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SUMMARY

A fine-grained massively parallel and process-oriented architecture for the modelling of complex systems
is presented. We propose that the concurrency in the model simplifies its design and construction by
directly reflecting the processes in the natural world. The architecture is based on CSP, extended with
mechanisms for process mobility from the pi-calculus; implementations are presented using the occam-pi
language. A case study, modelling platelets (possibly artificial) within a blood vessel, is described. The
aim for this model is to engineer emergent behaviour: the clotting of platelets in response to a wound
in the blood vessel wall and the staunching of blood loss. A three-dimensional model is constructed,
along with mechanisms for visualization and interaction. Its expressiveness and efficiency relies strongly
on the dynamic and mobile capabilities of occam-pi. General principles for the design of large and
complex system models are drawn. The described case study runs to millions of processes engaged in
ever-changing communication topologies. It is free from deadlock, livelock, race hazards and starvation
by design, employing a small set of synchronization patterns for which we have proven safety theorems.
Compiled occam-p codes automatically and efficiently exploit all cores in a shared-memory multiprocessor
system. They are also straightforward to distribute over standard cluster architectures. Copyright © 2007
CG Ritson & PH Welch.
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1. INTRODUCTION

In this paper, a process-oriented architecture for simulating a complex environment and mobile
agents is described (Section 2). The environment is modelled by a fixed topology of stateful
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processes, one for each unit of space. State held includes the strength of specific environmen-
tal factors (e.g. chemicals), local forces and the presence of agents. Agents are mobile processes
interacting directly with the space processes in their immediate neighbourhood and, when they sense
their presence, other agents. Mechanisms for dynamically structuring hierarchies among agents are
also introduced, allowing them to display complex group behaviours. The architecture combines
deadlock-free communications patterns with (phased barrier controlled) shared state, maintaining
freedom from race hazards and high efficiency. We have used occam-� [1,2] as our implementa-
tion language.
The biological accuracy of the blood clotting case study (Section 3) is very approximate. However,

even with the current system, simple experiments are possible that have scientific interest (e.g. the
effect of platelet density on the success of the clotting mechanism in stemming blood flow: too
high or too low and the process fails). Section 4 discusses the emergent behaviours observed,
the performance figures obtained and Section 5 gives directions for future work. For the latter,
the process-oriented nature enables simple refinement (through the addition of processes modelling
different stimulants/inhibitors of the clotting reaction, different platelet types and other participating
organelles) to greater and greater realism. This paper presents a simple and flexible architecture.
It shows promise for generic application across a broad range of complex system.
This paper is a revision of one presented at CPA-2007 [3]. The research was started as part of the

(EPSRC) TUNA project [4–10] at the universities of York, Surrey and Kent, which seeks to explore
simple and formal models of emergent behaviour. It continues as part of the CoSMoS project [11]
on complex systems modelling, patterns and simulation, funded by EPSRC grant EP/E053505/1.

2. ARCHITECTURE

The simulation architecture is constructed in layers. At the bottom lie the site processes, representing
distinct points (or regions) in the simulated space and managing information associated with that
locality. Each site is a pure server process, handling requests on the server-end of a channel bundle
(unique for each site). It will have a dynamically changing set of client processes (mobile agents),
competing with each other to access the client-end of its channel bundle. Each channel bundle
contains two channels used in opposite directions: one from a client to the server (request) and
one from the server to a client (response). All communication is initiated by one of the clients
successfully laying claim to its end of the channel bundle and making a request. Once accepted, the
server and this client engage in a bounded conversation over the channel bundle, honouring some
pre-agreed protocol. So long as no closed cycle of such client-server relationships exists across the
whole process network, such communication patterns have been proven to be deadlock free [12,13].

2.1. Space modelling

To model connected space, each site has reference to the client-ends of the channel bundles serviced
by its immediate neighbours. These references are only used for forwarding to visiting clients—so
that they can explore their neighbourhood and, possibly, move. Sites must never directly commu-
nicate with other sites, since that could introduce client–server cycles and run the risk of deadlock.
The inter-site references define the topology of the simulation world. For standard Euclidean space,
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Figure 1. A simplified representation of sites and agents in a world where agents may only move right. Each site
services an exclusive channel bundle for communicating with visiting agents. Agents obtain connections with

their next site from references held by their current site.

these neighbourhood connections are fixed. For example, each site in a 3D cubic world might have
access to the sites that are immediately above/below, left/right or in-front/behind it. In a more fully
connected world, each site might have access to all 26 neighbours in the 3 × 3 × 3 cube of which
it forms the centre. Other interesting worlds might have wormholes or allow dynamic topologies
which change in response to simulation events.

2.2. Mobile channels and processes

As previously stated, our simulation architecture is constructed in layers. The world layer is
homogeneous—only sites. The agent layer is heterogeneous. There can be many kinds of agent
processes, visiting and engaging with sites as they move around their world. Agent-site protocols
fall into three categories: querying and modifying the current site state, obtaining access to neigh-
bouring sites and moving between sites. Agents move through the simulated world registering and
de-registering their presence in sites (commonly by depositing free channel-ends through which
they may be contacted), using environmental information (held in the sites) to make decisions as
they go and, possibly, modifying some environmental factors. An agent only needs to hold the
channel-end of its current site and, when relevant, the next site it wishes to enter. For all this, the
occam-� concept of channel-end mobility [14], derived from the �-calculus [15], is essential.
Figure 1 shows a one-dimensional world where each site has access only to the neighbour

immediately to its right. In this world, agents can only move in one direction. The arrows with
circles on their bases represent client–server relations (pointing to the server). The client-ends of
these connections are shared between other sites and agents (shown by the arrows with solid disc
bases). Recall that these connections do provide two-way communications.

2.3. Barriers and phases

Agents use barriers [16,17] to coordinate access to the sites into time-distinct phases. An
occam-� BARRIER is (almost) the same as a multiway synchronization event in CSP [5,18–20]:
all enrolled processes must reach (synchronize upon) the barrier in order for all of them to pass.
The resulting phases ensure that they maintain a consistent view of their environment, and keep to
the same simulation step rate. To prevent agents from viewing the world while it is in flux, at least
two phases are required: a discovery phase where agents observe the world and make decisions, and
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968 C. G. RITSON AND P. H. WELCH

a modify phase where agents change the world by implementing those decisions (e.g. by moving
and/or updating environmental parameters). The basic agent logic, using occam-� pseudo-code, is:

WHILE alive
SEQ
SYNC discovery
... observe my neighbourhood
SYNC modify
... change my neighbourhood

where discovery and modify are the coordinating barriers.

2.4. Site occupancy and agent movement

In a typical simulation, space is quantized in units the size of a single cell and only one agent will
be allowed to occupy a given site at any point in time. Within our architecture, sites enforce this
constraint. If two agents attempt to enter a site in the same simulation cycle, the decision can be
left to chance (and the first agent to arrive enters), or made using an election algorithm (the best
candidate is picked). In the case of an election algorithm, the modify phase should be sub-divided:

(a) agents request to enter the site providing some sort of candidacy information (e.g. mass,
aggressiveness or unique ID). When the site receives a new candidate, it compares it with
the exiting one and overwrites that if the new candidate is better.

(b) all agents query the site(s) they attempted to enter again, asking who won? On receiving
the first of these queries, the site installs its current best candidate as the new occupier and
passes those details back to the asker and to any subsequent queries.

However, an optimization can be made by including the first modify sub-phase in the discovery
phase, increasing task parallelism. Only offers to move are made—no world state change is de-
tectable by the agents in this phase. The second modify sub-phase simply goes into the modify
phase. This optimization saves a whole barrier synchronization and we employ it (Section 3.5).

2.5. Agent–agent interaction

Some agents in the same locality may need to communicate with each other. To enable this, they
deposit in their current site the client-end of a channel bundle that they will service. This client-end

Figure 2. Agents are composed from client and server sub-processes to prevent client–server
loops and maintain deadlock freedom.

Copyright q 2007 CG Ritson & PH Welch. Concurrency Computat.: Pract. Exper. 2010; 22:965–980
DOI: 10.1002/cpe



PROCESS-ORIENTED COMPLEX SYSTEMS MODELLING 969

Figure 3. Super-agents as a layered composition of processes.

will be visible to other agents (observing from a neighbouring site). However, agents must take
care how they communicate with each other in order to avoid client–server cycles and deadlock.
A simple way to achieve this is to compose each agent from at least two sub-processes: a server to
deal with inter-agent transactions and a client to deal with site processes and initiate inter-agent calls.
In Figure 2, the agent server process manages agent state: its clients are the client processes of

its own and other agents. The agent client process drives all communication between the agent and
the rest of its environment (the sites over which it roams, other agents in the neighbourhood and
higher level agents to which it reports—Section 2.6). Technically, it would be safe for the agent
server also to communicate with the sites.

2.6. Layers of agents

So far, agents have occupied a single site. Complex agents (e.g. a blood clot) may grow larger
than the region represented by a single site and would need to span many, registering with all
those that it occupies. This may be done from a single agent process (as above) or by composing
it from many sub-processes (one client part per site). We view the latter approach as building up a
super-agent (with more complex behaviour) from many lower level agents (with simpler behaviour
and responsibilities). It introduces a third layer of processes.
In Figure 3, clients 1 and 2 share a higher level server process, holding information from both that

enables them to act in a coordinated manner. Agents outside the super-agent just see a single server
off a single agent. Such sharing of higher level servers allows us to create groups of arbitrarily
large coordinated agents. The approach can be continued hierarchically to create ever more complex
groups, while keeping the complexity of each process manageable. There are no client–server cycles
and the pure clients (the lowest level agents) are the initiators of all activity.

3. HUMAN BLOOD CLOTTING SIMULATION

We have introduced the principle components of the simulation architecture: a hierarchical client–
server network of sites, agents and super-agents. We now look at how this has been applied to
simulate the clotting of platelets in the human blood stream [9].
Haemostasis is the response to blood vessel damage, whereby platelets are stimulated to become

sticky and aggregate to form blood clots that seal small wounds, stemming blood loss and allowing
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healing. Platelets are non-living agents present in certain concentrations in blood; they are contin-
ually formed in bone marrow and have a half-life of around 10 days. Normally, they are inactive.
They are triggered into becoming sticky by a complex range of chemical stimuli, moderated by a
similarly complex range of inhibitors to prevent a lethal chain reaction. When sticky, they combine
with each other (and proteins like fibrin) to form physically entangled clots. Extensive details can
be found in [21].
The work presented in this paper employs a highly simplified model of haemostasis. We model

the smooth and sticky states of platelets, with transition triggered by encountering a sufficient
amount of a single chemical factor released by a simulated wound to the blood vessel wall. We
model no inhibition of clotting, instead focusing only on the initial reaction to a wound.
Clots form when sticky platelets bump together and, with some degree of probability, become

permanently entangled. The speed of an individual clot decreases with respect to the rate of blood
flow as its size increases. We are not modelling other factors for the clotting material (such as
fibrin). Nevertheless, even with this very simple model, we have reached the stage where emergent
behaviours (the formation of blood clots and the sealing of wounds) are observed and simple
experiments are possible that have scientific interest.

3.1. Sites

Sites define the space of the simulated environment. Our sites are arranged into cubic three-
dimensional space (giving each site 26 neighbours). Sites are pure server processes, responding
to agent (client) offers of, or requests for, information. They operate independently, engaging in no
barrier synchronizations.
Interacting with the sites, the lowest level agents are blood platelets and chemical factors (which,

when accumulated in the sites above a certain threshold, can switch passing platelets into their
sticky state). Blood clots are super-agents, composed of many stuck-together platelets.
The sites allow one platelet to be resident at a time and store a unique ID number, stickiness, size

(of the blood clot, if any, of which it is a part) and transaction channel-end (for later agent–agent
communications). Sites use the (clot) size and unique ID to pick the best candidate during the entry
elections described in Section 2.4.
In addition to platelet/clot information, the sites also store a clotting chemical factor level (ob-

tained from passing factor processes), a unit vector (indicating the direction of blood flow) and a
blocking flag (indicating whether the site is part of the blood vessel wall—in which case agents are
denied entry).
Although using agents to simulate the wall would also be possible, we choose to implement it as

a feature of space to save the memory overhead of having more agents (with very trivial behaviour).
Finally, each site has access to a voxel (a byte from a shared 3D-array), which it is responsible

for maintaining. Whenever the site changes, it computes a transfer function over its state to set this
voxel. The voxel itself is used to visualize the simulation via volume rendering techniques.

3.2. Platelets (agents)

Our simulation agents model individual platelets in the blood. Platelets are pure clients and do not
communicate directly with each other. However, they are clients to their clot super-agent and it is
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this that keeps them together. A platelet may be in one of two states:

• Non-sticky: The platelet queries its local site and reports the blood-flow direction and clotting
factor level to its super-agent. It then initiates any movement as instructed by the super-agent.
The clot’s size and unique ID are used to register presence in the sites.

• Sticky: In addition to the above non-sticky behaviour, the platelet searches neighbouring sites
for other sticky platelets, and passes their details to its super-agent.

Platelets, along with the chemical factor processes (Section 3.3), move and update their envi-
ronment. Together with the processes generating them and the processes controlling visualization,
they are enrolled and synchronize on the discovery and modify barriers—dividing the timeline into
those respective phases (Sections 2.3 and 3.5.1).
Note: for programming simplicity, all platelets in our current model have a clot process—even

when they are not sticky or part of any clot. We may optimize those clot processes away later,
introducing them only when a platelet becomes sticky. Most platelets in most simulations will not
be sticky!

3.3. Clots (super-agents)

Clots coordinate groups of platelets. They accumulate the blood-flow vectors from their platelets’
sites and make a decision on the direction of movement. That decision also depends on the size of
clots, with larger clots moving more slowly. They also change platelets from non-sticky to sticky if
sufficient levels of clotting factor are encountered (these accumulate over many simulation steps).
When two or more clots encounter each other, if they contain sticky platelets they may become

stuck together and merge. One of the clots takes over as super-agent for all sets of platelets in the
bump group—the other clots terminate.
In [17], a clotting model for a one-dimensional blood stream was presented (as an illustration

of mobile channels and barriers). In that system, deciding which clot process takes over is simple.
Only two clots can ever be involved in a collision: arbitrarily, we decide the one further upstream
wins.
Stepping this model up to two dimensions, multiway collisions are possible since clots can be

shaped with many leading edges in the direction of movement—for example, an ‘E’-shaped clot
moving rightwards and bumping into an ‘I’ shape. Furthermore, those multiple collisions may be
with just a single or many other clots. Fortunately, stepping this up to three dimensions does not
introduce any further difficulties.
To resolve the decision as to which clot survives the collision, an election takes place involving

direct communication between the clot super-agents. This is outside the client–server architecture
shown in Figure 3 (for whose reasoning this election is deemed to be a bounded internal computa-
tion). The clot processes must engage in nothing else during this election and that must terminate
without deadlock. Reasoning about this can then be independent from reasoning about all other
synchronizations in the system.
The key to deadlock-free election is to order all the communications in a sequence that all parties

know about in advance. Each clot has an ID number which is registered in all sites currently occupied
by its constituent platelets. Each clot has had reported back to it, by its platelets, the clot IDs of all
clots in the collision.
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The platelets also place the client-end of a server channel to their clot in the site they are
occupying. They report to their clot the client-ends of the other clots in the collision. Thus, each
clot now has communication channels to all the other clots in its collision.
High number clots now initiate communication to low number clots. The lowest numbered clot is

the winner and communicates back the election result, with communication now from low number
clots to high. The choice that low numbered clots should win was not arbitrary. Clots are introduced
into the world with increasing ID numbers. Clots further down the bloodstream will, therefore, have
lower IDs and will tend to amass platelets as smaller (faster moving) clots (with higher IDs) catch
up and collide. In turn, this reduces the number of times platelets need to change their clot super-
agent after collision. Although our algorithm for ordering communication (not fully outlined here)
has yet to undergo formal proof, it has so far in practice proven reliable.
Platelets communicate with their clot using the shared client-end of a server bundle. By keeping

track of the number of platelet processes it contains, a clot knows how many communications to
expect in each phase (and, so, does not have to be enrolled in the barriers used by the platelets to
define those phases). See Section 3.5 for more details of clot and platelet communications.

3.4. Factors (agents)

The second and final type of agent in our simulation is one that models the chemical factors released
into the blood by a wounded (damaged) blood vessel. Since they move and modify their environment
(the sites), they must engage on the same discovery and modify barriers as the platelets.
Factors are launched (forked) into the simulation with an initial vector pointing away from the

wound and into the blood vessel. At every simulation step, the factor integrates a proportion of its
current site’s blood flow vector with its own vector and uses the result to determine its next move.
The effect is cumulative so that eventually the factor is drawn along with the blood flow. At each
site it enters, the factor increases the factor strength field, and modifies the site’s blood flow vector
to point back to the wound. The second of these two actions simulates both the slight pressure drop
from an open wound and other biological mechanisms which draw platelets to open wounds.
Finally, it should be noted that factors are not considered to take up any space—being tiny

molecules as opposed to full cells. Hence, many are allowed to occupy individual sites.

3.5. Simulation logic

We illustrate with pseudo-code, closely based on occam-� [1,2], for the platelet and clot processes.

3.5.1. Platelet process

Initially, a platelet attached to its launch site, is not sticky, has a clot process to which only it
belongs and has no knowledge of its neighbourhood. Platelets decide whether they want to move
in the discovery phase; however, the movement is election based (Section 2.4), and the result of
the election is not queried until the modify phase. This means that, although movement offers are
made in the discovery phase, actual movement does not happen until the modify phase.
The names site, new.site, clot and clot.b represent SHARED client ends of channel bundles

containing request and reply channels (flowing in opposite directions and carrying rich message
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structures). They connect, respectively, to the current and (possible) future site locations of the
platelet and the clot process of which it forms a part. (The dots in occam-� names are not operators,
but separators like underscore in other languages. For simplicity of presentation, we omit the re-
quest/reply field names of the channel bundles and the CLAIM operations required before shared use.)

SEQ

WHILE still in the modelled blood vessel
SEQ

SYNC discovery -- all platelets and factors wait here for each other

site ! ask for local chemical factor level and motion vector
site ? receive above information
clot ! factor.vector.data; forward above information

IF
sticky
SEQ

site ! get clot presence on neighbour sites (in directions that were previously empty)
site ? receive above information
clot ! forward information only on clots different to our own (i.e. on clot collisions)

TRUE
SKIP

-- clot decides either on transition to sticky state or merger of bumped clots
clot.b ? CASE
update; clot; clot.b -- our clot has bumped and merged with others
SKIP -- we may now belong to a different clot process

become.sticky
sticky := TRUE -- accumulated chemical factors over threshold

no.change
SKIP

-- clot decides which way, if any, to try and move
clot ? CASE move; target
IF
target = no.move
SYNC modify -- empty phase for us, in this case

TRUE
SEQ

site ! get.neighbour; target -- get the channel end of the new site
site ? new.site
new.site ! enter; clot -- offer to enter new site, giving our clot reference

SYNC modify -- wait for all other offers to be made

new.site ! did.we.enter; clot -- ask if we were successful
new.site ? CASE
yes
SEQ
clot ! ok -- report ability to move
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clot.b ? CASE
ok -- all platelets in clot can move
SEQ
site ! leave -- leave present site
site := new.site -- commit to new site

fail
new.site ! leave -- give up attempted move

no
SEQ
clot ! fail -- report failure to move
clot.b ? CASE fail -- clot cannot move as this platelet failed

SEQ -- we have exited the modelled region of space (and the loop)
SYNC discovery -- we must get into the right phase for last report
clot ! terminated -- last report

3.5.2. Clot process

Initially, a clot is not sticky and starts with a platelet count (n.platelets) of 1. A clot runs for as
long as it has platelets. It does not need to engage in the discovery and modify barriers, deducing
those phases from the messages received from its component platelets. At the start of each phase,
a clot is sticky if and only if all its component platelets are sticky.
The names platelets and platelets.b represent server ends of channel bundles containing

request and reply channels (flowing in opposite directions and carrying rich message structures).
They service communications from and to all its component platelets and are the opposite ends to
the clot and clot.b channel bundle ends shared by those platelets (Section 3.5.1).

WHILE n.platelets > 0
SEQ
-- nothing will happen till the discovery phase starts; wait for the reports from our platelets

SEQ i = 0 FOR n.platelets
platelets ? CASE
factor.vector.data; local chemical factor level and motion vector

... accumulate chemical factor level and motion vector
terminated

n.platelets := n.platelets - 1
IF
sticky
SEQ

SEQ i = 0 FOR n.platelets
platelets ? report on any bumped clots

IF
sufficiently hard collision anywhere
SEQ

... run clotting election to decide which clot takes over the merger
SEQ i = 0 FOR n.platelets

platelets.b ! update; winner; winner.b -- channels for winning clot
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IF
this.clot = winner

... update number of platelets to new size of clot
TRUE
n.platelets := 0 -- i.e. terminate

TRUE
SEQ i = 0 FOR n.platelets -- no platelets reported collisions
platelets.b ! no.change -- so, let them all know

accumulated.chemical.factor > sticky.trigger.theshold
SEQ

sticky := TRUE
SEQ i = 0 FOR n.platelets
platelets.b ! become.sticky

TRUE -- remain not sticky
SEQ i = 0 FOR n.platelets

platelets.b ! no.change

target := choose.some.move.or.none (n.platelets, motion.vector)

SEQ i = 0 FOR n.platelets -- tell our platelets
platelets ! move; target

-- platelets now synchronise on modify barrier

IF
target = no.move -- we’re definitely not moving
SKIP

TRUE -- move iff all platelets can move
SEQ

all.confirm := TRUE
SEQ i = 0 FOR n.platelets -- can each platelet move?
platelets ? CASE
ok
SKIP

fail
all.confirm := FALSE

IF
all.confirm
SEQ i = 0 FOR n.platelets -- we are moving
platelets.b ! ok

TRUE
SEQ i = 0 FOR n.platelets -- we’re not moving
platelets.b ! fail

3.6. Spatial initialization

The simulated environment must be initialized before platelets are introduced. It needs to contain
some form of bounding structure to represent the walls of the blood vessel and the vectors in the
sites must direct platelets along the direction of blood flow.
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The blood vessel wall is placed so that it runs parallel to an axis in simulated space—the x-
axis in our simulations. Our simulated blood vessel is simple: a cylinder with wall thickness of
approximately two sites. The wall is simulated by setting the sites to which it belongs to blocking.
Force vectors inside the blood vessel are initialized so that there are platelets likely to move

forward with some lesser probability of motion in the other axes. Changing the initialization of
these vectors can give subtle changes in simulation behaviour—something left largely unexplored
at this time.
The vectors outside the blood vessels are programmed to draw platelets to the edges of the

simulated space and beyond. This enhances the blood loss effect when the vessel wall is broken. If
this were not done, platelets would continue along much the same path just outside the blood vessel.

4. RESULTS

4.1. Emergent behaviour

Using the architecture and the simple processes and behaviours described, we have been able to
achieve results surprisingly similar to those in the human body. Given the right concentration of
platelets (Figure 4), wounds to our simulated blood vessel trigger the formation of clots (Figure 5)
that eventually form a plug covering the wound and preventing further blood loss (Figure 6). Too
low a concentration and the clotting response is too weak to let sufficiently large clots form. Too
high a concentration and a clot forms too early, gets stuck in the blood vessel before the wound
and fails to seal it. The clot also gets bigger and bigger until it completely blocks all the blood
flow—which cannot be good!
The concentration boundaries within which successful sealing of a wound is observed are artifacts

of the current simulation model, i.e. they do not necessarily correspond with the biology. However,
the fact that this region exists for our models gives us encouragement that they are beginning to
reflect some reality.
In the human blood stream, clotting stimulation (and inhibition, which we have not yet modelled

but is certainly needed) involves many different chemical factors, cell types (there are different
types of platelet) and proteins (e.g. fibrinogen). It is encouraging that our modelling techniques
have achieved some realistic results from such a simple model.

Figure 4. Simulated blood vessel represented by the cylinder, dots are platelets.
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Figure 5. Having placed a wound, platelets ‘fall’ out of the blood vessel, and chemical factors can
be visualized by the darkened area. Given time, chemical factors flow down the blood vessel and

(small) clots can be seen forming as dark blobs.

Figure 6. With sufficient time and a high enough platelet concentration, a clot forms over and seals the wound.
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The clotting response we observe from our model has been engineered, but not explicitly
programmed. The platelets are not programmed to spot wounds and act accordingly. They are
programmed only to move with the flow of blood, become sticky on encountering certain levels of
chemical and, then, clump together when they bump. Developing this so that greater and greater
levels of realism emerge should be possible through the addition of processes modelling different
stimulators and inhibitors of the clotting reaction, along with different platelet types and other
participating agents. Because of the compositional semantics of CSP and occam-�, such extensions
will not interfere with existing behaviours in ways that surprise—but should evolve to increase the
stability, speed, accuracy and safety of the platelets’ response to injury.

4.2. Performance

Our process-oriented model implemented in occam-� has proved stable and scalable. Further,
occam-� compiled codes automatically and efficiently exploit all the available cores in a
shared-memory multiprocessor system. Simulations have been run with more than 3 000 000 pro-
cesses on commodity desktop hardware (P4, 3.0GHz, 1GB RAM). Memory places a limit on
the size of our simulations. However, as our site processes only become scheduled when directly
involved in the simulation, the available processing power only limits the number of active agents.
Bloodstream platelet densities of up to 2% (an upper limit in healthy humans) imply an average of
around 60 000 agents—actual numbers will be changing all the time. Cycling each with an average
processing time of 2 �s (including barrier synchronization, channel communication and cache miss
overheads) still enables around 8 simulations steps per second, which is very usable.
Figure 7 shows the performance for simulations on a world of size 256 × 96 × 96 (2.3M+

sites). The different curves are for different levels of platelet concentration (0.5, 1.0 and 2.0%). The
x-axis shows simulation step numbers (generations), starting from an (unrealistic) bloodstream
devoid of any platelets—but with them starting to arrive from upstream. Performance does not
stabilize until the blood vessel is filled with platelets, which takes 500 generations. This is as
expected, given a volume 256 sites in length and with a roughly even chance of any platelet moving
forwards.
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Figure 7. 256 × 96 × 96 simulations with sticky platelets. The legend values p0.5, p1.0, and p2.0 represent the
concentration of platelets in the blood entering the vessel, 0.5, 1.0% and 2.0% respectively.
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For the simulations whose results are shown in the platelets and their associated clots are initialized
sticky. This is the worst-case (and unrealistic) scenario where clots will form whenever two platelets
collide. At 0.5% platelet concentration (an average of approximately 5000 agents), we are achieving
around 9 simulation/steps a second. All these results have visualization disabled; in practice, most
commodity graphics hardware has difficultly rendering simulations this size at rates greater than
10 frames per second. As the number of agents doubles to 1.0%, and then 2.0%, the performance
degrades almost linearly, in regular (not worst case) the degrade is linear. Again, this is expected,
given that the computation load has doubled and that occam-� process management overheads are
independent of the number of processes being managed. In non-worst-case simulations of the same
dimensions, the performance around 13 frames per second for 0.5% plate concentrations is achieved
on the same hardware.

5. FUTURE WORK

The next steps in our research are to scale up and refine our simulations. For scaling up the size of
our models, we have developed a cluster-based implementation (using the pony [22] networking
environment for occam-�) with performance results, not published here, that are promising.
For refining the accuracy of the model, we would like to achieve the return of our simulated

blood vessel to a normal state once blood loss through a wound has been stemmed. We need to
introduce factors that inhibit the production of further clots and bust existing ones (e.g. all those
little ones that were washed away by the bloodstream before they could clump to the wound). So
long as the wound is open, chemical factors would continue to be released, gradually lowering as
the wound is closed. Inhibitor agents would also reduce clotting factor levels and correct blood flow
vectors. The blood vessel wall also needs to be able to reform under the protective clot. Eventually,
with the wound healed, the clot would dissipate and the factors that caused it would disappear.
Further refinement could be explored by integrating aspects of other research, both physical and

simulated, into the flow of platelets within the blood stream [23]. In order to model these properties
we will need to introduce aspects of fluid dynamics into our model, and allow our simulated clots
to roll and sheer. By removing the rigid movement constraints on platelets within a clot and giving
them a degree of individual freedom, the introduction of these new behaviours should be attainable.
For example, by adding an appropriate vector (changing with time) to each of the platelets within
a clot, the clot as a whole could be made to roll or tumble as it moves through the blood vessel.
Finally, we believe that the massively concurrent process-oriented architecture, outlined in this

paper for this simulation framework, can be applied generically to many (or most) kinds of complex
system modelling. We believe that the ideas and mechanisms are natural, easy to apply and reason
about, maintainable through refinement (where the cost of change is proportional to the size of
that change, not the size of the system being changed) and can be targeted efficiently to modern
hardware platforms. We invite others to try.
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