierarchical and multi-label evaluation measures

used throughout the thesis.

2.5.1 Hierarchical Measures of Precision, Recall and F-

measure

Kiritchenko et al. [73] propose a hierarchical classification evaluation measure

that discriminates errors by both distance and depth in a class hierarchy, while

taking into account partially correct predictions. The basic idea is to extend the

notion of (flat) precision and recall in such a way that the set of predicted class

labels and the set of actual (true) class labels of a test example are taken into

account. Firstly, the hierarchical precision (hP) and hierarchical recall (hR) are

computed as

hP =

∑n

i=1
|Ai ∩ Pi|

∑n

i=1
|Pi|

hR =

∑n

i=1
|Ai ∩ Pi|

∑n

i=1
|Ai|

, (2.4)

where Ai is the set of actual (true) class labels and Pi is the set of predicted class

labels of the i-th test example, respectively, and n is the total number of test

examples. It should be noted that both Ai and Pi comprise the complete set of

actual and predicted class labels of the i-th test example according to the class

hierarchy—i.e. the most specific class labels and all their ancestor class labels

(except the root class label, since all examples trivially belong to the root class

label by default). The hierarchical precision represents the ratio of the number

of correct class labels predictions over the total number of class labels predicted

across all test examples. The hierarchical recall represents the ratio of the number

of correct class labels predictions over the total number of class labels that should

CHAPTER 2. DATA MINING 39

have been predicted across all test examples.

Then, the hierarchical precision and hierarchical recall values can be combined

into a hierarchical F-measure (hF), which is computed as

hF =
2 · hP · hR

hP + hR
. (2.5)

Considering the DAG-structured class hierarchy in Figure 2.4(b), the charac-

teristics of the evaluation measures presented in Equations (2.4) and (2.5) can be

summarised as:

1. Partially correct predictions are considered, e.g., misclassifying a test exam-

ple into class label ‘E’ when it belongs to class label ‘F’ is less penalised

than misclassifying it into class label ‘C’, since both ‘E’ and ‘F’ share the

same parent class label ‘D’, while class label ‘C’ is not hierarchically related

to ‘F’.

2. Errors at higher levels of the class hierarchy are more penalised than errors

at lower levels of the class hierarchy, e.g., misclassifying a test example

into class label ‘E’ when it belongs to class label ‘F’ is less penalised than

misclassifying a test example into class label ‘A’ when it belongs to class

label ‘B’. In the former case, the parent class label ‘D’ is correctly predicted,

while in the latter no class label is correctly predicted.

2.5.2 Precision-Recall Curves

The output of a hierarchical and multi-label classification model is not necessarily

a set of class labels for a particular test example—e.g. in the hierarchical multi-

label Clus variations proposed by Vens et al. [127], the output is represented

by a vector of class labels probabilities, wherein each component of the vector

corresponds to the probability of predicting a particular class label. In such cases,

there is a need to select a classification threshold in order to determine whether

a class label is predicted or not. If the i-th component value is above a specified

classification threshold, then the i-th class label is predicted; otherwise it is not

predicted. Instead of arbitrarily selecting a threshold value—or a set of thresh-

old values—to evaluate the (probabilistic) classification model, one can employ a

threshold-independent evaluation measure. As discussed in [127], the main mo-

tivation for employing an evaluation measure independently from a classification

threshold is that different contexts may require different threshold settings.

CHAPTER 2. DATA MINING 40

Precision-Recall (PR) curves have been frequently used in information retrieval

[82, 101], and more recently in the context of hierarchical multi-label classification

[127]. A PR curve plots a precision value against its recall value. The precision

value corresponds to the number of correct predictions divided by the total number

of predictions; the recall value corresponds to the number of correct predictions

divided by the total number of positive examples—i.e., examples belonging to the

predicted class label. One of the advantages of using PR curves as a performance

measure is the ability to cope with highly skewed data sets (i.e., data sets with

a much larger amount of negative examples in contrast to a smaller amount of

positive examples) given that the number of negative examples is not used to cal-

culate precision and recall values. This is an important characteristic concerning

hierarchical classification since, as previously mentioned, class labels at the lower

levels of the class hierarchy usually have much fewer (positive) examples. There-

fore, it is more important to measure how well a classification model predicts the

presence of a particular class label (positive examples) rather than its absence

(negative examples).

A PR curve, illustrated in Figure 2.8, is defined by a set of points, where

each point corresponds to a pair of precision and recall values for a particular

classification threshold. Given a classification threshold t, decreasing the value

of t from 1.0 to 0.0, different pairs of precision and recall values are obtained.

With higher classification threshold values, fewer class labels are predicted (lower

recall value) while the proportion of correct predictions tends to be greater (higher

precision value). As the classification threshold is decreased, more class labels are

predicted (higher recall values) while the proportion of correct predictions tends

to decrease (lower precision values). Hence, the goal in PR curves is to be on the

upper-right-corner, which corresponds to high precision and recall values.

An approach to compute the points of a PR curve, and thus calculate the

area under the curve, is described by Vens et al. [127]. This approach consists of

creating an overall PR curve by micro-averaging precision and recall values across

all class labels for a range of classification thresholds. The averaged precision

(Prec) and recall (Rec) values for a classification threshold t is given by

Prect =

∑

i TPt,i
∑

i TPt,i +
∑

i FPt,i

Rect =

∑

i TPt,i
∑

i TPt,i +
∑

i FNt,i

, (2.6)

where i ranges over all class labels (excluding the root label, since it is present in

all examples), t ranges over all different probability values found in the vector of

CHAPTER 2. DATA MINING 41

0.8

0.6

0.4

0.2

0.2 0.4 0.6 0.8
0

0 1

1

recall

p
re

ci
si

o
n

(a)

0.8

0.6

0.4

0.2

0.2 0.4 0.6 0.8
0

0 1

1

recall

p
re

ci
si

o
n

(b)

Figure 2.8: Examples of precision-recall curves: in (a) a PR curve showing that
higher precision values are generally associated with lower recall values; (b) a PR
curve illustrating the shaded area of the curve, which corresponds to the area
under the averaged PR curve measure, denoted as AU(PRC).

class labels probabilities, and TPt,i, FPt,i and FNt,i are the number of true posi-

tives, false positives and false negatives for the i-th class label at the classification

threshold t, respectively. The value of Prect corresponds to the number of correct

class labels predictions divided by the number of class labels predicted across all

class labels for the given classification threshold t—i.e., Prect is the proportion

of predicted class labels that are correct. The value of Rect corresponds to the

number of correct class labels predictions divided by the total number of class

labels should have been predicted across all class labels for the given classification

threshold t—i.e., Rect is the proportion of the available class labels that are cor-

rectly predicted. A pair of Prect and Rect values corresponds to a point of the

PR curve.

Note that points of the PR curve must be interpolated in order to approximate

the area under the curve, as discussed in [33]. After determining the points of the

PR curve, the area under the PR curve can be approximated by calculating the

trapezoidal areas created between each point. Finally, the evaluation measure is

defined as the area under the averaged PR curve, denoted as AU(PRC).

CHAPTER 2. DATA MINING 42

2.6 Summary

An overview of the data mining area, discussing the common data mining tasks

focusing on the classification task, has been presented in this chapter. It also

described two main approaches for the discovery of comprehensible classification

models in the context of flat single-label classification, providing examples of clas-

sification algorithms from the literature.

Furthermore, an overview of more complex classification problems—namely

hierarchical, multi-label and hierarchical multi-label classification problems—has

also been presented, together with a discussion of different approaches and al-

gorithms employed in each case. Finally, this chapter presented an overview of

the evaluation measures employed in the different classification problems, and the

ones used to evaluate the classification algorithms proposed in this thesis.

Chapter 3

Ant Colony Optimisation

Ant colonies, despite the lack of centralised control and the relative simplicity

of their individuals’ behaviours, are self-organised systems which can accomplish

complex tasks by having their individual ants interacting with one another and

with their environment. The intelligent behaviour of the colony emerges from the

indirect communication between the ants mediated by small modifications of the

environment.

Inspired by the behaviour of natural ant colonies, Dorigo et al. [37, 38, 39]

have defined an artificial ant colony metaheuristic that can be applied to solve

optimisation problems, called ant colony optimisation (ACO). The main idea for

the definition of ACO came from the fact that many ant species, even with limited

visual capabilities or entirely blind, are able to find the shortest path between a

food source and the nest. It was discovered that most of the communication

amongst individual ants is based on the use of a chemical, called pheromone,

that is dropped on the ground. As ants walk from a food source to the nest,

pheromone is deposited on the ground, creating in this way a pheromone trail on

the path used. Shorter paths will be traversed faster and, by consequence, will

have stronger pheromone concentration than longer paths over a given period of

time. The more pheromone a path contains, the more attractive it becomes to be

followed by other ants. Hence, as time goes by, more and more ants will prefer

the shorter path, which will have more and more pheromone. In the end, (almost)

all ants will be following a single path, which usually will represent the shortest

path between the food source and the nest. Figure 3.1 illustrates the iterative

collective process of finding the shortest path between a food source and the nest.

ACO algorithms have been successfully applied to several types of optimisation

problems [39, 40], such as scheduling and routing, and in the context of discovering

43

CHAPTER 3. ANT COLONY OPTIMISATION 44

Nest

Nest

Nest

Nest

Food

Food

Food

Food

Obstacle Obstacle

Obstacle

(a)

(b)

(c)

(d)

Figure 3.1: Ants are able to find the shorter path between a food source and
the nest: in (a) ants in a pheromone trail between nest and food; (b) an ob-
stacle interrupts the trail; (c) ants find two paths to go around the obstacle;
(d) a new pheromone trail is formed along the shorter path. Adapted from
(http://iridia.ulb.ac.be/∼mdorigo/ACO/).

classification rules in data mining [50]. In this chapter, an overview of the ACO

metaheuristic is presented, followed by a description of the Ant-Miner algorithm—

the first implementation of an ACO algorithm for the classification task of data

mining [93, 94]—and its variations proposed in the literature.

The remainder of this chapter is organised as follows. Section 3.1 presents

an overview of the ant colony optimisation (ACO) metaheuristic. The Ant-Miner

classification algorithm is described in section 3.2. Section 3.3 presents Ant-Miner

variations that have been proposed in the literature. Finally, section 3.4 presents

the summary of this chapter.

3.1 The ACO Metaheuristic

Ant colony optimisation (ACO) algorithms simulate the behaviour of real ants

using a colony of artificial ants, which cooperate in finding good solutions to

optimisation problems. Each artificial ant, representing a simple agent, creates

candidate solutions to the problem at hand and communicates indirectly with

other artificial ants by means of pheromone. At the same time that ants perform

a global search for new solutions, the search is guided to better regions of the

CHAPTER 3. ANT COLONY OPTIMISATION 45

search space based on the quality of solutions found so far. The algorithm con-

verges to good solutions as a result of the collaborative interaction amongst the

ants—an ant probabilistically chooses a path to follow based on heuristic infor-

mation and the amount of pheromone deposited by previous ants. The interactive

process of building candidate solutions and updating pheromone values allows an

ACO algorithm to converge to optimal or near-optimal solutions. Algorithm 3.1

presents a high-level pseudocode of a basic ACO algorithm, comprising four main

procedures:

1. Initialise: this procedure sets the parameters of the algorithm, and initialises

the amount of pheromone and heuristic information associated with vertices

or edges of the construction graph.

2. ConstructAntsSolutions: this procedure incrementally builds candidate so-

lutions by creating paths on the problem’s construction graph, simulating

the movement of an artificial ant. Ants traverse the problem’s construction

graph by applying a stochastic decision policy based on the use of (problem-

dependent) heuristic information and pheromone.

3. ApplyLocalSearch: this (optional) procedure is used to further refine a so-

lution created by an ant. In general, local search operators/algorithms

introduce small modifications to a solution in order to explore neighbour

solutions. Dorigo and Stützle [39] have shown that for a wide range of op-

timisation problems, the use of local search operators/algorithms can boost

the performance of ACO algorithms. A local search procedure is one ex-

ample of problem specific or centralised (optional) daemon actions [39]—i.e.

actions that cannot be performed by individual ants.

4. UpdatePheromones: this procedure updates the pheromone associated with

the components—vertices or edges—of the problem’s construction graph by

either increasing the amount of pheromone, as ants deposit pheromone on

the path used to build their candidate solutions, or decreasing the amount

of pheromone, due to the simulation of pheromone evaporation. The quality

of a candidate solution influences on how much pheromone will be deposited

on the path that represents the candidate solution.

According to Algorithm 3.1, the iterative process of building and evaluating

solutions, and updating pheromone is repeated until a termination condition is

CHAPTER 3. ANT COLONY OPTIMISATION 46

Algorithm 3.1: High-level pseudocode of a basic ACO algorithm.

begin1

Initialise();2

while termination condition not met do3

ConstructAntSolutions();4

ApplyLocalSearch(); // optional5

UpdatePheromones();6

end7

return best solution;8

end9

met. In general, the termination condition is either a maximum number of iter-

ations of the algorithm (maximum number of iterations of the while loop) or a

stagnation test, which verifies if the solutions created by the algorithm cannot be

further improved.

In the following subsections we discuss different design aspects of ACO algo-

rithms, namely the problem representation explored by ants, the decision policy

used to construct solutions and pheromone updating strategies. A more detailed

discussion can be found in [39].

3.1.1 Problem Representation

In order to allow ants to incrementally create candidate solutions, the problem

is mapped to a graph representation G, which consists of a set of vertices V =

{v1, v2, . . . , vNv
} (where Nv is the number of vertices) connected by a set of edges

E = {e12, e13, . . . , eij} (where i, j ≤ Nv and i 6= j). This graph representation

G = (V, E) is called construction graph and it represents the problem search

space—the vertices represent components of the solution to the problem and the

edges represent the connection between two different vertices.

In general, the construction graph consists of a fully connected graph—i.e.

there is an edge eij connecting every different pair of vertices vi and vj . There-

fore, an ant located at vertex vi could move to any vertex vj . Depending of the

problem considered, the construction graph may not be fully connected in order

to implement constraints to guarantee that only feasible solutions are built—e.g.

to prevent that an ant located at vertex vi move to vertex vj , the construction

graph would not contain an edge between vertices vi and vj . Figure 3.2 presents

examples of fully connected and not fully connected construction graphs.

CHAPTER 3. ANT COLONY OPTIMISATION 47

(a) (b)

Figure 3.2: Example of graph representations used in ACO: in (a) a fully con-
nected graph, where every pair of vertices is connected by an edge; (b) a not fully
connected graph, where two vertices may not be connected by an edge.

3.1.2 Building Solutions

As aforementioned, candidate solutions are created by simulating the movement

of artificial ants on the construction graph. Each ant incrementally creates a can-

didate solution by moving through neighbour vertices of the construction graph

G. Hence, a candidate solution is represented by the list of visited vertices, which

corresponds to a path in the construction graph. The vertices to be visited are cho-

sen in a stochastic decision process, where the probability of choosing a particular

neighbour vertex depends on both the problem dependent heuristic information

η and the amount of pheromone τ associated with the neighbour vertex (ηj and

τj , respectively) or the edge leading to the neighbour vertex (ηij and τij , respec-

tively). The heuristic information represents a priori information—usually fixed

during the execution of the algorithm—about the quality of the solution’s compo-

nent represented by a vertex or edge, while the pheromone varies—as a function

of the algorithm iteration t—according to how frequent (the more frequent, the

higher the pheromone) the vertex or edge has been used in previous candidate

solutions. In the following equations involving pheromone values, the reference to

the iteration t is omitted—e.g., τij(t) is simply represented as τij .

For example, an intuitive decision rule to select the next vertex to visit, which

combines both the heuristic information and the amount of pheromone associated

CHAPTER 3. ANT COLONY OPTIMISATION 48

with vertices, is to make the decision based on the vertices’ probabilities. Given an

ant currently located at vertex vi, the probability of selecting a neighbour vertex

vj is given by

Pij =
[τj]

α · [ηj]
β

|Fi|
∑

j=1

([τj]α · [ηj]β)

, ∀ j ∈ Fi , (3.1)

where τj and ηj are the pheromone value and heuristic information associated

with the j-th vertex, respectively, Fi is the feasible neighbourhood of the ant lo-

cated at vertex vi (the set of vertices that the ant can visit from vertex vi), α and

β are (user-defined) parameters used to control the influence of the pheromone

and heuristic information, respectively. According to Equation (3.1), the proba-

bility of choosing a particular neighbour vertex is higher for vertices associated

with greater amount of pheromone and heuristic information, and subsequently

increases in line with increases of the amount of pheromone. Equation (3.1) can be

straightforwardly adapted to use the pheromone value and heuristic information

associated with edges by replacing τj and ηj with τij and ηij, respectively.

3.1.3 Pheromone Trails

After all the ants have finished building the candidate solutions of an iteration, the

updating of pheromone trails in the construction graph is usually accomplished in

two steps, namely reinforcement and evaporation. The reinforcement step consists

of increasing the amount of pheromone of every vertex (or edge, in the case that

pheromone is associated with edges of the construction graph) used in a candidate

solution and it is usually only applied to the best candidate solution—according

to a problem dependent quality measure Q—of the current iteration. In general,

the pheromone increment is proportional to the quality of the candidate solution,

which in turn increases the probability that vertices or edges used in the candidate

solution will be used again by different ants. Assuming that pheromone values are

associated with vertices of the construction graph, a simple reinforcement rule is

given by

τi = τi + ∆Q(CS) , ∀ i ∈ CS , (3.2)

where ∆Q(CS) is the amount of pheromone proportional to the quality of the

candidate solution CS to be deposited and τi is the pheromone value associated

CHAPTER 3. ANT COLONY OPTIMISATION 49

with the i-th vertex of the candidate solution CS.

The evaporation step consists of lowering the pheromone value of every vertex

or edge—simulating the natural phenomenon of pheromone evaporation—in order

to avoid a quick convergence of all ants toward a suboptimal solution. Assuming

that pheromone values are associated with vertices, a simple evaporation rule is

given by

τi = (1− ρ) · τi , ∀ i ∈ G , (3.3)

where ρ ∈ (0, 1] is a parameter representing the evaporation factor, τi is the

pheromone value associated with the i-th vertex of the construction graph G.

3.2 ACO applied to Classification: Ant-Miner

The first application of ACO for the classification task in data mining was reported

by Parpinelli et al. [93, 94], where an ACO algorithm—called Ant-Miner—is pro-

posed for the discovery of classification rules. Ant-Miner aims at extracting IF-

THEN classification rules of the form IF term1 AND term2 AND ... AND termn

THEN class label from a data set. Each term in the rule is a triple (attribute,

operator, value), where operator represents a relational operator and value rep-

resents a value of the domain of attribute—e.g. (gender, =, male). The IF part

corresponds to the rule’s antecedent and the THEN part corresponds to the rule’s

consequent, which represents the class label to be predicted by the rule. An ex-

ample that satisfies the rule’s antecedent will be assigned the class label predicted

by the rule.

Since Ant-Miner can only cope with nominal (categorical or discrete) at-

tributes, the only valid relational operator is ‘=’ (equality operator). If the data

set contains continuous attributes, they are required to undergo a discretisation

method in a preprocessing step prior to running Ant-Miner.1

A high-level pseudocode of Ant-Miner is presented in Algorithm 3.2 [94]. In

summary, Ant-Miner works as follows. It starts with an empty list of rules and

iteratively (while loop) adds one rule at a time to that list while the number

of uncovered training examples is greater than a user-specified maximum value

(max uncovered examples parameter)—in a sequential covering fashion. At each

1A discretisation method aims at converting continuous attributes into nominal (discrete)
attributes by creating interval boundaries. A more detailed discussion of the discretisation
method used in Ant-Miner is presented in chapter 5.

CHAPTER 3. ANT COLONY OPTIMISATION 50

Algorithm 3.2: High-level pseudocode of the Ant-Miner algorithm [94].

input : training examples
output: discovered list of rules

begin1

training set← all training examples;2

rule list← ∅;3

while |training set| > max uncovered examples do4

τ ← initial value of pheromone;5

η ← initial value of heuristic information;6

rulebest ← ∅;7

t← 1;8

repeat9

rulecurrent ← ∅;10

for i ← 1 to colony size do11

rulei ← CreateRule();12

calculate consequent(rulei);13

Prune(rulei);14

if Q(rulei) > Q(rulecurrent) then15

rulecurrent← rulei;16

end17

end18

UpdatePheromones(rulecurrent, τ);19

if Q(rulecurrent) > Q(rulebest) then20

rulebest ← rulecurrent;21

end22

t← t + 1;23

until t ≥ max number iterations OR RuleConvergence() ;24

rule list← rule list + rulebest;25

training set← training set− Covered(rulebest, training set);26

end27

return rule list;28

end29

CHAPTER 3. ANT COLONY OPTIMISATION 51

iteration, a rule is created by an ACO procedure (repeat-until loop). In order

to create a rule, ants probabilistically select terms to be added to their current

partial rule based on the values of the amount of pheromone (τ) and a problem-

dependent heuristic information (η) associated with vertices (terms) of the con-

struction graph. Pheromone values and heuristic information are associated with

each possible term—i.e. each possible triple (attribute, operator, value). As usual

in ACO, the vertices’ heuristic information—based on an information theoretical

measure of the predictive power of the term—are fixed, while pheromone values

are iteratively updated based on the quality of the rules built by ants.

Ants keep adding a term to their partial rule until any term added to their

rule’s antecedent would make their rule cover less training examples than a user-

defined minimum value in order to avoid too specific and unreliable rules, or

until all attributes have already been used. The latter rule construction stopping

criterion is necessary because an attribute can only occur once in the antecedent

of a rule, in order to avoid inconsistencies such as ‘gender = male AND gender =

female’. Once the rule construction process has finished, the rule created by an

ant is pruned to remove irrelevant terms from the rule antecedent. Then, the

consequent of a rule is chosen to be the class label most frequent amongst the set

of training examples covered by the rule in question. Finally, pheromone trails

are updated using the best rule—based on a quality measure Q—of the current

iteration and the best-so-far rule across all iterations is stored/updated.

The process of constructing a rule is repeated until a user-specified number

of iterations has been reached (max number iterations parameter), or the best

rule of the current iteration is exactly the same as the best rule constructed by a

predefined number of previous iterations, which works as a rule convergence test.

The best rule found along this iterative process is added to the list of rules and

the covered training examples (training examples that satisfy the antecedent of

the best rule) are removed from the training set.

3.2.1 Construction Graph

Given a set of nominal attributes X = {x1, . . . , xn}, where the domain of each

nominal attribute xi is a set of values Vi = {vi1, . . . , vidi
} (where di equals to the

number of values in the domain of attribute xi), the Ant-Miner’s construction

graph consists of an almost fully connected graph. For each pair of nominal

attribute xi and value vij (where xi is the i-th nominal attribute and vij is the

CHAPTER 3. ANT COLONY OPTIMISATION 52

(age = young)

(gender = female)

(gender = male)(gender = male)

(smoke = yes)
(smoke = no)

(age = young)

(age = adult)

(age = senior)

(gender = female)

Figure 3.3: The construction graph of Ant-Miner, given a data set containing three
nominal attributes, namely ‘age’, ‘gender ’ and ‘smoke’. This example assumes
that the ‘age’ attribute was originally a continuous attribute, which was discretised
into three different intervals {young, adult, senior} in a preprocessing step.

j-th value belonging to the domain of xi), a vertex representing the term xi = vij

is added to the construction graph. Then, vertices are connected by edges to every

other vertex of the construction graph, with the restriction that there are no edges

between vertices referring to the same attribute to avoid inconsistent terms such

as ‘gender = male AND gender = female’ being included in the same rule. Figure

3.3 illustrates the construction graph of Ant-Miner, given a data set containing

three nominal attributes—namely ‘gender ’, ‘smoke’ and an originally continuous

attribute ‘age’ converted into a nominal attribute.

3.2.2 Rule Construction

In Ant-Miner, ants create rules by probabilistically selecting terms (vertices) of

the construction graph. Each ant starts with an empty rule—i.e. a rule with an

empty antecedent—and iteratively selects terms to add to its partial rule based

on their values of the amount of pheromone τ and a problem-dependent heuristic

information η.

CHAPTER 3. ANT COLONY OPTIMISATION 53

The probability of selecting a particular term xi = vij at each iteration of the

rule construction process is given by

Pxi=vij
=

τxi=vij
· ηxi=vij

n
∑

i=1

[not used(xi) ·
di
∑

j=1

(τxi=vij
· ηxi=vij

)]

, (3.4)

where not used(xi) is 1 if the attribute xi has not yet been used in the partial rule

and 0 otherwise2, τxi=vij
and ηxi=vij

are the amount of pheromone and heuristic

information associated with a neighbour term xi = vij , respectively, n is the

total number of attributes and di is the total number of values in the domain

of attribute xi. The selection of a term xi = vij is restricted to (1) those terms

that do not contain an attribute that is already used in the current partial rule,

and (2) those terms whose addition would not make the rule cover less than

a user-defined minimum number of training examples. The former restriction

prevents the creation of invalid rules, e.g. ‘IF gender = male AND . . . AND

gender = female THEN N ’, while the latter restriction prevents the creation of

rules covering a small number of training examples, which would typically be a

case of overfitting.

This iterative process of selecting a term xi = vij to be added to the current

partial rule—with probability proportional to the value Pxi=vij
given by Equation

(3.4)—is repeated until one of the following stop conditions is met:

1. all attributes have been used in the rule’s antecedent, so there are no more

terms available;

2. any term to be added to the current partial rule would make it cover less

than a user-defined minimum number of training examples.

Once an ant finishes the creation of a rule, the consequent of the rule is set

to be the majority class label amongst the examples covered (the examples that

satisfy the antecedent of the rule) by the rule—e.g., if the rule covers 20 examples,

5 examples with class label ‘N’ (negative) and 15 examples with class label ‘P’

(positive), the consequent of the rule would be set to class label ‘P’; ties are broken

at random.

2The purpose of the not used(xi) verification is to avoid the influence of terms that cannot
be used in the rule antecedent, since the attribute xi has been already used, when normalising
the probability of neighbour vertices.

CHAPTER 3. ANT COLONY OPTIMISATION 54

3.2.3 Heuristic Information

The heuristic information associated with every vertex of the construction graph

corresponds to an estimate of the quality of the term represented by the vertex,

with respect to its capacity of improving the predictive accuracy of a rule. It is

based on information theory [30], more precisely, it involves a measure of entropy

associated with each term. The entropy of each term xi = vij is computed as

entropy(xi = vij ; S) =
k
∑

c=1

[−p(c |Sxi=vij
) · log2 p(c |Sxi=vij

)] , (3.5)

where p(c |Sxi=vij
) is the empirical probability of observing class label c condi-

tional on having observed xi = vij (attribute xi having the value vij) in the set

of training examples S and k is the total number of class labels. Note that the

entropy is a measure of the (im)purity in a collection of examples, hence higher

entropy values correspond to more uniformly distributed examples (examples as-

sociated with different class labels) and smaller predictive power for the term

represented by the vertex in question; lower entropy values correspond to more

homogeneous examples (more examples associated with the same class label) and

higher predictive power for the term represented by the vertex in question.

Since the entropy value of a term varies in the range 0 ≤ entropy(xi = vij; S) ≤

log2 k and lower entropy values are preferred over higher entropy values, the heuris-

tic information of the term xi = vij corresponds to the normalised entropy value,

given by

ηxi=vij
=

log2 k − entropy(xi = vij ; S)
n
∑

i=1

(not used(xi) ·
di
∑

j=1

[log2 k − entropy(xi = vij ; S)])

, (3.6)

where not used(xi) is 1 if the attribute xi has not yet been used in the partial rule

and 0 otherwise, n is the total number of attributes and di is the total number

of values in the domain of attribute xi. According to Equation (3.6), the lower

the entropy of term xi = vij , the higher its heuristic information, which in turn

increases its probability of being selected by an ant. The heuristic information

of every term is computed in an initialisation step—rather than every time the

heuristic information is used to compute the probability of selecting a vertex—to

save computational time, since the heuristic information of a term is fixed during

the rule construction process.

CHAPTER 3. ANT COLONY OPTIMISATION 55

3.2.4 Rule Evaluation

After the creation of a rule and the assignment of its consequent, a quality mea-

surement is associated with the rule. The quality of a rule is used to determine the

best rule of an iteration, the best-so-far rule across all iterations and the amount

of pheromone to be deposited in the trail represented by the rule.

The quality function Q used in Ant-Miner, which corresponds to the measure

of sensitivity · specificity, is given by

Q =
TP

TP + FN
·

TN

FP + TN
, (3.7)

where TP is the number of examples covered by the rule that have the class label

predicted by the rule, FN is the number of examples not covered by the rule that

have the class label predicted by the rule, TN is the number of examples not

covered by the rule that do not have the class label predicted by the rule and FP

is the number of examples covered by the rule that do not have the class predicted

by the rule. According to Equation (3.7), the quality value of a rule is in the range

of 0 ≤ Q ≤ 1, and the higher the value the better is the quality.

3.2.5 Rule Pruning

The rules created by ants undergo a pruning procedure, which aims at improving

the rule quality and generalisation behaviour by removing irrelevant terms from

their antecedent. The rule pruning is an iterative procedure consisting of removing

one term—the term that leads to the higher improvement of the rule in terms of

quality—at a time until only one term is left in the antecedent of the rule or

the removal of any of the remaining terms leads to a decrease in the quality of

the rule. In ACO terminology, Ant-Miner’s rule pruning procedure characterises

a local search operator. Algorithm 3.3 presents a high-level pseudocode of Ant-

Miner’s rule pruning procedure.

Let rule be the rule undergoing the pruning, which is considered the best rule

(rulebest) at the beginning of the pruning procedure. At each iteration of the

for loop in Algorithm 3.3, a candidate rule rulei is created by removing the i-th

term of the antecedent of best rule found so far rulebest. Since the removal of

a term can lead the rule to cover a greater number of examples, the consequent

of the rule is set to the majority class label of the (extended) set of covered

examples, as described in Subsection 3.2.2. If the quality of rulei is higher than

the quality of the best rule of the current iteration (rulecurrent), rulei substitutes

CHAPTER 3. ANT COLONY OPTIMISATION 56

Algorithm 3.3: High-level pseudocode of Ant-Miner’s rule pruning proce-
dure.
input : rule to be pruned
output: the pruned rule

begin1

rulebest ← rule;2

repeat3

rulecurrent← rulebest;4

for i ← 1 to |rulebest.antecedent| do5

rulei ← RemoveTerm(i, rulebest.antecedent);6

if Q(rulei) > Q(rulecurrent) then7

rulecurrent← rulei;8

end9

end10

if Q(rulecurrent) > Q(rulebest) then11

rulebest ← rulecurrent;12

end13

until Q(rulecurrent) < Q(rulebest) OR |rulebest.antecedent| = 1 ;14

return rulebest;15

end16

rulecurrent. After evaluating the individual removal of every term of the antecedent

of rulebest, which comprises the evaluation of |rulebest.antecedent| rules (where

|rulebest.antecedent| corresponds to the number of terms in the antecedent of

the rule), if the quality of the best rule of the current iteration (rulecurrent) is

higher than the best rule found so far (rulebest), rulecurrent substitutes rulebest,

completing an iteration of the pruning procedure (repeat loop). This procedure is

repeated until rulebest has just one term left on its antecedent or the best rule of

the current iteration does not improve the quality over the best so far rule—i.e.

Q(rulecurrent) < Q(rulebest).

3.2.6 Pheromone Trails

Pheromone Initialisation

At the beginning of each iteration of the while loop in Algorithm 3.2—i.e. the

beginning of an iteration of Ant-Miner’s sequential covering approach—the initial

pheromone associated with every vertex is set to be inversely proportional to the

number of vertices of the construction graph, given by

CHAPTER 3. ANT COLONY OPTIMISATION 57

τxi=vij
=

1

|V |
, (3.8)

where |V | is the total number of vertices of the construction graph. According

to Equation (3.8), all vertices of the construction graph have the same amount of

pheromone at the beginning of the search for a rule.

Pheromone Reinforcement

In order to reinforce the trail representing the best rule of the current iteration of

the repeat loop in Algorithm 3.2 (denoted as rulecurrent), the pheromone of each

term occurring in the antecedent of the rule is increased based on the quality of

the rule. Given the best rule of the current iteration, the pheromone increment

for used terms is given by

τxi=vij
= τxi=vij

+[τxi=vij
·Q(rulecurrent)] , ∀ xi = vij ∈ rulecurrent.antecedent ,

(3.9)

where rulecurrent is the best rule of the current iteration and Q(rulecurrent) corre-

sponds to its quality. Recall that the quality value of a rule is within the range

0 ≤ Q(rulecurrent) ≤ 1, and therefore the pheromone increment given by Equation

(3.9) to each vertex representing a term in the antecedent of the rule is propor-

tional to the quality of the rule and the current amount of pheromone of the term

xi = vij in question.

Pheromone Evaporation

The pheromone evaporation in Ant-Miner is achieved by normalising the pheromo-

ne of each vertex of the construction graph—i.e. dividing the pheromone of each

vertex by the sum of pheromone over all vertices of the construction graph. Hence,

the pheromone of vertices that were not reinforced are implicitly lowered as a result

of the normalisation. This normalisation is given by

τxi=vij
=

τxi=vij

n
∑

i=1

di
∑

j=1

τxi=vij

, ∀ xi = vij , (3.10)

where n is the total number of attributes and di is the total number of values in the

domain of attribute xi. Note that the normalisation does not affect the increment

CHAPTER 3. ANT COLONY OPTIMISATION 58

of pheromone of used vertices due to the application of Equation (3.9)—i.e. the

pheromone of used vertices increases relatively to decreases of the pheromone of

unused vertices.

3.2.7 Classifying New Examples

After the creation of the list of rules is completed (end of Algorithm 3.2), a

new (unseen test) example can be classified by applying the rules in a sequential

order—i.e. in the order that they were created. Following the sequential order of

the rules, the first rule that covers the new example (the first rule for which the

new example satisfies the antecedent of the rule) classifies the new example into

the class label specified by the rule’s consequent.

In the case where no rule covers the new example, a default rule (a rule with

an empty antecedent) predicting the majority class label of all uncovered training

examples is used to classify the new example. Since the default rule has an empty

antecedent, it covers any new example and therefore it is used as the last resource

to classify new examples.

3.3 Ant-Miner Extensions

Following the introduction of the Ant-Miner classification algorithm, several vari-

ations were proposed in the literature [50]. They involve different rule pruning

and pheromone update procedures, new rule quality measures and heuristic infor-

mation, and the application to more complex classification problems—e.g., discov-

ering fuzzy classification rules and discovering rules for multi-label classification

problems—amongst others.

Chan and Freitas [22] have proposed a new rule pruning procedure for Ant-

Miner. They have observed that the original Ant-Miner’s rule pruning procedure

computational time increases significantly with a large increase in the number of

attributes, which affects the scalability of the algorithm when dealing with larger

(in terms of number of attributes) data sets. To mitigate this limitation, it was

proposed a hybrid rule pruning procedure. The basic idea is to select a subset of

the terms in the antecedent of a rule, based on the information gain [30, 133] of the

terms, and subsequently apply the original Ant-Miner’s rule pruning procedure in

the reduced set of terms. Experiments with the hybrid pruning procedure have led

to the discovery of simpler (shorter) rules and improved the computational time

CHAPTER 3. ANT COLONY OPTIMISATION 59

in datasets with a large number of attributes, though in some cases at the cost

of decreasing the predictive accuracy when compared to the original Ant-Miner’s

rule pruning procedure.

Galea and Shen [53] presented an ACO approach for the induction of clas-

sification fuzzy rules, named FRANTIC-SRL (Fuzzy Rules from ANT-Inspired

Computation – Simultaneous Rule Learning). FRANTIC-SRL runs several ACO

algorithm instances in parallel, where each instance generates rules for a particu-

lar class label—i.e. the class label that a rule predicts is fixed in advance for each

ACO instance. By having multiple ACO instances, separate construction graphs,

pheromone matrices and heuristic information are maintained for each class label.

This approach differs from Ant-Miner, where different ants in the same colony can

predict different class labels and there is a single pheromone matrix updated by

the ACO algorithm, containing the amount of pheromone for terms considering

their ability in discriminating amongst all class labels as a whole.

Swaminathan [121] proposed an extension to Ant-Miner, which enables inter-

val conditions (terms using the ‘<’ and ‘>’ relational operators) in the antecedent

of rules. While it still uses a discretisation method to define discrete intervals for

continuous attributes in a preprocessing step, the continuous values are not re-

placed in the data set—i.e. although the algorithm can handle continuous values,

the discrete intervals of a continuous attribute are fixed during its execution. For

each discrete interval of a continuous attribute, a vertex (e.g. age < 21) is added

to the construction graph and the amount of pheromone associated to the ver-

tex is calculated using a mixed kernel probability density function. Experiments

comparing the proposed extension and the original Ant-Miner have shown that

overall both algorithms achieved similar results in terms of predictive accuracy.

This suggests that by having discrete intervals fixed during the execution of the

algorithm, the ability of handling continuous values cannot be fully explored and

consequently, it does not provide a clear advantage over replacing the continu-

ous values for discrete intervals as in the original Ant-Miner. Another drawback

of the proposed extension is that the complexity of the construction graph can

highly increase when applied to data sets with a large number of continuous at-

tributes, each of them containing a large number of discrete intervals, since for

each continuous attribute’s discrete interval, a vertex is added to the construction

graph.

Martens et al. [83] have introduced a new ant colony classification algorithm,

named AntMiner+, based on Ant-Miner. It differs from the original Ant-Miner

CHAPTER 3. ANT COLONY OPTIMISATION 60

implementation in several aspects. Firstly, the complexity of the construction

graph is reduced, in term of the number of edges connecting vertices, by defining

it as a direct acyclic graph (DAG). For each nominal attribute xi, a vertex group

consisting of vertices representing the terms xi = vij (where vij is the j-th value in

the domain of the attribute xi), in addition to a dummy vertex which represents

the absence of attribute xi, is created. Then, vertices groups are sequentially

connected—i.e., the vertex group of attribute xi is fully connected to the vertex

group of attribute xj (where i < j)—to form a DAG, where their order is not

relevant.

Secondly, it makes a distinction between nominal attributes with categorical

and ordered values. Categorical nominal attributes are those that have unordered

nominal values (e.g. the gender attribute has unordered values ‘male’ and ‘fe-

male’), while ordinal nominal attributes are those nominal attributes whose values

are ordered (e.g. ‘0’, ‘1’, ‘2’, ‘3’ and ‘4 or more’, which may be the domain of an

attribute that represents the number of children in a family). Instead of creating

a vertex group for an ordinal nominal attribute xi, AntMiner+ creates two groups

of vertices that represent the interval of values to be chosen by the ants. The

first group represents the lower bound of the interval and takes xi ≥ vij form, and

the second group represents the upper bound of the interval and takes xi ≤ vij

form (where vij is the j-th value in the domain of the attribute xi). Additionally,

a dummy vertex representing the absence of a lower or upper bound interval is

added to each of the vertices groups.

Thirdly, the class label to be predicted and weight parameters (α and β) used

to control the influence of the pheromone and heuristic information, respectively,

are incorporated in the construction graph as vertices. Therefore, before an ant

starts selecting vertices (terms) to create a rule, it first selects the class label and

weight parameters using the same stochastic decision process—based on heuristic

information and pheromone—applied to vertices representing terms. Since the

class label to be predicted by the rule currently being built is known before an ant

starts creating its antecedent, AntMiner+ also employs a class-specific heuristic

information.

Lastly, it employs different pheromone initialisation and update procedures

based on the MAX -MIN ant system (MMAS) [115, 116]. In essence, in the

MAX -MIN ant system, the amount of pheromone is limited to an interval

[τmin, τmax] in order to avoid a quick convergence to a local-optimal solution.

The initial pheromone is set at τmax for every vertex (or edge, in the case that

CHAPTER 3. ANT COLONY OPTIMISATION 61

pheromone is associated with edges) of the construction graph, and it is gradu-

ally decreased towards τmin for those vertices (or edges) that are not used in the

candidate solutions due to the simulation of pheromone evaporation.

Experiments comparing AntMiner+ and Ant-Miner in terms of predictive

accuracy have shown that AntMiner+ performs significantly better than Ant-

Miner. Although AntMiner+ has the same limitation of only being able to cope

with nominal attributes as the original Ant-Miner, the authors have empirically

demonstrated that the incorporation of interval conditions (for ordinal nominal

attributes) was relevant for increasing the predictive accuracy of the algorithm.

Chan and Freitas [23] proposed an Ant-Miner extension, named MuLAM

(Multi-Label Ant-Miner), for the multi-label classification task. In essence, Mu-

LAM differs from the original Ant-Miner in three aspects. Firstly, a classification

rule can predict one or more class labels, as in multi-label classification problems

an example can be associated to more than one class label simultaneously. After

creating the antecedent of a rule, the class labels to be predicted by the rule are

chosen based on a confidence measure—i.e. for each class label, if the confidence

is higher than a certain threshold, the class label is added to the consequent of

the rule. During the MuLAM’s rule pruning procedure, instead of allowing the

consequent to be modified during pruning as in Ant-Miner, the consequent of the

rule is kept fixed. Secondly, at each iteration, each ant creates a set of rules in-

stead of a single rule as in the original Ant-Miner. The set of rules contains rules

that predict all the different class labels. Thirdly, it uses a pheromone matrix for

each class label and pheromone updates only occur on the matrix of class labels

that occur in the consequent of a rule predicting that class label. The amount of

pheromone deposited on the terms used in a rule is based on the quality of the

rule, as in Ant-Miner.

Although the result of experiments comparing MuLAM and Ant-Miner3 have

shown no significant differences in terms of predictive accuracy, MuLAM has the

advantage of discovering rules that can predict more than one class label using

the same rule antecedent. Hence, the correlations between difference class labels

can be made explicit.

Despite the Ant-Miner variations proposed in the literature, to the best of

our knowledge, incorporating continuous attributes into Ant-Miner’s rule con-

struction process ‘on-the-fly’—instead of requiring a discretisation method in a

3Since Ant-Miner is a single-label classification algorithm, multiple runs are required to
individually discover rules for each class label.

CHAPTER 3. ANT COLONY OPTIMISATION 62

preprocessing step—and extending Ant-Miner to cope with hierarchical classifica-

tion problems are areas of research that have not yet been explored. We believe

that extending Ant-Miner to cope with continuous attributes ‘on-the-fly’ would

enhance its predictive accuracy given that the use of a discretisation method in a

preprocessing step can lead to loss of predictive power, since less information is

available to the classification algorithm. An extension of Ant-Miner, which has

been successfully applied to flat single-label classification problems, to cope with

hierarchical classification scenarios would enable its application to more complex

types of classification problems, e.g. protein function prediction using hierarchi-

cal functional classification schemes4—which is a major type of bioinformatics

problem addressed in this thesis.

It should be noted that while ACO was originally proposed to solve combina-

torial (discrete) optimisation problems, where each variable has a finite number

of values, adaptations of ACO to continuous and mixed (with both continuous

and discrete variables) optimisation problems have been proposed in the litera-

ture [40]. For example, Socha and Dorigo [113] have presented an extension of

ACO applied to continuous optimisation of numeric functions; Blum and Socha

[14] applied an extended ACO to the problem of optimising the (numeric) weights

of neural networks; Hong et al. [64] proposed an extended ACO to optimise (nu-

meric) parameters in support vector regression (SVR); further examples can be

found in [112, 126]. However, we emphasize that the domain of application of these

ACO extensions to continuous optimisation problems proposed in the literature is

very different from the problem of discovering classification rules in data mining.

Therefore, these approaches cannot be directly applied to discover classification

rules from data sets with nominal and continuous attributes.

3.4 Summary

This chapter presented an overview of the ant colony optimisation (ACO) metahe-

uristic—a metaheuristic inspired by the behaviour of natural ant colonies. The

basic idea of ACO is the use a colony of artificial ants (simple agents) to create

solutions to optimisation problems in a collaborative fashion, based on indirect

communication by means of pheromone.

Furthermore, it presented a description of Ant-Miner, the first implementation

of an ACO algorithm for the classification task in data mining, followed by a

4An overview of the problem of protein function prediction is presented in section 4.4.

CHAPTER 3. ANT COLONY OPTIMISATION 63

discussion of Ant-Miner variations proposed in the literature. Regardless of the

proposed variations, there are two additional unexplored research areas: (1) an

extension of Ant-Miner to cope with continuous attributes ‘on-the-fly’—during the

rule construction process—without the need for the use of a discretisation method

in a preprocessing step; (2) an extension of Ant-Miner to cope with hierarchical

classification problems. New extensions of Ant-Miner to deal with these two types

of problem are presented in the following chapters.

Chapter 4

Bioinformatics

Bioinformatics became a very popular research area after the fully sequenced

genomes of numerous organisms enabled biologists to map, sequence and analyse

individual genes and their protein products. It comprises various different lines

of study, e.g. the identification of regions of similarity in sequences of DNA,

RNA or protein, the prediction of the three-dimensional structure of a protein,

the identification of interactions between proteins and the prediction of proteins

functions.

In essence, bioinformatics refers to the research area that combines computa-

tional and statistical methods to manage and analyse biological data, as defined

by Higgs and Attwood [60, p. 6]:

“Bioinformatics is:

(i) the development of computational methods for studying the struc-

ture, function, and evolution of genes, proteins, and whole genomes;

(ii) the development of methods for the management and analysis of

biological information arising from genomics and high-throughput ex-

periments.”

The recent exponential increase in the number of proteins being identified and

sequenced using high-throughput experimental approaches has lead to a growth

in the number of uncharacterised (with unknown function) proteins. Determining

protein functions is a central goal of bioinformatics, and it is crucial to improve

biological knowledge, diagnosis and treatment of diseases. While biological exper-

iments are the ultimate methods to determine the function of proteins, it is not

possible to perform a functional assay for every uncharacterised protein. This is

64

CHAPTER 4. BIOINFORMATICS 65

due to time and financial constraints, together with the complex nature of these

experiments. Hence, a need for using computational methods to assist the anno-

tation of large amounts of protein data appeared. In particular, this presents a

significant opportunity to apply data mining techniques to analyse and extract

knowledge from biological databases.

Proteins are large and complex molecules, assembled from amino acids ar-

ranged in a linear sequence using information encoded in genes. Proteins perform

most of the functions within a cell—e.g., almost all biological processes, including

metabolism, need enzymes to catalyse chemical reactions in order to occur; trans-

port proteins are involved in the movement of small molecules through membranes.

Since proteins do almost all the work in a cell and even make up the majority of

cellular structures, understanding the roles of proteins is the key to understanding

how the whole cell operates.

Biological databases accumulate vast amounts of protein data, from protein

sequences to three-dimensional structures. To facilitate both collaboration and

standardisation across different sources, biological databases employ controlled

vocabularies (ontologies) to annotate protein sequences and features. Ontologies

such as the Enzyme Commission (EC) [130], Gene Ontology [4] and FunCat [105]

are organised in a hierarchical structure, allowing the annotation of proteins in

terms of their functions at different levels of detail. As a result, the problem of

predicting protein functions can be cast as a hierarchical classification problem,

where different protein features—e.g., biochemical properties of the amino acids in

the protein sequence—are used as predictor attributes and the different functions

that a protein can perform are used as class labels to be predicted.

This chapter describes the problem of predicting protein functions, discussing

how the protein information available in biological databases can be used to define

the target problem as a hierarchical classification problem, followed by a review

of current approaches for protein function prediction. Additionally, it presents

an overview of the main biological databases and protein functional classification

schemes.

The remainder of this chapter is organised as follows. Section 4.1 presents a bi-

ological background about proteins. An overview of the main biological databases

containing protein information and protein functional classification schemes is

presented in sections 4.2 and 4.3, respectively. In section 4.4, the problem of

predicting protein functions and current approaches found in the literature are

discussed. Finally, section 4.5 presents the summary of this chapter.

CHAPTER 4. BIOINFORMATICS 66

4.1 Biological Background

The genetic information of living organisms is stored in DNA (deoxyribonucleic

acid) molecules. DNA is a long molecule composed by a sequence of deoxyribonu-

cleic bases, which are linked together by a backbone composed by deoxyribose

sugar and phosphate groups. There are four possible nucleotide bases that are

found in DNA: adenine (A), guanine (G), cytosine (C) and thymine (T). The

DNA molecule structure is a double stranded helix, which is dependent on pairing

between the nucleotide bases—adenine is able to pair with thymine, while gua-

nine is able to pair with cytosine. Consequently, the strands in the double helix

complement each other in an anti-parallel fashion.

Segments of nucleotide sequences—corresponding to particular genes—in DNA

molecules specify amino acid sequences in protein molecules, defining a relation-

ship between DNA and protein molecules. This relationship is part of the central

dogma of molecular biology [2]. The central dogma states that the information

flows from DNA to RNA (ribonucleic acid) to protein. In summary, this is a

two-step process, as illustrated in Figure 4.1. In the first step, called transcrip-

tion, the genetic information stored in a segment of the DNA is used to create a

mRNA (messenger RNA) molecule. RNA molecules are single-stranded molecules

composed by a sequence of four-bases similarly to DNA molecules, with the ex-

ception that uracil (U) replaces thymine (T), and the bases are linked together

by a backbone composed by ribose sugar.

In the second step, called translation, the mRNA molecule is used as a template

in the synthesis of a protein molecule. A series of three nucleotides in the mRNA

corresponds to a codon, which in turn corresponds to either a specific amino

acid or a signal site to indicate the start/stop of the translation process. There

are twenty different amino acids and sixty-four possible codons (four different

bases arranged in triples), therefore several codons correspond to the same amino

acid. The translation is a complex process carried out by the ribosome, which

itself is composed by RNA and proteins molecules, representing a multimolecular

‘machine’. For more details about this process refer to [2, 60].

4.1.1 Proteins

Proteins are the building blocks from which every cell in an organism is built

[2]. A protein molecule is assembled from a long sequence of amino acids using

information encoded in genes (segments of the DNA sequence). Each protein

CHAPTER 4. BIOINFORMATICS 67

A

A

A

A

C

C

C

C

C

G

G

G

G

A

A

A

A

C

C

C

G

G

G

T

T

T

T

(a) transcription

Thr (T)

Glu (E)

Arg (R)

(b) translation

DNA mRNA Protein

Figure 4.1: The central dogma’s information flow: from DNA to RNA to protein:
(a) in the transcription step, the genetic information stored in a segment of the
DNA is used to create a mRNA (messenger RNA) molecule; (b) in the translation
step, the mRNA molecule is used as a template in the synthesis of a protein
molecule.

has its own unique sequence of amino acids, which is specified by the nucleotide

sequence of the gene encoding the protein. There are twenty different types of

amino acids—each with different biochemical properties—that can be found in a

protein sequence. An amino acid is composed by a central carbon (C)—called the

α carbon—attached to a hydrogen (H), an amino group (NH2), a carboxyl group

(COOH) and a variable side chain (R). There are twenty distinct side chains,

resulting in the twenty different types of amino acids. The amino acids are linked

together by a peptide bond between their amino and carboxyl groups, constituting

the protein’s backbone—illustrated in Figure 4.2. In general, proteins are 200-400

amino acids long.

The amino acid sequence of a protein is also known as the protein’s primary

structure. It determines the protein’s three-dimensional structure (the shape of

the protein) and function. Subsequently bondings between the amino and car-

boxyl groups from different amino acids allow the linear sequence to fold into

structures known as alpha helices and beta sheets. Alpha helices (α-helices) are

formed when the backbone twists into right-handed helices. Beta sheets (β-sheets)

are formed when the backbone folds back on itself in either a parallel or anti-

parallel fashion. These structures constitute the protein’s secondary structure.

CHAPTER 4. BIOINFORMATICS 68

OH

O

C C

R

H

NH2

(a)

OH

O

C C

R

H

N

O

C C

R

H

NH2

H

(b)

Figure 4.2: In (a) basic amino acid structure; (b) the peptide bond between two
amino acids (thick line). Amino acids are linked together by a peptide bond
between their amino and carboxyl groups, constituting the protein’s backbone.
This process is repeated many times for polypeptide proteins.

The three-dimensional shape of the whole protein is known as the protein’s ter-

tiary structure, which is defined by the spatial relationship between the secondary

structures. The three-dimensional shape of a protein is crucial for its function,

hence discovering its tertiary structure can provide important information about

how the protein performs its function. Proteins are also capable of assembly into

complex structures, known as the protein’s quaternary structure, as a result of

interaction between them. There are some proteins that can only be functional

when associated in protein complexes [79]. Figure 4.3 illustrates the four levels of

organisation in the structure of a protein.

The complexity of determining the different levels of protein structures in-

creases from primary towards quaternary structures. For instance, the primary

structure can be determined by simply translating the DNA sequence of the gene

that specifies the protein to an amino acid sequence, while the tertiary structure

can be determined using complex X-ray crystallography experiments. Conse-

quently, many more proteins sequences (primary structures) are known than pro-

teins three-dimensional structures (tertiary structures). The process from which a

protein in one-dimensional state (primary structure) turns to a three-dimensional

state (tertiary structure) is called folding. While folding occurs spontaneously

within a cell, its inherent details are not known. For many proteins, their ability

to fold into a proper three-dimensional structure is essential to their function—

e.g., antibodies through their surface’s binding sites are able to attach to viruses

or bacteria in order to destroy them.

CHAPTER 4. BIOINFORMATICS 69

(a) primary structure

G

H

R

F

T

K

E

N

V

R

(b) secondary structure

β sheet α helix

(c) tertiary structure (d) quaternary structure

Figure 4.3: The four levels of organisation in the structure of a protein: (a) the
sequence of amino acids is known as the primary structure; (b) common folding
patterns β-sheet and α-helix constitute the secondary structure; (c) the full three-
dimensional structure is known as the tertiary structure; (d) the assembly of
complex structures by joining multiple polypeptide chains together is known as
the quaternary structure.

CHAPTER 4. BIOINFORMATICS 70

4.2 Protein Databases

Protein information is widely available in biological databases. Some databases are

dedicated to a particular aspect, such as structural information or protein inter-

action data, while others provide broad information with links (cross-references)

to specialised databases. Most databases provide a wide range of tools and online

search interfaces to assist the analysis of their data. Table 4.1 presents a summary

of biological databases publicly available online.

In general, database entries comprise experimental results combined with an-

notations. Annotations provide valuable information about a protein, includ-

ing simple information derived from proteins’ primary structures (e.g. molecular

weight and amino acid sequence patterns), nature of the experiment and organ-

ism where the protein is found. They can be determined either by computational

methods or manually, where the latter is more preferable for its reliability. For ex-

ample, UniProt (Universal Protein Resource) Knowledgebase of protein sequences

contains two sections: Swiss-Prot and TrEMBL. Swiss-Prot is the richest anno-

tated protein sequence section, containing manually annotated/curated entries,

with extensive database cross-references and literature citations. The TrEMBL

section contains computationally analysed records that await full manual annota-

tion. As expected, there are much more entries in the TrEMBL section than in

the Swiss-Prot section, since manual annotation requires more time and resources

than automated computational annotation.

Another commonly used source of protein annotation information are motif

databases. Motifs are preserved segments of amino acid sequences, which usually

represent a protein family, domain or a functional site. PROSITE [65], PRINTS

[6], Pfam [46] and InterPro [86] are examples of databases that contain a collec-

tion of protein motifs. Biological literature databases, such as MEDLINE (Med-

ical Analysis and Retrieval System Online), are a valuable resource and textual

analysis of these databases is an area of growing interest [102]. More specialised

databases contain information about protein interaction data, protein secondary

structures, gene expression data, amongst others.

This section presents a brief overview of a subset of protein databases, namely

the UniProt Knowledgebase (UniProtKB) sequence database, the InterPro protein

family database and the IntAct protein interaction database. These databases

are the source of data for experiments presented in chapter 8. A more complete

overview of different protein databases can be found in [60].

CHAPTER 4. BIOINFORMATICS 71

Table 4.1: Summary of biological databases publicly available online, mainly con-
taining protein information.

UniProt (http://www.ebi.ac.uk/uniprot/)

automatically (TrEMBL) and manually (Swiss-Prot) annotated/curated
protein sequences

IntAct (http://www.ebi.ac.uk/intact/)

protein interaction data

CATH (http://www.cathdb.info/)

hierarchical domain classification of protein structures

PROSITE (http://www.expasy.org/prosite/)

protein domains, families and functional sites

PubMed (http://www.ncbi.nlm.nih.gov/pubmed/)

biomedical literature

Pfam (http://pfam.sanger.ac.uk/)

protein domains and families

InterPro (http://www.ebi.ac.uk/interpro/)

protein families, domains and sequence patterns

DIP (http://dip.doe-mbi.ucla.edu/)

protein interaction data

MEDLINE (http://medline.cos.com/)

biomedical literature

TIGRFAMs (http://www.tigr.org/TIGRFAMs/)

protein families

PRINTS (http://www.bioinf.manchester.ac.uk/dbbrowser/PRINTS/)

protein families

ArrayExpress (http://www.ebi.ac.uk/arrayexpress/)

gene expression data

CHAPTER 4. BIOINFORMATICS 72

4.2.1 UniProt Knowledgebase

The UniProt Knowledgebase (UniProtKB) [28] is maintained by the UniProt Con-

sortium, a collaboration between the European Bioinformatics Institute (EBI),

the Swiss Institute of Bioinformatics (SIB) and the Protein Information Resource

(PIR). UniProtKB is a comprehensive database for protein sequence and anno-

tation information, and one of the most widely used biological databases. Ev-

ery entry (record) in UniProtKB is extensively annotated, comprising the amino

acid sequence, protein name, organism(s) where the protein is found, biblio-

graphic references (e.g., references to experimental or computational reports) and

database cross-references to specialised databases (e.g., links to motifs definitions

present in the protein), amongst others. The UniProtKB is divided into two

sections: (a) a high-quality manually-curated Swiss-Prot section, referred to as

UniProtKB/Swiss-Prot; (b) a computationally analysed (i.e., with automatic clas-

sification/annotations) TrEMBL section, referred to as UniProtKB/TrEMBL.

The UniProtKB/Swiss-Prot section contains only entries that are manually

curated, which guarantees high-quality annotations and non-redundant protein

sequence records. The manual curation process involves the analysis of experi-

mental data/results from the literature and predicted data derived from compu-

tational methods by an expert or a panel of experts. The curation process is

time-consuming and requires specific expert knowledge.

In order to cope with increasing number of protein sequences without com-

promising the quality of the annotations of UniProtKB/Swiss-Prot, protein se-

quences with computationally generated annotations are stored in the UniPro-

tKB/TrEMBL section. The UniProtKB/TrEMBL section shares the same format

as the UniProtKB/Swiss-Prot section, and entries in the UniProtKB/TrEMBL

section are eventually promoted to the UniProtKB/Swiss-Prot section after un-

dergoing manual curation.

4.2.2 InterPro

The InterPro [86] is a database of protein families, domains, regions and func-

tional sites. InterPro integrates the information of multiple source databases,

which employ a range of different methodologies in order to find similarities (signa-

tures/patterns) in protein sequences. These databases use the common principle of

multiple sequence alignments in order to find similar regions—segments of amino

acid sequences with no or few differences—that potentially represent/characterise

CHAPTER 4. BIOINFORMATICS 73

a protein family, domain or functional site.

For example, the PROSITE [65] database uses regular expressions to detect

patterns in sequences; PRINTS [6] database uses fingerprints—a group of con-

served motifs derived from sequence alignments—to characterise protein families;

Pfam [46] database uses multiple sequence alignments and hidden Markov models

to represent protein families. The information of the different source databases

are manually merged into InterPro entries, e.g. PROSITE patterns and PRINTS

fingerprints describing the same protein family or domain are grouped into a single

InterPro entry, with an unique identification number and links (cross-references)

to the correspondent PROSITE and PRINTS entries.

4.2.3 IntAct

The IntAct [59] is a database of protein interactions. In short, entries in the

IntAct database describe experiments that demonstrate the interaction between

proteins, documenting the interaction detection method used to identify the inter-

action. For each interactor protein, additional information can be present, e.g. its

UniProtKB accession number, the region of the protein’s sequence used in the in-

teraction. In special cases, entries describing experiments that demonstrate that

an interaction does not occur are allowed, which represent negative cases—i.e.

absence of interaction.

4.3 Protein Functional Classification Schemes

As discussed in section 4.2, there are several different biological databases stor-

ing protein information. Since they were created independently and for differ-

ent purposes (e.g., some databases are specific to a particular organism), each

of the databases employs a particular annotation scheme. In order to facilitate

the integration of data amongst different databases, many annotation schemes—

particularly for the annotation of protein functions—employ a controlled vocab-

ulary (ontology). More complex schemes are hierarchically structured, allowing

protein annotations at different levels, depending on the depth of knowledge about

the protein in question.

For example, the Enzyme Commission (EC) nomenclature [130] is a scheme

to classify enzymes based on the type of chemical reactions that they catalyse.

Enzymes are proteins that are used to increase the rate of (i.e., catalyse) chemical

CHAPTER 4. BIOINFORMATICS 74

reactions that occur within a cell. The EC classification scheme organises the

types of chemical reactions catalysed by enzymes in a hierarchical tree-structured

manner. The GPCRDB [1] is a database of G protein-coupled receptors (GPCRs)

proteins, which are transmembrane proteins involved in signalling. In GPCRDB,

proteins are organised in a hierarchical structure of GPCRs families based on

sequence alignments [87].

This section presents an overview of two protein functional annotation schemes,

namely Gene Ontology and FunCat. These annotation schemes describe a wide

range of protein functions—unlike EC and GPCRDB, which are annotation sche-

mes specific for enzymes and GPCRs related functions, respectively—and they

are used as the class hierarchy on the hierarchical classification experiments con-

cerning protein function prediction presented in chapter 8.

4.3.1 Gene Ontology

The Gene Ontology (GO) Consortium [4] has developed ontologies to classify

proteins in terms of three different domains: molecular function, biological pro-

cess and cellular component. The ontologies are defined by a hierarchy of terms

(categories), where each term has a unique numerical identifier and a textual de-

scription, arranged in a DAG-like structure. In DAG-structured hierarchies, terms

can have more than one parent (with the exception of the root term), as opposed

to just one parent in tree-structured hierarchies.

Within the GO, the ontology is divided into three different domains, each of

which consists of a vocabulary for a particular type of biological knowledge. The

Molecular Function (MF) domain describes activities performed at the molecular

level, generally accomplished by individual proteins. Examples of molecular func-

tions defined are the general concept ‘transporter activity’ and its specialisation

‘ion transporter activity’, where the latter is represented as a child of ‘transporter

activity’. The Biological Process (BP) domain describes activities accomplished

by a series of events or molecular functions. Examples of activities defined are

high-level processes ‘immune response’ and ‘reproductive process’. Finally, the

Cellular Component (CC) domain describes locations, at the levels of subcellular

structures and macromolecules complexes. In general, proteins are located in or

are a subcomponent of a particular cellular component. Examples of locations are

‘plasma membrane’ and ‘golgi transport complex’.

In the GO hierarchy, parent-child relationships are governed by the true path

CHAPTER 4. BIOINFORMATICS 75

rule. The true path rule states that the path from a child term towards top-

level terms must always be true. In other words, if a protein is annotated with

a term A, it automatically inherits the annotation of all ancestor terms of A.

For example, a protein annotated with ‘ion transporter activity’ will inherit the

annotation ‘transporter activity’, since ‘ion transporter activity’ is a specialisation

of ‘transporter activity’. Figure 4.4 illustrates a subset of the Gene Ontology ion

channel hierarchy.

4.3.2 FunCat

The Functional Catalogue (FunCat) [105] is a hierarchical tree-structured func-

tional classification scheme. It can be used to classify a wide range of protein

function in diverse organisms. Given its tree-structured controlled vocabulary,

comprising 27 main functional categories (top of the hierarchy) and up to 6 lev-

els of specialisation, the levels of FunCat categories are separated by dots, e.g.

‘20.03.01.01 ion channels ’ is an example of a most specific category under the

category branches ‘20 cellular transport, transport facilities and transport routes ’

(which represents a top level category), ‘20.03 transport facilities’ and ‘20.03.01

channel/pore class transport ’. Table 4.2 illustrates the main (top-level) FunCat

categories.

The structure definition of FunCat presents a trade-off between keeping it de-

scriptive and compact, at the same time. Therefore, FunCat categories focus on

describing functional processes (more general functions), not molecular functions

on the atomic level, facilitating the navigation throughout categories. When a

more granular and specific functional classification is required, cross-references

to additional classification schemes—such as the Enzyme Commission and Gene

Ontology—and/or free text descriptions are added to correspondent FunCat cat-

egories. The FunCat category ‘20.03.01.01 ion channels ’ illustrates the differ-

ences in granularity between FunCat and Gene Ontology—while it represents a

most specific category in FunCat, the equivalent (mapped) GO term ‘GO:0005216’

has several descendant terms, representing more specialised ion-channel activities.

The difference in granularity also is reflected in the size—number of nodes—of the

hierarchy. While the FunCat (version 2.1 released on January 9th, 2007) includes

in total 1.362 categories, the Gene Ontology (released November 22th, 2009) in-

cludes in total 28.625 (non-obsolete) terms.

CHAPTER 4. BIOINFORMATICS 76

GO:0005215
transporter activity

GO:0015267
channel or pore class

transporter activity

GO:0015075
ion transporter activity

GO:0005342
organic acid

transporter activity

GO:0005275
amine transporter

activity

GO:0015268
alpha-type channel

activity

GO:0005261
cation channel

activity

GO:0005216
ion channel

activity

GO:0008324
cation transporter

activity

GO:0015276
ligand-gated ion

channel activity

GO:0005244
voltage-gated ion

channel activity

GO:0005253
anion channel

activity

GO:0008509
anion transporter

activity

GO:0046943
carboxylic acid

transporter activity

GO:0015171
amino acid

transporter activity

GO:0003674
molecular function

GO:0005267
potassium channel

activity

GO:0005262
calcium channel

activity

GO:0005245
voltage-gated calcium

channel activity

Figure 4.4: Subset of the Gene Ontology (GO) ion channel hierarchy. The ion
channel activities are part of the ‘molecular function’ ontology within the GO.

CHAPTER 4. BIOINFORMATICS 77

Table 4.2: Main (top-level) FunCat categories. All categories, with the exception
of 98 and 99, represent a root category of a tree-structured hierarchy.

01 Metabolism

02 Energy

04 Storage protein

10 Cell cycle and DNA processing

11 Transcription

12 Protein synthesis

14 Protein fate (folding, modification, destination)

16 Protein with binding function or cofactor requirement (structural or catalytic)

18 Regulation of metabolism and protein function

20 Cellular transport, transport facilities and transport routes

30 Cellular communication/signal transduction mechanism

32 Cell rescue, defence and virulence

34 Interaction with the environment

36 Systemic interaction with the environment

38 Transposable elements, viral and plasmid proteins

40 Cell fate

41 Development (systemic)

42 Biogenesis of cellular components

43 Cell type differentiation

45 Tissue differentiation

47 Organ differentiation

70 Subcellular localization

73 Cell type localization

75 Tissue localization

77 Organ localization

98 Classification not yet clear-cut

99 Unclassified proteins

CHAPTER 4. BIOINFORMATICS 78

4.4 Protein Function Prediction

As aforementioned, the exponential increase in the number of proteins being iden-

tified and sequenced using high-throughput experimental approaches has lead to

a growth in the number of uncharacterised proteins (proteins for which the func-

tion is unknown). Since the rate at which sequencing methods are producing data

is far outperforming the rate at which biological methods can determine protein

functions, there is an increasing interest in automated protein function prediction

methods.

A commonly used approach is to assign a function by sequence similarity,

which considers that two or more similar proteins are homologous—i.e. they have

evolved from a common ancestor—and therefore its believed that they perform the

same function. In essence, the main idea of this approach is to rely on a similarity

search in a protein database of known sequences and functions. The similarity

between proteins is usually measured in terms of similarities of their amino acid

sequence (primary structure). Given a (new) protein of unknown function, the

process of predicting the protein function can be divided in two steps. In the first

step, a similarity search is performed in order to find the most similar protein in

the database of protein with known functions. In the second step, if the similarity

between the proteins is higher than a given threshold, the function of the selected

protein is predicted as the function of the new protein.

In order to determine the similarity between amino acid sequences, it is first re-

quired to find the ‘best’1 alignment between the sequences. For example, consider

the pairwise alignment of two (hypothetical) amino acid sequences:

. . .

ELV-LVLLRVDENLLSEQTRGAFETRGAFETRVSQGPSFKERFHASCEI-----LH

ELLRLVLLRADENLL---TRGAFETRGAFETRVSEGPSFKERFHASCEIGSGRKLH

Since the sequences can have different lengths and the regions of similarity can

occur at different segments (e.g., start, middle or end) of the sequences, gaps

(represented by ‘-’ symbols) have been inserted in both sequences. These gaps

can either represent that there has been an insertion or a deletion of amino acids

during the evolutionary process. The columns marked with a dot (‘.’ symbol)

at the top represent positions in the sequences where the amino acid is different,

1As noted by [60], the ‘best’ alignment is the one that it is believed to represent what has
occurred during the evolutionary process.

CHAPTER 4. BIOINFORMATICS 79

possibly due to a mutation in the DNA sequence encoding the protein. In essence,

a scoring system which takes into account the number of matching amino acid

pairs—and potentially a penalty measure for insertion of gaps—is required in

order to find the ‘best’ alignment between different sequences.

The Smith-Waterman exhaustive algorithm [111] and the heuristic FASTA [80]

and BLAST (Basic Local Alignment Search Tool) [3] algorithms are examples of

algorithms used to perform similarity searches based on sequence alignments in

protein databases. The output of these algorithms is usually represented as a list

of similar proteins associated with an alignment score. For example, given an

input sequence, each similar protein returned by a BLAST search is associated

with an E-value (Expectation-value), where the smaller the E-value, the more

significant the score—i.e. the more similar the protein is in relation to the input

sequence. More details of sequence alignment algorithms can be found in [60].

The approach of prediction of protein functions based on sequence similari-

ties (similarity-based approach) has several limitations, as discussed by [51, 52].

Firstly, it has been shown that proteins with very different sequences may perform

the same (or similar) functions, or proteins with very similar sequences may per-

form different functions [57, 123, 132]. Secondly, the regions of high similarities

between the proteins might occur in regions which are not determinants of the

function, and therefore, are not relevant to be considered to predict the function

of unknown proteins. Thirdly, this approach is not suitable to make predictions in

the case where similar proteins cannot be found—i.e. the similarity between the

proteins in the database with known functions and a given protein of unknown

function is below a given threshold. Lastly, it cannot provide insights about the

relationship between the biochemical properties of amino acids—or others protein

features, such as the presence/absence of an InterPro pattern—and the protein

functions, which would allow biologists to validate the functional prediction and

potentially improve their biological knowledge about protein functions.

In order to overcome the aforementioned limitations, an alternative approach

based on the induction of a classification model (model-based approach) has been

proposed in the literature. In essence, the model-based approach can be divided

into two steps. In the first step, a classification model is induced from data (e.g.

a protein data set with known functions) using a classification algorithm. The

induced classification model represents the relationship between the set of protein

features and the set of protein functions to be predicted. In the second step, the

classification model is then used to predict the function of new proteins (with

CHAPTER 4. BIOINFORMATICS 80

unknown functions), based on their features.

In the classification task terminology, discussed in chapter 2, the set of protein

features are referred to as predictor attributes, the set of protein functions are

referred to as class labels, the protein data set with known functions is referred

to as the training set and the protein data set with unknown functions is referred

to as the test set. Since it is known that a protein can perform more than one

function and functional classification schemes can be hierarchically structured (as

discussed in subsection 4.3), the problem of predicting protein function is usually

an instance of a hierarchical multi-label classification problem.

By using a classification model to predict the function of a new protein, there

is no need to perform a similarity comparison with all the proteins of the database,

as in the sequence similarity-based approach. In addition, the function prediction

is not limited to finding a similar protein in terms of amino acid composition

(protein’s primary structure) and different protein features can be used to as-

sist the prediction of the function—e.g., biochemical properties of amino acids,

presence/absence of InterPro patterns and secondary structure elements.

One important characteristic of the model-based approach is that, when the

classification model is expressed in a comprehensible manner (e.g., as a decision

tree or a set/list of rules), the relationships between the protein features and

functions represented by the classification model can be interpreted. There are

several motivations for producing a comprehensible classification model in the

context of protein function prediction [51]: (1) by being able to interpret the

classification model, biologists can validate and understand the computational

predictions, improving their confidence in the model. The usefulness of building a

comprehensible classification model has also been emphasised by Vens et al. [127];

(2) the interpretation of the classification model can lead to new insights about

the relationships between protein features and functions, improving the current

biological knowledge about protein functions; (3) the analysis of the computational

predictions can help to detect errors in the model or in the data, e.g., proteins

that are misclassified can be analysed in order to determine if the error is in the

classification model or in the protein annotation.

Examples of algorithms following a model-based approach applied to protein

function prediction comprise the previously-mentioned works from Rousu et al.

[104], Barutcuoglu et al. [8] and Holden and Freitas [62] in subsection 2.3.1,

and Kiritchenko et al. [73] in subsection 2.3.2. The hierarchical C4.5 extensions

proposed by Clare and King [25, 26] and Clare et al. [24], and the Clus algorithm

CHAPTER 4. BIOINFORMATICS 81

proposed by Blockeel et al. [10, 13] and its variations by Vens et al. [127],

briefly described in subsection 2.3.2, are examples of model-based algorithms that

produce a comprehensible classification model in the form of a decision tree. More

examples of algorithms can be found in [16, 49, 52, 137].

4.4.1 Protein Features as Predictor Attributes

In this subsection, protein features that commonly have been used as predictor at-

tributes to create a classification model to predict protein functions are discussed.

They are grouped into different types of attributes according to how the protein

feature is obtained and for each type of attribute, a definition and examples of

their usage in the literature are presented.

Sequence Attributes

Sequence attributes are those that can be derived/calculated directly from a pro-

tein’s primary structure. In most cases, they represent biochemical properties of

amino acids that compose the protein’s sequence.

Two of the simplest attributes that can be calculated from a protein’s primary

structure are the sequence length and molecular weight. The sequence length

consist of the number of amino acids in the protein’s polypeptide chain. The

molecular weight consist of the sum of the weights of the amino acids that com-

pounds the polypeptide chain. For example, Pappa et al. [92] have generated

rules predicting protein function using the sequence length and molecular weight

as predictor attributes, amongst other attributes. In the results obtained with

a dataset composed by 445 attributes, the sequence length attribute was used—

together with other attributes—in 11 out of 21 rules, suggesting the relevance of

this attribute.

The amino acid hydrophobicity value is another example of sequence attribu-

tes. It is a measure which refers to the tendency of amino acids to repel water

or not to be completely dissolved in water. Amino acids that can be dissolved

in water, by forming hydrogen bounds with water, are denominated hydrophilic

and have a lower hydrophobicity value. Amino acids that do not dissolve in

water, by forming few or no hydrogen bonds, are denominated hydrophobic and

have a greater hydrophobicity value. There are different hydrophobicity scales

(e.g. Kyte and Doolittle [76], Engelman et al. [42]), which are similar but not

identical. The hydrophobicity value has been used mainly in two forms: as a

CHAPTER 4. BIOINFORMATICS 82

sequence of individual hydrophobicity values (one value for each amino acid) or

as a single average value for the entire protein sequence. Weinert and Lopes [131]

have used a normalised hydrophobicity value for protein classification using neural

networks. The input for the system was the protein sequence encoded using the

Kyte and Doolittle hydrophobicity scale, with the values normalised between 0.05

and 1.00 in intervals of 0.05.

Another source of attributes is the Amino Acid Index Database (AAindex) [71].

The AAindex contains a collection of different physical, chemical and biological

properties of amino acids. The current release (9.1, August 2006) contains 544

indexes, where each index is a set of 20 numerical values (one value per amino

acid). Garian [55] used 401 indexes found in the AAindex database to predict the

presence or absence of quaternary structure properties in the protein’s primary

structure.

Predicted Attributes

Predicted attributes are those that are predicted by a computational method,

usually using a protein’s primary structure. As they represent a prediction, their

measure tend to be less reliable than the measure of sequence attributes.

The most common predicted attribute used is derived from protein’s secondary

structure predictions, predicted using the sequence of amino acids that compose

the protein’s primary structure. The importance of this attribute comes from the

fact that the protein’s structure is closely related to its function. Therefore, it

seems natural to use this information to create models that predict protein func-

tions. Recall that secondary structure of a protein can be composed by alpha-

helices (H) and beta-strands (E) structures, typically joined by coils (C) (or loops)

structures. The predicted structure is usually presented as a sequence of secondary

structure symbols (H, E or C) and a confidence value, where each position has

the symbol predicted for the amino acid in the corresponding position of the in-

put sequence. Jensen et al. [69] have developed a method for protein function

prediction called ProtFun. They have used the predicted secondary structure as

one of the 14 features used as predictor attributes. In the results obtained with

ProtFun, the predicted secondary structure was the most important feature for

distinguishing enzymes from non-enzymes. In [70], they have extended the Prot-

Fun feature set to 16 attributes and applied the method to predict terms of the

Gene Ontology classification scheme. They found that the secondary structure

CHAPTER 4. BIOINFORMATICS 83

predictions are useful for predicting ‘stress response’ and ‘immune response’ func-

tions. Clare and King [26] have also generated classification rules using predicted

secondary structure data.

Other examples of predicted attributes are post-translational modifications

(PTMs), which are chemical modifications of a protein that occur after its trans-

lation. For example, a PTM can extend the function of a protein by binding

functional groups (e.g. phosphate) to it or changing the amino acids composition

(e.g. citrullination). A PTM can be characterised by sequence motifs or by com-

plex patterns of amino acid combinations. The prediction usually is presented

as a Boolean value, indicating the presence or absence of a particular PTM in a

given sequence of amino acids. Jensen et al. [69] have also used predicted PTM

features with their ProtFun method.

Attributes Derived from Biological Experiments

This kind of attributes comprises attributes that are derived from biological ex-

periments, which in general are expensive and time-consuming. For these reasons,

this kind of information is only available to a restricted set of genomes. They can

be roughly divided into gene expression data, protein interaction data, phenotypic

data and text mining of the biological literature.

Gene expression data is generated by high-throughput experiments using DNA

microarrays. A DNA microarray is a slide onto which DNA sequences are attached

at fixed locations (spots). There can be thousands of spots on an array. The DNA

sequences on each spot are probes that react with a sample input sequences.

The goal of microarray experiments is to measure gene expression levels in a

set of particular times and conditions. The output of each experiment usually

is a matrix, where each position represents the intensity (numerical value) of the

reaction between the probe and the sample in a particular condition at a particular

time. The values of gene expression data are used directly, as numerical values,

or discretised into categories. For instance, Lægreid et al. [77] used temporal

gene expression data to generate classification rules. Numerical gene expression

data was discretised into templates (‘increase’, ‘decrease’ and ‘constant’) over time

intervals.

Many proteins interact with one another to perform their function—e.g, by

assembling multiprotein complexes or metabolic pathways. It is believed that if

one can establish an interaction between a protein of known function and a protein

of unknown function, the protein interaction information can be used to predict

CHAPTER 4. BIOINFORMATICS 84

the function of the protein of unknown function. There are several databases

that contains protein interaction data—e.g., MIPS [84], DIP [134] and IntAct

[59]. Usually, protein interaction data is used as Boolean attributes, indicating if

a given pair of proteins interact or not. Deng et al. [35] have developed a method

to predict proteins functions using protein interaction data extracted from MIPS.

Another source of attributes is the data from phenotypic growth experiments,

which consist of measuring the difference in the phenotype between mutated clone

genes and the original form under different growth conditions (growth media).

Usually, the measure is expressed by a discrete scale (from 0 to 5). Clare and

King [25, 26] have used the phenotypic data from the TRIPLES [75], EUROFAN

[88] and MIPS databases.

Textual analysis of the genomics literature, combining text mining and natural

language processing strategies, is an area of growing interest [15, 102]. There are

several molecular biology journals which contain articles reporting experimental

results. Usually, the publication process requires manual reviews, making them

a reliable source of information. Xie et al. [135] have used text information

extracted from MEDLINE (http://www.ncbi.nlm.nih.gov/) articles to support the

prediction of Gene Ontology functional terms.

Pattern Attributes

Pattern attributes are those derived from sequence alignments (which detect sim-

ilarities in the sequence of proteins) and preserved amino acid sequences (motifs).

They can be divided into single sequence and multiple sequence patterns, depend-

ing on the number of sequences that are used to calculate them.

The single sequence patterns are those that were derived from only one se-

quence, as the name suggests. In most cases, they are represented by a Boolean

value indicating if a particular motif is present or absent. A motif usually corre-

sponds to a protein family, domain or an activation site. PROSITE [65], PRINTS

[6] and Pfam [46] are examples of databases that contain a collection of protein

families and domains. Pappa et al. [92] have used Boolean-encoded attributes

representing the presence/absence of PROSITE patterns.

The multiple sequence patterns are those that were derived using two or more

sequences. In most cases, they represent phylogenetic data and similarity values

(e.g. from BLAST alignments), usually used to group (cluster) proteins with

similar sequences. Pellegrini et al. [95] have used phylogenetic profiles to predict

the function of uncharacterised proteins. For each protein, a phylogenetic profile is

CHAPTER 4. BIOINFORMATICS 85

created to describe the presence or absence of homologs. The profile is represented

by a bit-string of length n, where n corresponds to the number of genomes. If

a homolog is present in the genome i (i = 1, ..., n), a unit value is found in

the i-th position; a zero-value indicate the absence of the homolog. Proteins

are then clustered based on the similarity of their profiles and the functions of

uncharacterised proteins are predicted by similar proteins within the cluster.

4.5 Summary

This chapter presented an overview of the bioinformatics area—reviewing biolog-

ical concepts related to proteins—focusing on the problem of predicting protein

functions. It discussed protein databases containing different protein information

and protein functional classification schemes publicly available.

Furthermore, it discussed two different approaches commonly applied to pro-

tein function prediction, namely the similarity-based and model-based approaches.

The latter approach, which consists of inducing a classification model in order to

make predictions, is the approach followed by the algorithms for protein function

prediction proposed in this thesis.

Chapter 5

Handling Continuous Attributes

in Ant Colony Classification

Algorithms

Although real-world classification problems are often described by both nominal

(with a finite number of categorical or discrete values) and continuous (real-valued)

attributes, current ant colony optimisation (ACO) classification algorithms have

the limitation of being able to cope only with nominal attributes in their rule

construction process. In order to overcome this limitation, a commonly used

approach is to discretise continuous attributes in a preprocessing step. In essence,

a discretisation method aims at converting continuous attributes into nominal

(discrete) attributes by creating interval boundaries—e.g., a continuous attribute

age might be discretised into ‘0–14’, ‘15–24’, ‘25–64’ and ‘65+’ discrete intervals.

There are numerous discretisation methods for handling continuous attributes

available in the literature [41, 81]. In short, most discretisation methods employ

a scoring function in order to evaluate candidate discretisation (cut) points for a

continuous attribute. A discretisation point is represented by a threshold value,

which is normally a value in the domain of the attribute undergoing the discreti-

sation method. The best (or the set of best) discretisation point(s) is(are) selected

based on an evaluation measure and the continuous attribute values are then re-

placed by the discrete intervals. These methods can be grouped according to

different discretisation strategies. Methods that make use of the examples’ class

label information are referred to as supervised, while unsupervised methods do

not use the class label information (supervised vs. unsupervised methods). Global

methods use the entire example space (training set) to define discrete intervals

86

CHAPTER 5. HANDLING CONTINUOUS ATTRIBUTES 87

while local methods use a subset of example space (global vs. local methods).

One can also categorise discretisation methods as static, if they are applied in a

data preprocessing phase before the classification algorithm is run, or as dynamic,

if they are applied while a classifier is being built (static vs. dynamic methods).

For a more detailed overview of different kinds of discretisation strategies and

methods refer to [41, 81].

As aforementioned, the current version of Ant-Miner does not cope with con-

tinuous attributes directly—i.e. it requires continuous attributes to be discretised

in a preprocessing step. In the experiments reported in [93, 94], the discretisation

method C4.5-Disc [74] was applied in a data preprocessing phase prior to running

Ant-Miner. In essence, the C4.5-Disc discretisation method consists of using the

well-known C4.5 [99] decision tree induction algorithm to create discrete intervals

for each continuous attribute individually. For each continuous attribute, the C4.5

algorithm is applied to a reduced training set which only contains the attribute to

be discretised and the class attribute. After the decision tree that contains binary

splits referring only to the single attribute being discretised is built, each path

of the tree from a leaf node to the root node corresponds to a discrete interval.

For further details, refer to [74]. The C4.5-Disc discretisation method would be

categorised as supervised, global and static based on the criteria described above.

There are two drawbacks associated with not coping with continuous attributes

directly during a run of the classification algorithm. Firstly, there is a need for

a discretisation procedure in a preprocessing step. Secondly, less information is

available to the classification algorithm since the discretisation procedure creates

a fixed number of discrete intervals for each continuous attribute—i.e. discrete

intervals have a coarser granularity, which can have a negative impact on the

accuracy of the discovered knowledge.

This chapter proposes an extension to Ant-Miner, named cAnt-Miner (Ant-

Miner coping with continuous attributes), which incorporates an entropy-based

discretisation procedure in order to cope with continuous attributes during the rule

construction process. cAnt-Miner has the ability to create discrete intervals for

continuous attributes ‘on-the-fly’—during the rule construction process—taking

advantage of all continuous attributes information, rather than requiring that a

discretisation method be used in a preprocessing step. Despite the Ant-Miner

variations proposed in the literature, as reviewed in [50] and discussed in sec-

tion 3.3, extending Ant-Miner to discretise continuous attributes ‘on-the-fly’ is

a research topic that has not yet been explored by other authors to the best of

CHAPTER 5. HANDLING CONTINUOUS ATTRIBUTES 88

our knowledge. Intuitively, coping with continuous attributes ‘on-the-fly’ would

enhance the classification algorithm’s predictive accuracy given that the use of

a discretisation method in a preprocessing step can lead to a loss of predictive

power, since less information is available to the classification algorithm.

The remainder of this chapter is organised as follows. Section 5.1 presents the

cAnt-Miner algorithm, the first ACO classification algorithm able to cope with

continuous attributes without requiring a discretisation method in a preprocessing

step. In section 5.2, a new dynamic discretisation procedure is presented to allow

a more flexible representation of continuous attributes’ intervals in cAnt-Miner.

Section 5.3 explores the problem of attribute interaction, which originates from the

way that continuous attributes are handled in cAnt-Miner, in order to implement

an improved pheromone updating procedure. Section 5.4 presents an algorithm

consisting in the combination of both extensions presented in sections 5.2 and 5.3.

Finally, section 5.5 presents the summary of this chapter.

5.1 Ant-Miner Coping with Continuous Attri-

butes

Recall that Ant-Miner aims at discovering IF-THEN classification rules of the

form IF term1 AND term2 AND ... AND termn THEN class label from a train-

ing set. Each term in the rule is a triple (attribute, operator, value), where

operator represents a relational operator and value represents a value of the do-

main of attribute. As Ant-Miner only works with nominal (categorical or discrete)

attributes, the only valid relational operator is ‘=’ (equality operator).

While the proposed cAnt-Miner shares the same underlying procedure of Ant-

Miner, as described in Algorithm 3.2 in section 3.2, cAnt-Miner extends Ant-Miner

in several ways in order to overcome Ant-Miner’s limitation of only coping with

nominal attributes. Firstly, it includes vertices to represent continuous attributes

in the construction graph. Secondly, in order to compute the heuristic information

for continuous attributes, it incorporates a dynamic entropy-based discretisation

procedure. Thirdly, when a continuous attribute vertex is selected by an ant to

be added to its current partial rule, a relational operator ‘<’ (less-than operator)

or ‘≥’ (greater-than-or-equal-to operator) and a threshold value (cut point) are

computed using a similar procedure as for the heuristic information. Therefore,

antecedent of rules in cAnt-Miner can represent attribute-value conditions in the

CHAPTER 5. HANDLING CONTINUOUS ATTRIBUTES 89

form attributec < value or attributec ≥ value (where attributec is a continuous

attribute and value is a value in the domain of attributec). Lastly, the pheromone

updating procedure has been extended to cope with continuous attribute vertices.

The technical details of the extensions incorporated in cAnt-Miner are pre-

sented in the following subsections.

5.1.1 Construction Graph

The original Ant-Miner’s construction graph consists of an almost fully connected

graph—as described in subsection 3.2.1—in which for each nominal attribute xi

and value vij (where xi is the i -th nominal attribute and vij is the j -th value

belonging to the domain of xi), a vertex is added to the construction graph rep-

resenting a term xi = vij .

cAnt-Miner extends Ant-Miner’s construction graph to cope with continuous

attributes as follows—illustrated in Figure 5.1(b). For each continuous attribute

yi, a vertex is added to the graph representing the term yi. Then, the newly

created vertex yi is connected to all previous vertices of the construction graph. It

should be noted that at this point the continuous attributes’ values have not been

discretised. The discretisation occurs when an ant selects a vertex that represents

a continuous attribute to be added to its current partial rule, as described in

subsection 5.1.3.

5.1.2 Heuristic Information

Recall that the heuristic information associated with each vertex in Ant-Miner

involves a measure of entropy. In the case of nominal attributes, where every

vertex has the form xi = vij , the entropy for the attribute-value pair in the

original Ant-Miner is computed as

entropy(xi = vij ; S) =

k
∑

c=1

[−p(c |Sxi=vij
) · log2 p(c |Sxi=vij

)] , (5.1)

where p(c |Sxi=vij
) is the empirical probability of observing class label c conditional

on having observed xi = vij in the set of training examples S and k is the total

number of class labels.1

1Equation (5.1) is equal to Equation (3.5) in subsection 3.2.3 and it is repeated here for the
convenience of the reader.

CHAPTER 5. HANDLING CONTINUOUS ATTRIBUTES 90

(age = young)

(gender = female)

(gender = male)(gender = male)

(smoke = yes)
(smoke = no)

(age = young)

(age = adult)

(age = senior)

(gender = female)

(a)

(smoke = no)

(age)

(gender = female)(gender = female)

(gender = male)(gender = male)
(smoke = yes)

(smoke = no)

(b)

Figure 5.1: The construction graphs of Ant-Miner and cAnt-Miner, given a train-
ing set containing one continuous attribute (‘age’) and two nominal attributes
(‘gender ’ and ‘smoke’). In (a) Ant-Miner’s construction graph, considering that
the continuous attribute ‘age’ was discretised into three different discrete inter-
vals in a preprocessing step; (b) cAnt-Miner’s construction graph, which includes
a vertex for the continuous attribute ‘age’.

However, the Equation (5.1) cannot be straightforwardly applied to compute

the entropy of vertices representing continuous attributes since these vertices do

not represent an attribute-value pair condition as nominal attributes. In order to

compute the entropy of a continuous attribute vertex yi, a threshold value v is

selected to dynamically partition the continuous attribute yi into two intervals:

yi < v and yi ≥ v. The best threshold value is the value v that minimises the

entropy of the partition, given by

entropy(yi, v; S) =
|Syi<v|

|S|
· entropy(yi < v; S)

+
|Syi≥v|

|S|
· entropy(yi ≥ v; S) ,

(5.2)

where |Syi<v| is the total number of examples in the interval yi < v (partition of

training examples where the attribute yi has a value less than v), |Syi≥v| is the total

number of examples in the interval yi ≥ v (partition of training examples where

the attribute yi has a value greater than or equal to v), |S| is the total number

CHAPTER 5. HANDLING CONTINUOUS ATTRIBUTES 91

of training examples, entropy(yi < v; S) and entropy(yi ≥ v; S) are computed

according to Equation (5.1). Note that it is not necessary to examine all values in

the domain of the continuous attribute yi in order to find the best threshold value,

as discussed by Fayyad and Irani [43]. Fayyad and Irani proved that the threshold

value v for a continuous attribute yi that minimises the entropy of the partition

entropy(yi, v; S) must always be a value between two examples associated with

different class labels, given that the set of examples is sorted according to the

values of the continuous attribute yi. Therefore, given a list of distinct ordered

values v1, v2, . . . , vW of the continuous attribute yi relative to the set of examples

S, the list of candidate threshold values comprises the average value of each pair

of adjacent values vw and vw+1, computed as (vw +vw+1) / 2, wherein the examples

with value vw are associated with a different class label than the examples with

value vw+1. In addition, examples from the set of training examples S with missing

values for the continuous attribute yi, if present, are not taken into account in the

threshold selection.

After the selection of the best threshold value vbest, the entropy of the contin-

uous attribute vertex yi relative to a set of training examples S corresponds to

the minimum entropy value of the two generated intervals and it is defined as

entropy(yi; S) = min[entropy(yi < vbest; S), entropy(yi ≥ vbest; S)] . (5.3)

The lowest entropy value is selected since it corresponds to the value associated

with the ‘purest’ interval (the partition with more examples associated with the

same class label) and it represents the expected predictive power (quality) of the

continuous attribute vertex yi (when vertex yi is added to the rule). It should

be noted that the entropy of every vertex yi—i.e. every vertex representing a

continuous attribute—is fixed during the rule construction process as the entropy

value of every xi = vij—i.e. every vertex representing an attribute-value pair of

a nominal attribute. Therefore, the entropy of all yi and xi = vij vertices are

computed in an initialisation step to save computational time, rather than every

time the heuristic information is used to compute the probability of selecting a

vertex.

Concerning the computational complexity, the process of finding a threshold

value can be divided into two steps. First, the continuous attribute values are

sorted in order to facilitate the computation of the number of examples belonging

CHAPTER 5. HANDLING CONTINUOUS ATTRIBUTES 92

to each candidate interval. The time complexity of the sorting step is O(n ·

log n) based on the use of a quicksort algorithm [61], where n is the number

of examples under consideration. Second, the evaluation of candidate threshold

values has the complexity of O(n), where in this case n represents the number

of candidate values to be evaluated—which in the worst case scenario is equal to

the number of examples under consideration, assuming that each example has a

different value. In general, the number of candidate threshold values is smaller

than the number of examples under consideration. Additionally, there are two

factors that improve the efficiency of the evaluation of candidate threshold values:

(1) as aforementioned, not all values in the domain of a continuous attribute have

to be evaluated, only those that form boundaries between class labels; (2) the

number of examples under consideration, and consequently the potential number

of candidate threshold values, tends to decrease in relation to the number of terms

in the antecedent of a rule.

The heuristic information of Ant-Miner is then extended to cope with both

nominal and continuous attributes vertices (terms) and it is given by

ηT =
log2 k − entropy(T ; S)

n
∑

i=1

[log2 k − entropy(Ti; S)]
, (5.4)

where T is a nominal (i.e., xi = vij) or continuous (i.e., yi) attribute term, k is

the total number of class labels, Ti is the nominal or continuous attribute term

represented by the i-th vertex and n is the total number of vertices of the con-

struction graph. The value of entropy(T ; S) is calculated according to Equation

(5.1), if T corresponds to a nominal attribute term, and according to Equation

(5.3), if T corresponds to a continuous attribute term. The same procedure is

used to calculate the value of entropy(Ti; S).

5.1.3 Rule Construction

Following a similar approach of extending the Ant-Miner’s heuristic information,

the probability of selecting a particular vertex representing a nominal or con-

tinuous attribute term T at each iteration of the rule construction process in

cAnt-Miner is given by

PT =
τT · ηT

|FT |
∑

i=1

(τTi
· ηTi

)

, ∀ Ti ∈ FT , (5.5)

CHAPTER 5. HANDLING CONTINUOUS ATTRIBUTES 93

where T is a nominal or continuous attribute term (vertex), τT and ηT are the

amount of pheromone and heuristic information associated with term T , respec-

tively, and Ti is a nominal or continuous attribute term in the feasible neighbour-

hood FT of term T . As in Ant-Miner, the feasible neighbourhood FT comprises

all terms except (1) those that contain an attribute that is already used in the

current partial rule, and (2) those whose addition would make the rule cover less

than a user-defined minimum number of training examples.

As every term in the antecedent of a rule must be a triple (attribute, operator,

value), when an ant chooses a vertex that represents a continuous attribute yi—

i.e. a vertex yi—to add to its current partial rule, a relational operator and a

threshold value are selected as follows. Firstly, the best threshold value for the

continuous attribute yi is selected as described in subsection 5.1.2, subject to one

restriction: only the examples covered by the current partial rule are considered

in the evaluation of threshold values. Hence, the selection of a threshold value

is influenced by the terms occurring in the current partial rule. This is what

makes the proposed discretisation procedure a local and dynamic one, so that the

choice of a threshold value is tailored to the current candidate rule. The only

exception to this restriction is when the current partial rule is empty. In this case,

all training examples are used in the evaluation of threshold values, as given by

Equation (5.2).

Then, after selecting the best threshold value vbest, a relational operator is

selected based on the entropy values of the two intervals generated, given by

operator =

< if entropy(yi < vbest; S) < entropy(yi ≥ vbest; S)

≥ if entropy(yi < vbest; S) > entropy(yi ≥ vbest; S)
. (5.6)

According to Equation (5.6), if the interval yi < vbest has a lower entropy,

then the operator ‘<’ (less-than operator) is selected; if the interval yi ≥ vbest

has a lower entropy, then the operator ‘≥’ (greater-than-or-equal-to operator) is

selected; ties are broken at random. As a result of Equation (5.6), the operator

selection has a bias of selecting the more ‘pure’ interval, given that lower entropy

values are favoured over higher entropy values.

Once the threshold value and the relational operator are selected, a term in the

form of a triple (yi, operator, vbest) is added to the ant’s current partial rule (e.g.

age ≥ 25) and the rule continues to undergo the Ant-Miner’s rule construction

CHAPTER 5. HANDLING CONTINUOUS ATTRIBUTES 94

process.

5.1.4 Pheromone Updating

In the original Ant-Miner, every nominal attribute vertex xi = vij has an associ-

ated pheromone value which undergoes the pheromone updating (reinforcement

and evaporation) process. In summary, the pheromone updating process works

as follows. The pheromone associated with each xi = vij occurring in the rule

created by an ant is increased in proportion to the quality of the rule in question.

The pheromone associated with each xi = vij that does not occur in the rule

is decreased, simulating the pheromone evaporation effect observed in real ant

colonies.

In the proposed cAnt-Miner, the original Ant-Miner’s pheromone updating

process has been extended to cope with yi vertices—i.e., a vertex that represents a

continuous attribute yi. Since the pheromone value is associated with a continuous

attribute yi and not the triple (yi, operator, vbest) that is added to the current

partial rule, as described in subsection 5.1.3, the operator and the threshold value

vbest are discarded in the updating process. In other words, there is a single entry

for each continuous attribute yi in the pheromone matrix, in contrast to multiple

entries for nominal attributes, which have an entry for every xi = vij vertex—

where xi is the i -th nominal attribute and vij is the j -th value belonging to the

domain of xi.

It should be noted that pheromone is still used to indicate the quality of

continuous attributes, but the actual choice of the threshold for each continuous

attribute is dynamically customised to each rule being constructed by the ants.

This effectively incorporates task-dependent knowledge—i.e., knowledge about

the classification task of data mining—into the algorithm, which tends to increase

its effectiveness.

5.2 Minimum Description Length-based Discre-

tisation

As discussed in section 5.1, cAnt-Miner employs a discretisation procedure into

its rule construction process that creates a single binary split in order to define

discrete intervals for continuous attributes. Since an attribute can only appear

once in the antecedent of a rule, discrete intervals cannot be further refined—i.e.

CHAPTER 5. HANDLING CONTINUOUS ATTRIBUTES 95

only intervals representing yi < v and yi ≥ v conditions can be created (where v

is a value in the domain of the continuous attribute yi).

Fayyad and Irani [44] presented a minimal description length-based (MDL-

based) approach where multiple discrete intervals can be extracted by applying

a binary discretisation procedure recursively—selecting the best threshold value

at each iteration—and using the minimal description length principle as a stop-

ping criterion to determine whether more threshold values should be introduced.

The motivation for multiple interval discretisation lies in the fact that the most

effective value range may be an internal interval (e.g. 18 ≤ age < 21), which can-

not be easily generated by a binary-interval-at-a-time discretisation procedure.

The MDL-based approach generally leads to coarse intervals in cases where the

examples are homogeneously distributed (distributed across a few different class

labels, with many examples having similar values of the continuous attribute as-

sociated with the same class label) and to fine intervals in cases of more uniform

distributions.

Following Fayyad and Irani, this section presents a new discretisation proce-

dure that incorporates a MDL-based decision criterion to decide whether or not

to split a given interval further in cAnt-Miner. The basic idea is to apply cAnt-

Miner’s entropy-based discretisation procedure recursively, relying on the MDL

criterion to accept or reject a threshold value. In this way, instead of generat-

ing only intervals in the form yi < v and yi ≥ v, internal intervals in the form

vlower ≤ yi < vupper can be created (where v, vlower and vupper are values in the

domain of the continuous attribute yi).

The MDL-based discretisation procedure is divided into two steps. In the first

step, the best threshold value v for a continuous attribute vertex yi is selected

as in the original cAnt-Miner—according to Equation (5.2). In the second step,

the MDL decision criterion for accepting or rejecting the threshold value v is

computed as

Gain(yi, v; S) >
log2(|S| − 1)

|S|
+

∆(yi, v; S)

|S|
, (5.7)

CHAPTER 5. HANDLING CONTINUOUS ATTRIBUTES 96

Gain(yi, v; S) = entropy(S)

−
|Syi<v|

|S|
· entropy(yi < v; S)

−
|Syi≥v|

|S|
· entropy(yi ≥ v; S) ,

(5.8)

∆(yi, v; S) = log2(3
k − 2)− [k · entropy(S)

− kyi<v · entropy(yi < v; S)

− kyi≥v · entropy(yi ≥ v; S)] ,

(5.9)

where k, kyi<v and kyi≥v are the number of different class labels in set of training

examples S, Syi<v and Syi≥v, respectively. If the MDL criterion defined in Equa-

tion (5.7) is satisfied, the threshold value v for the continuous attribute yi is ac-

cepted; otherwise it is rejected. Note that the entropy values of entropy(yi < v; S)

and entropy(yi ≥ v; S) involved in the evaluation of the threshold value v against

the MDL criterion are already computed by the first step (threshold value selec-

tion), reducing the computational time required to compute the MDL criterion.

The entropy value of entropy(S) is computed according to Equation (5.1), tak-

ing into account all training examples of S. Finally, if the threshold value v is

accepted, the discretisation procedure is repeated recursively for each partition

Syi<v and Syi≥v. Figure 5.2 illustrates this process, given a hypothetical continu-

ous attribute ‘age’ with values in the range of 0 to 100.

At the end of the MDL discretisation procedure, potentially multiple threshold

values could have been created. In order to select the best threshold value(s), the

list of threshold values is sorted and the entropy value for each discrete interval is

calculated. Then, the interval with the lowest entropy value is selected (based on

the fact that lower entropy values represent more ‘pure’ partitions where most of

the examples are associated with the same class label). If an internal interval is

selected (an interval between two threshold values), a term in the form vz ≤ yi <

vz+1 is generated; otherwise, a term in the form yi < vz or yi ≥ vz is generated

(where z is the z-th threshold value); ties are broken at random. Figure 5.3

illustrates the intervals that could have been created by selecting two threshold

values for a continuous attribute age.

CHAPTER 5. HANDLING CONTINUOUS ATTRIBUTES 97

0 100

21

0 20 21 100

18 65

0 17 18 20

8 19

accept 21? yes

accept 18? yes accept 65? no

accept 19? noaccept 8? no

threshold values: {18, 21}

(1)

(2)

(3)

(4)

Figure 5.2: Illustration of the recursive nature of the MDL-based discretisation
procedure: (1) a binary discretisation procedure is applied to select the best
threshold value for a hypothetical continuous attribute ‘age’ with values in the
range of 0 to 100. Given that the value 21 satisfies the MDL criterion, the binary
discretisation procedure is recursively applied to the intervals 0-20 and 21-100; (2)
Another two threshold values are selected, one for each of the candidate intervals.
The value 18 satisfies the MDL criterion and the discretisation procedure is further
applied to the intervals 0-17 and 18-20. The value 65 does not satisfies the MDL
criterion and therefore it is rejected; (3) Both selected values 8 and 19 do not
satisfy the MDL criterion and they are rejected. Since no more intervals are
available, the MDL-based discretisation procedure stops; (4) The result of the
MDL-based discretisation procedure comprises the threshold values that satisfied
the MDL criterion—in this example, the values 18 and 21.

CHAPTER 5. HANDLING CONTINUOUS ATTRIBUTES 98

18 ≤ age < 21 age ≥ 21age < 18

18 21

Figure 5.3: Illustration of discrete intervals that could have been created by select-
ing two threshold values for a continuous attribute age. At the end of the MDL
discretisation procedure, the interval associated with the lowest entropy value is
selected.

A similar approach is used to calculate the entropy value—based on the pro-

posed MDL discretisation—involved in the heuristic information of continuous

attributes. Since more than two intervals can be created, Equation (5.3) is ex-

tended in order to take into account internal intervals and it is defined as

entropy(yi; S) = min[entropy(yi < v1; S),

entropy(vz ≤ yi < vz+1; S),

. . . ,

entropy(yi ≥ vZ ; S)] , ∀ 1 ≤ z < Z,

(5.10)

where z corresponds to the z-th threshold value, Z is the total number of threshold

values and S is the set of training examples. This extension has the same bias

towards the ‘purest’ interval and can also be computed in an initialisation step,

as the one employed by cAnt-Miner.

The MDL-based discretisation procedure described in this section was incorpo-

rated into cAnt-Miner, creating a new cAnt-Miner variation dubbed cAnt-Miner-

MDL (cAnt-Miner with MDL-based discretisation).

5.3 Encoding Attribute Interaction as Pheromo-

ne Levels: Associating Pheromones with Ed-

ges

In the original version of Ant-Miner, pheromone values are associated with vertices

in the construction graph, where each vertex represents a term xi = vij—e.g.,

CHAPTER 5. HANDLING CONTINUOUS ATTRIBUTES 99

gender = male. Hence, both ants with rule antecedents ‘gender = male AND

smoke = no’ and ‘smoke = no AND gender = male’, for example, will deposit

the same amount of pheromone on vertices ‘gender = male’ and ‘smoke = no’.

The original version of cAnt-Miner employs a similar2 pheromone update

process, even though the order of terms (vertices) in the antecedent of a rule

could affect the selection of threshold values for continuous attributes. Note

that this attribute interaction dependency is not observed in the original Ant-

Miner, since it only supports nominal attribute vertices which are represented by

attribute = value pairs and their order is irrelevant. For instance, a partial rule

with a term ‘gender = male’ followed by a term ‘smoke = no’ has no difference

in comparison with a partial rule with a term ‘smoke = no’ followed by a term

‘gender = male’. On the other hand, a partial rule with a term ‘smoke = no’

followed by a term representing the continuous attribute age is different in com-

parison with a partial rule with a term representing a continuous attribute age

followed by a term ‘smoke = no’. In the former case, only examples covered

by the partial rule ‘smoke = no’ are used to compute a threshold value for the

continuous attribute age (e.g. age < 18). In the latter case, all examples of the

training set are used to compute a threshold value for the continuous attribute

age (e.g. age ≥ 65) since the continuous attribute age is the first attribute to be

added to the rule. Although the discretisation procedure is deterministic, there is

no guarantee that the same values will be chosen in these two different cases since

the examples used to compute the threshold values are different. This might affect

the way that ants explore the construction graph, since the pheromone values do

not accurately reflect paths explored by previous ants.

A straightforward implementation that takes into account the order of terms

in a rule is to associate pheromone with the edges instead of the vertices of the

construction graph. For instance, when updating pheromone values for the rule

‘smoke = no AND age < 18’, instead of depositing the pheromone on the vertices

‘smoke = no’ and ‘age’, the pheromone is deposited on the edge that connects the

vertex ‘smoke = no’ to the vertex ‘age’. Consequently, when updating pheromone

values for the rule ‘age ≥ 65 AND smoke = no’, the pheromone is deposited on

the edge that connects the vertex ‘age’ to the vertex ‘smoke = no’. Note that even

though the construction graph is conceptually defined as an almost fully connected

(bidirectional edges) graph, as described in subsection 5.1.1, in practice there is

2The overall reinforcement and evaporation procedures are the same, with the extension for
coping with continuous attributes.

CHAPTER 5. HANDLING CONTINUOUS ATTRIBUTES 100

one edge for each direction between each pair of vertices. To be able to associate

pheromone values to the first vertex of a rule, a dummy vertex ‘start ’ is added and

unidirectionally connected to all vertices in the construction graph. This vertex

represents the starting point for creating paths and its purpose is to associate

pheromone values with the edge leading to the first vertex of an ant’s path—i.e.

the first term in the antecedent of a rule. Figure 5.4 illustrates cAnt-Miner’s

construction graph with a dummy ‘start ’ vertex.

In order to calculate the probability of selecting a vertex (term) Tj to be added

to the current partial rule, the pheromone value associated with the edge between

the last vertex of the rule—or the dummy ‘start ’ vertex when the rule is empty—

and the candidate vertex is used in combination with the heuristic information

associated with the candidate vertex in the same manner as in Ant-Miner and in

the original version of cAnt-Miner, given by

PTj
=

τedgeij
· ηTj

|FTi
|

∑

j=1

(τedgeij
· ηTj

)

, ∀ Tj ∈ FTi
, (5.11)

where τedgeij
is the pheromone value associated with the edge that connects the

last vertex (term) of the current partial rule (Ti)—or the dummy ‘start ’ vertex

when the rule is empty—to the j-th candidate vertex (Tj), ηTj
is the problem-

dependent heuristic information of the candidate j-th vertex (Tj) and FTi
is the

feasible neighbourhood of an ant located at the i-th vertex (Ti). The feasible neigh-

bourhood FTi
comprises all Tj terms except (1) those that contain an attribute

that is already used in the current partial rule, and (2) those whose addition

would make the rule cover less than a user-defined minimum number of training

examples.

The main advantage of this approach can be seen when dealing with continuous

attributes. Since the dynamic discretisation procedure of continuous attributes

is deterministic and based on the currently covered examples, as discussed previ-

ously, using pheromone values that take into account the order in which ants select

vertices to compose candidate rules indirectly preserves the information about the

effectiveness of threshold values of continuous attributes—i.e. threshold values are

preserved without requiring the storage of the actual values.

The idea of associating pheromone values with the edges of the construction

graph has been previously explored in AntMiner+ by Martens et al. [83], although

it was used with a very different purpose. In AntMiner+, pheromone values

CHAPTER 5. HANDLING CONTINUOUS ATTRIBUTES 101

(smoke = no)

(age)

(gender = female)(gender = female)

(gender = male)(gender = male)
(smoke = yes)

(smoke = no)

start

(a)

(smoke = no)

(age)

(gender = female)(gender = female)

(gender = male)(gender = male)
(smoke = yes)

(smoke = no)

start

(b)

Figure 5.4: The construction graph of cAnt-Miner when pheromone values are
associated with edges. In (a) cAnt-Miner’s construction graph with a dummy
‘start ’ vertex; (b) a directed path (‘start ’→ ‘smoke = no’→ ‘age’) is highlighted.

associated with edges were used to define the construction graph as a direct acyclic

graph (DAG) in order to reduce the complexity of the graph, in comparison to

the construction graph employed by Ant-Miner.

As discussed in subsection 3.2.5, after an ant completes the rule construction

process, the created rule undergoes a pruning procedure which aims at removing

irrelevant terms that might have been included in the rule. The original pruning

procedure employed by Ant-Miner and cAnt-Miner consists of removing one term

at a time while this procedure improves the quality of the rule. Therefore, at

each iteration of the pruning procedure, n (where n is the number of terms in the

current rule) candidate rules with n − 1 terms are evaluated and the rule with

highest quality is selected for further pruning. This procedure is repeated until

no term can be removed which improves the current rule quality or the current

rule has only one term left. Clearly, the original pruning procedure does not

take into account the order in which terms appear in a rule. For instance, a rule

‘gender = male AND age ≥ 25 AND smoke = yes’ can be pruned to ‘age ≥ 25

AND smoke = yes’, which will update the pheromone values considering ‘age’

as the first vertex of the rule followed by the vertex ‘smoke = yes’. This is not

consistent with how the threshold of the attribute ‘age’ was calculated and there

is no guarantee that, if an ant selects the vertex ‘age’ as the first term of its rule,

it will have the same threshold value—‘25’ in this case.

CHAPTER 5. HANDLING CONTINUOUS ATTRIBUTES 102

Algorithm 5.1: Threshold-aware rule pruning procedure pseudocode.

input : rule to be pruned
output: the pruned rule

begin1

rulebest ← rule;2

repeat3

rulecurrent← rulebest.antecedent − last term(rulebest.antecedent);4

calculate consequent(rulecurrent);5

if Q(rulecurrent) ≥ Q(rulebest) then6

rulebest ← rulecurrent;7

end8

until Q(rulecurrent) < Q(rulebest) OR |rulebest.antecedent| = 1 ;9

return rulebest;10

end11

To avoid such inconsistencies, a new pruning procedure—dubbed threshold-

aware pruning—sensible to the order of attribute terms (vertices) is proposed.

Since the order of terms in a rule is consistent with continuous attributes’ threshold

values, a simple implementation of a threshold-aware pruning is to remove the last

term that was added to the rule in order to simplify the rule. The removal process

is repeated until the rule quality decreases when the last term is removed or the

rule has only one term left. Note that, in this procedure, continuous attributes’

threshold values do not have to be re-calculated, since terms are removed in the

reverse order that they were added to the rule. Also, only one candidate rule has

to be evaluated at each iteration of the pruning procedure, resulting in a more

efficient (faster) pruning procedure when compared to the original one employed

by Ant-Miner and cAnt-Miner. Algorithm 5.1 presents the high-level pseudocode

of the threshold-aware rule pruning procedure.

Let rule be the rule undergoing the pruning, which is considered the best

rule at the beginning of the pruning procedure. At each iteration of the re-

peat loop in Algorithm 5.1, a candidate rule rulecurrent is created by removing

the last term of the antecedent of the current best rulebest. The consequent of

rulecurrent is (re-)computed using the same procedure as Ant-Miner and the orig-

inal cAnt-Miner, which corresponds to assigning the majority class label of the

examples covered by the rule to its consequent. Then, if the quality measure

Q(rulecurrent) is higher than or equal to the current best rule quality Q(rulebest),

rulecurrent substitutes rulebest, completing an iteration of the pruning procedure.

This procedure is repeated until rulebest has just one term left on its antecedent

CHAPTER 5. HANDLING CONTINUOUS ATTRIBUTES 103

or a candidate rule rulecurrent does not improve the quality over rulebest—i.e.,

Q(rulebest) > Q(rulecurrent). According to Algorithm 5.1, the threshold-aware

rule pruning procedure has a bias towards simpler (with fewer terms in the an-

tecedent) rules, since if both rulecurrent and rulebest—where the antecedent of

rulecurrent corresponds to the antecedent of rulebest after the removal of its last

term—have the same quality measure value, rulecurrent substitutes rulebest as the

best rule found so far. The motivation for this bias is that simpler rules are eas-

ier to interpret and they usually cover a greater number of training examples,

representing more generic knowledge.

The approach to preserve the order of terms using pheromone values associated

with edges described in this section, together with the extension to the construc-

tion graph and the threshold-aware pruning procedure, were incorporated into

cAnt-Miner, creating a new cAnt-Miner variation dubbed cAnt-Miner2 (cAnt-

Miner using pheromones on the edges).

5.4 Combining Pheromone Associated with Ed-

ges and Minimum Description Length-based

Discretisation

The proposed MDL-based discretisation method—described in section 5.2—was

combined with the improved pheromone updating procedure—described in section

5.3, in which pheromone values are associated with edges of the construction

graph—in order to create a new cAnt-Miner variation, dubbed cAnt-Miner2-MDL

(cAnt-Miner2 with MDL-based discretisation). The motivation of combining both

MDL-based discretisation and pheromone values associated with edges is to take

advantage of the more flexible representation of discrete intervals—particularly the

ability of being able to produce discrete intervals in the form vlower ≤ yi < vupper—

and, at the same time, be able to preserve the information about the effectiveness

of threshold values.

5.5 Summary

This chapter presented a method to extend ACO classification algorithms, propos-

ing a new ACO classification algorithm named cAnt-Miner (Ant-Miner coping

CHAPTER 5. HANDLING CONTINUOUS ATTRIBUTES 104

with continuous attribute), which is able to cope with continuous attributes di-

rectly during the rule construction process—i.e. without requiring a discretisation

method in a preprocessing step. cAnt-Miner extended Ant-Miner in several ways.

Firstly, cAnt-Miner includes vertices in the construction graph to represent contin-

uous attributes. Secondly, it incorporates a dynamic entropy-based discretisation

procedure in order to compute the heuristic information for continuous attributes.

Thirdly, it incorporates continuous attributes conditions (terms) using a relational

operator ‘<’ (less-than operator) or ‘≥’ (greater-than-or-equal-to operator) in the

antecedent of rules. Finally, it employs an extended pheromone update procedure

to cope with continuous attribute vertices.

In addition, this chapter presented two new extensions concerning the handling

of continuous attributes in ACO classification algorithms. Following the ideas of

cAnt-Miner, a new discretisation procedure based on the MDL principle was incor-

porated in the rule construction process, allowing the creation of discrete intervals

using lower and upper bound values—i.e., vlower ≤ attribute < vupper. This led to

a cAnt-Miner variation, dubbed cAnt-Miner-MDL (cAnt-Miner with MDL-based

discretisation). Moreover, it was proposed to deposit the pheromone on edges

instead of vertices of the construction graph in order to deal with the problem

of attribute interaction introduced by the way that the rule construction process

copes with continuous attributes in cAnt-Miner. Subsequently, this led to another

cAnt-Miner variation, dubbed cAnt-Miner2 (cAnt-Miner using pheromone on the

edges). Finally, both extensions were combined into a new cAnt-Miner variation,

dubbed cAnt-Miner2-MDL (cAnt-Miner2 with MDL-based discretisation).

Chapter 6

Computational Results for

Ant-Miner Coping with

Continuous Attributes

In this chapter, the proposed cAnt-Miner (Ant-Miner Coping with Continuous

Attributes) variations—described in chapter 5—are assessed empirically against

the original Ant-Miner and three well-known classification algorithms from the

Weka’s workbench [133], namely J48 (Weka’s C4.5 [99] implementation), JRip

(Weka’s RIPPER [27] implementation) and PART [47]. All classification algo-

rithms are applied to eighteen publicly available data sets from the UCI Machine

Learning repository [5], most of them involving continuous attributes either alone

or in combination with nominal attributes, belonging to a wide range of domains.

The aim of the experiments is to firstly assess how well cAnt-Miner variations

perform against the original Ant-Miner, with respect to predictive accuracy and

simplicity (size) of the discovered classification model, given that cAnt-Miner is

able to cope with continuous attributes directly—i.e. during its rule construction

procedure—rather than requiring a discretisation method in a preprocessing step

as Ant-Miner. Secondly, to assess how cAnt-Miner variations are compared against

the well-known rule induction algorithms JRip and PART, and the decision tree

induction algorithm J48, with respect to predictive accuracy and simplicity of

the discovered classification model. Although J48 is a decision tree induction

algorithm, it is included in the set of experiments since C4.5 (J48 reimplements the

well-known C4.5) is considered a standard classification algorithm in the literature

and a decision tree can be easily converted into a set of rules [99]. A summary

of the different classification algorithms used in the experiments is presented in

105

CHAPTER 6. COMPUTATIONAL RESULTS FOR CANT-MINER 106

Table 6.1: Summary of the classification algorithms used in the experiments. Ant-
Miner is described in chapter 3; cAnt-Miner variations are described in chapter
5; J48, JRip and PART are implemented in Weka workbench [133] and briefly
described in chapter 2.

Classifier Description

Ant-Miner rule induction algorithm

cAnt-Miner Ant-Miner coping with continuous attributes

cAnt-Miner-MDL cAnt-Miner with MDL-based discretisation

cAnt-Miner2 cAnt-Miner using pheromones on the edges

cAnt-Miner2-MDL cAnt-Miner2 with MDL-based discretisation

J48 Weka’s implementation of C4.5

JRip Weka’s implementation of RIPPER

PART rule induction algorithm based on C4.5

Table 6.1.

The remainder of this chapter is organised as follows. Section 6.1 presents the

details of the data sets used in the evaluation. Section 6.2 describes the user-

defined parameters of each classification algorithm used in the experiments. The

empirical evaluation results are presented in section 6.3, and finally, section 6.4

summarises the computational results presented in this chapter.

6.1 Data Sets

The main characteristics of the data sets used in the experiments are summarised

in Table 6.2. In Table 6.2, the first column of the table gives the data set ab-

breviation, the second gives the dataset name, the third and forth columns give

the number of nominal and continuous attributes respectively, the fifth column

gives the number of class labels, the sixth column gives the number of examples

in the original data set and the seventh column gives the number of examples in

the discrete data set (after the discretisation of continuous attributes and removal

of duplicated examples). Note that all data sets, except ‘blc’ and ‘vot’, involve

continuous attributes either alone or in combination with nominal attributes.

Since Ant-Miner does not cope with continuous attributes directly, the data

CHAPTER 6. COMPUTATIONAL RESULTS FOR CANT-MINER 107

Table 6.2: Summary of the data sets used in the experiments. The first column of
the table gives the data set abbreviation, the second gives the dataset name, the
third and forth columns give the number of nominal and continuous attributes
respectively, the fifth column gives the number of class labels, the sixth column
gives the number of examples in the original dataset and the seventh column
gives the number of examples in the discrete dataset (after the discretisation of
continuous attributes and removal of duplicated examples).

Abbr. Data Set Attributes Classes Examples
Nom. Cont. Orig. Disc.

anneal annealing 29 9 6 896 813

auto automobile 10 15 7 205 201

bcl breast cancer (ljubljana) 9 0 2 286 –

bcw breast cancer (wisconsin) 0 30 2 569 546

cylinder cylinder bands 16 19 2 540 529

glass glass 0 9 7 213 200

heart-c heart (cleveland) 6 7 5 303 281

heart-h heart (hungarian) 6 7 5 294 275

hep hepatitis 13 6 2 155 154

horse horse colic 15 7 2 365 365

ionos ionosphere 0 34 2 350 345

credit-a statlog credit (australian) 8 6 2 690 684

credit-g statlog credit (german) 13 7 2 1000 999

s-heart statlog heart 6 7 2 270 268

seg statlog segmentation 0 19 7 2269 2244

park parkinsons 0 22 2 195 181

vot voting-records 16 0 2 435 –

wine wine 0 13 3 178 174

CHAPTER 6. COMPUTATIONAL RESULTS FOR CANT-MINER 108

sets containing continuous attributes were discretised in a preprocessing step as

follows. Since a ten-fold cross-validation procedure is used in the experiments,

each partition was separately discretised by the C4.5-Disc discretisation method1

[74] using the remaining nine partitions to create discrete intervals, which were

then used to discretise the unseen partition (hold-out test set). This separation

is necessary because, if the entire data set is discretised before creating the cross-

validation partitions, the discretisation method would have had access to the test

data. This would have compromised the reliability of the experiments. Moreover,

the duplicated examples (examples with the same values for all attributes) were

also removed from the resulting discrete data set to avoid the possibility that a

test set contains an example that is the same as a training example—i.e. all exam-

ples from the hold-out partition (test set) which are duplicated in the remaining

nine partitions (training set) are removed, so the hold-out partition contains only

unique test examples that do not occur in the training set.

6.2 Experimental Setup

Recall that cAnt-Miner variations share the same underlying procedure of Ant-

Miner, therefore the same set of user-defined parameter values are used amongst

Ant-Miner and cAnt-Miner variations in all data sets, which are also considered

a standard in the literature [94]; no attempt was made to tune either parameter

value for individual data sets. A summary of the used-defined parameters and

their correspondent values is shown in Table 6.3.

The only paramenter that had its value empirically determined for the set of

experiments was the colony size (number of ants per iteration). It is expected that

higher values of the colony size parameter are associated with higher predictive

accuracies, since more candidates rules are evaluated during an iteration, at the

cost of a higher computational time. However, there is generally a maximum value

from which increases result in higher computational times without improvements

in predictive accuracy and, in some cases, could lead to a decrease in predictive

accuracy due to overfitting2 the training set. We have tested five different colony

size values {1, 10, 30, 60, 100}. Figure 6.1 illustrates the influence of these values

1A short description of C4.5-Disc discretisation method is presented in chapter 5. For further
details refer to [74].

2Overfitting occurs when a classification model is built too tailored to the training set, result-
ing in a model that does not generalise well and, consequently, it has a lower predictive accuracy
in the test set (the set of unseen examples).

CHAPTER 6. COMPUTATIONAL RESULTS FOR CANT-MINER 109

Table 6.3: Summary of the user-defined parameter values used in Ant-Miner and
cAnt-Miner variations in all data sets.

Parameter Description Value

max uncovered examples maximum number of uncovered examples 10

max number iterations maximum number of iterations 1500

rule convergence number of iterations used to test the rule
convergence

10

min examples per rule minimum number of covered examples per
rule

10

colony size number of ants per iteration 60

on both predictive accuracy and execution time in Ant-Miner using the ‘annel’ and

‘bcl’ data sets—Figure 6.1(a)—and in cAnt-Miner using the ‘auto’ and ‘wine’ data

sets—Figure 6.1(b). Overall, both 1 and 10 colony size values show slightly lower

accuracy values when compared to 30, 60 and 100 values—with the exception of

the data set ‘bcl’, where the increase of the colony size led to a decrease of the

accuracy. Increasing the colony size value from 30 to 100 shows small gains in

terms of accuracy, while the increase in the execution time is significant. The

colony size value 60 seems to be a reasonable trade-off between accuracy and

execution time and it is therefore the value used in our experiments.

For J48, JRip and PART algorithms, the Weka’s workbench implementations

were used with the default parameters.

The experiments were conducted using a ten-fold cross-validation procedure for

each data set. A ten-fold cross-validation procedure consists of dividing the data

set into ten partitions of examples, wherein each partition has a similar number

of examples and class distribution. For each partition, the classification algorithm

is run using the remaining nine partitions as the training set and its performance

is evaluated using the unseen (hold-out) partition. For stochastic classification

algorithms—i.e. Ant-Miner and cAnt-Miner variations—the algorithm is run fif-

teen times using a different random seed to initialise the search for each partition

of the cross-validation. In the case of the deterministic algorithms—i.e. J48, JRip

and PART—each of them is run just once for each partition of the cross-validation.

CHAPTER 6. COMPUTATIONAL RESULTS FOR CANT-MINER 110

0.8

0.6

0.4

0.2

1 3010 60
0

100

1

colony size

anneal

0.8

0.6

0.4

0.2

1 3010 60
0

100

1

colony size

bcl

(a)

0.8

0.6

0.4

0.2

1 3010 60
0

100

1

colony size

auto

0.8

0.6

0.4

0.2

1 3010 60
0

100

1

colony size

wine

(b)

normalised accuracy

normalised time

Figure 6.1: Influence of colony size values {1, 10, 30, 60, 100} on both predictive
accuracy and execution time. In (a) Ant-Miner using the ‘anneal’ and ‘bcl’ data
sets; (b) cAnt-Miner using the ‘auto’ and ‘wine’ data sets.

6.3 Results

The results of the experiments concerning predictive accuracy are shown in Table

6.4 for Ant-Miner, cAnt-Miner, cAnt-Miner-MDL and cAnt-Miner2, and in Table

6.5 for cAnt-Miner2-MDL, J48, JRip and PART. Each entry in these tables shows

the average value of the accuracy obtained via the ten-fold cross-validation pro-

cedure followed by the standard deviation; the last row indicates the rank-based

score—the higher the score, the better the ranking—according to the non-para-

metric Friedman test [34, 54], which is also illustrated in Figure 6.2.

In terms of predictive accuracy, overall cAnt-Miner and its variations outper-

form Ant-Miner, with cAnt-Miner2-MDL being the most accurate amongst them.

When compared to J48, JRip and PART, cAnt-Miner variations show competitive

results, with both cAnt-Miner2 and cAnt-Miner2-MDL achieving high rank-scores

within the most accurate algorithms as illustrated in Figure 6.2, according to the

CHAPTER 6. COMPUTATIONAL RESULTS FOR CANT-MINER 111

Table 6.4: Predictive accuracy (mean ± standard deviation) obtained with the
ten-fold cross-validation procedure in the eighteen data sets by Ant-Miner, cAnt-
Miner, cAnt-Miner-MDL and cAnt-Miner2, respectively. The last row of the table
indicates the rank-based score—the higher the score, the better the ranking—
according to the non-parametric Friedman test [34, 54].

Data Set Ant-Miner cAnt-Miner cAnt-Miner-MDL cAnt-Miner2

anneal 94.88 ± 3.03 89.32 ± 1.04 88.96 ± 1.14 96.01 ± 0.52

auto 54.19 ± 2.74 67.52 ± 2.57 65.78 ± 2.61 64.08 ± 2.01

bcl 73.67 ± 2.87 73.69 ± 2.84 73.69 ± 2.84 73.47 ± 2.71

bcw 89.81 ± 1.61 93.26 ± 0.65 93.30 ± 0.70 94.55 ± 0.81

cylinder 68.55 ± 1.98 71.30 ± 0.76 70.66 ± 0.98 69.93 ± 1.39

glass 54.09 ± 5.74 67.44 ± 3.08 66.70 ± 1.71 69.46 ± 2.30

heart-c 30.59 ± 4.30 55.99 ± 1.42 56.11 ± 1.58 56.68 ± 1.13

heart-h 38.55 ± 3.56 62.91 ± 1.60 63.54 ± 1.84 63.76 ± 1.24

hep 74.71 ± 3.17 76.84 ± 3.13 77.96 ± 3.26 79.41 ± 2.57

horse 80.83 ± 2.04 80.45 ± 2.58 80.75 ± 2.55 78.44 ± 2.61

ionos 90.15 ± 1.73 87.08 ± 1.49 83.99 ± 1.09 87.35 ± 1.29

credit-a 84.49 ± 1.28 85.30 ± 0.93 86.03 ± 0.74 84.85 ± 1.05

credit-g 69.11 ± 1.70 70.66 ± 1.00 70.72 ± 1.05 71.41 ± 0.87

s-heart 73.12 ± 3.44 77.88 ± 2.23 78.82 ± 2.11 78.62 ± 2.08

seg 77.67 ± 0.79 93.72 ± 0.38 90.29 ± 0.39 93.53 ± 0.36

park 63.14 ± 9.98 87.40 ± 1.83 88.16 ± 1.53 86.92 ± 1.44

vot 93.69 ± 1.35 93.69 ± 1.35 93.69 ± 1.35 93.52 ± 1.41

wine 82.47 ± 3.63 91.38 ± 1.72 91.58 ± 1.55 92.17 ± 1.75

score 2.33 4.03 4.22 4.67

CHAPTER 6. COMPUTATIONAL RESULTS FOR CANT-MINER 112

Table 6.5: Predictive accuracy (mean ± standard deviation) obtained with the
ten-fold cross-validation procedure in the eighteen data sets by cAnt-Miner2-MDL,
J48, JRip and PART, respectively. The last row of the table indicates the rank-
based score—the higher the score, the better the ranking—according to the non-
parametric Friedman test [34, 54].

Data Set cAnt-Miner2-MDL J48 JRip PART

anneal 96.22 ± 0.63 92.46 ± 1.14 94.87 ± 0.59 94.63 ± 0.68

auto 66.58 ± 2.12 81.36 ± 2.50 68.69 ± 2.45 76.64 ± 3.08

bcl 73.13 ± 2.71 72.86 ± 2.28 69.44 ± 2.15 68.32 ± 1.85

bcw 94.40 ± 0.62 94.91 ± 0.71 94.20 ± 0.98 95.08 ± 1.00

cylinder 70.78 ± 1.58 74.50 ± 2.09 64.29 ± 2.29 74.51 ± 1.72

glass 69.21 ± 1.77 68.50 ± 1.78 66.54 ± 2.94 65.62 ± 3.01

heart-c 56.39 ± 1.19 51.20 ± 1.65 54.48 ± 1.59 53.52 ± 2.37

heart-h 63.98 ± 1.47 66.73 ± 2.99 63.72 ± 0.80 64.64 ± 3.16

hep 78.34 ± 2.63 80.67 ± 2.52 78.13 ± 2.66 83.25 ± 3.47

horse 79.07 ± 2.42 84.75 ± 1.49 83.54 ± 1.87 82.39 ± 2.10

ionos 86.78 ± 1.35 90.24 ± 1.23 90.24 ± 1.23 90.23 ± 1.44

credit-a 85.14 ± 0.94 85.80 ± 1.01 85.51 ± 1.46 84.35 ± 1.08

credit-g 71.38 ± 0.90 69.60 ± 1.58 72.20 ± 1.46 70.40 ± 1.60

s-heart 79.53 ± 2.20 75.56 ± 3.13 78.52 ± 2.33 75.93 ± 1.93

seg 90.82 ± 1.24 96.59 ± 0.44 94.58 ± 0.51 95.61 ± 0.32

park 88.67 ± 1.34 88.16 ± 1.55 88.76 ± 2.37 86.18 ± 2.02

vot 93.54 ± 1.40 94.48 ± 1.22 93.66 ± 1.38 94.51 ± 1.15

wine 90.85 ± 2.03 93.30 ± 2.45 92.19 ± 2.22 92.75 ± 1.44

score 4.83 5.89 4.97 5.06

CHAPTER 6. COMPUTATIONAL RESULTS FOR CANT-MINER 113

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0

Ant-Miner

cAnt-Miner

cAnt-Miner-MDL

cAnt-Miner2

cAnt-Miner2-MDL

J48

JRip

PART

rank-based score

Figure 6.2: Comparison of the predictive accuracy achieved by the classification
algorithms used in our experiments across all data sets, according to the non-para-
metric Friedman test with a Scheffé’s post-hoc test at the 0.01 significant level
[34, 54]. Two rank-based scores—the higher the score, the better the ranking—
are significantly different if their intervals are disjoint and are not significantly
different if their intervals overlap.

non-parametric Friedman test with a Scheffé’s post-hoc test at the 0.01 significant

level [34, 54]. It should be noted that the algorithm with highest predictive ac-

curacy overall, J48, is actually a decision tree induction algorithm, as mentioned

earlier. Taking into account only the rule induction algorithms, cAnt-Miner2-MDL

achieved roughly the same level of predictive accuracy as JRip and PART.

The results of the experiments concerning the size of the discovered model—

measured as the number of rules—are shown in Table 6.6 for Ant-Miner, cAnt-

Miner, cAnt-Miner-MDL and cAnt-Miner2, and in Table 6.7 for cAnt-Miner2-

MDL, J48, JRip and PART. For the special case of the decision tree induction

algorithm J48, the model size is defined by the number of leaf nodes in the tree,

since each path from the root node to a leaf node can be viewed as a rule. Each

entry in those tables shows the average model size obtained via the ten-fold cross-

validation procedure followed by the standard deviation; the last row indicates

CHAPTER 6. COMPUTATIONAL RESULTS FOR CANT-MINER 114

Ant-Miner

cAnt-Miner

cAnt-Miner-MDL

cAnt-Miner2

cAnt-Miner2-MDL

J48

JRip

PART

rank-based score

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0

Figure 6.3: Comparison of the size of the classification model discovered by the
algorithms used in our experiments across all data sets, according to the non-para-
metric Friedman test with a Scheffé’s post-hoc test at the 0.01 significant level
[34, 54]. Two rank-based scores—the lower the score, the better the ranking—
are significantly different if their intervals are disjoint and are not significantly
different if their intervals overlap.

the rank-based score—in this case, the lower the score, the better the ranking,

since smaller models are preferred—according to the non-parametric Friedman

test [34, 54], which is also illustrated in Figure 6.3.

In terms of simplicity (size) of the discovered model, all cAnt-Miner variations

and Ant-Miner perform equally overall, with the discovered model of cAnt-Miner-

MDL being the simplest (smallest) amongst them. The size of the models obtained

by cAnt-Miner, cAnt-Miner-MDL and JRip is significantly simpler than the mod-

els obtained by J48 and PART, according to the non-parametric Friedman test

with a Scheffé’s post-hoc test at the 0.01 significant level [34, 54] and illustrated

in Figure 6.3. There are no statistically significant differences in the size of the

model obtained by cAnt-Miner2 and cAnt-Miner2-MDL when compared to the

remaining algorithms used in our experiments.

In order to evaluate the influence of each individual Ant-Miner’s extensions

CHAPTER 6. COMPUTATIONAL RESULTS FOR CANT-MINER 115

Table 6.6: Model size (mean ± standard deviation) obtained with the ten-fold
cross-validation procedure in the eighteen data sets by Ant-Miner, cAnt-Miner,
cAnt-Miner-MDL and cAnt-Miner2, respectively. The last row of the table indi-
cates the rank-based score—the lower the score, the better the ranking, since
smaller models are preferred—according to the non-parametric Friedman test
[34, 54].

Data Set Ant-Miner cAnt-Miner cAnt-Miner-MDL cAnt-Miner2

anneal 9.00 ± 0.00 9.51 ± 0.11 9.97 ± 0.13 8.98 ± 0.12

auto 8.40 ± 0.18 8.19 ± 0.09 8.43 ± 0.08 8.94 ± 0.16

bcl 5.99 ± 0.12 6.01 ± 0.13 5.97 ± 0.12 5.83 ± 0.06

bcw 5.42 ± 0.10 5.03 ± 0.04 4.95 ± 0.09 5.19 ± 0.05

cylinder 6.44 ± 0.19 6.54 ± 0.10 6.55 ± 0.07 7.24 ± 0.04

glass 8.59 ± 0.34 8.22 ± 0.12 8.05 ± 0.12 8.66 ± 0.11

heart-c 7.53 ± 0.32 8.59 ± 0.12 8.57 ± 0.11 9.05 ± 0.07

heart-h 6.19 ± 0.19 7.08 ± 0.15 6.99 ± 0.14 7.47 ± 0.13

hep 4.90 ± 0.10 4.91 ± 0.11 4.87 ± 0.08 5.21 ± 0.06

horse 7.13 ± 0.23 7.27 ± 0.21 7.13 ± 0.22 6.61 ± 0.14

ionos 6.14 ± 0.28 5.50 ± 0.08 5.10 ± 0.09 5.66 ± 0.10

credit-a 6.46 ± 0.27 7.07 ± 0.19 7.22 ± 0.20 6.97 ± 0.09

credit-g 8.53 ± 0.17 8.58 ± 0.06 8.50 ± 0.05 8.70 ± 0.10

s-heart 6.16 ± 0.19 6.07 ± 0.04 6.03 ± 0.03 6.11 ± 0.09

seg 16.59 ± 0.69 12.22 ± 0.09 12.40 ± 0.13 13.58 ± 0.11

park 4.79 ± 0.13 4.95 ± 0.04 4.99 ± 0.02 5.01 ± 0.03

vot 4.80 ± 0.13 4.80 ± 0.13 4.80 ± 0.13 4.80 ± 0.13

wine 4.90 ± 0.22 4.01 ± 0.01 4.00 ± 0.00 4.32 ± 0.12

score 3.69 3.56 3.11 4.33

CHAPTER 6. COMPUTATIONAL RESULTS FOR CANT-MINER 116

Table 6.7: Model size (mean ± standard deviation) obtained with the ten-fold
cross-validation procedure in the eighteen data sets by cAnt-Miner2-MDL, J48,
JRip and PART, respectively. The last row of the table indicates the rank-
based score—the lower the score, the better the ranking, since smaller models
are preferred—according to the non-parametric Friedman test [34, 54].

Data Set cAnt-Miner2-MDL J48 JRip PART

anneal 11.20 ± 0.16 44.00 ± 4.18 11.50 ± 0.31 28.70 ± 1.11

auto 9.23 ± 0.07 46.60 ± 2.34 12.10 ± 0.67 19.60 ± 0.73

bcl 5.79 ± 0.09 8.20 ± 2.57 2.90 ± 0.28 18.70 ± 1.46

bcw 5.83 ± 0.09 11.50 ± 0.52 4.70 ± 0.21 7.30 ± 0.34

cylinder 7.29 ± 0.04 68.80 ± 3.52 6.00 ± 0.91 33.30 ± 0.63

glass 8.32 ± 0.19 23.80 ± 0.55 7.60 ± 0.50 16.20 ± 0.36

heart-c 9.05 ± 0.06 44.70 ± 1.61 3.30 ± 0.37 42.30 ± 1.09

heart-h 7.39 ± 0.14 27.60 ± 0.88 3.50 ± 0.45 24.10 ± 0.89

hep 5.17 ± 0.06 9.70 ± 0.56 2.70 ± 0.21 8.40 ± 0.34

horse 6.65 ± 0.08 5.20 ± 0.47 3.70 ± 0.34 9.60 ± 0.45

ionos 6.41 ± 0.15 13.40 ± 0.70 5.90 ± 0.61 7.50 ± 0.52

credit-a 6.97 ± 0.15 19.80 ± 2.22 4.10 ± 0.64 31.90 ± 2.93

credit-g 8.61 ± 0.09 83.80 ± 6.59 3.90 ± 0.41 68.70 ± 1.99

s-heart 6.14 ± 0.08 20.80 ± 1.58 4.30 ± 0.40 18.20 ± 0.81

seg 18.00 ± 0.15 41.40 ± 0.87 17.20 ± 0.83 27.90 ± 0.92

park 4.92 ± 0.05 10.70 ± 0.45 3.90 ± 0.23 7.00 ± 0.33

vot 4.80 ± 0.13 5.70 ± 0.15 2.70 ± 0.26 6.60 ± 0.37

wine 4.20 ± 0.13 5.20 ± 0.13 4.00 ± 0.15 4.60 ± 0.16

score 4.67 7.50 1.97 7.17

CHAPTER 6. COMPUTATIONAL RESULTS FOR CANT-MINER 117

Table 6.8: Summary of the pairwise comparisons in terms of predictive accuracy
amongst Ant-Miner and cAnt-Miner variations conducted in order to evaluate the
influence of each individual Ant-Miner’s extensions proposed in chapter 5. For
each row, the ‘⊕’ (‘⊖’) symbol indicates that the first algorithm performs better
(worse) than the second algorithm, followed by the sum of positive/negative ranks
(Score column) and the corresponding p-value, according to the Wilcoxon signed
rank test. The significant differences at the 0.01 level are shown in bold.

dynamic vs. static discretisation Score p

cAnt-Miner vs. Ant-Miner ⊕ 134.0/19.0 7.00 · 10−4

binary vs. MDL-based discretisation Score p

cAnt-Miner vs. cAnt-Miner-MDL ⊕ 69.0/67.0 9.79 · 10−1

cAnt-Miner2 vs. cAnt-Miner2-MDL ⊖ 84.5/86.5 9.83 · 10−1

vertex vs. edge pheromone updating Score p

cAnt-Miner vs. cAnt-Miner2 ⊖ 61.0/110.0 2.96 · 10−1

cAnt-Miner-MDL vs. cAnt-Miner2-MDL ⊖ 49.0/122.0 1.17 · 10−1

proposed in chapter 5, we have also conducted pairwise comparisons to show

the significance of the increase/decrease in terms of predictive accuracy achieved

by the introduction of a particular extension, according to the Wilcoxon signed

rank test [34, 54]. The pairwise comparisons amongst Ant-Miner and cAnt-Miner

variations are summarised in Table 6.8 and they are described next.

1. dynamic vs. static discretisation: the introduction of a dynamic discretisa-

tion procedure in cAnt-Miner’s rule construction process has led to a signifi-

cant increase in predictive accuracy when compared to Ant-Miner using the

static C4.5-Disc discretisation method, according to the Wilcoxon signed

rank test at the 0.01 significant level, as shown in Table 6.8 (cAnt-Miner vs.

Ant-Miner row). This result supports our argument that by handling contin-

uous attributes directly during the rule construction process in cAnt-Miner

enhances the predictive accuracy over Ant-Miner, since more information

is available to the classification algorithm and the choice of a discretisa-

tion point (threshold value) is tailored to the current rule being constructed

CHAPTER 6. COMPUTATIONAL RESULTS FOR CANT-MINER 118

rather than fixed in a preprocessing step.3 Note that both cAnt-Miner and

Ant-Miner perform equally on data sets containing only nominal attributes

(data sets ‘bcl’ and ‘vot’ in Table 6.4), as expected.

2. binary vs. MDL-based discretisation: the introduction of a MDL-based dis-

cretisation procedure—which allows the creation of discrete intervals with

lower and upper threshold values—in cAnt-Miner has led to a very small

decrease in predictive accuracy, but the differences are not significant, as

shown in Table 6.8 (cAnt-Miner vs. cAnt-Miner-MDL row); in the case of

cAnt-Miner2, it has led to a very small increase, but the differences are not

significant either, as shown in Table 6.8 (cAnt-Miner2 vs. cAnt-Miner2-MDL

row). Therefore, we conclude that there is no evidence to support the se-

lection of the MDL-based discretisation over the binary discretisation, since

both discretisation procedures perform equally in terms of prediction accu-

racy. Figure 6.4 illustrates the difference in how continuous attributes con-

ditions are represented in the antecedent of rules discovered by Ant-Miner,

cAnt-Miner and cAnt-Miner-MDL. Note that cAnt-Miner2 shares the same

discretisation procedure of cAnt-Miner, therefore also the same representa-

tion of continuous attributes conditions in the antecedent of rules—this is

also the case between cAnt-Miner2-MDL and cAnt-Miner-MDL.

3. vertex vs. edge pheromone updating : the introduction of an improved phero-

mone updating procedure, which deposits pheromone on the edges instead

of vertices of the construction graph, in cAnt-Miner2 has led to an increase

in predictive accuracy that, although it is not significant according to the

Wilcoxon signed rank test at the 0.01 significant level, it is noticeable when

compared to cAnt-Miner, as shown in Table 6.8 (cAnt-Miner vs. cAnt-

Miner2 row); this is also the case when comparing cAnt-Miner2-MDL and

cAnt-Miner-MDL, where the former shows an increase in predictive accuracy

that is not significant but noticeable, as shown in Table 6.8 (cAnt-Miner-

MDL vs. cAnt-Miner2-MDL row). These results support the argument

that preserving the order of terms in a rule by depositing pheromone on

the edges of the construction graph improves the predictive accuracy, since

the pheromone values on the edge better reflect paths explored by previous

3It should be noted that while both Ant-Miner using the static C4.5-Disc discretisation
method and cAnt-Miner’s dynamic discretisation procedure consist on an entropy-based dis-
cretisation of continuous attributes, the use of a different discretisation method/procedure can
produce a different result.

CHAPTER 6. COMPUTATIONAL RESULTS FOR CANT-MINER 119

ants—i.e. the pheromone values indirectly preserve the information about

the effectiveness of threshold values of continuous attributes.

6.4 Summary

The results presented in this chapter show that the dynamic discretisation proce-

dure of continuous attributes incorporated in cAnt-Miner (and in its variations)

has led to significant improvements in terms of predictive accuracy when com-

pared to Ant-Miner. At the same time, no significant differences are observed in

the size of the discovered model.

Furthermore, the incorporation of a MDL-based discretisation procedure in

cAnt-Miner-MDL and cAnt-Miner2-MDL achieved similar results in terms of pre-

dictive accuracy as the binary discretisation employed in cAnt-Miner and cAnt-

Miner2, respectively. The improved pheromone updating process incorporated in

cAnt-Miner2 and cAnt-Miner2-MDL, which deposits pheromone on the edges of

the construction graph to preserve the order of terms in a rule and indirectly the

information about the effectiveness of threshold values of continuous attributes,

achieved higher predictive accuracies than the one employed in cAnt-Miner and

cAnt-Miner-MDL, that although not statistically significant higher, they are rel-

atively large increases.

Comparisons with well-known rule induction, namely JRip and PART, and

decision tree induction, namely J48, classification algorithms have shown that

cAnt-Miner and its variations are competitive both in terms of predictive accuracy

and size of the discovered model.

CHAPTER 6. COMPUTATIONAL RESULTS FOR CANT-MINER 120

(a) Ant-Miner

IF family = TN THEN 5

IF hardness = 1 THEN U

IF steel = A THEN 3

IF surface-quality = E THEN 3

IF condition = S AND steel = R THEN 2

IF width = 0 AND strength = 0 THEN 3

IF shape = COIL AND width = 0 THEN 1

IF surface-finish = P THEN 2

IF product-type = C THEN 2

IF <empty> THEN 3

(b) cAnt-Miner

IF family = TN THEN 5

IF hardness >= 75.0 THEN U

IF steel = S AND thick < 1.3 THEN 1

IF steel = A THEN 3

IF surface-quality = E THEN 3

IF condition = S AND steel = R THEN 2

IF strength < 425.0 THEN 3

IF steel = R THEN 3

IF shape = SHEET THEN 2

IF <empty> THEN 2

(c) cAnt-Miner-MDL

IF family = TN THEN 5

IF 0.5005 <= thick < 0.7995000000000001 THEN 3

IF steel = A AND hardness >= 82.5 THEN U

IF steel = S AND shape = COIL AND strength >= 200.0 THEN 1

IF surface-quality = E AND carbon < 5.0 THEN 3

IF surface-quality = G THEN 3

IF steel = R THEN 2

IF carbon >= 27.5 THEN 3

IF condition = S AND steel = A THEN 3

IF len >= 0.5 AND thick < 2.6 THEN 2

IF product-type = C AND steel = V THEN 2

IF <empty> THEN U

Figure 6.4: Example of a list of rules discovered for the ‘anneal’ data set by Ant-
Miner, cAnt-Miner and cAnt-Miner-MDL, respectively. The ‘anneal’ data set con-
tains steel annealing data, described by 38 predictor attributes and distributed
in 6 class labels. This example illustrates the differences in how continuous at-
tributes (‘carbon’, ‘hardness’, ‘len’, ‘strength’, ‘thick’ and ‘width’ in this example)
are handled in: (a) Ant-Miner: continuous attributes are discretised in a prepro-
cessing step; (b) cAnt-Miner: a binary entropy-based discretisation procedure is
used to dynamically create discrete intervals during the rule construction process;
(c) cAnt-Miner-MDL: a MDL-based discretisation procedure is used (instead of
a binary one) to allow the creation of intervals with lower and upper threshold
values.

Chapter 7

Hierarchical and Multi-Label Ant

Colony Classification Algorithms

Many classification schemes for defining protein functions—such as FunCat [105]

and Gene Ontology [4], presented in section 4.3—are organised in a hierarchical

structure. As discussed in section 2.3, from a data mining perspective, hierar-

chical classification presents a more challenging problem than conventional flat

classification. Much work on hierarchical classification of protein functions has

been focused on training a classifier for each function (class label) independently,

using the hierarchy to determine positive and negative examples associated with

each classifier [9, 70, 77]. Predicting each class label individually has several dis-

advantages, as discussed in subsection 2.3.1.

This chapter presents novel ant colony optimisation (ACO) classification al-

gorithms tailored for the hierarchical and multi-label classification problem of

predicting protein functions. Although the design of these algorithms took into

consideration the hierarchical problem of predicting protein functions, they can be

applied to hierarchical classification problems from different domains. It should

be noted that all other ant colony algorithms for classification proposed in the lit-

erature have been applied to flat classification problems [50]; therefore the ACO

algorithms proposed in this chapter are the first ACO algorithms for hierarchical

and hierarchical multi-label classification—to the best of our knowledge.

The remainder of this chapter is organised as follows. Section 7.1 presents

the hAnt-Miner (hierarchical classification Ant-Miner) algorithm. Section 7.2 dis-

cusses the limitation of the proposed hAnt-Miner algorithm when applied to hi-

erarchical multi-label classification problems and presents an extended approach,

named hmAnt-Miner. In section 7.3, the hmAnt-MinerPB algorithm is presented,

121

CHAPTER 7. HIERARCHICAL AND MULTI-LABEL ALGORITHMS 122

which employs a further extended approach—inspired by the Pittsburgh approach

in evolutionary algorithms—to discover a list of hierarchical multi-label classifi-

cation rules. Section 7.4 presents a baseline method, named cAnt-MinerHM, in

which the hierarchical multi-label problem is divided into a set of binary classi-

fication problems and a flat classification algorithm is applied to discover rules

for each class label independently. Finally, section 7.5 presents a summary of the

algorithms proposed in this chapter.

7.1 Hierarchical Classification Ant-Miner

The target problem of the proposed hierarchical classification Ant-Miner (hAnt-

Miner) algorithm is the discovery of hierarchical classification rules in the form

IF antecedent THEN consequent. The antecedent of a rule is composed by a

conjunction of attribute-value conditions based on predictor attribute values (e.g.

length > 25 AND IPR00023 = yes) while the consequent of a rule is composed

by a set of class labels in potentially different levels of the class hierarchy (e.g.

GO:0005216, GO:0005244—where GO:0005244 is a subclass of GO:0005216). IF-

THEN classification rules have the advantage of being intuitively comprehensible

to users. hAnt-Miner divides the rule construction process into two different ant

colonies, one colony for creating rule antecedents and one colony for creating rule

consequents, and the two colonies work in a cooperative fashion.

In order to discover a list of classification rules, a sequential covering approach

is employed to cover all (or almost all) training examples. Algorithm 7.1 presents

a high-level pseudocode of the sequential covering procedure employed in hAnt-

Miner. The procedure starts with an empty list of rules (while loop) and adds a

new rule to the list while the number of uncovered training examples is greater

than a user-specified maximum value (max uncovered examples parameter). At

each iteration, a rule is created by an ACO procedure (repeat-until loop). Given

that a rule is represented by paths in two different construction graphs, antecedent

and consequent, two separate colonies are involved in the rule construction process.

Ants in the antecedent colony create paths on the antecedent construction graph

while ants in the consequent colony create paths on the consequent construction

graph. In order to create a rule, an ant from the antecedent colony is paired with

an ant from the consequent colony (the first ant from the antecedent colony is

paired with the first ant from the consequent colony, and so forth), so that the

construction of a rule is synchronised between the two ant colonies. Therefore,

CHAPTER 7. HIERARCHICAL AND MULTI-LABEL ALGORITHMS 123

Algorithm 7.1: High-level pseudocode of the sequential covering procedure
employed in hAnt-Miner.

input : training examples
output: discovered list of rules

begin1

training set← all training examples;2

rule list← ∅;3

while |training set| > max uncovered examples do4

rulebest ← ∅;5

i← 1;6

repeat7

rulecurrent ← ∅;8

for j ← 1 to colony size do9

// use separate ant colonies for antecedent10

// and consequent construction11

rulej ← CreateAntecedent() + CreateConsequent();12

Prune(rulej);13

if Q(rulej) > Q(rulecurrent) then14

rulecurrent← rulej ;15

end16

j ← j + 1;17

end18

UpdatePheromones(rulecurrent);19

if Q(rulecurrent) > Q(rulebest) then20

rulebest ← rulecurrent;21

end22

i← i + 1;23

until i ≥ max number iterations OR RuleConvergence() ;24

rule list← rule list + rulebest;25

training set← training set− Covered(rulebest, training set);26

end27

return rule list;28

end29

CHAPTER 7. HIERARCHICAL AND MULTI-LABEL ALGORITHMS 124

it is a requirement that both colonies have the same number of ants (colony size

parameter). The antecedent and consequent paths are created by probabilistically

choosing a vertex to be added to the current path based on the values of the

amount of pheromone (τ) associated with edges and problem-dependent heuristic

information (η) associated with vertices of the construction graph in question

(i.e., antecedent or consequent construction graph). There is a restriction that

the antecedent of the rule must cover at least a user-defined minimum number

of examples (min covered examples parameter), to avoid overfitting. Once the

rule construction process has finished, the rule constructed by the ants is pruned

to remove irrelevant terms (attribute-value conditions) from the rule antecedent

and irrelevant class labels from the rule consequent. Then, pheromone values

are updated using the best rule (based on a quality measure Q) of the current

iteration and the best-so-far rule (across all iterations) is stored/updated. The

rule construction process is repeated until a user-specified number of iterations

has been reached (max iterations parameter), or the best-so-far rule is exactly the

same in a predefined number of previous iterations (convergence test parameter).

The best-so-far rule found is added to the list of rules and the covered training

examples (examples that satisfy the rule’s antecedent conditions) are removed

from the training set.

The proposed hAnt-Miner is an extension of the flat classification Ant-Miner

[94] in several important ways. Firstly, it uses two separate ant colonies for con-

structing the antecedent and the consequent of a rule. Secondly, it uses a hi-

erarchical classification rule evaluation measure to guide pheromone updating.

Thirdly, it uses a new rule pruning procedure. Lastly, it uses a type of heuristic

information adapted for hierarchical classification. The technical details of the

extensions incorporated in hAnt-Miner are presented in the following subsections.

7.1.1 Construction Graphs

Antecedent Construction Graph

Given a set of nominal attributes X = {x1, . . . , xn}, where the domain of each

nominal attribute xi is a set of values Vi = {vi1, . . . , vidi
} (where di equals to the

number of values in the domain of attribute xi), and a set of continuous attributes

Y = {y1, . . . , ym}, the antecedent construction graph is defined as follows. For

each nominal attribute xi and value vij (where vij is the j-th value belonging to

the domain of xi) a vertex is added to the graph representing the term xi = vij .

CHAPTER 7. HIERARCHICAL AND MULTI-LABEL ALGORITHMS 125

(IPR001693 = no)
(IPR005821 = yes)

start

(IPR005821 = no)(IPR005821 = no)

(length)

(IPR001693 = yes)(IPR001693 = yes)

Figure 7.1: Example of an antecedent construction graph in hAnt-Miner (‘IPR-
005821 ’ and ‘IPR001693 ’ are nominal attributes, and ‘length’ is a continuous
attribute). The dummy vertex ‘start ’ is unidirectionally connected to all vertices
to allow the association of pheromone values on the edge of the first term of an
ant’s path.

For each continuous attribute yi a vertex is added to the graph representing the

continuous attribute yi. Since continuous attribute vertices do not represent a

complete term (attribute-value condition) to be added to a rule, when an ant

visits a continuous attribute vertex, a threshold value is selected to create a term

using ‘<’ or ‘≥’ relational operators (e.g. yi < value). The selection of this value

is deterministic and incorporates task-specific (classification-related) knowledge,

increasing the effectiveness of the algorithm, as described in subsection 5.1.3 and

in [90, 91].

The vertices representing an attribute term (nominal or continuous) are subse-

quently connected to every other vertex referring to another attribute term, with

the restriction that there are no edges between nominal attribute vertices referring

to the same attribute to avoid inconsistent terms such as ‘IPR00023 = yes’ and

‘IPR00023 = no’ being included in the same rule. As a result, attribute term

vertices are almost fully connected. In addition, a dummy vertex ‘start ’ is added

and unidirectionally connected to all vertices in the construction graph. This ver-

tex represents the starting point for creating paths—i.e. the 0-th vertex of a path

that represents the antecedent of a rule—as described in subsection 5.3.

CHAPTER 7. HIERARCHICAL AND MULTI-LABEL ALGORITHMS 126

GO:0005215
transporter activity

GO:0015075
ion transporter activity

GO:0005342
organic acid

transporter activity

GO:0005275
amine transporter

activity

GO:0005216
ion channel

activity

GO:0008324
cation transporter

activity

GO:0008509
anion transporter

activity

GO:0046943
carboxylic acid

transporter activity

GO:0015171
amino acid

transporter activity

Figure 7.2: Example of a consequent construction graph in hAnt-Miner, which is
defined by the class hierarchy of the problem at hand. In this example, the class
hierarchy is represented by a subset of the Gene Ontology’s ion channel hierarchy.

Consequent Construction Graph

Since the class labels are hierarchically structured as a directed acyclic graph

(DAG) or tree, this structure can be directly used to represent the consequent

construction graph as follows. For each class label li ∈ L, where L is the hierarchy

of class labels, a vertex is added to the graph. Subsequently, for every child vertex

lj of a parent vertex li (where lj , li ∈ L), a directed connection from li to lj is

added to the graph. As a result, the consequent construction graph is a DAG,

which is exactly the DAG of class labels of the target problem—i.e. the DAG

containing all class labels and all parent-child hierarchical relationships in the

target problem. Ants traverse the consequent construction graph from the root

vertex towards a leaf vertex and a path represents a set of predicted class labels,

consistent with the hierarchy (satisfying parent-child relationships).

CHAPTER 7. HIERARCHICAL AND MULTI-LABEL ALGORITHMS 127

7.1.2 Rule Construction

Given that a rule is represented by paths in two different construction graphs,

antecedent and consequent, two separate colonies are involved in the rule con-

struction process. Ants in the antecedent colony are responsible for creating paths

on the antecedent construction graph, representing the antecedent of a rule, while

ants in the consequent colony are responsible for creating paths on the conse-

quent construction graph, representing the consequent of a rule. Thus, a rule is

composed by two ants’ paths.

The rule construction process is synchronized in such a way that a complete

rule is created in parallel. In order to create a rule, an ant from the antecedent

colony is paired with an ant from the consequent colony. Therefore, it is a require-

ment that both colonies have the same number of ants. Details of the antecedent

construction and the consequent construction procedures are presented next.

Antecedent Construction

The antecedent of a rule is constructed by iteratively selecting vertices, which

represent rule terms, to form a path in the antecedent construction graph. An ant

starts with an empty antecedent (path) and adds one term (vertex) a time to its

current partial antecedent at each step of the antecedent construction procedure.

The probability of adding a candidate term T j is a combination of a problem-

dependent heuristic information (η) associated with the candidate term Tj and

the amount of pheromone (τ) associated with the edge edgeij that connects the

current partial rule’s last term Ti to the candidate term Tj , given by

PTj
=

τedgeij
· ηTj

|FTi
|

∑

j=1

(τedgeij
· ηTj

)

, ∀ Tj ∈ FTi
, (7.1)

where:

τedgeij
is the pheromone value associated with the edge that connects the last

term of the current partial antecedent (Ti) to the candidate term (Tj)

and indicates the desirability of adding the term Tj after the term

Ti to the antecedent of the rule. If the current partial antecedent

is empty, the pheromone associated with the edge that connects the

dummy ‘start ’ vertex to the candidate term is used. The pheromone

value of the edgeij increases as a direct result of the quality of the

CHAPTER 7. HIERARCHICAL AND MULTI-LABEL ALGORITHMS 128

rules constructed by ants wherein Ti is followed by Tj . The higher

the pheromone value of edgeij , the higher is the probability of an ant

located at term Ti to select term Tj to add to its current path. Hence, at

later iterations, the best path in the antecedent construction graph will

have higher pheromone values associated, increasing the probability of

its vertices being chosen.

ηTj
is the problem-dependent heuristic information of term Tj . Higher

heuristic information increases the probability of selecting term Tj and

provides a notion of its quality for the classification problem in hand.

The heuristic information of term Tj is fixed over all iterations and it

is independent of the current partial rule.

FTi
is the feasible neighbourhood of an ant located at term (vertex) Ti. It

consists of all terms except: (1) those terms that contain an attribute

that is already used in the current partial rule and (2) those terms

that would make the current partial rule cover less than a user-defined

minimum number of examples. The restriction (1) avoids that ants

create invalid antecedents such as ‘IPR00023 = yes AND IPR00023 =

no’, while restriction (2) avoids that ants create antecedents that cover

very few examples, which would typically be a case of overfitting.

The process of adding one term at a time to the current antecedent is repeated

until one of the following stop conditions is met:

• all attributes have been used in the antecedent, so there are no more terms

available;

• any term to be added would make the antecedent cover less than a user-

defined minimum number of examples.

Consequent Construction

The consequent of a rule is represented by a path from the root class vertex towards

a leaf class vertex on the consequent construction graph, which corresponds to the

hierarchy of class labels. An ant starts with a consequent which consists of only

the root class label. At each iteration of the construction process an ant adds to

the consequent being constructed one child class label from the parent class label

that was last added to its current partial consequent, until a leaf class label is

CHAPTER 7. HIERARCHICAL AND MULTI-LABEL ALGORITHMS 129

reached. Given a set of child labels Ci = {c1, . . . , cn} of a parent class label li, the

probability of selecting a child label cj is given by

Pcj
=

τedgeij
· ηcj

|Ci|
∑

j=1

(τedgeij
· ηcj

)

, ∀ cj ∈ Ci, (7.2)

where:

τedgeij
is the pheromone value associated with the edge that connects the

parent label li to the child label cj . The pheromone value of edgeij

indicates the desirability of adding the child class label cj after visiting

the parent class label li and it increases as a direct result of the quality

of the rules constructed by ants wherein li is followed by cj .

ηcj
is the problem-dependent heuristic information of the child class label

cj . The heuristic information of cj is an estimate of the quality of the

child class label for the classification problem in hand.

At the end of the consequent construction procedure, the consequent is a

complete path from the root class vertex towards a leaf vertex, consistent with

the class hierarchy, which can also be viewed as a set of predicted class labels.

The consistency of the consequent is guaranteed since an ant adds, at each step

of the construction procedure, a class label to the consequent being constructed

which is a sub-class of the last class label added. Therefore, class labels are added

in a ‘top-down’ and consistent fashion, avoiding the generation of an inconsistent

consequent.

7.1.3 Rule Evaluation

Since the target problem of hAnt-Miner is the discovery of hierarchical classifi-

cation rules, a variation of the hierarchical accuracy measure proposed in [73]—

described in subsection 2.5.1—is used to evaluate rules constructed by ants. The

measure is a combination of both hierarchical precision and hierarchical recall

measures, and it takes into account the fact that an example belongs not only to

its most specific class label, but also to all its ancestor class labels according to

the class hierarchy—except the root class label, since all examples trivially belong

to the root class label by default.

CHAPTER 7. HIERARCHICAL AND MULTI-LABEL ALGORITHMS 130

As discussed earlier, the consequent of a rule is represented by a complete path

from the root class label vertex to a leaf class label vertex. In DAG structures,

multiple paths between a given pair of class labels can exist. Therefore, immedi-

ately after an ant finishes building the consequent for a rule r, the set of predicted

class labels Pr of rule r is extended with the corresponding ancestor labels (Pr
′)

as

Pr
′ = Pr ∪ {∪li∈Pr

Ancestors(li)} − lroot , (7.3)

where Ancestors(li) corresponds to all ancestor class labels of the class label li

and lroot is the root class label of the hierarchy. Then, the hierarchical measures

of precision (hP) and recall (hR) are computed as

hP =

∑

i∈Sr

|Ai∩Pr
′|

|Pr
′|

|Sr|
hR =

∑

i∈Sr

|Ai∩Pr
′|

|Ai|

|Sr|
, (7.4)

where Sr is the set of all examples covered by (satisfying the rule antecedent of)

rule r and Ai is the set of actual (true) class labels of the i-th example. The

hierarchical precision (hP) is the average number of true class labels that are

predicted by rule r divided by the total number of predicted class labels across

the examples covered by rule r. The hierarchical recall (hR) is the average number

of true class labels that are predicted by rule r across the examples covered by

rule r divided by the total number of true class labels which should have been

predicted across the examples covered by rule r.

The rule quality measure Q is defined as a combination of the hP and hR

measures, equivalent to the hierarchical F-measure. The F-measure, commonly

employed as an evaluation measure in information retrieval systems, corresponds

to the harmonic mean of precision and recall measures. Given that precision and

recall measures in this case correspond to the hierarchical precision and hierarchi-

cal recall measures, the hierarchical F-measure is given by

Q = hF =
2 · hP · hR

hP + hR
. (7.5)

7.1.4 Rule Pruning

The rule pruning procedure aims at improving the rule quality by removing irrel-

evant terms that might have been added during the rule construction process and

it is applied as soon as the rule construction is completed. Recall that a rule is

CHAPTER 7. HIERARCHICAL AND MULTI-LABEL ALGORITHMS 131

Algorithm 7.2: hAnt-Miner rule pruning procedure pseudocode.

input : rule to be pruned
output: the pruned rule

begin1

rulebest ← rule;2

qbest ← Q(rulebest);3

repeat4

antecedent← rulebest.antecedent− last term(rulebest.antecedent);5

rulei ← antecedent + rulebest.consequent;6

qi ← Q(rulei);7

consequentj ← rulebest.consequent;8

repeat9

consequentj ← consequentj − last class(consequentj);10

rulej ← antecedent + consequentj ;11

if (Q(rulej) > qi) then12

rulei ← rulej;13

qi ← Q(rulej);14

end15

until |consequentj | = 1 ;16

if (qi ≥ qbest) then17

rulebest ← rulei;18

qbest ← qi;19

end20

until qi < qbest OR |rulebest.antecedent| = 1 ;21

return rulebest;22

end23

composed by antecedent and consequent parts, which in turn are represented by

different ant paths that might contain irrelevant vertices.

A rule undergoes the pruning procedure as follows. At the first step, the

quality of the rule is computed using the quality measure Q as given by Equation

(7.5). In the second step, the rule is submitted to an iterative removal of the

last term added to its antecedent while the quality of the rule is improved. At

each iteration, the consequent of a candidate rule is also submitted to an iterative

removal of the last added class label in an attempt to improve the generalization

behaviour of the candidate rule. Note that, for the purpose of both these iterative

removal procedures, the terms and class labels in the antecedent and consequent,

respectively, are considered as an ordered list, and therefore terms and class labels

are removed in an order inverse to the order in which they were added to the rule.

Algorithm 7.2 describes the rule pruning procedure. Let ruler be the rule

CHAPTER 7. HIERARCHICAL AND MULTI-LABEL ALGORITHMS 132

undergoing the pruning procedure and qr be the quality measure of ruler. At

each iteration of the outer repeat loop in Algorithm 7.2, a candidate rule rulei

is created by removing the last term of the antecedent of ruler and its quality

measure qi is computed. Subsequently, j (0 < j < |rulei.consequent|) candidate

rules are sequentially created by removing the last j class label(s) of the consequent

of rulei. This is implemented by the inner repeat loop in Algorithm 7.2. If the

quality measure of a rulej is higher than qi, rulei is substituted by rulej. Finally,

rulei substitutes ruler if qr ≤ qi, completing an iteration of the pruning procedure.

This procedure is repeated until ruler has just one term left on its antecedent or

a candidate rule rulei does not improve the quality over ruler (i.e. qr > qi).

7.1.5 Pheromone Trails

Pheromone Initialisation

In order to reinforce paths followed by ants that represent good rules, pheromone

values are associated with edges in the antecedent and consequent construction

graphs. For each vertex i of both antecedent and consequent construction graphs,

the initial amount of pheromone deposited at each edge originating at vertex i is

inversely proportional to the number of edges originating at vertex i, computed

as

τedgeij
=

1

|Ei|
, (7.6)

where Ei is the set of edges originating at vertex i and edgeij is the edge that

connects vertex i to its j-th neighbour vertex. As a result of Equation (7.6), the

same amount of pheromone is initially associated with every edgeij coming out

from vertex i.

Pheromone Reinforcement

The pheromone trails followed by ants are updated based on the quality of the

rules that they represent, which in turn guides future ants towards better regions

of the search space. Since a rule is composed by antecedent and consequent paths,

the pheromone reinforcement procedure is divided into two steps.

In the first step, the trail that represents the antecedent of a rule r is up-

dated. Starting from the dummy ‘start’ vertex (0-th vertex), the pheromone

value of the edge that connects the i-th vertex to the (i + 1)-th vertex (0 ≤ i <

CHAPTER 7. HIERARCHICAL AND MULTI-LABEL ALGORITHMS 133

|rule.antecedent|) is incremented according to

τedgeij
= τedgeij

+ τedgeij
·Q(r) , (7.7)

where i and j are the i-th and j-th vertices of an edge from i to j in the trail

being updated (edgeij) and Q(r) is the quality measure of rule r given by Equation

(7.5). Equation (7.7) is similar to the pheromone reinforcement equation used by

the original Ant-Miner algorithm [94], with the difference that pheromone values

in hAnt-Miner are associated with edges of the construction graph.

In the second step, the pheromone value of every edge of the consequent of rule

r that connects the i-th vertex to the (i+1)-th vertex (0 < i < |rule.consequent|)

is incremented according to Equation (7.7). Note that, before computing the

rule quality, the consequent is expanded to include all ancestor class labels of the

class labels originally added to the rule’s consequent by an ant, since there can

be multiple paths between class labels, as detailed in subsection 7.1.3. However,

during pheromone updating, only the actual trail that was followed to create the

original consequent is updated. This avoids reinforcing trails that did not directly

contribute to the consequent construction.

Pheromone Evaporation

This is implemented by normalising the pheromone values of edges of each con-

struction graph G (antecedent and consequent). The normalization procedure

indirectly decreases the pheromone of unused edges, since just before normalisa-

tion the pheromone of used edges has been increased by Equation (7.7) while the

pheromone of unused edges has not been increased. This normalisation is given

by

τedgeij
=

τedgeij
∑

τedgeij
∈G

τedgeij

. (7.8)

7.1.6 Heuristic Information

Antecedent Heuristic Information

The heuristic information used in the antecedent construction graph is based

on information theory [31], more specifically, it involves a measure of the entropy

associated with each term (vertex) of the graph. In the case of nominal attributes,

where a term has the form xi = vij , the entropy for the term is computed as

CHAPTER 7. HIERARCHICAL AND MULTI-LABEL ALGORITHMS 134

entropy(xi = vij ; S) =

|L|
∑

k=1

[−p(lk |Sxi=vij
) · log2 p(lk |Sxi=vij

)] , (7.9)

where p(lk |Sxi=vij
) is the empirical probability of observing class label lk condi-

tional on having observed xi = vij (attribute xi having the specific value vij) in the

set of training examples S and |L| is the total number of class labels. The entropy

is a measure of the (im)purity in a collection of examples, hence higher entropy

values correspond to more uniformly distributed examples (examples associated

with different class labels) and smaller predictive power for the term represented

by the vertex in question. Equation (7.9) is a direct extension of the heuristic

information for flat classification of the original Ant-Miner [94] into the problem

of hierarchical classification.

In the case of continuous attributes, where a vertex represents just an at-

tribute (and not an attribute-value condition), a threshold value v is chosen to

dynamically partition the continuous attribute yi into two intervals: yi < v and

yi ≥ v. hAnt-Miner chooses the threshold value v that minimizes the entropy of

the partition, given by

entropy(yi, v; S) =
|Syi<v|

|S|
· entropy(yi < v; S)

+
|Syi≥v|

|S|
· entropy(yi ≥ v; S) ,

(7.10)

where |Syi<v| is the total number of examples in the partition yi < v (partition

of training examples where the attribute yi has a value less than v), |Syi≥v| is

the total number of examples in the partition yi ≥ v, |S| is the total number of

training examples, and entropy(yi < v; S) and entropy(yi ≥ v; S) are the entropy

values of the terms represented by yi < v and yi ≥ v as given by Equation (7.9).

The list of candidate threshold values is determined using a similar approach as

cAnt-Miner, detailed in subsection 5.1.2, and examples from the set of training

examples S with missing values for the continuous attribute yi, if present, are

not taken into account in the threshold selection. In addition, Equations (7.9)

and (7.10) are used in the entropy-based discretisation procedure derived from

cAnt-Miner, as described in subsection 5.1.3, in order to find the best threshold

value and a relational operator (‘<’ or ‘≥’) when an ant chooses a vertex that

represents a continuous attribute yi.

CHAPTER 7. HIERARCHICAL AND MULTI-LABEL ALGORITHMS 135

After the selection of the threshold vbest, the entropy of the term representing

the continuous attribute yi given a set of training examples S corresponds to the

minimum entropy value of the two partitions and it is defined as

entropy(yi; S) = min[entropy(yi < vbest; S), entropy(yi ≥ vbest; S)] . (7.11)

Furthermore, the heuristic information used in hAnt-Miner is straightforwardly

extended to hierarchical classification as follows. Since the entropy of the i-th term

(nominal or continuous) of the antecedent construction graph varies in the range

0 ≤ entropy(Ti; S) ≤ log2(|L| − 1)—where |L| − 1 is the number of class labels

in the class hierarchy without considering the root class label and S is the set of

training examples—and lower entropy values are preferred over higher values, the

heuristic information for the i-th term is computed as

ηTi
= log2(|L| − 1)− entropy(Ti; S) , ∀ Ti ∈ GA , (7.12)

where Ti is the i-th term (vertex) of the antecedent construction graph GA and S

is the set of training examples. The value of entropy(Ti; S) is calculated according

to Equation (7.9), if Ti corresponds to a vertex representing a nominal attribute

condition (e.g. xi = vij), or according to Equation (7.11), if Ti corresponds to a

vertex representing a continuous attribute (e.g. yi). Note that Equation (7.12)

will give a higher probability of being selected to terms with lower entropy values,

which corresponds to terms with higher predictive power.

Consequent Heuristic Information

The heuristic information used in the consequent construction graph is based on

the frequency of training examples for each class label of the hierarchy, given by

ηli = |Sli|, ∀ li ∈ GC , (7.13)

where |Sli| is the number of training examples that belong to class label li and GC

is the consequent construction graph. Note that the heuristic information has a

bias towards class labels that have a greater number of examples, which therefore

will initially favour the discovery of rules with these class labels in the consequent.

However, due to the use of a sequential covering procedure, rules predicting less

frequent classes will be eventually discovered as well.

CHAPTER 7. HIERARCHICAL AND MULTI-LABEL ALGORITHMS 136

7.1.7 Using a Rule List to Classify New Examples

In order to classify a test (unseen) example, rules in the discovered list of rules

are applied in a sequential order—i.e. the order in which they were discovered.

Therefore, a test example is classified according to the consequent of the first rule

that covers the example. More precisely, the example is assigned the class labels

predicted by the rule’s consequent.

In the situation where no rule in the discovered list of rules covers the test

example, a default rule (a rule with an empty antecedent) predicting the set of

class labels that occur in all uncovered training examples is used to classify the test

example. For example, assume that there are three uncovered examples e1, e2 and

e3, belonging to class labels {1, 1.2, 1.2.1}, {1, 1.2, 1.2.2} and {1, 1.2, 1.2.1, 1.2.1.3},

respectively. The set of class labels occurring in all uncovered examples in this

case comprise the set {1, 1.2}, which would be the set of predicted class labels of

the default rule.

7.2 Coping with Multi-Label Data

While analysing hAnt-Miner, we have identified the following limitations. Firstly,

the heuristic information used in hAnt-Miner, which involves a measure of entropy,

is not very suitable for hierarchical classification—i.e. it does not take into ac-

count the hierarchical relationships between class labels. Although hAnt-Miner’s

entropy measure is calculated throughout all class labels of the class hierarchy

(except for the root class label), each class label is evaluated individually without

considering parent-child relationships between class labels.

Secondly, the rule quality measure is prone to overfitting. Since only the

examples covered by the rule are considered in the rule evaluation, rules with a

small coverage are favoured over more generic rules. For example, considering

the class label 1.2.1 with 20 examples and two rules that have 1.2.1 as the most

specific class label in their consequent: rule1 covering correctly 5 examples out of

a total of 5 covered and rule2 covering correctly 19 examples out of a total of 20

covered. In this case, rule1 would have a higher quality, since all the examples

covered by the rule are correctly classified, than rule2, which misclassifies one

example, though rule2 covers all but one examples belonging to class 1.2.1. One

could argue that the rule quality measure of hAnt-Miner could be easily modified

to avoid overfitting by evaluating a rule considering all the examples of its most

CHAPTER 7. HIERARCHICAL AND MULTI-LABEL ALGORITHMS 137

specific class. The drawback of this approach is that it favours rules predicting

class labels at the top of the hierarchy, since the numbers of examples per class are

greater at top class levels. This could potentially prevent the discovery of rules

predicting more specific class labels given that the examples covered by a rule

are removed from the training set—indeed, this problem was observed in some

preliminary experiments.

Lastly, hAnt-Miner does not support multi-label classification since a single

path in the consequent construction graph corresponds to the consequent of a

rule. In the case of protein function prediction, where it is known that a protein

can perform more than one function, this is an important limitation.

This section presents a new hierarchical multi-label ant colony classification al-

gorithm, named hmAnt-Miner (hierarchical multi-label classification Ant-Miner),

which is aimed at overcoming the aforementioned limitations. In summary, the

proposed hmAnt-Miner differs from hAnt-Miner in the following aspects:

• the consequent of a rule is calculated using a deterministic procedure based

on the examples covered by the rule, allowing the creation of rules that can

predict more than one class label at the same time, while satisfying hier-

archical class label relationships (hierarchical multi-label rules). Therefore,

hmAnt-Miner uses a single construction graph in order to create a rule—only

the antecedent is represented in the construction graph;

• the heuristic information is based on the Euclidean distance, where each ex-

ample is represented by a vector of class membership values in the Euclidean

space. By using a distance measure, instead of entropy as in hAnt-Miner, it

is possible to take into account the relationship between class labels given

that examples belonging to related class labels will be more similar than ex-

amples belonging to unrelated class labels. The use of the Euclidean distance

was inspired by a similar use in the Clus-HMC algorithm for hierarchical

multi-label classification [127], which is based on the paradigm of decision

tree induction, rather than rule induction. Note that the Euclidean distance

is used as the heuristic information, as well as, in the dynamic discretisation

procedure for continuous attributes;

• the rule quality is evaluated using a distance-based measure, which is a more

suitable evaluation measure for hierarchical multi-label problems;

CHAPTER 7. HIERARCHICAL AND MULTI-LABEL ALGORITHMS 138

• the pruning procedure is not applied to the consequent of a rule. The con-

sequent of a rule is (re-)calculated when its antecedent is modified during

pruning, since the set of covered examples might have changed.

7.2.1 Multi-Label Rule Consequent

As presented in subsection 7.1.1, the consequent of a rule in hAnt-Miner is repre-

sented as a single path in the consequent construction graph, from the root class

label towards a leaf class label of the class hierarchy. Although the consequent

predicts multiple class labels in a hierarchical structure, it has the limitation of

not being able to predict unrelated class labels—i.e. multiple paths in the class

hierarchy. One could argue that the consequent could be represented by multiple

paths in order to be able to predict unrelated class labels, however it is not clear

how to find the optimal combination and number of paths to consider without

introducing yet another user-defined parameter.

A sensible approach is to use the information available from the examples

covered by the rule—i.e. examples that satisfy the rule antecedent—in order to

determine the rule consequent. As a result, the consequent of a rule in hmAnt-

Miner is calculated using a deterministic procedure. Given the set of examples Sr

covered by a rule r, the consequent is a vector of length m—where m is equal to the

number of class labels in the class hierarchy. The value for each i-th component

of the consequent vector for rule r is given by

consequentr,i =
|Sr & labeli|

|Sr|
, (7.14)

where |Sr & labeli| is the number of examples covered by rule r that belong to the

i-th class label of the class hierarchy (labeli). In other words, the consequent of a

rule is a vector where each i-th component is the proportion of covered examples

that belong to the i-th class label.

According to Equation (7.14), each position of the consequent vector is a

continuous value between 0.0 and 1.0, rather than a presence/absence value of

a particular class label. As a result, the value in the i-th component of the

consequent of a rule represents the probability of an example that satisfies its

antecedent to be associated with the corresponding i-th class label of the hierarchy.

Figure 7.3 illustrates the consequent of a rule in hmAnt-Miner. In this example,

the predictor attributes in the antecedent of the rule correspond to amino acid

ratios from the protein’s sequence and the class labels in the consequent of the

CHAPTER 7. HIERARCHICAL AND MULTI-LABEL ALGORITHMS 139

IF

 aa_rat_pair_a_h >= 0.053

 AND aa_rat_pair_t_c >= 0.1055

 AND aa_rat_pair_c_w < 0.0695

 AND aa_rat_pair_a_e < 0.2960

 AND aa_rat_pair_t_h >= 0.0275

THEN

 GO0000226:0.10,GO0000943:0.50,

 GO0001302:0.10,GO0003674:1.00,

 GO0003676:0.50,GO0003723:0.50,

 GO0003824:0.50,GO0003887:0.50,

 ...

 GO0044464:1.00,GO0045053:0.10,

 GO0045185:0.10,GO0046907:0.20,

 GO0051234:0.20,GO0051235:0.10,

 GO0051649:0.20,GO0051651:0.10

Figure 7.3: Example of the consequent of a rule in hmAnt-Miner. In this example,
the predictor attributes in the antecedent of the rule correspond to amino acid
ratios from the protein’s sequence and the class labels in the consequent of the
rule are represented by Gene Ontology terms—the number following the colon of
a class label in the consequent corresponds to the probability of predicting the
associated class label. Only a subset of the class labels predicted by the rule are
shown.

rule are represented by Gene Ontology terms—the number following the colon of

a class label in the consequent corresponds to the probability of predicting the

associated class label.

In order to obtain class label predictions from a rule, it is necessary to select

a classification threshold. If the value of the i-th component is greater than or

equal to the classification threshold, the corresponding i-th class label is predicted.

Note that the consequents of the rules fulfil the requirements for the hierarchical

multi-label classification task: (1) the classes predicted are consistent with the

class hierarchy, since the probability of a parent class label is always equal to

or greater than the probability of its children class labels; (2) multiple unrelated

(non-hierarchically related) class labels can be predicted according to the examples

covered by the rule.

The same deterministic procedure is applied to compute the consequent of a

default rule when classifying an unseen example, as described in subsection 7.1.7,

with the difference that the uncovered set of examples—i.e., the set of examples

which is not covered by any rule—is taken into account in Equation (7.14).

CHAPTER 7. HIERARCHICAL AND MULTI-LABEL ALGORITHMS 140

7.2.2 Distance-based Heuristic Information

Recall that the heuristic information in Ant-Miner, cAnt-Miner and hAnt-Miner

involves a measure of entropy. The entropy characterises the homogeneity of a col-

lection of examples related to the class attribute values (labels), giving a notion of

(im-)purity of the class values’ distribution. The more examples of the same class

label the lower the value of entropy will be and the ‘purest’ is the collection of ex-

amples. It should be noted that in all calculations involving entropy the different

class labels are independently evaluated—i.e. no relationship between class labels

is taken into account. In the case of Ant-Miner and cAnt-Miner, which are applied

to flat classification problems, the use of the entropy measure does not present a

limitation, since there is no relationship between class labels. On the other hand,

the same cannot be said for hAnt-Miner, which aims at extracting hierarchical

classification rules, derived from data where the class labels are organised in a

hierarchical structure.

To illustrate the limitation of the entropy measure when used in hierarchical

problems, let’s consider the following example. Given a tree-structured class hier-

archy, where class labels {1, 2, 3} are children of the root class label, class labels

{2.1, 2.2} are children of the ‘2’ class label and each class label has 10 exam-

ples. Although the entropy is calculated—according to Equation (7.9)—accross

all class labels, the hierarchical relationships are not taken into account. There-

fore, the entropy of a hypothetical term ‘IPR00023 = yes’ which is present in 10

examples associated with class label ‘1’ and in 10 examples associated with class

label ‘3’ would be the same as of a hypothetical term ‘IPR00023 = no’ which is

present in 10 examples associated with class label ‘2’ and in 10 examples asso-

ciated with class label ‘2.1’. The drawback in this case is that it is known that

class labels ‘2’ and ‘2.1’ are more similar than class labels ‘1’ and ‘3’. Hence, it

would be expected/desired that the entropy measure—or an alternative heuris-

tic information—exploit hierarchical relationships in order to better reflect the

quality of each term in the case of hierarchical classification problems. Intuitively

this becomes even more important when dealing with bigger (in terms of num-

ber of class labels and depth) hierarchical structures. It should be noted that

several Ant-Miner variations—as discussed in [50]—have used a heuristic infor-

mation based on the relatively frequency of the class label predicted by the rule

(or the majority class label) amongst all the examples that have a particular term,

which would also present the aforementioned limitation.

hmAnt-Miner employs a distance-based heuristic information, which directly

CHAPTER 7. HIERARCHICAL AND MULTI-LABEL ALGORITHMS 141

incorporates information from the class hierarchy. More precisely, the heuristic

information of a term corresponds to the variance of the set of examples covered

by the term (the set of examples that satisfy the condition represented by the

term). In order to calculate the variance, the class labels of each example are

represented by a numeric vector of length m (where m is the number of class

labels of the hierarchy without considering the root class label). The i-th position

of the class label vector of an example is equal to 0 or 1 if the correspondent class

label is absent or present, respectively. The distance between class label vectors

is defined as the weighted Euclidean distance, given by

distance(~v1, ~v2) =

√

√

√

√

m
∑

i=1

[w(li) · (~v1,i − ~v2,i)2] , (7.15)

where w(li) is the weight associated with the i-th class label, ~v1,i and ~v2,i are the

values of the i-th position of the class label vectors ~v1 and ~v2, respectively. Then,

the variance of set of examples is defined as the averaged squared distance between

each example’s class label vector and the set’s mean class vector, given by

variance(ST) =

|ST |
∑

j=1

distance(~vj , v)2

|ST |
, (7.16)

where ST is the set of examples covered by a term T (i.e., the set of examples that

satisfies the condition represented by term T) and v is the set’s mean class label

vector. Finally, the heuristic information of a term (vertex) T is given by

ηT =
variancemax − variance(ST)

variancemax

, (7.17)

where variancemax is defined as the sum of the worst and best variance values

observed across all terms in order to assign values greater than zero to the worst

terms, which otherwise would avoid them to be selected by an ant. Note that the

heuristic information is normalised so the smaller the value of the variance of a

term T the greater its heuristic information becomes. This is analogous to the

use of the entropy measure in Ant-Miner, where smaller values are preferred over

bigger values since they correspond to a more homogeneous partition (where the

great majority of examples are associated with the same class label). It should

be noted that for continuous attribute terms (vertices), it is required to firstly

CHAPTER 7. HIERARCHICAL AND MULTI-LABEL ALGORITHMS 142

select a threshold value and a relational operator to form a triple (attribute, oper-

ator, value) taking into account all training examples—as detailed in subsection

7.2.3—since continuous attribute terms are only represented by the continuous

attribute—i.e. they do not represent a complete attribute-value condition—in the

construction graph.

Recall that the distance function in Equation (7.15) requires the definition

of a class-specific weight. In Vens et al. [127], where the proposed Clus-HMC

algorithm also uses a variance measure based on a weighted Euclidean distance,

several weighting schemes have been evaluated in the context of hierarchical multi-

label classification. As a result of their findings, the preferred weighting scheme—

and the one used in hmAnt-Miner—is defined as

w(l) = w0 ·

|Pl|
∑

i=1

w(pi)

|Pl|
, (7.18)

where w0 is arbitrarily set to 0.75, Pl is the parents class label set of the class label l

and w(pi) is the weight associated with the i-th parent class label of the class label

l. In other words, the weight of a class label l is the multiplication of the w0 weight

and the average weight of its parent class labels. For class labels at the top of the

hierarchy (children of the root class label), their weights are set to w0. According

to Equation (7.18), class labels appearing higher in the hierarchy will have greater

weights than class labels appearing lower in the hierarchy. Therefore, concerning

the weighted distance function in Equation (7.15), similarities at higher levels of

the hierarchy are more important than similarities at lower levels. Figure 7.4

illustrates the class-specific weight distribution for the class hierarchy presented

in Figure 7.2.

7.2.3 Distance-based Discretisation of Continuous Values

As discussed in subsection 7.2.2, the entropy measure is not very suitable for hier-

archical multi-label classification problems. Therefore, the entropy-based discreti-

sation procedure employed by hAnt-Miner (derived from cAnt-Miner) presents the

same limitation of evaluating each of the class labels individually, not taking into

account their relationships. Consequently, the quality of continuous attributes

threshold values are compromised, which can lead to poor discovered rules.

Using the variance measure defined in Equation (7.16), hmAnt-Miner employs

a distance-based discretisation procedure of continuous attributes values in its rule

CHAPTER 7. HIERARCHICAL AND MULTI-LABEL ALGORITHMS 143

GO:0005215

GO:0005342GO:0015075 GO:0005275

GO:0046943GO:0008509

GO:0005216 GO:0015171

GO:0008324

(0.75)

(0.75 . 0.75 = 0.56) (0.75 . 0.75 = 0.56) (0.75 . 0.75 = 0.56)

(0.75 . 0.75 = 0.56) (0.75 . (0.56 + 0.75)) = 0.49)
2

(0.75) (0.75)

Figure 7.4: Illustration of the class-specific weights—according to Equation
(7.18)—for the class hierarchy presented in Figure 7.2. Note that the class la-
bel ‘GO:0005215’ does not have a weight associated, since it represents the root
of the class hierarchy.

construction process. Given a continuous attribute yi, the basic idea is to find a

threshold value v (where v is a value in the domain of attribute yi) that maximises

the variance gain of both yi < v and yi ≥ v generated partitions of examples—

i.e. the set of examples which have the value of attribute yi less than v and the

set of examples which have the value of the attribute yi greater than or equal to

v—relative to a set of examples S. The distance-based discretisation procedure,

dubbed variance-gain discretisation, is divided into two steps as follows.

Let yi be a continuous attribute to undergo the discretisation procedure and v

a value in the domain of yi. The best threshold value for attribute yi is the value

v which minimises the variance of the yi < v and yi ≥ v generated partitions of

examples from S, maximising the variance gain relative to S as a result, given by

CHAPTER 7. HIERARCHICAL AND MULTI-LABEL ALGORITHMS 144

variance gain(yi, v; S) = variance(S)−
|Syi<v|

|S|
· variance(Syi<v)

−
|Syi≥v|

|S|
· variance(Syi≥v) ,

(7.19)

where |Syi<v| is the total number of examples in the partition yi < v (partition of

training examples where the attribute yi has a value less than v), |Syi≥v| is the total

number of training examples in the partition yi ≥ v (partition of training examples

where the attribute yi has a value greater than or equal to v) and |S| is the total

number of training examples. The values of variance(S), variance(Syi<v) and

variance(Syi≥v) are calculated according to Equation (7.16). The variance gain

measure is calculated for all values v, which comprises the average value of each

pair of adjacent values vw and vw+1 in the domain of the attribute yi—computed

as (vw + vw+1)/2—and the value v with the highest variance gain associated is

then selected as the best threshold value. As in cAnt-Miner and hAnt-Miner, ex-

amples from the set of training examples S with missing values for the continuous

attribute yi, if present, are not taken into account in the threshold selection.

Note that the set of training examples S varies according to the context of

the rule construction process, that is to say, the set of training examples S is

restricted to the set of training examples covered by the current partial rule being

constructed. The only exception to this restriction is when the current partial

rule is empty, thus all training examples are used on the evaluation of threshold

values. As a result of this restriction, the choice of a threshold value during the

rule construction process is tailored to the current candidate rule.

After the selection of the best threshold value vbest, a relational operator is

selected based on the individual variance values of the generated partitions. If

the partition of examples yi < vbest has a lower variance, then the operator ‘<’

(less-than operator) is selected; if the partition of examples yi ≥ vbest has a lower

variance, then the operator ‘≥’ (greater-than-or-equal-to operator) is selected;

ties are broken at random. As can be noticed, the operator selection has a bias

of selecting the more homogeneous partition, given that lower variance values are

preferred over higher values. This is analogous to the bias of the entropy-based

discretisation of cAnt-Miner, where lower entropy values are preferred since they

are associated with the ‘purest’ partition—i.e. the partition with more examples

associated with the same class label.

CHAPTER 7. HIERARCHICAL AND MULTI-LABEL ALGORITHMS 145

At the end of the discretisation process, a term represented as a triple (yi,

operator, vbest) is created to be added to the current partial rule (e.g. yi < 20)

and the rule continues to undergo the rule construction process.

Concerning the computational time complexity of the entropy-based discretisa-

tion used in hAnt-Miner and the proposed distance-based discretisation in hmAnt-

Miner, the process of finding a threshold value can be divided into two steps. First,

both discretisation procedures require the sorting of continuous attribute values

in order to facilitate the partition of examples. The time complexity of this step

is O(n · log n), where n is the number of training examples under consideration.

In the case of the entropy-based discretisation, the second step involves the

evaluation of potentially n candidate threshold values—assuming that each train-

ing example have a different value for the continuous attribute undergoing dis-

cretisation1—over k different class labels. The complexity of this step is O(n · k),

and the total complexity of the entropy-based discretisation is O(n·log n)+O(n·k).

In the case of the distance-based discretisation, the second step involves the

calculation of the mean class label vector for each partition of training examples.

This calculation has time complexity of O(n · k). Furthermore, it involves the

calculation of the distance between each example’s class label vector and the par-

tition mean’s class label vector in order to determine the variance of the partitions.

Since each class label vector has k positions and there are potentially n candi-

date threshold values, the time complexity of the variance calculation is O(n · k).

Given that for each candidate threshold value, the mean class label vectors of the

partitions must be recalculated because a partition’s example distribution varies

according to the threshold value, the total time complexity of the distance-based

discretisation is O(n · log n) + O([n · k]2).

Intuitively, if both complexity notations are simplified by dropping the com-

mon element O(n · log n), the entropy-based discretisation growing factor is lin-

ear in relation to n · k, while the distance-based discretisation growing factor

is quadratic in relation to n · k. Therefore, the distance-based discretisation is

more computationally complex than the entropy-based discretisation. It should

be noted that the number of training examples n covered by a rule, and conse-

quently the potential number of candidate threshold values, tends to decrease in

relation to the number of terms in the antecedent of a rule. Hence, the efficiency

of the discretisation procedure is increased at later stages of the rule construction

1This represents the worse case scenario for the discretisation procedure, and in general, the
number of candidate threshold values is smaller than the number of training examples.

CHAPTER 7. HIERARCHICAL AND MULTI-LABEL ALGORITHMS 146

procedure, since fewer candidate threshold values have to be evaluated.

7.2.4 Hierarchical Multi-Label Rule Evaluation

Following a similar approach of using a distance-based measure for the discreti-

sation of continuous values, the variance gain can be applied to compute a rule

quality measure. The basic idea to evaluate a rule r using the variance gain mea-

sure is to virtually divide the training set S (where S corresponds to the set of all

training examples) into two partitions: the set of examples covered by the rule r

(Sr) and the set of examples not covered by the rule r (S¬r). Then, the variance

gain of rule r relative to S can be computed as

variance gain(r, S) = variance(S)−
|Sr|

|S|
· variance(Sr)

−
|S¬r|

|S|
· variance(S¬r) .

(7.20)

The motivation of using the variance as a rule quality measure is as follows.

Firstly, it can naturally cope with hierarchical multi-label data, taking into ac-

count the relationships and similarities between class labels. Secondly, it favours

rules that partition the training set into a more homogeneous sets of examples.

As a result, rules that cover a more homogeneous set of examples, as well as leav-

ing uncovered a more homogeneous set of examples (which should facilitate the

discovery of other rules in the future), are preferred.

7.2.5 Simplified Rule Pruning

Since the consequent of a rule is determined as detailed in subsection 7.2.1, hmAnt-

Miner does not employ a second colony in order to construct the consequent

of rules. Therefore, the rule pruning procedure is simplified as follows. The

rule is submitted to a removal process of its antecedent’s last term and have its

consequent re-calculated, since the set of covered examples could change after the

removal of the term. The removal process is repeated until the quality of the rule

decreases when its last term is removed or the rule has only one term left in the

antecedent. Algorithm 7.3 presents a high-level pseudocode of the rule pruning

procedure.

Let rulecurrent be the rule undergoing the pruning, which is considered the

CHAPTER 7. HIERARCHICAL AND MULTI-LABEL ALGORITHMS 147

Algorithm 7.3: hmAnt-Miner rule pruning procedure pseudocode.

input : rule to be pruned
output: the pruned rule

begin1

rulebest ← rulecurrent;2

qbest ← Q(rulebest);3

repeat4

rulei ← rulebest.antecedent − last term(rulebest.antecedent);5

calculate consequent(rulei);6

qi ← Q(rulei);7

if (qi ≥ qbest) then8

rulebest ← rulei;9

qbest ← qi;10

end11

until qi < qbest OR |rulebest.antecedent| = 1 ;12

return rulebest;13

end14

best rule at the beginning of the pruning procedure. At each iteration of the

repeat loop in Algorithm 7.3, a candidate rule rulei is created by removing the

last term of the antecedent of the current best rulebest and the consequent of rulei

is computed according to subsection 7.2.1. Then, the quality measure qi for rulei

is computed. If the quality measure qi is higher than the current best quality qbest,

rulei substitutes rulebest, completing an iteration of the pruning procedure. This

procedure is repeated until rulebest has just one term left on its antecedent or a

candidate rule rulei does not improve the quality over rulebest (i.e. qbest > qi).

7.3 Pittsburgh-based Approach

The algorithms presented in subsections 7.1 and 7.2 can be seen as direct and

sophisticated extensions of Ant-Miner for the hierarchical multi-label classifica-

tion problem. While hAnt-Miner and hmAnt-Miner employ heuristic informa-

tion, evaluation measures and pruning procedures tailored for hierarchical—and

multi-label in the latter case—problems, they share the same sequential covering

strategy of Ant-Miner in order to build a list of rules that covers all training ex-

amples. At each iteration of the sequential covering, an ACO procedure is used

to create a single rule which covers a set of examples. The examples covered by

the rule are removed from the training set and a new rule is then created, until a

CHAPTER 7. HIERARCHICAL AND MULTI-LABEL ALGORITHMS 148

stopping criterion is reached.

Drawing a comparison concerning rule discovery strategy with the broader

area of evolutionary algorithms, the sequential covering strategy employed in Ant-

Miner falls into the iterative rule learning (IRL) approach [58, 128]. In the IRL

approach, each run of the evolutionary procedure—analogous to the ACO proce-

dure in Ant-Miner case—discovers a single rule (the best rule produced over all

iterations) and the procedure is repeated multiple times in order to discover a list

of rules. Another two approaches for rule discovery have been used in the evolu-

tionary algorithm literature: the Michigan [17, 18] and the Pittsburgh [109, 110]

approaches. In the Michigan approach, each individual corresponds to a rule and

a list of rules is represented by the entire population, using some mechanism to

ensure that different rules cover different regions of the data space. Hence, a

single run of an evolutionary procedure following a Michigan approach discovers

a complete list of rules. Similarly, in the Pittsburgh approach, each run of the

evolutionary procedure discovers a complete list of rules (the best list of rules

produced over all iterations). One of the main differences between IRL/Michigan

and Pittsburgh approaches is that in the latter a complete list of rules, which

constitutes an individual, is evaluated instead of a single rule, in order to guide

the discovery process. As discussed in [48], evaluating the quality of a rule indi-

vidually, instead of the quality of a list of rules as a whole, has difficulty with the

problem of rule interaction—i.e the list of best rules is not necessarily the best

list of rules.

The problem of rule interaction in Ant-Miner, and consequently in hAnt-Miner

and hmAnt-Miner, can be illustrated as follows. In Ant-Miner’s sequential cover-

ing strategy, the discovery of a rule can be seen as an independent search problem

for the best rule given the current training set. In each iteration of the sequential

covering, a rule is constructed by an ACO procedure and the examples covered by

the rule are removed from the data set. This iterative process of constructing a

rule is repeated until the training set is empty (or almost empty). Although rules

are discovered in an one-at-a-time fashion, the outcome of a rule (the examples

covered by the rule) affects the rules that can be discovered subsequently since

the search space is modified due to the removal of examples covered by previous

rules. Therefore, the sequential covering performs a greedy search for a list (se-

quence) of rules which is not guaranteed to be the best list of rules that covers the

training set, since the interaction between them is not taken into account during

the search. Additionally, there is no guarantee that the best rule of an iteration

CHAPTER 7. HIERARCHICAL AND MULTI-LABEL ALGORITHMS 149

will be part of the best list of rules.

As aforementioned, hierarchical multi-label classification problems are more

complex in comparison to flat problems, since they usually deal with a greater

number of class labels and there are hierarchical relationships between class labels.

Therefore, the problem of rule interaction is potentially aggravated when the

sequential covering strategy is applied to hierarchical multi-label problems.

In this section, we focus on extending the sequential covering strategy to elab-

orate a Pittsburgh-based ACO classification algorithm for the discovery of hier-

archical multi-label classification rules. The main motivation is to mitigate the

problem of rule interaction that potentially affects the performance of the previ-

ously proposed methods, namely hAnt-Miner and hmAnt-Miner. In order to cope

with the rule interaction problem, we propose building a complete list of rules

within the ACO procedure, instead of a single rule. Therefore, at each iteration

of the ACO procedure, a complete list of rules is used to guide the search—i.e.

the search is guided using the quality of the best list of rules of an iteration. By

evaluating a list of rules as a whole, the interaction between rules is taken into

account. As a result, a single run of the ACO procedure is needed to discover a

list of rules.

Subsection 7.3.1 presents the technical details of the proposed hierarchical

multi-label classification algorithm, named hmAnt-MinerPB (hierarchical multi-

label classification Ant-Miner based on the Pittsburgh approach), which employs

a Pittsburgh-based ACO procedure to discover a list of rules.

7.3.1 Extended Sequential Covering Strategy

The hierarchical classification ACO algorithms in previous sections of this chapter

followed the same sequential covering strategy: they start with an empty list of

rules and iteratively add one-rule-at-a-time to the list, maximising a specified rule

quality measure in order to build a list of rules. Therefore, the list of rules is

created in a greedy fashion—i.e. the best rule, which is evaluated independently

from other rules, found at each iteration is selected. hmAnt-MinerPB employs a

variation of the ACO-based sequential covering strategy with the aim of perform-

ing a more global search for the optimal list of rules. It differs from hAnt-Miner

and hmAnt-Miner as follows.

Firstly, the ACO search is guided by the quality of a candidate list of rules.

Therefore, pheromone values are updated based on the quality of a list of rules,

CHAPTER 7. HIERARCHICAL AND MULTI-LABEL ALGORITHMS 150

in contrast to the quality of a single rule. Secondly, the heuristic information is

updated after a rule is added to a candidate list of rules. In this way, the heuristic

information is used to direct the search for different rules in order to build a list

of rules since pheromone values are constant within an iteration—i.e. during the

creation of a candidate list of rules. On the other hand, hmAnt-MinerPB shares

the same rule representation, rule evaluation measures and pruning procedure

as hmAnt-Miner presented in section 7.2, and the same antecedent construction

graph, pheromone initialisation and update procedures as hAnt-Miner presented

in section 7.1.

Algorithm 7.4 presents a high-level pseudocode of hmAnt-MinerPB. In sum-

mary, hmAnt-MinerPB works as follows. It starts initialising the antecedent con-

struction graph pheromone values and then enters an iterative (repeat loop) pro-

cedure to create a complete list of rules until a user-specified maximum number

of iterations is reached or the quality of the best list of rules is not improved over

a user-specified number of iterations, which works as a convergence test. At each

i-th iteration, max number lists lists of rules are created and evaluated (outer for

loop). In order to create a list of rules, it starts with an empty list of rules and

adds one rule at a time until the number of uncovered training examples is lower

than or equal to a user-specified maximum value (while loop).

At the beginning of the construction process of a list of rules, the training set

for the current iteration is initialised with all training examples and the heuristic

information of the antecedent construction graph is (re-)calculated. The construc-

tion process of a list of rules consists of an iterative process, wherein colony size

rules are created by ants at each iteration (inner for loop). To create rules, ants

start with an empty rule (no terms in its antecedent) and add one term at a time

to their rule antecedent. Terms (vertices of the antecedent construction graph) are

probabilistically chosen to be added to the current partial rule based on the values

of the amount of pheromone (τ) associated with the edge connecting the last term

of the rule to the candidate term in question and their problem-dependent heuris-

tic information (η). Recall that, as in hAnt-Miner, an ant begins the creation of

a rule starting from the dummy ‘start ’ vertex.

Ants keep adding a term to their partial rule until any term added to their rule

would make it cover less training examples than a user-specified minimum number

of covered examples or all attributes are already present in the antecedent of the

rule. The first rule construction stopping criterion is used to avoid the creation

of very specific rules, which would not generalise well on the test set; the latter

CHAPTER 7. HIERARCHICAL AND MULTI-LABEL ALGORITHMS 151

criterion is necessary to avoid inconsistencies caused by the selection of terms

representing different conditions using the same attribute, such as ‘IPR00023 =

yes’ and ‘IPR00023 = no’—similar to the original hAnt-Miner algorithm.

Then, the consequent of the rule is calculated according to Equation (7.14).

Once the rule construction process has finished, the rule created by an ant under-

goes a pruning procedure, according to Algorithm 7.3, in order to remove irrelevant

terms from its antecedent. The best rule amongst these constructed rules is added

to the current list of rules and the training examples covered by it are removed

from the training set. Finally, the heuristic information is re-calculated and the

iterative rule construction process continues.

It is important to emphasise that heuristic information is not fixed, while

pheromone values are fixed, between iterations of the rule construction process

(while loop). The rationale behind the re-calculation of the heuristic information

is as follows. Since a complete execution of the rule construction process is used

to create a list of rules, at each iteration of this process, a rule covering a different

set of training examples needs to be created. Given that pheromone values are

fixed during the creation of a list of rules in order to guide the search based on

the quality of a list of rules instead of a single rule, the heuristic information

is re-calculated after the removal of the examples covered by previous rules to

facilitate the discovery of different rules—i.e. rules covering different examples of

the training set.

Finally, the quality of the best list of rules—measured using precision-recall

curves, as described in subsection 2.5.2—of the i-th iteration is used to update

the pheromone values, which will then be used in the next iteration. Note that

the reference for the best list of rules, based on its quality, found so far is updated

if the quality of the list of rules of the i-th iteration is greater than the quality of

the current best. At the end of the process, the best list of rules found over all

iterations is selected as the discovered list of rules.

As can be seen in Algorithm 7.4, pheromone values are updated according to

the quality of the best list of rules of the current iteration (end of the repeat loop);

heuristic information is initialised at the beginning of the construction process for

each candidate list of rules (beginning of the outer for loop); heuristic information

is updated, while pheromone levels are fixed, after a rule is added to a candidate

list of rules (end of the outer for loop).

CHAPTER 7. HIERARCHICAL AND MULTI-LABEL ALGORITHMS 152

Algorithm 7.4: High-level pseudocode of the Pittsburgh-based ACO pro-
cedure employed in hmAnt-MinerPB.

input : training examples
output: discovered list of rules

begin hmAnt-MinerPB1

rule listbest ← ∅;2

τ ← initializes pheromones;3

i← 1;4

repeat5

rule listi ← ∅;6

for j ← 1 to max number lists do7

tr setj ← all training examples;8

rule listj ← ∅;9

η ← initialise heuristic information;10

// creates a complete rule list11

while |tr setj | > max uncovered examples do12

rulebest ← ∅;13

for k ← 1 to colony size do14

rulek ← CreateRule();15

Prune(rulek);16

if Q(rulek) > Q(rulebest) then17

rulebest ← rulek;18

end19

k ← k + 1;20

end21

rule listj ← rule listj + rulebest;22

tr setj ← tr setj − Covered(rulebest, tr setj);23

update heuristic(η, tr setj);24

end25

// updates the best rule list of the i-th iteration26

if Q(rule listj) > Q(rule listi) then27

rule listi ← rule listj ;28

end29

j ← j + 1;30

end31

if Q(rule listi) > Q(rule listbest) then32

rule listbest ← rule listi;33

end34

update pheromones(τ, rule listi);35

i← i + 1;36

until i ≥ max number iterations OR convergence() ;37

return rule listbest;38

end39

CHAPTER 7. HIERARCHICAL AND MULTI-LABEL ALGORITHMS 153

7.3.2 Updating Pheromone Values Based on the Rule List

Quality

Since the search in hmAnt-MinerPB is guided by the quality of a list of rules, rather

than a single rule, the quality of the list of rules is used to increase pheromone

values, as follows.

For each rule of the best list of rules of a given iteration, the pheromone

value of the edge that connects the i-th vertex to the (i + 1)-th vertex (0 ≤ i <

|rule.antecedent|) in the rule’s antecedent—where the 0-th vertex corresponds to

the ‘dummy’ start vertex—is incremented according to

τedgeij
= τedgeij

+ τedgeij
·Q(rule list) , (7.21)

where i and j are the i-th and j-th vertices of an edge from i to j in the trail

(rule antecedent) being updated (edgeij), Q(rule list) corresponds to the quality

of the best list of rules of the current iteration—i.e., the list of rules from which

the rule belongs. Equation (7.21) can be seen as an extension of Equation (7.7)

employed in hmAnt-Miner, wherein the quality of a list of rules is used to update

pheromone values of edges between the vertices used by rules instead of using the

quality of a single rule.

7.4 A Baseline Approach for Hierarchical Multi-

Label Classification with Ant-Miner: Build-

ing One Classifier per Class

After having proposed three different ACO classification algorithms for hierar-

chical and multi-label classification problems that build a list of rules taking into

account all class labels at the same time, this section presents a baseline algorithm

which discovers rules for each class label individually, using multiple runs of an

ACO algorithm for flat classification. The basic idea is to divide the hierarchi-

cal classification problem into a set of binary classification problems by training

an adapted cAnt-Miner2-MDL2 algorithm for each class label and then combine

the discovered rules into a hierarchical set of rules. Although several individual

classifiers (sets of rules) are built, the final combined set of rules predictions are

2We have chosen cAnt-Miner2-MDL based on the results presented in chapter 6, which shows
cAnt-Miner2-MDL as the most accurate cAnt-Miner variation overall.

CHAPTER 7. HIERARCHICAL AND MULTI-LABEL ALGORITHMS 154

consistent with the class hierarchy.

The motivation for using an adapted cAnt-Miner2-MDL is as follows. Each

run of cAnt-Miner2-MDL deals with a binary classification problem, where the

positive examples are those that have the class label associated with the classifier

being built, regardless of whether or not that class label is the most specific or

a higher level (ancestor) class label associated with the example. In many cases,

specially at lower levels of the class hierarchy, the number of positive examples will

be much smaller that the number of negative examples. To mitigate the problem

of dealing with unbalanced class distributions, each run of cAnt-Miner2-MDL is

set to discover only rules predicting the positive class—i.e. the presence of the

class label associated with the classifier being built. Therefore, the consequent of

a rule is fixed during the rule construction. As a result, a class-specific heuristic

information is employed in an adapted cAnt-Miner2-MDL algorithm in order to

facilitate the discovery of rules covering positive examples.

Note that this approach is different from most one-classifier-per-class approa-

ches found in the literature, since in our case each classifier is built only with rules

predicting the positive class (presence of a class label). Therefore, unlike most

of the literature, rules that predict the absence of a class label (negative class)

are not discovered, thus not all training examples from each binary-class data set

are covered. A complete classification model is obtained by combining the output

(rules) of each classifier, so that the combined, aggregated set of rules is able to

make hierarchical multi-label predictions.

The main drawback of the algorithm proposed in this section, named cAnt-

MinerHM (cAnt-Miner for hierarchical multi-label classification), when compared

to the previously proposed algorithms is that it requires multiple runs of a clas-

sification algorithm (cAnt-Miner2-MDL in this case). More precisely, for a class

hierarchy with |L| labels, |L| − 1 executions of the classification algorithm are

required, since there is no need to build a classifier for the root class label. Sub-

section 7.4.1 presents the technical details of the proposed method.

7.4.1 The Baseline Ant Colony Algorithm

In essence, the proposed cAnt-MinerHM algorithm divides the hierarchical multi-

label problem into several binary classification problems. It uses the class hier-

archy to define the set of positive and negative examples for each training set

CHAPTER 7. HIERARCHICAL AND MULTI-LABEL ALGORITHMS 155

associated with a class label of the class hierarchy. Then, an adapted cAnt-

Miner2-MDL algorithm is employed to discover classification rules covering the

positive examples of each training set. Subsequently, the individually discovered

sets of rules—i.e. one set of rules for each class label of the class hierarchy—are

combined into a global set of rules, which is used to make hierarchical multi-label

predictions. Algorithm 7.5 presents the high-level pseudocode of cAnt-MinerHM.

Given a class hierarchy L, where |L| denotes the number of class labels in the

class hierarchy, and a set of training examples, cAnt-MinerHM works as follows.

For each class label li ∈ L, a binary-class training set is created by labelling all

examples that have the class label li (as its most specific or a higher-level class

label) as positives and all examples that do not have the class label li as negatives.

Then, an adapted cAnt-Miner2-MDL algorithm is applied to discover a set of rules

covering the positive examples of the newly created binary-class training set for

class label li.

The adapted cAnt-Miner2-MDL algorithm (outer for loop in Algorithm 7.5)

starts with an empty set of rules and iteratively adds one rule at a time to that

set while the number of uncovered positive training examples is greater than a

user-specified maximum value. At the beginning of each iteration, it initialises the

pheromone values and heuristic information. The heuristic information consists

of a measure of the frequency of positive examples relative to the training set, as

detailed in subsection 7.4.2.

In order to create a rule, a single ant starts with an empty rule (no terms in its

antecedent) and adds one term at a time to the rule antecedent. It probabilistically

chooses a term to be added to the current partial rule based on the values of the

amount of pheromone (τ) associated with edges and heuristic information (η)

associated vertices of the construction graph. The ant keeps adding a term to the

partial rule until any term added to the antecedent would make the rule cover less

training examples than a user-specified threshold, which would make the rule too

specific and unreliable, or all attributes have already been used by the ant—similar

to the original cAnt-Miner algorithm.

Once this process of rule construction has finished, the rule created by the ant is

pruned to remove irrelevant terms from its antecedent. Then, the rule is evaluated

based on a quality measure Q and the best rule of the current iteration (the rule

with the highest quality amongst all rules created by the ants) is selected to update

the pheromone values, and then another iteration of the rule construction process

starts. The process of constructing a rule is repeated until a user-specified number

CHAPTER 7. HIERARCHICAL AND MULTI-LABEL ALGORITHMS 156

Algorithm 7.5: High-level pseudocode of the cAnt-MinerHM baseline algo-
rithm.
input : training examples
output: discovered set of rules

begin cAnt-MinerHM1

rule set← ∅;2

training set← all training examples;3

// discovers rules for each class label independently4

// using an adapted cAnt-Miner2-MDL algorithm5

for i ← 1 to |L| − 1 do6

// creates the binary training set for the i-th7

// class label8

tr seti ← local training(training set, i);9

rule seti ← ∅;10

repeat11

rulebest ← ∅;12

initialise(τ, η);13

k ← 0;14

// discovers a classification rule15

repeat16

for j ← 1 to colony size do17

rulej ← CreateRule();18

Prune(rulej);19

if Q(rulej) > Q(rulebest) then20

rulebest ← rulej;21

end22

j ← j + 1;23

end24

τ ← update pheromones();25

until k ≥ max number iterations OR rule convergence ;26

rule seti ← rule seti + rulebest;27

tr seti ← tr seti − PositiveCoveredCases(rulebest, tr seti);28

until PositiveCases(tr seti) ≤ max uncovered examples ;29

// adds the rules for the i-th class label to the30

// global rule set31

rule set← rule set + rule seti;32

end33

return rule set;34

end35

CHAPTER 7. HIERARCHICAL AND MULTI-LABEL ALGORITHMS 157

of iterations has been reached, or the best rule of the current iteration is exactly

the same as the best rule created by a predefined number of previous iterations,

which works as a rule convergence test.

Recall that the consequent of a rule is fixed—i.e. it always predicts the positive

class—since only rules predicting the positive class (the presence of the class

label li) are created. Therefore, the quality measure Q reflects how well the rule

covers the positive examples of the training set. The best rule found along this

iterative rule construction process is added to the set of rules and the correctly

classified training examples are removed from the training set. An example is

considered correctly classified if it satisfies the rule antecedent and has the class

label predicted by the rule consequent.

After the creation of the set of rules for class label li is completed, the con-

sequents of the rules are set to predict the i-th class label and all its ancestor

class labels. Since the rules discovered for the i-th class label always predict the

presence of the class label (positive class in a binary classification problem), they

predict the class label i and all its ancestor according to the class hierarchy L

due to the ‘is-a’ class relationship, where an example associated with a class label

is automatically associated with all of its ancestor class labels. Finally, the dis-

covered rules are added to a global set of rules and rules for the remaining class

labels are created. Since the global set of rules contains rules predicting all class

labels of the class hierarchy L, it can be used to make hierarchical multi-label

predictions, as described in subsection 7.4.5.

7.4.2 Class-specific Heuristic Information

Recall that the class predicted by a rule is fixed, since only rules predicting the

positive class (presence of a class label) are created to mitigate the problem of

dealing with a very unbalanced class distribution at lower levels of the class hi-

erarchy. In order to facilitate the discovery of rules covering positive examples,

cAnt-MinerHM employs a class-specific heuristic information which takes into ac-

count the frequency of positive examples in the training set.

Let li be the i-th class label of the class hierarchy L and Si the binary-class

training set for class label li. The heuristic information for a nominal attribute

term TN relative to the training set Si is given by

ηTN
=
|TN & S+

i |

|Si|
, (7.22)

CHAPTER 7. HIERARCHICAL AND MULTI-LABEL ALGORITHMS 158

where |TN & S+

i | corresponds to the number of positive examples of the training

set Si in which the nominal term TN is present—i.e. the number of positive

examples satisfying the nominal attribute condition represented by term T (e.g.

IPR00023 = yes). As a result, terms that are not present in positive training

examples have the heuristic value set to 0 (zero), preventing them to be selected

by an ant during the rule construction process.

For continuous attributes terms—wherein the heuristic information is calcu-

lated by firstly discretising the continuous attribute in order to find the best

threshold value and then selecting the entropy value associated with the best

(‘purest’) partition in cAnt-Miner2-MDL, as described in section 5.2—the parti-

tion selection is modified to favour the partition associated with the highest fre-

quency of positive examples. Therefore, after the selection of the best threshold

value(s) according to the MDL discretisation procedure, the heuristic information

of a continuous attribute term TC associated with a continuous attribute yi is

given by

ηTC
= max

(

|S+

i,yi<v1
|

|Si,yi<v1
|
,
|S+

i,vz≤yi<vz+1
|

|Si,vz≤yi<vz+1
|
, . . . ,

|S+

i,yi≥vZ
|

|Si,yi≥vZ
|

)

, ∀ 1 ≤ z < Z, (7.23)

where |S+

i,yi<v1
|, |S+

i,vz≤yi<vz+1
| and |S+

i,yi≥vZ
| correspond to the number of positive

examples on the partition of examples that have the attribute’s yi value less than

v1 (Si,yi<v1
), between vz (inclusive) and vz+1 (Si,vz≤yi<vz+1

), and greater than or

equal to vZ (Si,yi≥vZ
), respectively; Z is the total number of threshold values and

Si is the binary-class training set for the i-th class label. As a result of Equation

(7.23), the heuristic information of a continuous attribute term TC corresponds to

the frequency value of the discrete partition with the highest number of positive

examples relative to its size.

7.4.3 Class-specific Interval Selection for Continuous At-

tributes

Following a similar approach as the one employed to calculate the heuristic infor-

mation value of continuous attributes, cAnt-MinerHM’s interval selection during

the discretisation process is adapted to take into account the frequency of positive

examples in the intervals. Note that the selection of the best threshold value(s)

is still based on the entropy measure, but the discrete interval used to define the

CHAPTER 7. HIERARCHICAL AND MULTI-LABEL ALGORITHMS 159

attribute-value condition of a continuous attribute term is chosen based on the

frequency of positive examples, as follows.

Since potentially multiple threshold values can be created by the MDL discreti-

sation procedure, as described in section 5.2, the list of threshold values is sorted

and the frequency of positive examples relative to the total number of examples in

the interval of each discrete interval is calculated. Then, the discrete interval with

the higher frequency of positive examples is selected, based on the fact that it

corresponds to the interval with the greater number of positive examples relative

to the interval’s size. If an internal interval is selected (an interval between two

threshold values), a term in the form vz ≤ yi < vz+1 is generated; otherwise, a

term in the form yi < vz or yi ≥ vz is generated (where z is the z-th threshold

value); ties are broken at random. As a result, the interval selection employed in

cAnt-MinerHM is analogous to the one employed in cAnt-Miner2-MDL, with the

difference that it is based on the frequency of positive examples instead of the

entropy measure.

7.4.4 Rule Quality Measure

Since cAnt-MinerHM divides the hierarchical multi-label problem into several bi-

nary classification problems, rules are evaluated using a flat classification measure.

The rule quality measure Q employed in cAnt-MinerHM is a combination of both

precision (Prec) and recall (Rec) values, given by

Prec =
TP

TP + FP
Rec =

TP

TP + FN
, (7.24)

where TP is the number of positive examples covered by the rule (true positives),

FP is the number of negative examples covered by the rule (false positives) and

FN is the number of positive examples not covered by the rule (false negatives).

The rule quality measure is then given by

Q = F-measure =
2 · Prec · Rec

Prec + Rec
. (7.25)

It should be noted that the number of negative examples not covered by the

rule (true negatives) is not taken into account in the rule quality measure. Recall

that the consequent of a rule is fixed to predict the positive class (presence of a

class label), therefore the number of negative examples not covered by the rule is

not relevant to determine its quality.

CHAPTER 7. HIERARCHICAL AND MULTI-LABEL ALGORITHMS 160

Algorithm 7.6: High-level pseudocode of the procedure to create the vector
of class probabilities for a test example employed in cAnt-MinerHM.

input : test example
output: vector of class probabilities

begin1

// the rules that cover the test example2

rules← cover(test example, rule set);3

probabilities vector ← [1 . . . |L|];4

// increments the occurrence of each class label found in5

// the consequent of the rules6

foreach rule in rules do7

foreach label in rule.consequent do8

probabilities vector[index(label)]++;9

end10

end11

for i← 1 to |L| do12

probabilities vector[i]← probabilities vector[i] / |rules|;13

end14

return probabilities vector;15

end16

7.4.5 Classifying New Examples

In order to classify a test (unseen) example, a vector of class probabilities is

created based on the rules (from the global set of rules) that cover the example.

The basic idea is to calculate the probability of predicting a specific class label

based on the number of rules covering the example that have the class label in their

consequent. The interpretation of the vector of class probabilities is analogous to

the one employed by hmAnt-Miner, described in subsection 7.2.1.

Algorithm 7.6 presents the high-level pseudocode of the procedure to create

the vector of class probabilities for a test example. In essence, the procedure

starts by finding the rules from the global set of rules created by cAnt-MinerHM

that cover the test example. Then, the vector of class probabilities is initialised

to accommodate all class labels of the class hierarchy L. Each position of the

vector is initialised to 0 (zero). Moreover, for each class label in the consequent of

the rules that cover the test example, its correspondent position on the vector of

probabilities is incremented by one for each of those rules. Finally, each position

of the vector of probabilities is divided by the number of rules covering the test

CHAPTER 7. HIERARCHICAL AND MULTI-LABEL ALGORITHMS 161

example. As a result, each position of the class vector represents the probabil-

ity, defined by the relative frequency of rules that have that class label in their

consequent, of predicting the correspondent class label. Note that the vector of

class probabilities fulfil the requirements for hierarchical multi-label classification:

(1) predictions are consistent with the hierarchical relationships, since the proba-

bility of predicting a child class label is guaranteed to be equal to or lower than

the probability of predicting each of its ancestral class labels; (2) unrelated class

labels—i.e. class labels which are not ancestors/descendants of each other—can

be predicted according to the rules that cover the test example.

7.5 Summary

This chapter presented four novel hierarchical and multi-label classification algo-

rithms: a hierarchical classification ACO algorithm, two ACO classification tai-

lored for hierarchical multi-label problems and an adaptation of a flat classification

ACO algorithm to the problem of hierarchical multi-label classification.

Section 7.1 presented a hierarchical ACO classification algorithm, named hAnt-

Miner. hAnt-Miner discovers a single global classification model in the form of an

ordered list of IF-THEN classification rules which can predict class labels at all

levels of the class hierarchy, satisfying the parent-child relationships between class

labels. hAnt-Miner is a major extension of the flat classification Ant-Miner to the

hierarchical classification problem, incorporating several important modifications:

(1) two separate ant colonies for constructing the antecedent and consequent of

a rule; (2) a hierarchical classification rule measure based on the hierarchical

precision and recall values; (3) a pruning procedure which removes irrelevant

terms from rules’ antecedents, as well as, class labels from rules’ consequents;

(4) a heuristic information straightforwardly adapted to hierarchical classification

problems.

In section 7.2, it was presented a hierarchical multi-label ACO classification

algorithm, named hmAnt-Miner. hmAnt-Miner is an extension of hAnt-Miner

in order to cope with hierarchical multi-label data, differing from the latter in

several aspects: (1) the consequent of a rule is deterministically calculated and

the algorithm is able to cope with hierarchical multi-label data; (2) the heuristic

information is based on a distance measure of a class membership vector of the

examples; (3) it employs distance-based rule quality measure and a distance-

based discretisation procedure; (4) it has a simplified pruning procedure, since

CHAPTER 7. HIERARCHICAL AND MULTI-LABEL ALGORITHMS 162

the consequent of a rule is not represented in a construction graph.

Section 7.3 presented a hierarchical multi-label ACO classification algorithm,

named hmAnt-MinerPB, which is built on top of the ideas of hAnt-Miner and

hmAnt-Miner. However, hmAnt-MinerPB employs a different rule discovery ap-

proach in order to perform a more effective search for the best list of rules, fol-

lowing a Pittsburgh-based strategy for rule discovery. In this way, the search for

rules is guided by the quality of a list of rules in contrast to a single rule.

Finally, section 7.4 presented a baseline hierarchical multi-label ACO classifi-

cation algorithm, named cAnt-MinerHM. It differs from the previously presented

methods in several ways. Firstly, the hierarchical multi-label problem is divided

into a set of binary classification problems (binary-class data sets). Secondly, an

adapted cAnt-Miner2-MDL algorithm is used to discover a set of rules from each

binary-class data set predicting the presence of a particular class label. Thirdly,

the individually created sets of rules are then combined into a global set of rules

which can be used to make hierarchical multi-label predictions. The main draw-

back of the cAnt-MinerHM algorithm is that several runs of a flat classification

algorithm (cAnt-Miner2-MDL in this case) are needed, more specifically, one per

class label (except for the root class label).

Chapter 8

Computational Results for

Hierarchical and Multi-Label

Ant-Miner

In this chapter, the proposed hierarchical—namely hAnt-Miner—and hierarchical

multi-label—namely hmAnt-Miner, hmAnt-MinerPB and cAnt-MinerHM—classifi-

cation algorithms described in chapter 7 are assessed empirically against (1) a

baseline approach consisting of training a flat single-label classification algorithm

for each class label individually and (2) state-of-the-art decision tree induction

algorithms for hierarchical multi-label classification. The data sets in the experi-

ments involve the hierarchical prediction of ion channel protein functions using the

Gene Ontology (DAG-structured class hierarchy) functional classification scheme

in the former case, and the prediction of protein functions from the yeast (Saccha-

romyces cerevisiae) model organism using both the FunCat (tree-structured class

hierarchy) and Gene Ontology functional classification schemes in the latter case.

The assessment of the classification algorithms in terms of predictive accu-

racy was performed using the evaluation measures for hierarchical classification

discussed in section 2.5. Furthermore, in the case of the hierarchical multi-label

experiments, the classification algorithms were also assessed in terms of the size of

the discovery classification model, since the size is usually considered an important

factor that contributes to the comprehensibility of the classification model.

The remainder of this chapter is organised as follows. Section 8.1 presents the

details of the experiments concerning hAnt-Miner in the context of predicting ion

163

CHAPTER 8. HIERARCHICAL AND MULTI-LABEL RESULTS 164

channel protein functions. In section 8.2, the experiments concerning the hier-

archical multi-label hmAnt-Miner, hmAnt-MinerPB and cAnt-MinerHM classifica-

tion algorithms are described. Finally, section 8.3 summarises the computational

results presented in this chapter.

8.1 Initial Work on Protein Function Predicti-

on—the hAnt-Miner algorithm

This section reports the computational results evaluating the hAnt-Miner (hierar-

chical classification Ant-Miner) algorithm presented in chapter 7. The experiments

in this section consist of our initial work on hierarchical (single-label) classifica-

tion in the context of protein function prediction. The hAnt-Miner algorithm was

compared against a baseline approach, which consists of training a flat classifica-

tion algorithm for each class label of the class hierarchy individually following a

simplified1 top-down approach.

We have created five data sets involving ion channel proteins associated with

corresponding Gene Ontology (GO) terms. Hence, the class hierarchy is repre-

sented as a directed acyclic graph (DAG) structure. Since hAnt-Miner is not a

hierarchical multi-label algorithm, only proteins associated with a single GO term

as its most specific class label are included in the data sets.

The remainder of this section is organised as follows. Subsection 8.1.1 describes

the ion channel data sets used in our experiments. Subsection 8.1.2 presents the

experimental setup, including the description of the baseline approach algorithm.

Finally, the computational results and discussion are presented subsection 8.1.3.

8.1.1 Data Preparation

In order to evaluate the proposed hAnt-Miner algorithm, we have created five data

sets involving ion-channel protein functions. Ion channel proteins are present in

all living cells and they form a pore across the cell membrane [2]. The function of

ion channels is to allow specific inorganic ions (e.g., Na+, K+, Ca2+, Cl−) to cross

the cell membrane. They play an essential role in many cell functions, such as in

functions related to the nervous system, muscle contraction and T-cell activation.

1The baseline approach does not deal with potentially inconsistent predictions resulting from
using a top-down approach on directed acyclic graph (DAG) class hierarchies. Instead, it relies
on the evaluation measure to penalise for such inconsistencies.

CHAPTER 8. HIERARCHICAL AND MULTI-LABEL RESULTS 165

The selection of the protein examples was divided into three steps. In the first

step we selected a subset of the Gene Ontology annotation scheme to represent

the class hierarchy to be predicted. As we focus on ion channel proteins, all the

ancestral and descendant terms of the ‘GO:0005216 ion channel activity ’ term

were selected. In the second step, we retrieved protein interaction data from the

IntAct database (release 15/12/2007). Records with database cross-references to

the GO terms selected in the previous step were retrieved. Since many GO terms

(class labels) selected in the previous step did not have a reasonable number of

proteins associated with them, we discarded GO terms with less than 10 protein

examples. In the third step, for each protein example retrieved in the previous

step we selected the amino acid sequence and InterPro pattern references from the

UniProtKB/Swiss-Prot database (release 12.0), using the database cross-reference

to UniProt found in IntAct protein records. At the end of the selection procedure,

we ended up with 147 protein examples involving 17 GO terms, which were used

to create three different data sets. A summary of the five data sets created for

the experiments are presented on Table 8.1.

The first data set (dubbed ‘DS1 AA’) used the amino acid composition in-

formation as predictor attributes, consisting of the percentage of the sequence

composition relative to each of the 20 different amino acids. The second data

set (dubbed ‘DS1 InterPro’) used the InterPro pattern information as predictor

attributes, consisting of Boolean attributes representing the presence or absence

of a particular InterPro pattern. The third data set (dubbed ‘DS1 IntAct’) used

the IntAct protein interaction data as predictor attributes, consisting of Boolean

attributes representing the presence or absence of a particular interaction.

Using a similar approach, without the restriction of selecting proteins with

protein interaction data available, we increased the number of proteins to 359

examples to create two additional data sets. The first data set (dubbed ‘DS2

AA’) used the amino acid composition information as predictor attributes. The

second data set (dubbed ‘DS2 InterPro’) used the InterPro pattern information

as predictor attributes.

Moreover, two simple predictor attributes derived directly from the proteins

primary sequences, namely sequence length and molecular weight, were added all

data sets. As a result, the data sets using amino acid composition information

have 20 attributes referring to the percentage composition of the 20 amino acids

plus the sequence length and molecular weight of the protein, giving a total of

22 predictor attributes; the data sets using InterPro pattern information have

CHAPTER 8. HIERARCHICAL AND MULTI-LABEL RESULTS 166

Table 8.1: Summary of the data sets used in the experiments evaluating hAnt-
Miner. The first column (‘Data Set’) gives the data set name, the second column
(‘Size’) gives the data set size, the third column (‘Attributes’) gives the number
of attributes and the forth column (‘Classes’) gives the number of class labels in
the class hierarchy.

Data Set Size Attributes Classes

DS1 AA 147 22 17

DS1 InterPro 147 92 17

DS1 IntAct 147 2096 17

DS2 AA 359 22 17

DS2 InterPro 359 155 17

Boolean attributes referring to the presence/absence of a particular InterPro pat-

ters plus the sequence length and molecular weight of the protein; similarly, the

data sets using IntAct protein interaction data have Boolean attributes referring

to the presence/absence of a particular interaction plus the sequence length and

molecular weight of the protein.

8.1.2 Experimental Setup

A summary of the user-defined parameters of hAnt-Miner, their descriptions and

correspondent values are presented in Table 8.2. We have used default values for

these parameters, which are also considered a standard in the literature [94]. This

makes the comparison with results of the baseline approach fair, since the latter

was used with its default parameter values. Parameter optimisation is a difficult

optimisation problem by itself, hence the optimisation of the parameters of the

hierarchical classification algorithm is a topic left for future research. For this

set of experiments, the parameter values 500 for the max number iterations, 5 for

the min examples per rule and 20 for the colony size presented a good trade-off

between computational time and predictive accuracy.

The baseline approach used to evaluate hAnt-Miner consists of training a flat

classification algorithm for each class label individually. The J48 classification

CHAPTER 8. HIERARCHICAL AND MULTI-LABEL RESULTS 167

Table 8.2: Summary of the user-defined parameter values used by hAnt-Miner for
all data sets. No attempt was made to tune either parameter value for individual
data sets. The first column (‘Parameter’) gives the parameter name, the second
column (‘Description’) gives a short description and the third column (‘Value’)
gives the value used in our experiments.

Parameter Description Value

max uncovered examples maximum number of uncovered examples 10

max number iterations maximum number of iterations 500

rule convergence number of iterations used to test the rule
convergence

10

min examples per rule minimum number of covered examples per
rule

5

colony size number of ants per iteration 20

algorithm (Weka [133] implementation of the well-known C4.5 decision tree algo-

rithm [99]) was chosen in this approach. In order to determine the set of pos-

itive/negative examples for each classification algorithm run associated with a

class label—represented by a GO term—of the class hierarchy, the relationships

of the class hierarchy were used as follows. For each classification algorithm run

predicting if an example belongs or not to the particular class label (GO term),

the set of positive examples consists of all examples that belong to the GO term in

question (as the most specific GO term or as an ancestor of their most specific GO

term); the set of negative examples consists of all the remaining training examples.

Recall that each example can only have one GO term as its most specific term,

since the data sets represent hierarchical single-label classification problems—as

discussed in subsection 8.1.1.

After training the individual classification algorithms, producing a classifica-

tion model (classifier) for each class label of the class hierarchy, a test example

is classified in a top-down fashion. At the beginning, the example is classified

only by the child classifiers of the root GO term. For each child classifier, if the

classifier predicts the positive class (the example is predicted to belong to the GO

term associated with the classifier), then the example is ‘pushed downwards’ and

classified by its children classifiers. This procedure goes on until a classifier does

not predict the GO term (the example is predicted as a negative example) or when

CHAPTER 8. HIERARCHICAL AND MULTI-LABEL RESULTS 168

a leaf classifier is reached. Note that since we are dealing with a DAG-structured

class hierarchy, class labels—and consequently classifiers—can have more than one

parent. Therefore, the predictions can be inconsistent with the class hierarchy—

e.g. one of the parent classifiers of a given classifier might predict the example as

negative, while the other might predict the example as positive. Since the aim of

this approach is to have a relatively simple baseline to evaluate hAnt-Miner and

not to propose a new top-down classification algorithm capable of coping with

DAG-structured class hierarchies, we rely on the evaluation measure (predictive

accuracy on the test set) to penalise for such inconsistencies.

The experiments were conducted using a ten-fold cross-validation procedure

for each data set.2 In order to make the comparison of the results fair, we have

used the same partitions of training set and test set across the ten-fold procedure

for both hAnt-Miner and the baseline approach.

8.1.3 Results and Discussion

We compare the performance of hAnt-Miner and J48 in terms of the hierarchi-

cal measures of precision, recall and F-measure, defined by Equation (2.4) and

Equation (2.5) in Subsection 2.5.1. The results comparing the hAnt-Miner algo-

rithm against the baseline approach (dubbed ‘top-down J48’) are shown in Table

8.3. Since the experiments were conducted running a ten-fold cross-validation

procedure, the values reported in Table 8.3 are average values with standard devi-

ation (mean ± standard deviation) computed over the ten different iterations. In

addition, hAnt-Miner was run fifteen times for each of the cross-validation folds

using a different random seed to initialise the search—given that hAnt-Miner is a

stochastic algorithm. The result of these experiments have also been presented in

[89].

Overall hAnt-Miner achieved better results than the ‘top-down J48’ baseline

approach in our set of experiments. The baseline approach was significantly

outperformed—according to a Student’s t-test (see Table 8.3)—in two out of five

data sets, namely ‘DS1 InterPro’ and ‘DS1 IntAct’. These data sets can be consid-

ered ‘difficult’ based on their small size (147 proteins) and distribution of examples

in the GO hierarchy (GO terms at deeper levels of the hierarchy have few exam-

ples). Therefore, the poor performance of the baseline could be the result of the

problem that there are many more negative examples than positive examples for

2A brief description of the ten-fold cross-validation procedure is presented in Section 6.2.

CHAPTER 8. HIERARCHICAL AND MULTI-LABEL RESULTS 169

Table 8.3: Hierarchical measures of precision (hR), recall (hR) and F-measure (hF)
values (mean ± standard deviation) obtained with the ten-fold cross-validation
procedure in the five data sets. An entry in the ‘hF’ column is shown in bold if the
hierarchical F-measure value obtained by one of the algorithms was significantly
greater than the other algorithm—according to a two-tailed Student’s t-test with
99% confidence.

top-down J48
hP hR hF

DS1 AA 0.73 ± 0.04 0.55 ± 0.03 0.63 ± 0.03

DS1 InterPro 0.69 ± 0.04 0.68 ± 0.05 0.69 ± 0.04

DS1 IntAct 0.69 ± 0.03 0.37 ± 0.04 0.47 ± 0.03

DS2 AA 0.71 ± 0.02 0.61 ± 0.02 0.65 ± 0.02

DS2 InterPro 0.91 ± 0.01 0.84 ± 0.02 0.87 ± 0.01

hAnt-Miner
hP hR hF

DS1 AA 0.56 ± 0.06 0.55 ± 0.06 0.56 ± 0.06

DS1 InterPro 0.82 ± 0.04 0.81 ± 0.04 0.81 ± 0.04

DS1 IntAct 0.77 ± 0.04 0.54 ± 0.03 0.63 ± 0.03

DS2 AA 0.63 ± 0.02 0.59 ± 0.02 0.61 ± 0.01

DS2 InterPro 0.83 ± 0.01 0.75 ± 0.01 0.79 ± 0.01

each GO term, particularly at deeper level in the GO hierarchy, which shows that

hAnt-Miner is more robust than the baseline when dealing with unbalanced hi-

erarchical class distributions. This problem was not observed in the experiments

concerning the data sets with a greater number of protein examples, were the

baseline significantly outperformed hAnt-Miner in the ‘DS2 InterPro’ data set.

In the remaining two data sets, namely ‘DS1 AA’ and ‘DS2 AA’, there were no

significant difference between the results of both algorithms.

The analysis of the results of hAnt-Miner suggests that hAnt-Miner’s rules are

good at classifying a small number of examples. Hence, better results of hAnt-

Miner are observed in the smaller data sets, namely ‘DS1 InterPro’ and ‘DS1

IntAct’. As discussed in Section 7.2, the rule quality measure employed by hAnt-

Miner has a bias in favour of accurate (high precision) rules with small coverage

CHAPTER 8. HIERARCHICAL AND MULTI-LABEL RESULTS 170

(low recall). On data sets with a greater number of examples, this could poten-

tially lead to overfitting—which we believe is the case for the underperformance

of hAnt-Miner in ‘DS2 InterPro’.

8.2 Hierarchical Multi-Label Protein Function

Prediction in Yeast

This section reports computational results evaluating the hierarchical multi-label

algorithms presented in chapter 7, namely hmAnt-Miner, hmAnt-MinerPB and

cAnt-MinerHM. These algorithms were compared against three decision tree in-

ductions algorithms for hierarchical multi-label classification proposed by Vens et

al. [127]: Clus-HMC, which involves inducing a single (‘big bang’) decision tree

that predicts all class labels at once; Clus-HSC, which involves inducing decision

trees in a top-down fashion; Clus-SC, which involves the induction a decision

tree for each class label individually.

We have selected twenty bioinformatics data sets from Vens et al. [127] involv-

ing the prediction of protein functions from the yeast (Saccharomyces cerevisiae)

model organism.3 The data sets use two different class hierarchy structures: tree

structure (FunCat data sets) and directed acyclic graph structure (Gene Ontology

data sets). They were used to evaluate the algorithms with respect to predictive

accuracy and model size.

The remainder of this section is organised as follows. Subsection 8.2.1 describes

the bioinformatics data sets used in the experiments. Subsection 8.2.2 presents

the experimental setup, followed by the computational results and discussion in

subsection 8.2.3.

8.2.1 Data Sets

A summary of the twenty data sets used in the experiments are presented on

Table 8.4. According to Table 8.4, there are ten different data sets describing

different aspects of proteins in the yeast genome. The proteins in these data sets

are subsequently associated with corresponding FunCat Categories (FunCat data

sets) and Gene Ontology terms (Gene Ontology data sets), resulting in a total of

twenty data sets. The variation in the number of examples between the FunCat

3The data sets are publicly available at:
http://www.cs.kuleuven.be/∼dtai/clus/hmcdatasets/

CHAPTER 8. HIERARCHICAL AND MULTI-LABEL RESULTS 171

and Gene Ontology versions of a data set is due to the fact that some proteins

were not associated with Gene Ontology terms, and therefore, were not including

in the Gene Ontology version of the data set. A description of the different aspects

of proteins used as predictor attributes in each of the data sets is presented next.

• pheno: consists of nominal attributes derived from phenotypic growth ex-

periments. Each attribute can have one of the following values: ‘n’ (no

data), ‘w’ (no phenotypic effect), ‘s’ (sensitive) and ‘r’ (resistant).

• seq : consists mainly of numeric (integer and real-valued) attributes—with

the exception of two discrete attributes—derived from the protein’s pri-

mary structure. These include amino acid ratios (percentage of each amino

acid relative to the sequence length), sequence length, molecular weight, hy-

drophobicity, information calculated using ExPASy’s ProtParam tool [56]

and chromosome number from the MIPS’ chromosome tables [84].

• cellcycle, church, derisi, eisen, gasch1, gasch2, spo: consist of numeric (real-

valued) attributes derived from microarray experiments involving gene ex-

pression levels.

• expr : consists of numeric (real-valued) attributes resulting from the con-

catenation of the microarray data sets ‘cellcycle’, ‘church’, ‘derisi’, ‘eisen’,

‘gasch1’, ‘gasch2’ and ‘spo’.

Table 8.5 presents the average number of class labels per example and the

average number of class labels in the class hierarchy of both FunCat and Gene

Ontology data sets. As can be seen in Table 8.5, Gene Ontology data sets have a

much greater average number of class labels, both in terms of class labels in the

class hierarchy and class labels per example.

It should be noted that these data sets present a challenging problem for

any classification algorithm. The majority of the data sets contain examples

with missing values, several class labels—particularly class labels at deeper levels

of the class hierarchy—have a few examples associated (positive examples), the

number of class labels to be predicted ranges from 456 to 4134 and each example

is associated with more than one class label.

8.2.2 Experimental Setup

Throughout the entire set of experiments, we have used the same set of user-

defined parameters values for hmAnt-Miner, hmAnt-MinerPB and cAnt-MinerHM.

CHAPTER 8. HIERARCHICAL AND MULTI-LABEL RESULTS 172

Table 8.4: Summary of the data sets used in our experiments. The first column
(‘Data Set’) gives the data set name, the second column (‘Training Size’) gives the
number of training examples, the third column (‘Test Size’) gives the number of
test examples, the forth column (‘Attributes’) gives the number of attributes and
the fifth column (‘Classes’) gives the number of class labels in the class hierarchy.

FunCat

Data Set Training Size Test Size Attributes Classes

cellcycle 2476 1281 77 500

church 2474 1281 27 500

derisi 2450 1275 63 500

eisen 1587 837 79 462

expr 2488 1291 551 500

gasch1 2480 1284 173 500

gasch2 2488 1291 52 500

pheno 1009 582 69 456

seq 2580 1339 478 500

spo 2437 1266 80 500

Gene Ontology

Data Set Training Size Test Size Attributes Classes

cellcycle 2473 1278 77 4126

church 2471 1278 27 4126

derisi 2447 1272 63 4120

eisen 1583 835 79 3574

expr 2485 1288 551 4132

gasch1 2477 1281 173 4126

gasch2 2485 1288 52 4132

pheno 1005 581 69 3128

seq 2568 1332 478 4134

spo 2434 1263 80 4120

CHAPTER 8. HIERARCHICAL AND MULTI-LABEL RESULTS 173

Table 8.5: The average number of class labels in the hierarchy and the average
number of class labels per example of both FunCat and Gene Ontology data sets.

Average number of class labels FunCat Gene Ontology

in the class hierarchy 491.8 3971.8

per example 8.8 35.4

A summary of the parameters, their descriptions and correspondent values are

presented in Table 8.6. These parameters values are considered a standard in

the literature [94]. The colony size parameter was set to 30 instead of 60, which

represents a better trade-off between computational time and predictive accuracy

in this set of experiments. Additionally, the hmAnt-MinerPB specific parameter

max number lists (marked with a symbol ‘*’ in Table 8.6) was set to 5, which

represents a sensible value taking into consideration both the computational time

and the potential gain in predictive accuracy.

In the experiments conducted by Vens et a. [127], 2/3 of each data set was used

for training and the remaining 1/3 for testing. We have used the same training

and testing partitions in our experiments in order to make our results compara-

ble. Since hmAnt-Miner, hmAnt-MinerPB and cAnt-MinerHM are stochastic algo-

rithms, they are run fifteen times using a different random seed to initialise the

search for each data set. In the case of the deterministic Clus-HMC, Clus-HSC

and Clus-SC algorithms, we report the results from Vens et al. [127].

8.2.3 Results and Discussion

We compared all algorithms in terms of predictive accuracy using a measure de-

rived from precision-recall (PR) curves, more specifically the area under the aver-

aged PR curve—denoted as AU(PRC)—discussed in Subsection 2.5.2. Table 8.7

presents the predictive accuracy achieved by hmAnt-Miner, hmAnt-MinerPB and

cAnt-MinerHM across all data sets using FunCat and Gene Ontology, respectively.

Each entry in Table 8.7 shows the average value of the AU(PRC) obtained by fif-

teen runs of the algorithm, followed by the standard deviation (average ± standard

deviation). Table 8.8 presents the predictive accuracy achieved by Clus-HMC,

Clus-HSC and Clus-SC across all data sets using FunCat and Gene Ontology,

respectively. Each entry in Table 8.8 shows the AU(PRC) obtained by a single

CHAPTER 8. HIERARCHICAL AND MULTI-LABEL RESULTS 174

Table 8.6: Summary of the user-defined parameter values used by hmAnt-Miner,
hmAnt-MinerPB and cAnt-MinerHM for all data sets. The first column (‘Param-
eter’) gives the parameter name, the second column (‘Description’) gives a short
description and the third column (‘Value’) gives the value used in our experiments.
The parameter max number lists (marked with a symbol ‘*’) is only applied to
hmAnt-MinerPB.

Parameter Description Value

max uncovered examples maximum number of uncovered examples 10

max number iterations maximum number of iterations 1500

rule convergence number of iterations used to test the rule
convergence

10

min examples per rule minimum number of covered examples per
rule

10

colony size number of ants per iteration 30

max number lists* maximum number of lists per iteration 5

run of the algorithm, since they are deterministic algorithms. The last row in

both Tables 8.7 and 8.8 indicates the rank-based score—the higher the score, the

better the ranking—according to the non-parametric Friedman test [34, 54]; the

rank-based scores are illustrated in Figure 8.1.

Table 8.9 presents the induced classification model size—measured as the num-

ber of rules discovered—achieved by hmAnt-Miner, hmAnt-MinerPB and cAnt-

MinerHM across all data sets using FunCat and Gene Ontology, respectively. Each

entry in Table 8.9 shows the average number of rules obtained by fifteen runs of

the algorithm, followed by the standard deviation (average ± standard deviation).

Table 8.10 presents the induced classification model size—measured as the total

number of leaf nodes in the decision tree(s), since each path from the root node

to a leaf node can be viewed as a rule—achieved by Clus-HMC, Clus-HSC and

Clus-SC across all data sets using FunCat and Gene Ontology, respectively. Each

entry in Table 8.10 shows the classification model size obtained by a single run of

the algorithm, since they are deterministic algorithms. Note that for Clus-HSC

and Clus-SC, the total number of leaf nodes corresponds to the number of leaf

nodes across all induced decision trees, since these algorithms create more than

CHAPTER 8. HIERARCHICAL AND MULTI-LABEL RESULTS 175

one decision tree. The last row in both Tables 8.9 and 8.10 indicates the rank-

based score—in this case the lower the score, the better the ranking, since smaller

classification model size is preferred—according to the non-parametric Friedman

test [34, 54]; the rank-based scores are illustrated in Figure 8.2.

In terms of predictive accuracy—measured as the AU(PRC)—overall hmAnt-

Miner, hmAnt-MinerPB and Clus-HMC algorithms perform significantly better

than the Clus-SC algorithm across all data sets; there are no significant dif-

ferences between the top three hmAnt-Miner, hmAnt-MinerPB and Clus-HMC

algorithms—as illustrated in Figure 8.1. In this figure, two rank-based scores

are significantly different if their intervals are disjoint and are not significantly

different if their intervals overlap. The most accurate ant colony classification

algorithm is hmAnt-Miner, although there are no significant differences between

hmAnt-Miner, hmAnt-MinerPB and cAnt-MinerHM. On the other hand, cAnt-

MinerHM performs significantly worse than Clus-HMC and relatively (with large

differences) worse than hmAnt-Miner.

In terms of the size of the discovered classification model, hmAnt-Miner and

Clus-HMC algorithms perform equally overall, discovering significantly smaller

classification models than the cAnt-MinerHM, Clus-HSC and Clus-SC algo-

rithms across all data sets—as illustrated in Figure 8.2. In this figure, two rank-

based scores are significantly different if their intervals are disjoint and are not

significantly different if their intervals overlap. Although the classification models

discovered by hmAnt-MinerPB are slightly greater than the ones discovered by

hmAnt-Miner and smaller than the ones discovered by cAnt-MinerHM and Clus-

HSC in term of size, no significant differences are observed when compared to

the latter ones. When compared to Clus-SC, hmAnt-MinerPB’s classification

models are significantly smaller in size. As expected, the classification models of

cAnt-MinerHM, Clus-HSC and Clus-SC are much bigger, since these algorithms

build many individual classification models in order to make hierarchical multi-

label predictions and the size reflects the total size of all classification models.

The results obtained in our experiments can be summarised as follows. The

most accurate algorithms are hmAnt-Miner, hmAnt-MinerPB and Clus-HMC,

and there are no significant differences in terms of predictive accuracy amongst

them. A closer look at a sample of the overall precision-recall curves—consisting

of examples of curves from six data sets illustrated in Figure 8.3—reveals that

the larger differences in precision occur at lower recall values (recall < 0.2), where

Clus-HMC achieves the highest predictive accuracy in average, and at higher

CHAPTER 8. HIERARCHICAL AND MULTI-LABEL RESULTS 176

Table 8.7: The AU(PRC) value obtained on the test set by hmAnt-Miner, hmAnt-
MinerPB and cAnt-MinerHM across all data sets used in our experiments. The
value of each row represents the average value obtained over fifteen runs of the
algorithm, followed by the standard deviation (average ± standard deviation).
The last row of the table indicates the rank-based score—the higher the score, the
better the ranking—according to the non-parametric Friedman test [34, 54].

FunCat
Data Set hmAnt-Miner hmAnt-MinerPB cAnt-MinerHM

AU(PRC) AU(PRC) AU(PRC)

cellcycle 0.154 ± 0.001 0.154 ± 0.001 0.135 ± 0.001

church 0.168 ± 0.001 0.158 ± 0.001 0.139 ± 0.001

derisi 0.161 ± 0.002 0.154 ± 0.001 0.122 ± 0.002

eisen 0.180 ± 0.003 0.184 ± 0.002 0.159 ± 0.001

expr 0.175 ± 0.002 0.178 ± 0.002 0.149 ± 0.002

gasch1 0.175 ± 0.003 0.174 ± 0.002 0.154 ± 0.002

gasch2 0.163 ± 0.002 0.156 ± 0.001 0.133 ± 0.000

pheno 0.162 ± 0.001 0.151 ± 0.001 0.130 ± 0.001

seq 0.181 ± 0.002 0.174 ± 0.002 0.139 ± 0.001

spo 0.174 ± 0.002 0.170 ± 0.002 0.130 ± 0.001

Gene Ontology
Data Set hmAnt-Miner hmAnt-MinerPB cAnt-MinerHM

AU(PRC) AU(PRC) AU(PRC)

cellcycle 0.332 ± 0.002 0.333 ± 0.003 0.295 ± 0.002

church 0.345 ± 0.002 0.336 ± 0.002 0.278 ± 0.001

derisi 0.334 ± 0.003 0.329 ± 0.003 0.279 ± 0.000

eisen 0.376 ± 0.002 0.365 ± 0.005 0.325 ± 0.000

expr 0.351 ± 0.003 0.353 ± 0.002 0.309 ± 0.001

gasch1 0.356 ± 0.002 0.357 ± 0.002 0.309 ± 0.001

gasch2 0.344 ± 0.002 0.337 ± 0.002 0.289 ± 0.001

pheno 0.337 ± 0.001 0.325 ± 0.003 0.255 ± 0.000

seq 0.366 ± 0.003 0.364 ± 0.001 0.310 ± 0.001

spo 0.341 ± 0.003 0.334 ± 0.003 0.281 ± 0.001

score 4.500 3.900 2.350

CHAPTER 8. HIERARCHICAL AND MULTI-LABEL RESULTS 177

Table 8.8: The AU(PRC) value obtained on the test set by Clus-HMC, Clus-

HSC and Clus-SC across all data sets used in our experiments. Recall that
these algorithms are deterministic and therefore they are run just once for each
data set. The last row of the table indicates the rank-based score—the higher
the score, the better the ranking—according to the non-parametric Friedman test
[34, 54]. The results in this table are taken from Vens et al. [127].

FunCat
Data Set Clus-HMC Clus-HSC Clus-SC

AU(PRC) AU(PRC) AU(PRC)

cellcycle 0.172 0.111 0.106

church 0.170 0.131 0.128

derisi 0.175 0.094 0.089

eisen 0.204 0.127 0.132

expr 0.210 0.127 0.123

gasch1 0.205 0.106 0.104

gasch2 0.195 0.121 0.119

pheno 0.160 0.152 0.149

seq 0.211 0.091 0.095

spo 0.186 0.103 0.098

Gene Ontology
Data Set Clus-HMC Clus-HSC Clus-SC

AU(PRC) AU(PRC) AU(PRC)

cellcycle 0.357 0.371 0.252

church 0.348 0.397 0.289

derisi 0.355 0.349 0.218

eisen 0.380 0.365 0.270

expr 0.368 0.341 0.249

gasch1 0.371 0.351 0.239

gasch2 0.365 0.378 0.267

pheno 0.337 0.416 0.316

seq 0.386 0.282 0.197

spo 0.352 0.371 0.213

score 5.675 3.325 1.250

CHAPTER 8. HIERARCHICAL AND MULTI-LABEL RESULTS 178

hmAnt-MinerPB

cAnt-MinerHM

hmAnt-Miner

CLUS-HMC

CLUS-HSC

CLUS-SC

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0

rank-based score

Figure 8.1: Comparison of the predictive accuracy—measured as the area under
the averaged PR curve—achieved by the algorithms used in our experiments across
all data sets, according to the non-parametric Friedman test with a Scheffé’s post-
hoc test at the 0.01 significant level [34, 54]. Two rank-based scores—the higher
the score, the better the ranking—are significantly different if their intervals are
disjoint and are not significantly different if their intervals overlap.

recall values (recall > 0.8), where hmAnt-Miner achieves the highest predictive

accuracy in average. Considering the ant colony classification algorithms, hmAnt-

Miner achieves the highest predictive accuracy, but the differences in the results

of the three algorithms are not statistically significant. In terms of the simplicity

(size) of the discovered model, hmAnt-Miner is competitive with Clus-HMC and

discover statistically significant smaller classification models than cAnt-MinerHM,

Clus-HSC and Clus-SC.

Although the differences are not statistically significant, note that overall cAnt-

MinerHM overperformed Clus-SC, both in terms of predictive accuracy and size of

the total classification model. This is an interesting result, since both algorithms

share a similar approach, consisting of transforming the hierarchical multi-label

CHAPTER 8. HIERARCHICAL AND MULTI-LABEL RESULTS 179

Table 8.9: The classification model size (number of rules) of hmAnt-Miner,
hmAnt-MinerPB and cAnt-MinerHM across all data sets used in our experiments.
The value of each row represents the average model size over fifteen runs of the
algorithm, followed by the standard deviation (average ± standard deviation).
The last row of the table indicates the rank-based score—the lower the score, the
better the ranking—according to the non-parametric Friedman test [34, 54].

FunCat
Data Set hmAnt-Miner hmAnt-MinerPB cAnt-MinerHM

Size Size Size

cellcycle 28.667 ± 1.623 32.467 ± 0.951 1934.600 ± 8.970

church 8.200 ± 0.579 32.467 ± 0.951 1934.600 ± 8.970

derisi 19.333 ± 1.661 25.133 ± 0.780 1971.400 ± 6.600

eisen 19.000 ± 0.981 22.200 ± 1.065 1242.600 ± 8.542

expr 30.600 ± 1.466 28.800 ± 0.874 2045.400 ± 17.058

gasch1 24.867 ± 1.701 29.467 ± 0.915 1784.400 ± 4.643

gasch2 32.333 ± 1.517 40.600 ± 1.073 1843.000 ± 3.435

pheno 7.400 ± 0.767 25.000 ± 1.234 1107.400 ± 4.589

seq 20.067 ± 1.152 20.800 ± 0.868 2105.200 ± 11.307

spo 15.800 ± 1.172 22.533 ± 1.199 1749.400 ± 11.750

Gene Ontology
Data Set hmAnt-Miner hmAnt-MinerPB cAnt-MinerHM

Size Size Size

cellcycle 35.400 ± 1.594 37.600 ± 2.619 7302.500 ± 25.500

church 18.333 ± 1.453 27.600 ± 1.030 8820.500 ± 15.500

derisi 22.533 ± 1.939 32.200 ± 2.634 7136.000 ± 17.000

eisen 18.200 ± 0.823 29.800 ± 0.800 5060.000 ± 0.000

expr 28.600 ± 1.778 30.800 ± 1.068 7431.500 ± 30.500

gasch1 27.933 ± 0.918 31.200 ± 1.393 6854.000 ± 4.000

gasch2 34.200 ± 1.631 40.400 ± 1.030 6976.500 ± 11.500

pheno 7.133 ± 0.792 18.400 ± 2.358 4670.000 ± 9.000

seq 18.067 ± 1.016 20.200 ± 1.319 6659.500 ± 12.500

spo 26.333 ± 2.520 36.400 ± 2.315 6763.000 ± 19.000

score 1.750 2.800 4.050

CHAPTER 8. HIERARCHICAL AND MULTI-LABEL RESULTS 180

Table 8.10: The classification model size (number of tree leaves) of Clus-HMC,
Clus-HSC and Clus-SC across all data sets used in our experiments. Recall
that these algorithms are deterministic and therefore they are run just once for
each data set. The last row of the table indicates the rank-based score—the lower
the score, the better the ranking—according to the non-parametric Friedman test
[34, 54]. The results in this table are taken from Vens et al. [127].

FunCat
Data Set Clus-HMC Clus-HSC Clus-SC

Size Size Size

cellcycle 24 4037 9671

church 17 2221 4186

derisi 4 3520 7807

eisen 29 2995 6311

expr 12 4711 10262

gasch1 10 4761 10447

gasch2 26 3756 7850

pheno 8 777 1238

seq 14 4923 10443

spo 6 3623 8527

Gene Ontology
Data Set Clus-HMC Clus-HSC Clus-SC

Size Size Size

cellcycle 21 19085 36260

church 7 12368 16049

derisi 10 16693 31175

eisen 37 14384 24844

expr 35 20812 38313

gasch1 30 20070 37838

gasch2 27 18546 34204

pheno 6 5691 6213

seq 15 21703 38969

spo 14 15552 35400

score 1.450 4.950 6.000

CHAPTER 8. HIERARCHICAL AND MULTI-LABEL RESULTS 181

hmAnt-MinerPB

cAnt-MinerHM

hmAnt-Miner

CLUS-HMC

CLUS-HSC

CLUS-SC

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0

rank-based score

Figure 8.2: Comparison of the size of the classification model discovered by the
algorithms used in our experiments across all data sets, according to the non-
parametric Friedman test with a Scheffé’s post-hoc test at the 0.01 significant
level [34, 54]. Two rank-based scores—in this case the lower the score, the better
the ranking, since smaller classification model size is preferred—are significantly
different if their intervals are disjoint and are not significantly different if their
intervals overlap.

classification problem into a set of binary classification problems. The differences

on the overall precision-recall curves are illustrated in Figure 8.4, for the same six

data sets used in Figure 8.3.

While it was expected that the results achieved by cAnt-MinerHM, both in

terms of predictive accuracy and size of the classification model, would be sig-

nificantly worse than hmAnt-Miner—given that cAnt-MinerHM discovers rules for

each class label independently—the results achieved by hmAnt-MinerPB are dis-

appointing. Recall that hmAnt-MinerPB incorporates an extended sequential cov-

ering strategy to mitigate the problem of rule interaction that potentially affects

hmAnt-Miner, where the search of the ACO algorithm is guided by the quality

CHAPTER 8. HIERARCHICAL AND MULTI-LABEL RESULTS 182

of a list of rules and each iteration of the algorithm builds a complete list of

rules instead of a single rule. hmAnt-MinerPB underperformed both in terms of

predictive accuracy and size of the classification model when compared to hmAnt-

Miner, and although the differences are not significant, a better or at least an equal

performance was expected.

Observing the cases where the predictive accuracy and the size of the clas-

sification model of hmAnt-MinerPB differ from the ones of hmAnt-Miner, the

poor performance of hmAnt-MinerPB is likely due to overfitting the training data.

Overfitting occurs when the discovered classification model is too tailored to the

training set, compromising its generalisation ability, which is usually associated

with reduced predictive accuracy in the test set. For example, in the ‘church’ Fun-

Cat and Gene Ontology data sets, the size of the classification model of hmAnt-

MinerPB is much greater than the one of hmAnt-Miner, specially in the ‘church’

FunCat data set. At the same time, the predictive accuracy of hmAnt-MinerPB

in the test set is lower than the one of hmAnt-Miner. This suggests that the clas-

sification model of hmAnt-MinerPB—representing the list of rules that achieved

the highest predictive accuracy on the training set—is overly complex, consisting

of a greater number of rules too tailored to the training set, which do not gener-

alise well in the test set. Similar results are observed in the ‘derisi’, ‘gasch2’ and

‘pheno’ data sets, both FunCat and Gene Ontology.

8.3 Summary

This chapter presented the computational results of the hierarchical and multi-

label classification algorithms described in chapter 7 in two sets of experiments.

The first set of experiments compared the hAnt-Miner algorithm against a baseline

approach in the context of hierarchical prediction of ion channel protein functions

using the Gene Ontology functional classification scheme. Although the data sets

used in this experiment were relatively small, the results provided useful insights

for the improvement of the algorithm—taken into account in the design of the

hmAnt-Miner hierarchical multi-label classification algorithm.

The second set of experiments compared hmAnt-Miner, hmAnt-MinerPB and

cAnt-MinerHM against state-of-the-art decision tree induction algorithms—namely

Clus-HMC, Clus-HSC and Clus-SC—in twenty challenging bioinformatics

data sets involving the hierarchical multi-label prediction of protein functions from

CHAPTER 8. HIERARCHICAL AND MULTI-LABEL RESULTS 183

the yeast (Saccharomyces cerevisiae) model organism using both the FunCat (tree-

structured class hierarchy) and Gene Ontology (DAG-structured class hierarchy)

functional classification schemes. The results have shown that hmAnt-Miner and

hmAnt-MinerPB are competitive both in terms of predictive accuracy and size

of the discovered knowledge with Clus-HMC, which corresponds to the highest

performing Clus variation.

Overall we regard the results as positive, especially considering that the meth-

od of inducing decision trees using predictive clustering trees (PCT)—which is

employed by all variations of Clus algorithms—has been evolving for more than

one decade, with early applications in [11, 12] and more recently in the context

of hierarchical multi-label classification [10, 13, 127]. On the other hand, hmAnt-

Miner, hmAnt-MinerPB and cAnt-MinerHM are the first ACO algorithms tailored

for hierarchical multi-label classification—to the best of our knowledge—and even

the application of ACO algorithms for flat classification is relatively recent [94].

CHAPTER 8. HIERARCHICAL AND MULTI-LABEL RESULTS 184

0.8

0.6

0.4

0.2

0.2 0.4 0.6 0.8
0

0 1

1

recall

p
re

ci
si

o
n

cellcycle

0.8

0.6

0.4

0.2

0.2 0.4 0.6 0.8
0

0 1

1

recall

p
re

ci
si

o
n

church

hmAnt-Miner

hmAnt-MinerPB

CLUS-HMC

0.8

0.6

0.4

0.2

0.2 0.4 0.6 0.8
0

0 1

1

recall

p
re

ci
si

o
n

expr

0.8

0.6

0.4

0.2

0.2 0.4 0.6 0.8
0

0 1

1

recall

p
re

ci
si

o
n

eisen

0.8

0.6

0.4

0.2

0.2 0.4 0.6 0.8
0

0 1

1

recall

p
re

ci
si

o
n

pheno

0.8

0.6

0.4

0.2

0.2 0.4 0.6 0.8
0

0 1

1

recall

p
re

ci
si

o
n

seq

(a) FunCat (b) Gene Ontology

Figure 8.3: Overall precision-recall curves of hmAnt-Miner, hmAnt-MinerPB and
Clus-HMC for: (a) ‘cellcycle’ ‘expr’ and ‘pheno’ FunCat data sets; (b) ‘church’,
‘eisen’ and ‘seq’ Gene Ontology data sets.

CHAPTER 8. HIERARCHICAL AND MULTI-LABEL RESULTS 185

0.8

0.6

0.4

0.2

0.2 0.4 0.6 0.8
0

0 1

1

recall

p
re

ci
si

o
n

cellcycle

0.8

0.6

0.4

0.2

0.2 0.4 0.6 0.8
0

0 1

1

recall

p
re

ci
si

o
n

church

cAnt-MinerHM

CLUS-HSC

CLUS-SC

0.8

0.6

0.4

0.2

0.2 0.4 0.6 0.8
0

0 1

1

recall

p
re

ci
si

o
n

expr

0.8

0.6

0.4

0.2

0.2 0.4 0.6 0.8
0

0 1

1

recall

p
re

ci
si

o
n

eisen

0.8

0.6

0.4

0.2

0.2 0.4 0.6 0.8
0

0 1

1

recall

p
re

ci
si

o
n

pheno

0.8

0.6

0.4

0.2

0.2 0.4 0.6 0.8
0

0 1

1

recall

p
re

ci
si

o
n

seq

(a) FunCat (b) Gene Ontology

Figure 8.4: Overall precision-recall curves of cAnt-MinerHM, Clus-HSC and
Clus-SC for: (a) ‘cellcycle’ ‘expr’ and ‘pheno’ FunCat data sets; (b) ‘church’,
‘eisen’ and ‘seq’ Gene Ontology data sets.

Chapter 9

Conclusions and Future Research

The research described in this thesis has presented novel ant colony optimisation

(ACO) algorithms in the context of the classification task in data mining. ACO al-

gorithms have been successfully applied to several types of optimisation problems

[39, 40]—e.g., scheduling and routing problems—and more recently to the prob-

lem of discovering classification rules in data mining [50, 94]. Overcoming current

limitations of ACO classification algorithms proposed in the literature, this thesis

has focused on two unexplored research areas: (1) extending ACO classification

algorithms to cope with continuous attributes directly without the need to discre-

tise them in a preprocessing step; (2) extending ACO classification algorithms to

cope with the more complex case of hierarchical multi-label classification.

In the context of hierarchical multi-label classification, this thesis has studied

the hierarchical problem of predicting protein functions. Given the large increase

in the number of uncharacterised (with unknown function) proteins available for

analysis—as a result of advances in high-throughput technologies—determining

protein functions is a central goal of bioinformatics and it is crucial to improve

current biological knowledge. It is important to emphasise that in this context,

comprehensible classification models—i.e. models that can be interpreted and

validated by the user—are preferred [51], since the classification model can provide

insights about the targeted biological problem.

The ACO classification algorithms proposed in this thesis are aimed at disco-

vering IF-THEN classification rules from data, which have the advantage of being

a comprehensible knowledge representation. All proposed algorithms were evalu-

ated in experiments comparing them, in terms of predictive accuracy and simplic-

ity (size) of the discovered classification model (list or set of rules), to well-known

classification algorithms in the literature.

186

CHAPTER 9. CONCLUSIONS AND FUTURE RESEARCH 187

The remainder of this chapter is organised as follows. Section 9.1 presents a

summary of the contributions of this thesis, followed by a discussion of potential

avenues for future research in section 9.2.

9.1 Contributions

A summary of the contributions to the ant colony optimisation research area in

the context of the classification task of data mining, discussed in chapters 5 to 8,

is presented in this section.

A method to extend ACO classification algorithms in order to cope with con-

tinuous attributes avoiding the need for a discretisation method in a preprocessing

step was presented in chapter 5. The basic idea is to include continuous attributes

in the construction graph and employ a dynamic discretisation procedure to cre-

ate discrete intervals in the rule construction process. A new algorithm named

cAnt-Miner (Ant-Miner coping with continuous attributes) was presented, incor-

porating a binary entropy-based discretisation procedure able to create discrete

intervals using the ‘<’ (less-than) and ‘≥’ (greater-than-or-equal-to) relational

operators. Furthermore, a new discretisation procedure employing the MDL prin-

ciple was proposed, allowing the creation of discrete intervals using lower and

upper bound values—e.g., vlower ≤ attribute < vupper, where attribute represents a

continuous attribute. It was also proposed that pheromone should be deposited

on the edges instead of vertices of the construction graph in order to preserve

the order of terms in the antecedent of a rule and consequently preserve the

threshold values of continuous attributes. These proposals led to three variations

of the cAnt-Miner algorithm: cAnt-Miner-MDL (cAnt-Miner with MDL-based

discretisation), cAnt-Miner2 (cAnt-Miner using pheromones on the edges) and

cAnt-Miner2-MDL (cAnt-Miner2 with MDL-based discretisation).

The motivation for coping with continuous attributes directly—i.e. during the

rule construction process—lies in the fact that more information is available to

the classification algorithm, since continuous attributes’ values have a finer gran-

ularity in contrast to a coarser granularity of a fixed number of discrete interval

values created by a discretisation method in a preprocessing step. It is expected

that the classification algorithm exploits the flexibility of being able to create dis-

crete intervals tailored for the rule under construction, which would be reflected

in an increase of the predictive accuracy. Indeed, the results of empirical exper-

iments presented in chapter 6 support this assumption. The experiments show

CHAPTER 9. CONCLUSIONS AND FUTURE RESEARCH 188

that the dynamic discretisation procedure of continuous attributes incorporated in

cAnt-Miner and its variations has led to significant improvements in terms of pre-

dictive accuracy when compared to Ant-Miner. The cAnt-Miner2-MDL achieved

the highest predictive accuracy overall, amongst Ant-Miner and cAnt-Miner vari-

ations. In relation to well-known classification algorithms—namely J48, JRip and

Part—the experiments have shown that cAnt-Miner and its variations are com-

petitive both in terms of predictive accuracy and simplicity (size) of the discovered

classification model (list of rules).

Focusing on hierarchical and hierarchical multi-label classification problems in

the context of predicting protein functions, chapter 7 proposed four novel ACO

classification algorithms. Section 7.1 presented the hAnt-Miner (hierarchical clas-

sification Ant-Miner) algorithm, which aims at discovering an ordered list of IF-

THEN classification rules for hierarchical classification problems. hAnt-Miner

follows the big bang approach, building a classification model able to predict any

class label from the class hierarchy in a single run of the algorithm. In order

to cope with hierarchical problems, hAnt-Miner employs a second construction

graph—dubbed the consequent construction graph—to build the consequent of

the rules, as well as hierarchical measures to evaluate the quality of the rules and

to compute the heuristic information. The analysis of the computational result

comparing hAnt-Miner against a baseline algorithm—which consists of training

the J48 classification algorithm for each class label of the class hierarchy—has

hinted that hAnt-Miner’s rules are good at classifying a small number of exam-

ples, given the bias of the rule quality measure towards accurate (high precision)

rules with small coverage (lower recall). This could potentially lead to overfitting

on data sets with a greater number of examples.

Section 7.2 discussed the limitations of hAnt-Miner in order to propose an ex-

tension, named hmAnt-Miner (hierarchical multi-label classification Ant-Miner),

focusing on coping with hierarchical multi-label data. hmAnt-Miner employs

heuristic information and rule quality evaluation based on a weighted Euclidean

distance, which is a more suitable measure for hierarchical multi-label classifica-

tion. It also employs a deterministic procedure to compute the consequent of rules,

avoiding the need of the second construction graph used to build the consequent

of rules by hAnt-Miner. Moreover, section 7.3 discussed the problem of rule inter-

action derived from the sequential covering approach followed by hmAnt-Miner,

where the discovery of each rule can be seen as an independent search problem

for the best rule given the current training examples. Therefore, the sequential

CHAPTER 9. CONCLUSIONS AND FUTURE RESEARCH 189

covering approach can be seen as a greedy search for a list of rules, which is not

guaranteed to be the best list of rules that covers the training set. An extension of

the sequential covering to mitigate the problem of rule interaction was proposed,

where a complete list of rules is created at each iteration of the algorithm and the

quality of the list of rules is used to guide the search. This extension was incor-

porated in the proposed hmAnt-MinerPB (hierarchical multi-label classification

Ant-Miner based on the Pittsburgh approach) algorithm.

A baseline hierarchical multi-label ant colony algorithm, named cAnt-MinerHM,

was presented in Section 7.4. The cAnt-MinerHM algorithm consists of transform-

ing the hierarchical multi-label classification problem into a set of binary clas-

sification problems (binary-class data sets) and applying an adapted version of

the flat single-label cAnt-Miner2-MDL classification algorithm in order to predict

the presence/absence of a particular class label. The rules discovered by each

individual cAnt-Miner2-MDL algorithm are then combined into a global set of

rules, which can be used to make hierarchical multi-label predictions. Although

the predictions are guaranteed to be consistent with the class hierarchy, the base-

line approach has the disadvantages of predicting each class label individually, as

discussed in subsection 2.3.1.

It should be noted that, while the proposed algorithms cAnt-Miner and its

variations—used to evaluate the method to cope with continuous attributes—

incoporated discretisation procedures based on the entropy measure for flat single-

label classification problems, the algorithms proposed for hierarchical and hierar-

chical multi-label have also benefited from being able to cope with continuous

attributes directly. More specifically, hAnt-Miner employs a discretisation proce-

dure based on an entropy measure straightforwardly adapted to hierarchical clas-

sification problems; hmAnt-Miner and hmAnt-MinerPB employ a distance-based

discretisation procedure, based on a weighted Euclidean distance measure; cAnt-

MinerHM employs an adapted entropy-based discretisation procedure combined

with a class frequency interval selection. This demonstrates the flexibility of the

proposed method for handling continuous attributes, where the dynamic discreti-

sation procedure incorporated in the rule construction process can be adapted to

suit different types of classification problems.

The computational results concerning the hierarchical and hierarchical multi-

label experiments were presented in chapter 8. Section 8.1 described the experi-

ments of hAnt-Miner, involving data sets of ion channel proteins associated with

corresponding Gene Ontology terms (DAG-structured class hierarchy). While

CHAPTER 9. CONCLUSIONS AND FUTURE RESEARCH 190

hAnt-Miner experiments were conducted in data sets with a relative small num-

ber of training examples and compared against a simple baseline, they contributed

to point out the limitations of hAnt-Miner, which were taken into account in the

design of hmAnt-Miner and hmAnt-MinerPB algorithms. Sections 8.2 described

the more challenging hierarchical multi-label experiments, involving the predic-

tion protein functions from the yeast (Saccharomyces cerevisiae) model organism

(tree-structured and DAG-structured class hierarchies). In these experiments,

the proposed hmAnt-Miner, hmAnt-MinerPB and cAnt-MinerHM algorithms were

compared to state-of-the-art decision tree induction algorithms, namely Clus-

HMC, Clus-HSC and Clus-SC [127].

The experiments have shown that the hierarchical multi-label classification

ant colony algorithms hmAnt-Miner and hmAnt-MinerPB are competitive both in

terms of predictive accuracy and simplicity (size) of the discovered classification

model with Clus-HMC and Clus-HSC algorithms—these four algorithms are

the most accurate in the set of experiments. The baseline cAnt-MinerHM algorithm

overperformed the Clus-SC algorithm both in terms of predictive accuracy and

simplicity of the discovered classification model. This is interesting, since both

algorithms share a similar approach of building a classifier for each class label of

the class hierarchy.

The research described in this thesis has presented novel ideas for the handling

of continuous attributes during the rule construction process and for extending

the application scope of ACO classification algorithms to the more complex case

of hierarchical multi-label classification—these are unexplored research areas in

the context of ACO classification algorithms to the best of our knowledge, and

are therefore our original contributions. It is hoped that the quality of the re-

sults obtained will motivate the use of ACO classification algorithms to different

hierarchical classification problems and encourage others to improve them.

9.2 Future Research

Following the ideas presented in this thesis, there are several potential directions

for future research, covering both conventional (flat single-label) and hierarchical

multi-label ACO classification algorithms.

In relation to handling continuous attributes in ACO classification algorithms,

CHAPTER 9. CONCLUSIONS AND FUTURE RESEARCH 191

a natural direction is to evaluate the incorporation of different discretisation meth-

ods. There is a wide range of different discretisation methods available in the lit-

erature [41, 81]—e.g., 1R [63] and ChiMerge [72], in addition to the entropy-based

methods described in chapter 5—and choosing a suitable discretisation method

is highly dependant on the data to be discretised. Therefore, different discretisa-

tion methods might help to achieve higher predictive accuracy in different cases.

Another aspect to take into account when choosing a discretisation method is its

computational time. Given that the dynamic discretisation procedure in the rule

construction process is associated with an overhead, more time efficient discreti-

sation methods might be beneficial or even necessary for larger data sets.

Although the results comparing the binary and the minimum description

length (MDL) discretisation methods proposed in chapter 5—where the latter

is able to produce discrete intervals with lower and upper threshold values—did

not show statistically significant differences, it would be interesting to investigate

a variation of the MDL-based discretisation method for hierarchical multi-label

classification. Note that in order to apply a variation of the MDL criterion to

hierarchical multi-label classification problems, the equation of the MDL criterion

has to be adapted, given that in many cases the number of class labels—used as

an exponent in the equation of the MDL criterion—is in the order of thousands

in these problems.

Another interesting direction is to evaluate different pheromone update poli-

cies, hinted by the fact that depositing pheromone on the edges instead of vertices

of the construction graph led to improvements of predictive accuracy when deal-

ing with data sets comprising continuous attributes. As suggested by Stützle and

Hoos [115, 116] in their MAX -MIN ant system, the use of lower and upper

pheromone limits are effective in increasing the exploration of the search space,

which is particularly important for large problems. Therefore, the incorporation

of a MAX -MIN -based pheromone update policy could prove beneficial for the

algorithms proposed in this thesis.

Recall that both hmAnt-Miner and hmAnt-MinerPB algorithms incorporate

a deterministic procedure to compute the consequent of a rule. Different proce-

dures for determining the consequent of a rule and the employment of a pruning

procedure on the consequent of rules could potentially improve the predictive ac-

curacy. The rule quality measure plays an important role in the search of the

ACO algorithm, since the pheromone is updated based on the quality of the rule.

The evaluation of different rule quality measures is also a direction worth further

CHAPTER 9. CONCLUSIONS AND FUTURE RESEARCH 192

exploration.

After identifying the problem of rule interaction and proposing a Pittsburgh-

based extended sequential covering approach in section 7.3, the hmAnt-MinerPB

algorithm, no statistically significant differences compared to hmAnt-Miner were

observed in the hierarchical multi-label experiments. While the search in hmAnt-

MinerPB is guided by the quality of a complete list of rules, the rules are used to

update pheromone trails on the construction graph. However, there is no mecha-

nism to maintain the rules and the order that they are created in an iteration. This

might affect the convergence of the algorithm to better regions of the search space,

which consequently affects the overall performance of the algorithm. Following

the ideas presented in section 7.3, it would be interesting to evaluate a more

sophisticated Pittsburgh-based approach addressing the aforementioned limita-

tions, for both conventional and hierarchical multi-label classification problems.

An approach to mitigate the problem of overfitting observed in the experiments

of hmAnt-MinerPB in chapter 8 is also an interesting research direction.

Finally, as another direction for future research, it would be interesting to in-

vestigate the discovery of a set of rules (unordered rules) instead of a list of rules

(ordered rules). As discussed in subsection 2.2.2, rules in a list of rules must be

interpreted in order; therefore, the context of the rule—i.e. the previous rules in

the list—must be taken into consideration to understand a rule. On the other

hand, a set of rules provides the advantage that each rule can be interpreted

independently of the others in a modular fashion, contributing to the compre-

hensibility of the discovery knowledge. Although the discovery of a set of rules

has been previously investigated in the literature [108] in the context of conven-

tional classification problems, the application to hierarchical multi-label problems

remains unexplored. Recall that the baseline cAnt-MinerHM algorithm for hier-

archical multi-label classification discovers a set of rules; nevertheless, the size of

the set of rules—in the order of thousands of rules—undermines the comprehen-

sibility of the knowledge discovered by cAnt-MinerHM. Therefore, extensions of

hmAnt-Miner and hmAnt-MinerPB algorithms for discovering a set of rules might

provide more interesting results.

References

[1] GPCRDB – Information system for G protein-coupled receptors.

http://www.gpcr.org/7tm/ (accessed on 15/11/2009).

[2] B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, and P. Walter. The

Molecular Biology of the Cell. Garland Press, 4th edition, 2002.

[3] S.F. Altschul, W. Gish, W. Miller, E.W. Myers, and D.J. Lipman. Basic

local alignment search tool. Journal of Molecular Biology, 215(3):403–410,

1990.

[4] M. Ashburner, C.A. Ball, J.A. Blake, D.Botstein, H. Butler, J.M. Cherry,

A.P. Davis, K. Dolinski, S.S. Dwight, J.T. Eppig, M.A. Harris, D.P. Hill,

L. Issel-Tarver, A. Kasarskis, S. Lewis, J.C. Matese, J.E. Richardson,

M. Ringwald, G.M. Rubin, and G. Sherlock. Gene ontology: tool for the

unification of biology. Nature Genetics, 25:25–29, 2000.

[5] A. Asuncion and D.J. Newman. UCI Machine Learning Repository.

http://www.ics.uci.edu/∼mlearn/MLRepository.html, 2007.

[6] T.K. Attwood, A. Mitchell, A. Gaulton, G. Moulton, and L. Tabernero.

The prints protein fingerprint database: functional and evolutionary ap-

plications. In M. Dunn, L. Jorde, P. Little, and A. Subramaniam, editors,

Encyclopaedia of Genetics, Genomics, Proteomics and Bioinformatics. John

Wiley & Sons, 2006.

[7] B. Bakker and T. Heskes. Task clustering for learning to learn. In Proceed-

ings of the 13th Belgium-Netherlands Conference on Artificial Intelligence,

pages 33–40, 2001.

[8] Zafer Barutcuoglu, Robert E. Schapire, and Olga G. Troyanskaya. Hierarchi-

cal multi-label prediction of gene function. Bioinformatics, 22(7):830–836,

2006.

193

REFERENCES 194

[9] Ran Bi, Yanhong Zhou, Feng Lu, and Weiqiang Wang. Predicting Gene

Ontology functions based on support vector machines and statistical signif-

icance estimation. Neurocomputing, 70:718–725, 2007.

[10] H. Blockeel, M. Bruynooghe, S. Džeroski, J. Ramon, and J. Struyf. Hierar-

chical multi-classification. In Sašo Džeroski, Luc De Raedt, and Stefan Wro-

bel, editors, Proceedings of the First SIGKDD Workshop on Multi-Relational

Data Mining (MRDM 2002), pages 21–35. University of Alberta, Edmonton,

Canada, 2002.

[11] H. Blockeel, S. Džeroski, and J. Grbović. Simultaneous Prediction of Mul-

tiple Chemical Parameters of River Water Quality with TILDE. In Pro-

ceedings of the 3rd European Conference on Principles of Data Mining and

Knowledge Discovery, pages 32–40. Springer, 1999.

[12] H. Blockeel, L. De Raedt, and J. Ramon. Top-down induction of cluster-

ing trees. In Proceedings of the 15th International Conference on Machine

Learning, pages 55–63. ACM, 1998.

[13] H. Blockeel, L. Schietgat, J. Struyf, S. Džeroski, and A. Clare. Decision

Trees for Hierarchical Multilabel Classification: A Case Study in Functional

Genomics. In PKDD-2006, LNAI 4213, pages 18–29, 2006.

[14] C. Blum and K. Socha. Training feed-forward neural networks with ant

colony optimization: An application to pattern classification. In CD-ROM

Proceedings of Hybrid Intelligent Systems Conference (HIS-2005), 2005.

[15] J.R. Bock and D.A. Gough. Predicting protein-protein interactions from

primary structure. Bioinformatics, 17(5):455–460, 2001.

[16] J.R. Bock and D.A. Gough. In Silico Biological Function Attribution: a

different perspective. BioSilico, 2(1):30–37, 2004.

[17] L.B. Booker. Intelligent Behavior as an Adaptation to the Task Environ-

ment. PhD thesis, University of Michigan, 1982.

[18] L.B. Booker, D.E. Goldberg, and J.H. Holland. Classifier Systems and Ge-

netic Algorithms. Artificial Intelligence, pages 235–282, 1989.

[19] P. Bork and E.V. Koonin. Predicting functions from protein sequences–

where are the bottlenecks? Nature Genetics, 18:313–318, 1998.

REFERENCES 195

[20] R. Caruana. Multitask learning. Machine Learning, 28:41–75, 1997.

[21] N. Cesa-Bianchi, L. Zaniboni, and M. Collins. Incremental algorithms for

hierarchical classification. In Journal of Machine Learning Research, pages

31–54. MIT Press, 2004.

[22] A. Chan and A.A. Freitas. A new classification-rule pruning procedure for an

ant colony algorithm. In Artificial Evolution (Proceedings of the EA-2005),

Lecture Notes in Artificial Intelligence 3871, pages 25–36, 2005.

[23] A. Chan and A.A. Freitas. A new ant colony algorithm for multi-label

classification with applications in bioinformatics. In Proc. Genetic and Evo-

lutionary Computation Conference (GECCO-2006), pages 27–34, 2006.

[24] A. Clare, A. Karwath, H. Ougham, and R. King. Functional bioinformatics

for Arabidopsis thailana. Bioinformatics, 22(9):1130–1136, 2006.

[25] A. Clare and R. King. Knowledge discovery in multi-label phenotype data.

In ECML/PKDD, pages 42–53, 2001.

[26] A. Clare and R. King. Predicting gene function in saccharomyces cerevisiae.

Bioinformatics, 19(2):ii42–ii49, 2003.

[27] W.W. Cohen. Fast effective rule induction. In Proceedings of the 12th In-

ternational Conference on Machine Learning, pages 115–123. Morgan Kauf-

mann, 1995.

[28] The UniProt Consortium. The universal protein resource (uniprot). Nucleic

Acid Research, 37:D169–D174, 2009.

[29] E.P. Costa, A.C. Lorena, A.C.P.L.F. Carvalho, and A.A. Freitas. A review

of performance evaluation measures for hierarchical classifiers. In Evaluation

Methods for Machine Learning II: papers from the 2007 AAAI Workshop,

pages 1–6, 2007.

[30] T.M. Cover and J.A. Thomas. Elements of Information Theory. John Wiley

& Sons, 1991.

[31] T.M. Cover and J.A. Thomas. Elements of Information Theory. Wiley-

Interscience, 2nd edition, 2006.

REFERENCES 196

[32] M. Daud and D. Corne. Human Readable Rule Induction In Medical Data

Mining: A Survey Of Existing Algorithms. In Proc. of WSEAS European

Computing Conference, 2007.

[33] J. Davis and M. Goadrich. The relationship between precision-recall and

roc curves. In ICML ’06: Proceedings of the 23rd International Conference

on Machine learning, pages 233–240. ACM, 2006.

[34] J. Demšar. Statistical Comparisons of Classifiers over Multiple Data Sets.

Machine Learning Research, 7:1–30, 2006.

[35] M. Deng, F. Sun, and T. Chen. Assessment of the reliability of protein-

protein interactions and protein function prediction. In Eighth Pacific Sym-

posium on Biocomputing, pages 140–151, 2003.

[36] J. Diederich, editor. Rule Extraction from Support Vector Machines, vol-

ume 80 of Studies in Computational Intelligence. Springer, 2008.

[37] M. Dorigo and G. Di Caro. The Ant Colony Optimization meta-heuristic.

In D. Corne, M. Dorigo, and F. Glover, editors, New Ideas in Optimization,

pages 11–32, 1999.

[38] M. Dorigo, G. Di Caro, and L.M. Gambardella. Ant algorithms for discrete

optimization. Artificial Life, 5(2):137–172, 1999.

[39] M. Dorigo and T. Stützle. Ant Colony Optimization. MIT Press, 2004.

[40] M. Dorigo and T. Stützle. Ant Colony Optimization: Overview and Re-

cent Advances. Technical Report TR/IRIDIA/2009-013, IRIDIA, Univer-

sité Libre de Bruxelles, http://iridia.ulb.ac.be/IridiaTrSeries/IridiaTr2009-

013r001.pdf, 2009.

[41] J. Dougherty, R. Kohavi, and M. Sahami. Supervised and unsupervised dis-

cretization of continuous features. In Machine Learning: Proceedings of the

Twelfth Int. Conference on Artificial Intelligence, pages 194–202. Morgan

Kauffmann, 1995.

[42] D.A. Engelman, T.A. Steitz, and A. Goldman. Identifying non-polar trans-

bilayer helices in amino acid sequences of membrane proteins. Annual Re-

view of Biophysics and Biophysical Chemistry, 15:321–353, 1986.

REFERENCES 197

[43] U. Fayyad and K. Irani. On the Handling of Continuous-Valued Attributes

in Decision Tree Generation. Machine Learning, 8:87–102, 1992.

[44] U. Fayyad and K. Irani. Multi-interval discretization of continuous-valued

attributes for classification learning. In Thirteenth International Joint Con-

ference on Artifical Inteligence, pages 1022–1027. Morgan Kaufmann, 1993.

[45] U.M. Fayyad, G. Piatetsky-Shapiro, and P. Smith. From data mining to

knowledge discovery: an overview. In U.M. Fayyad, G. Piatetsky-Shapiro,

P. Smith, and R. Uthurusamy, editors, Advances in Knowledge Discovery &

Data Mining, pages 1–34. MIT Press, 1996.

[46] R.D. Finn, J. Tate, J. Mistry, P.C. Coggill, S.J. Sammut, H.R. Hotz,

G. Ceric, K. Forslund, S.R. Eddy, E.L.L. Sonnhammer, and A.ateman. The

pfam protein families database. Nucleic Acids Research, 36:D281–D288,

2008.

[47] E. Frank and I.H. Witten. Generating Accurate Rule Sets Without Global

Optimization. In J. Shavlik, editor, Proceedings of the Fifteenth Interna-

tional Conference on Machine Learning, pages 144–151. Morgan Kaufmann,

1998.

[48] A.A. Freitas. Data Mining and Knowledge Discovery with Evolutionary

Algorithms. Springer-Verlag, 2002.

[49] A.A. Freitas and A.C.P.L.F. de Carvalho. A tutorial on hierarchical classi-

fication with applications in bioinformatics. In D. Taniar, editor, Research

and Trends in Data Mining Technologies and Applications, pages 175–208.

Idea Group, 2007.

[50] A.A. Freitas, R.S. Parpinelli, and H.S. Lopes. Ant colony algorithms for

data classification. In Encyclopedia of Information Science and Technology,

volume 1, pages 154–159. 2nd edition, 2008.

[51] A.A. Freitas, D.C. Wieser, and R. Apweiler. On the Importance of Compre-

hensible Classification Models for Protein Function Prediction. IEEE/ACM

Transactions on Computational Biology and Bioinformatics, 7(1):172–182,

2010.

[52] I. Friedberg. Automated protein function prediction—the genomic chal-

lenge. Briefings in Bioinformatics, 7(3):225–242, 2006.

REFERENCES 198

[53] M. Galea and Q. Shen. Simultaneous ant colony optimization algorithms for

learning linguistic fuzzy rules. In A. Agraham, C. Grosan, and V. Ramos,

editors, Swarm Intelligence in Data Mining, pages 75–99. Springer-Verlag,

2006.

[54] S. Garćıa and F. Herrera. An Extension on “Statistical Comparisons of

Classifiers over Multiple Data Sets” for all Pairwise Comparisons. Machine

Learning Research, 9:2677–2694, 2008.

[55] R. Garian. Prediction of quaternary structure from primary structure.

Bioinformatics, 17(6):551–556, 2001.

[56] E. Gasteiger, A. Gattiker, C. Hoogland, I. Ivanyi, R.D. Appel, and

A. Bairoch. ExPASy: the proteomics server for in-depth protein knowl-

edge and analysis. Nucleic Acid Research, 31:3784–3788, 2003.

[57] J.A. Gerlt and P.C. Babbitt. Can sequence determine function? Genome

Biology, 1(5):1–10, 2000.

[58] A. González, R. Pérez, and J.L. Verdegay. Learning the structure of a fuzzy

rule: a genetic approach. Fuzzy System and Artificial Intelligence, 3:57–70,

1994.

[59] H. Hermjakob, L. Montecchi-Palazzi, C. Lewington, S. Mudali, S. Kerrien,

S. Orchard, M. Vingron, B. Roechert, P. Roepstorff, A. Valencia, H. Mar-

galit, J. Armstrong, A. Bairoch, G. Cesareni, D. Sherman, and R. Apweiler.

Intact: an open source molecular interaction database. Nucleic Acid Re-

search, 32:D452–D455, 2004.

[60] P.G. Higgs and T. Attwood. Bioinformatics and Molecular Evolution. Black-

well Publishing, 2005.

[61] C.A.R. Hoare. Quicksort. Computer Journal, 5(1):10–16, 1962.

[62] N. Holden and A.A. Freitas. Improving the performance of hierarchical clas-

sification with swarm intelligence. In Proceedings of the 6th European Con-

ference on Evolutionary Computation, Machine Learning and Data Mining

in Bioinformatics (EvoBio 2008), LNCS 973, pages 48–60, 2008.

[63] R.C. Holte. Very simple classification rules perform well on most commonly

used datasets. Machine Learning, 11(1):63–90, 1993.

REFERENCES 199

[64] W.-C. Hong, Y.-F. Chen, P.-W. Chen, and Y.-H. Yeh. Continuous ant colony

optimization algorithms in a support vector regression based financial fore-

casting model. In Third International Conference on Natural Computation

(ICNC 2007), pages 548–552, 2007.

[65] N. Hulo, A. Bairoch, V. Bulliard, L. Cerutti, E. De Castro, P. Langendijk-

Genevaux, and M. Pagniand C. Sigrist. The prosite database. Nucleic Acid

Research, 34:D227–D230, 2006.

[66] I. Iliopoulos, S. Tsoka, M.A Andrade, A.J. Enright, M. Carroll, P. Poullet,

V. Promponas, T. Liakopoulos, G. Palaios, C. Pasquier, S. Hamodrakas,

J. Tamames, A.T. Yagnik, A. Tramontano, D. Devos, C. Blaschke, A. Va-

lencia, D. Brett, D. Martin, C. Leroy, I. Rigoutsos, C. Sander, and C.A.

Ouzounis. valuation of annotation strategies using an entire genome se-

quence. Bioinformatics, 19(6):717–726, 2003.

[67] H. Jacobsson. Rule Extraction from Recurrent Neural Networks: A Taxon-

omy and Review. Neural Computation, 17(6):1223–1263, 2005.

[68] N. Japkowicz and S. Stephen. The class imbalance problem: a systematic

study. Intelligent Data Analysis, 6:429–450, 2002.

[69] L.J. Jensen, R. Gupta, N. Blom, D. Devos, J. Tamames, C. Kesmir,

H. Nielsen, H.H. Stærfeldt, K. Rapacki, C. Workman, C.A. Andersen,

S. Knudsen, A. Krogh, A. Valencia, and S. Brunak. Prediction of human

protein function from post-translational modifications and localization fea-

tures. Journal of Molecular Biology, 319:1257–1265, 2002.

[70] L.J. Jensen, R. Gupta, H.H. Stærfeldt, and S. Brunak. Prediction of hu-

man protein function according to gene ontology categories. Bioinformatics,

19(5):635–642, 2003.

[71] S. Kawashima and M. Kanehisa. Aaindex: amino acid index database.

Nucleic Acids Res, 28:374, 2000.

[72] R. Kerber. Chimerge: Discretization of Numeric Attributes. In Tenth Na-

tional Conference on Artificial Inteligence (AAAI-92), pages 123–128, 1992.

[73] S. Kiritchenko, S. Matwin, and A.F.Famili. Functional annotation of genes

using hierarchical text categorization. In BioLINK SIG: Linking Literature,

Information and Knowledge for Biology, 2005.

REFERENCES 200

[74] R. Kohavi and M. Sahami. Error-based and entropy-based discretization

of continuous features. In Proceedings of the 2nd International Conference

Knowledge Discovery and Data Mining, pages 114–119. AAAI Press, 1996.

[75] A. Kumar, K. Cheung, P. Ross-Macdonald, P. Coelho, P. Miller, and M. Sny-

der. Triples: a database of gene function in s. cerevisiae. Nucleic Acid

Research, 28:81–84, 2000.

[76] J. Kyte and R.F. Doolittle. A simple method for displaying the hydropathic

character of a protein. Journal of Molecular Biology, 157:105–132, 1982.

[77] A. Lægreid, T.R. Hvidsten, H. Midelfart, J. Komorowski, and A.K. Sandvik.

Predicting gene ontology biological process from temporal gene expression

patterns. Genome Research, 13(5):965–979, 2003.

[78] A.M. Lesk. Introduction to Bioinformatics. Oxford University Press, 3rd

edition, 2008.

[79] S. Letovsky and S. Kasif. Predicting protein function from protein/protein

interaction data: a probabilistic approach. Bioinformatics, 19(1):i97–i204,

2003.

[80] D.J. Lipman and W.R. Pearson. Rapid and sensitive protein similarity

searches. Science, 227(4693):1435–1441, 1985.

[81] H. Liu, F. Hussain, C.L. Tan, and M. Dash. Discretization: An enabling

technique. Data Mining and Knowledge Discovery, 6:393–423, 2002.

[82] C. Manning and H. Schtze. Foundations of Statistical Natural Language

Processing. MIT Press, 1999.

[83] D. Martens, M. De Backer, R. Haesen, J. Vanthienen, M. Snoeck, and

B. Baesens. Classification with ant colony optimization. IEEE Transac-

tions on Evolutionary Computation, 11(5):651–665, 2007.

[84] H.W. Mewes, K. Heumann, A. Kaps, K. Mayer, F. Pfeiffer, S. Stocker, and

D. Frishman. Mips: a database for genomes and protein sequences. Nucleic

Acid Research, 27:44–48, 1999.

[85] T. Mitchell. Machine Learning. McGraw Hill, 1st edition, 1997.

REFERENCES 201

[86] N.J. Mulder, R. Apweiler, T.K. Attwood, A. Bairoch, A. Bateman, D. Binns,

P. Bork, V. Buillard, L. Cerutti, R. Copley, E. Courcelle, U. Das, L. Daugh-

erty, M. Dibley, R. Finn, W. Fleischmann, J. Gough, D. Haft, N. Hulo,

S. Hunter, D. Kahn, A. Kanapin, A. Kejariwal, A. Labarga, P.S. Langendijk-

Genevaux, D. Lonsdale, R. Lopez, I. Letunic, M. Madera, J. Maslen,

C. McAnulla, J. McDowall, J. Mistry, A. Mitchell, A.N. Nikolskaya, S. Or-

chard, C. Orengo, R. Petryszak, J.D. Selengut, C.J.A. Sigrist, P.D. Thomas,

F.Valentin, D.Wilson, C.H. Wu, and C. Yeats. New developments in the in-

terpro database. Nucleic Acid Research, 35:D224–D228, 2007.

[87] L. Oliveira, A.C.M. Paiva, and G. Vriend. A common motif in g-protein-

coupled seven transmembrane helix receptors. Journal of Computer-Aided

Molecular Design, 7(6):649–658, 1993.

[88] S. Oliver. A network approach to the systematic analysis of yeast gene

function. Trends in Genetics, 12(7):241–242, 1996.

[89] F.E.B. Otero, A.A. Freitas, and C.G.Johnson. A Hierarchical Classification

Ant Colony Algorithm for Predicting Gene Ontology Terms. In Proceed-

ings of the 7th European Conference on Evolutionary Computation, Machine

Learning and Data Mining in Bioinformatics (EvoBio 2009), LNCS 5483,

pages 68–79. Springer-Verlag, 2009.

[90] F.E.B. Otero, A.A. Freitas, and C.G. Johnson. cAnt-Miner: an ant colony

classification algorithm to cope with continuous attributes. In M. Dorigo,

M. Birattari, C. Blum, M. Clerc, T. Stützle, and A.F.T. Winfield, ed-

itors, Proceedings of the 6th International Conference on Swarm Intelli-

gence (ANTS 2008), Lecture Notes in Computer Science 5217, pages 48–59.

Springer-Verlag, 2008.

[91] F.E.B. Otero, A.A. Freitas, and C.G. Johnson. Handling continuous at-

tributes in ant colony classification algorithms. In Proceedings of the 2009

IEEE Symposium on Computational Intelligence in Data Mining (CIDM

2009), pages 225–231. IEEE, 2009.

[92] G.L. Pappa, A.J. Baines, and A.A. Freitas. Predicting post-synaptic activity

in proteins with data mining. Bioinformatics, 21(2):ii19–ii25, 2005.

[93] R.S. Parpinelli, H.S. Lopes, and A.A. Freitas. An ant colony algorithm

for classification rule discovery. In H. Abbass, R. Sarker, and C. Newton,

REFERENCES 202

editors, Data Mining: a Heuristic Approach, pages 191–208. Idea Group

Publishing, 2002.

[94] R.S. Parpinelli, H.S. Lopes, and A.A. Freitas. Data mining with an ant

colony optimization algorithm. IEEE Transactions on Evolutionary Com-

putation, 6(4):321–332, 2002.

[95] M. Pellegrini, E.M. Marcotte, M.J. Thompson, D. Eisenberg, and T.O.

Yeates. Assigning protein functions by comparative genome analysis: pro-

tein phylogenetic profiles. In National Academy of Sciences of the United

States of America, volume 96, pages 4285–4288, 1999.

[96] G. Piatetsky-Shapiro and W. Frawley. Knowledge Discovery in Databases.

AAAI Press, 1991.

[97] J.R. Quinlan. Induction of Decision Trees. Machine Learning, 1:81–106,

1986.

[98] J.R. Quinlan. Simplifying decision trees. International Journal of Man-

Machine Studies, 27(3):221–234, 1987.

[99] J.R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann,

1993.

[100] J.R. Quinlan. Improved Use of Continuous Attributes in C4.5. Artificial

Intelligence Research, 7:77–90, 1996.

[101] V. Raghavan, P. Bollmann, and G.S. Jung. A critical investigation of recall

and precision as measures of retrieval system performance. ACM Transac-

tions on Information Systems, 7(3):205–229, 1989.

[102] S. Raychaudhuri. Computational Text Analysis for Functional Genomics

and Bioinformatics. Oxford University Press, 2006.

[103] R.L. Rivest. Learning Decision Lists. Machine Learning, 2(3):229–246, 1987.

[104] J. Rousu, C. Saunders, S. Szedmak, and J. Shawe-Taylor. Kernel-Based

Learning of Hierarchical Multilabel Classification Models. In Journal of

Machine Learning Research, pages 1601–1626. MIT Press, 2006.

REFERENCES 203

[105] A. Ruepp, A. Zollner, D. Maier, K. Albermann, J. Hani, M. Mokrejs,

I. Tetko, U. Guldener, G. Mannhaupt, M. Munsterkotter, and HW. Mewes.

The FunCat, a functional annotation scheme for systematic classification

of proteins from whole genomes. Nucleic Acid Research, 32(18):5539–5545,

2004.

[106] R.E. Schapire and Y. Singer. Boostexter: A boosting-based system for text

categorization. Machine Learning, 39(2/3):135–168, 2000.

[107] A. Secker, M.N. Davies, A.A. Freitas, J. Timmis, M. Mendao, and D. Flower.

An experimental comparison of classification algorithms for the hierarchical

prediction of protein function. In Third UK Knowledge Discovery and Data

Mining Symposium (UKKDD-2007), pages 13–18, 2007.

[108] J. Smaldon and A.A. Freitas. A new version of the ant-miner algorithm

discovering unordered rule sets. In Proc. Genetic and Evolutionary Compu-

tation Conference (GECCO 2006), pages 43–50, 2006.

[109] S.F. Smith. A Learning System Based on Genetic Adaptive Algorithms. PhD

thesis, University of Pittsburgh, 1980.

[110] S.F. Smith. Flexible learning of problem solving heuristics through adaptive

search. In Proceedings of the 8th International Conference on Artificial

Intelligence, pages 422–425. Morgan Kaufmann, 1983.

[111] T.F. Smith and M.S. Waterman. Identification of common molecular sub-

sequences. Journal of Molecular Biology, 147(1):195–197, 1981.

[112] K. Socha. Aco for continuous and mixed-variable optimization. In

M. Dorigo, L. Gambardella, F. Mondada, T. Stützle, M. Birratari, and

C. Blum, editors, Proceedings of the 4th International Conference on Swarm

Intelligence (ANTS 2004), Lecture Notes in Computer Science 3172, pages

25–36, 2004.

[113] K. Socha and M. Dorigo. Ant colony optimization for continuous domains.

European Journal of Operations Research, 185(3):1155–1173, 2008.

[114] M. Sokolova and G. Lapalme. A systematic analysis of performance mea-

sures for classification tasks. Information Processing and Management,

45:427–437, 2009.

REFERENCES 204

[115] T. Stützle and H.H. Hoos. Improvements on the Ant System: Introducing

MAX -MIN ant system. In Proc. Int. Conf. Artificial Neural Networks

and Genetic Algorithms, 1997.

[116] T. Stützle and H.H. Hoos. MAX -MIN ant system. Future Generation

Computer Systems, 16(8):889–914, 2000.

[117] A. Sun and E.-P. Lim. Hierarchical Text Classification and Evaluation.

In Proceedings of the 1th IEEE International Conference on Data Mining,

pages 521–528. IEEE Press, 2001.

[118] A. Sun, E.-P. Lim, and W.-K. Ng. Hierarchical text classification methods

and their specification. Cooperative Internet Computing, pages 236–256,

2003.

[119] A. Sun, E.-P. Lim, and W.-K. Ng. Performance Measurement Framework for

Hierarchical Text. Journal of the American Society for Information Science

and Technology, 54:1014–1028, 2003.

[120] A. Sun, E.-P. Lim, W.-K. Ng, and J. Srivastava. Blocking reduction strate-

gies in hierarchical text classification. IEEE Transactions on Knowledge and

Data Engineering, 16(10):1305–1308, 2004.

[121] S. Swaminathan. Rule Induction Using Ant Colony Optimization for Mixed

Variable Attributes. Master’s thesis, Texas Tech University, 2006.

[122] B. Taskar, C. Guestrin, and D. Koller. Max-Margin Markov Networks. In

Neural Information Processing Systems Conference (NIPS03), 2003.

[123] W. Tian and J. Skolnick. How well is enzyme function conserved as a

function of pairwise sequence identity? Journal of Molecular Biology,

333(4):863–882, 2003.

[124] I. Tsochantaridis, T. Hofmann, T. Joachims, and Y. Altun. Support vector

machine learning for interdependent and structured output spaces. In Pro-

ceedings of the twenty-first international conference on Machine learning,

page 104, 2004.

[125] G. Tsoumakas and I. Katakis. Multi-Label Classification: An Overview.

International Journal of Data Warehousing and Mining, 3(3):1–13, 2007.

REFERENCES 205

[126] S. Tsutsui. Ant colony optimisation for continuous domains with aggrega-

tion pheromones metaphor. In Proceedings of the 5th International Con-

ference on Recent Advances in Soft Computing (RASC-04), pages 207–212,

2004.

[127] C. Vens, J. Struyf, L. Schietgat, S. Džeroski, and H. Blockeel. Decision trees

for hierarchical multi-label classification. Machine Learning, 73(2):185–214,

2008.

[128] G. Venturini. SIA: A supervised inductive algorithm with genetic search

for learning attributes based concepts. Machine Learning: ECML-93, pages

280–296, 1993.

[129] K. Wang, S. Zhou, and S.C. Liew. Building Hierarchical Classifiers Us-

ing Class Proximity. In Proceedings of the 25th International Conference

on Very Large Data Bases (VLDB’99), pages 363–374. Morgan Kaufmann,

1999.

[130] E. Webb. Enzyme Nomenclature 1992. Recommendations of the Nomencla-

ture Committee of the International Union of Biochemistry and Molecular

Biology. Academic Press, 1992.

[131] W. Weinert and H. Lopes. Neural networks for protein classification. Applied

Bioinformatics, 3(1):41–48, 2004.

[132] J.C. Whisstock and A.M. Lesk. Prediction of protein function from protein

sequence and structure. Q Rev Biophys, 36(3):307–340, 2003.

[133] H. Witten and E. Frank. Data Mining: Practical Machine Learning Tools

and Techniques. Morgan Kaufmann, 2nd edition, 2005.

[134] I. Xenarios, D.W. Rice, L. Salwinski, M.K. Baron, E.M. Marcotte, and

D. Eisenberg. Dip: The database of interacting proteins. Nucleic Acid

Research, 28:289–291, 2000.

[135] H. Xie, A. Wasserman, Z. Levine, A. Novik, V. Grebinskiy, A. Shoshan, and

L. Mintz. Large-scale protein annotation through gene ontology. Genome

Research, 12:785–794, 2002.

[136] M.-L. Zhang and Z.-H. Zhou. A k-nearest Neighbor Based Algorithm for

Multi-label Classification. In Proceedings of the IEEE International Con-

ference on Granular Computing, volume 2, pages 718–721, 2005.

REFERENCES 206

[137] X.-M. Zhao, L. Chen, and K. Aihara. Protein function prediction with

high-throughput data. Amino Acids, 35:517–530, 2008.

Appendix A

Software Availability

All the algorithms presented in the thesis have been made publicly available un-

der the GNU Lesser General Public License (LGPL) as an open source software

package, named myra, hosted in the SourceForge.net repository. Myra is a cross-

platform ant colony optimisation (ACO) framework written in Java, providing a

specialised data mining module to support the application of ACO to classification

problems. The source code, binary code and documentation can be downloaded

from http://sourceforge.net/projects/myra/.

207

	Abstract
	Acknowledgements
	Contents
	List of Tables
	List of Figures
	List of Algorithms
	Introduction
	Original Contributions
	Structure of the Thesis
	Publication List

	Data Mining
	Common Data Mining Tasks
	Regression
	Clustering
	Association Rule Learning

	The Conventional (Flat) Classification Task
	Decision Tree Induction
	Rule Induction
	Multi-Label Classification

	The Hierarchical Classification Task
	Basic Concepts of Hierarchical Classification
	Hierarchical Multi-Label Classification

	Evaluation Measures for Classification
	Evaluation Measures for Hierarchical Classification
	Hierarchical Measures of Precision, Recall and F-measure
	Precision-Recall Curves

	Summary

	Ant Colony Optimisation
	The ACO Metaheuristic
	Problem Representation
	Building Solutions
	Pheromone Trails

	ACO applied to Classification: Ant-Miner
	Construction Graph
	Rule Construction
	Heuristic Information
	Rule Evaluation
	Rule Pruning
	Pheromone Trails
	Classifying New Examples

	Ant-Miner Extensions
	Summary

	Bioinformatics
	Biological Background
	Proteins

	Protein Databases
	UniProt Knowledgebase
	InterPro
	IntAct

	Protein Functional Classification Schemes
	Gene Ontology
	FunCat

	Protein Function Prediction
	Protein Features as Predictor Attributes

	Summary

	Handling Continuous Attributes in Ant Colony Classification Algorithms
	Ant-Miner Coping with Continuous Attributes
	Construction Graph
	Heuristic Information
	Rule Construction
	Pheromone Updating

	Minimum Description Length-based Discretisation
	Encoding Attribute Interaction as Pheromone Levels: Associating Pheromones with Edges
	Combining Pheromone Associated with Edges and Minimum Description Length-based Discretisation
	Summary

	Computational Results for Ant-Miner Coping with Continuous Attributes
	Data Sets
	Experimental Setup
	Results
	Summary

	Hierarchical and Multi-Label Ant Colony Classification Algorithms
	Hierarchical Classification Ant-Miner
	Construction Graphs
	Rule Construction
	Rule Evaluation
	Rule Pruning
	Pheromone Trails
	Heuristic Information
	Using a Rule List to Classify New Examples

	Coping with Multi-Label Data
	Multi-Label Rule Consequent
	Distance-based Heuristic Information
	Distance-based Discretisation of Continuous Values
	Hierarchical Multi-Label Rule Evaluation
	Simplified Rule Pruning

	Pittsburgh-based Approach
	Extended Sequential Covering Strategy
	Updating Pheromone Values Based on the Rule List Quality

	A Baseline Approach for Hierarchical Multi-Label Classification with Ant-Miner: Building One Classifier per Class
	The Baseline Ant Colony Algorithm
	Class-specific Heuristic Information
	Class-specific Interval Selection for Continuous Attributes
	Rule Quality Measure
	Classifying New Examples

	Summary

	Computational Results for Hierarchical and Multi-Label Ant-Miner
	Initial Work on Protein Function Prediction---the hAnt-Miner algorithm
	Data Preparation
	Experimental Setup
	Results and Discussion

	Hierarchical Multi-Label Protein Function Prediction in Yeast
	Data Sets
	Experimental Setup
	Results and Discussion

	Summary

	Conclusions and Future Research
	Contributions
	Future Research

	References
	Software Availability

