
The Greenfoot Programming Environment

MICHAEL KÖLLING
University of Kent

Greenfoot is an educational integrated development environment aimed at learning and teaching
programming. It is aimed at a target audience of students from about 14 years old upwards, and is
also suitable for college- and university-level education. Greenfoot combines graphical, interactive
output with programming in Java, a standard, text-based object-oriented programming language.
This article first describes Greenfoot and then goes on to discuss design goals and motivations,
strengths and weaknesses of the system, and its relation to two environments with similar goals,
Scratch and Alice.

Categories and Subject Descriptors: K.3.2 [Computers and Education]: Computer and Informa-
tion Science Education—Computer science education

General Terms: Design, Human Factors, Languages

Additional Key Words and Phrases: Greenfoot, programming environment, programming
education

ACM Reference Format:
Kölling, M. 2010. The greenfoot programming environment. ACM Trans. Comput. Educ. 10, 4,
Article 14 (November 2010), 21 pages. DOI = 10.1145/1868358.1868361.
http://doi.acm.org/10.1145/1868358.1868361.

1. INTRODUCTION

Greenfoot is an integrated educational software development environment
aimed at learning and teaching programming to young novices. The target
user group starts at pupils from about 14 years of age, and also includes intro-
ductory university education.

Figure 1 shows Greenfoot’s main window, with a scenario—Greenfoot’s term
for a project—open in the environment. The main part of the window shows
the Greenfoot world, the area where the program executes. The world is of
variable, user-defined size, and holds the scenario’s objects.

On the right we see a class diagram that visualizes the classes used in this
scenario and their inheritance relations. The two superclasses visible here
(World and Actor) are part of the Greenfoot system and are always present.

Author’s address: M. Kölling, School of Computing, University of Kent, Canterbury, UK; email:
mik@kent.ac.uk.
Permission to make digital or hard copies part or all of this work for personal or classroom use
is granted without fee provided that copies are not made or distributed for profit or commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permission may be requested from Publications Dept., ACM, Inc., 2 Penn
Plaza, Suite 701, New York, NY 10121-0701, USA, fax +1 (212) 869-0481, or permissions@acm.org.
c© 2010 ACM 1946-6626/2010/11-ART14 $10.00 DOI: 10.1145/1868358.1868361.

http://doi.acm.org/10.1145/1868358.1868361

ACM Transactions on Computing Education, Vol. 10, No. 4, Article 14, Pub. date: November 2010.

14: 2 · M. Kölling

Fig. 1. The Greenfoot main window.

Fig. 2. The Greenfoot editor.

The subclasses (all others classes visible here) are part of this particular exam-
ple and will vary with different scenarios. A scenario will always have at least
one world subclass, representing the actual world (the rectangular execution
area) used. It will also have one or more Actor subclasses. Actors are those
objects that are present in the world and exhibit behavior to implement the
scenario’s objective.

Below the world view are some execution controls that allow running or
single-stepping the scenario.

Double-clicking a class in the class diagram (or right-clicking to choose from
a popup menu) opens a text editor, showing the class’s source code (Figure 2).

The language used to program is standard Java—Greenfoot internally uses
the standard Java compiler and the standard virtual machine (JVM) to ensure
full conformance with current Java specifications. However, although the lan-
guage is Java, the environment supports use of the language in simpler ways
ACM Transactions on Computing Education, Vol. 10, No. 4, Article 14, Pub. date: November 2010.

The Greenfoot Programming Environment · 14: 3

Fig. 3. a) Create object, b) Move to world, c) Place.

than normally available. For example, no static main method needs to be writ-
ten, and programming can start with simple, one-line methods. An example of
this is given in Section 3 below.

Once some code has been written for a class, the class can be compiled and
objects can immediately be interactively created through a context menu on the
class. There is no need to first complete a whole project, or even for all classes
to compile. As soon as the world class and one of the classes representing
an actor in the world compile, objects can be created and the behavior can be
tested. There is no need to write test drivers or a main method.

All actors in the world have a method called act (inherited from the Actor
superclass). Clicking the Act button in the execution controls invokes this act
method once on each actor in the world. Using the Run button causes the act
method to be called repeatedly, until the user pauses execution again. This is
how Greenfoot scenarios are executed. Programmers simply define the behav-
ior of every actor in the act method, and Greenfoot ensures that each actor gets
called to act appropriately. Thus, students can concentrate on programming
logical behavior of the actors and do not need to write graphics code. Greenfoot
does the graphical animation of the actors implicitly.

2. INTRODUCING CONCEPTS

One of the goals of Greenfoot is a design that explicitly visualizes important
concepts of object-oriented programming. While the source code editor has been
mentioned in the previous section, students do not typically start by manipu-
lating source code.

A typical first exercise for students might involve presenting them with a
scenario that has already been implemented and compiled. Students then start
by creating objects, which is achieved by selecting the object’s constructor from
the class’s menu.

Once the object has been created, it can be placed into the world (Figure 3).
When the object is in the world, a right-click shows all the object’s public

methods (all available actions it can perform) in a popup menu (Figure 4).
Once a method has been selected, it executes and the effect is visible on-

screen immediately. If the method expects parameters, a dialogue window pops
up prompting users to enter the parameter values. Similarly, possible result
values are displayed in a dialogue window.

ACM Transactions on Computing Education, Vol. 10, No. 4, Article 14, Pub. date: November 2010.

14: 4 · M. Kölling

Fig. 4. An actor’s context menu.

Of course, multiple objects can be created from the same class. Users can
create several actors (wombats, in our illustration) and place them into the
world. Methods can be executed on each of them individually.

The state of each actor can be examined by selecting the Inspect option from
the actor’s menu. This will open an object inspector window showing all inter-
nal instance variables and their values. This illustrates the independence of
objects (all objects have different values) and their relation to their class (all
objects of the same class have the same kinds of fields).

Pedagogically, these kinds of interactions are extremely valuable. They allow
teachers to introduce some of the most important and fundamental concepts of
object orientation in an easily understandable manner. These concepts include
the following.

—A program consists of a set of classes.
—From classes, we can create objects.
—Multiple objects can be created from one class.
—All objects of the same class offer the same methods and have the same fields.
—Each object holds its own values for its fields (each object has individual

state).
—We communicate with objects by calling one of its methods.
—Methods may have parameters. They also may return values.
—Parameters and return values have types.

All of these concepts are fundamental to understanding modern object-oriented
programming, and they are traditionally very hard to teach. One reason for the
difficulty in teaching them is that these concepts are very abstract. Greenfoot
makes them concrete by creating tangible experiences, explicitly visualizing
them and guiding users through interactions involving concrete manifestations
ACM Transactions on Computing Education, Vol. 10, No. 4, Article 14, Pub. date: November 2010.

The Greenfoot Programming Environment · 14: 5

of these concepts. Students learn from these experiences without the need for
much explicit instruction.

This enables the introduction of the fundamental concepts first, before the
need to deal with syntax and source code. Students do not immediately get dis-
tracted from important concepts by having to worry about placement of semi-
colons and parentheses.

Of course, fairly soon (typically in the second lesson) we do get students to
manipulate source code, but when they do this, they do so in the context of
a conceptual framework of object orientation: They know that what they are
doing is modifying or specifying the behavior of an object (or more precisely: a
class of objects).

3. CODE EXAMPLES

Before discussing underlying design goals in more detail, we give a few short
examples of typical Greenfoot source code to provide a feel for the level of com-
plexity involved in writing Greenfoot scenarios.

When creating new actor classes, each class is assigned an image to repre-
sent it in the world. The image can be chosen from a built-in image library, or
it can be specified by the user from their own available images. Objects created
from the class start with their class’s image as their default image.

Each actor in Greenfoot has three elements of state that are automatically
visualized on screen: a position (specified in x,y-coordinates), a rotation, and
an image. Each of these can be manipulated through method calls to create an
animation effect.
For example, the call:

setRotation(90);

rotates the object to 90 degrees.
The method:

getRotation()

is an accessor method that returns the current rotation (in degrees, 0-359).
Thus, we can quite easily make the actor rotate around its axis by writing the
following code:

setRotation(getRotation()+2);

This code segment reads the current rotation, adds a little bit to it, and sets
the result as the new rotation. When this statement is added to the body of
the act method, executing the scenario will cause it to be repeatedly called,
resulting in continuous rotation of the actor.

When creating new actors, a simple but complete class template is automat-
ically provided. This forms the starting point for students’ work. It looks as
follows:

import greenfoot.*;
/**
* Write a description of class MyActor here.

ACM Transactions on Computing Education, Vol. 10, No. 4, Article 14, Pub. date: November 2010.

14: 6 · M. Kölling

*
* @author (your name)
* @version (a version number or a date)
*/

public class MyActor extends Actor
{

/**
* Act - do whatever the actor wants to do.
*/
public void act()
{

// Add your action code here.
}

}

Providing this template follows a philosophy we first formulated during the
design of the BlueJ environment [Kölling et al. 2003]: never start with a blank
screen. Starting from a blank screen requires design, and is an advanced exer-
cise. It is something students encounter later, but not as the first contact.

Students start their work by adding code to the method body of the act
method. Adding the one line of code shown above, placing an actor into the
world and clicking the Run button, results in an actor that rotates around its
center point.

Similar effects can be achieved by changing the location. For example, the
statement

setLocation(getX()+2, getY());

has the effect of moving the actor across the screen from left to right.
Naturally, statements can be combined. The combination:

setRotation(getRotation()+2);
setLocation(getX()+2, getY());

combines movement and rotation, and results in an actor that rolls over the
screen. Thus, students can create visible animated behavior with just one or
two lines of code.

The Greenfoot API provides methods that make common tasks in program-
ming simple graphical animations and games relatively easy. Following is an
example to handle collision detection:

a = getOneIntersectingObject(Car.class);

This call will check whether the current actor intersects with another actor
of class Car and return the intersecting object if there is one (returning null
otherwise).

The Greenfoot API is defined in a total of five classes with a relatively mod-
est number of methods. The complete API documentation can be printed on
ACM Transactions on Computing Education, Vol. 10, No. 4, Article 14, Pub. date: November 2010.

The Greenfoot Programming Environment · 14: 7

two pages of standard letter size paper; it is also available from within the
Greenfoot environment.

Students typically learn quickly to read this documentation and work with
it for their projects.

4. DESIGN GOALS

A number of important design goals underpin the interaction design of Green-
foot. At the highest level, they can be summarized in two points, from two
different perspectives:

(1) From the student’s perspective, the goal is to make programming engaging,
creative and satisfying.

(2) From the teacher’s perspective, the goal is for the environment to actively
help in teaching important, universal programming concepts.

When we investigate these design objectives further, each results in a number
of more detailed goals that support and enable the top level aims.
The first goal, engagement of students, leads to the following sub-goals.

1.1 Ease of use. The system must be easy to use. It must allow students to
achieve their goal without them getting stuck in unnecessary, mundane
administrative tasks.

1.2 Discoverability. The system must be discoverable. Learners must be able
to find out about functionality needed to achieve their goal.

1.3 Support engaging functionality. The system must allow to implement en-
gaging, attractive functionality. This is possible in different ways, but cer-
tainly must include the easy use of graphics, animation and sound.

1.4 Flexibility. Since the judgement of what students might find engaging and
exciting varies with age and with individual interest, the system must be
flexible enough to support a wide variety of possible scenarios.

1.5 Quick feedback loop. The system must allow for quick and frequent success
experiences. This means that it must support development in small steps
with frequent opportunities at execution, observation, and visual feedback.

1.6 Availability. The system must be easily available (including cost) on
a wide range of commonly used systems, on average hardware. Only
then can learners play at home—an essential part of creative, explorative
learning.

1.7 Social interaction/sharing. The system must support sharing and commu-
nication between learners. Social interaction is a strong driver for engaging
in creativity.

1.8 Extendibility. It would be an advantage if the system can be designed to
be extendable, so that it can connect to reasonable existing interests and
systems. This may be use of existing hardware (such as standard game
controllers) or software (such as connecting to servers on the internet, data-
bases, or other functionality of interest).

ACM Transactions on Computing Education, Vol. 10, No. 4, Article 14, Pub. date: November 2010.

14: 8 · M. Kölling

The second high-level goal—supporting the teaching—leads to the following
more specific requirements.

2.1 Visualization. Important concepts of the programming paradigm (in our
case: object orientation) should be directly visualized.

2.2 Interaction. Interactions in the environment should illustrate program-
ming concepts (e.g., instantiation, method calls).

2.3 Consistent mental model. All representation of principles in the environ-
ment must correctly reflect the underlying programming model. This al-
lows students to draw conclusions from experimentation and observation,
and to arrive at correct interpretations.

2.4 Concepts before syntax. Syntax should not be the very first hurdle that
students have to cross to achieve their first success.

2.5 Avoid cognitive overload. Interaction in many modern development sys-
tems is at a level of complexity that makes learning difficult for beginners.
Cognitive load theory tells us that the capacity for mental processing is
limited [Miller 1956], and the number of simultaneous cognitive challenges
strongly influences the ability to learn. To keep cognitive load at a man-
ageable level, all extraneous complexity (this is: complexity not intrinsic
to the task at the focus of the learning) should be avoided, all peripheral
tasks automated and hidden.

2.6 Support for teachers. Teachers at secondary schools often do not have much
time for the development of material or for off-site professional develop-
ment and training. Thus, we need infrastructure to support the system
that provides explicit support for teachers, such as discussion and sharing
of teaching material.

These design goals have strongly influenced the interface and interaction de-
sign of Greenfoot. Below, we discuss selected characteristics of Greenfoot’s
functionality that result from our attempt at reaching those goals.

5. EASE OF USE

When thinking about ease of use, the most important considerations are not
about the design of the elements of functionality that are included, but about
what to leave out. Ease of use can only be achieved by restricting the scope
of functionality, and design decisions in the ongoing tension between flexibility
and simplicity have the highest impact.

Greenfoot, even though it makes use of a standard programming language,
excludes many tools commonly found in more generic IDEs, such as version
control, unit testing, refactoring, etc. The goal is that learners become familiar
with the complete user interface within a few days.

Another area of leaving things out is in the design of the APIs. Greenfoot
attempts to strike a balance between flexibility—giving users enough power to
implement interesting functionality— and simplicity—restricting the number
of methods in the API to an easily learnable set.
ACM Transactions on Computing Education, Vol. 10, No. 4, Article 14, Pub. date: November 2010.

The Greenfoot Programming Environment · 14: 9

Fig. 5. An “asteroids” game.

6. FLEXIBILITY

At first glance, and looking only at one or two initial examples, Greenfoot ap-
pears to be a traditional micro-world (in the tradition of Turtle Graphics [Lukas
1972; Caspersen and Christensen 2000], Karel the Robot [Pattis et al. 1994] or
the AP Gridworld Case Study [CollegeBoard 2010], built into an integrated de-
velopment environment with a tight edit/compile/execute cycle. However, it is
much more flexible than that.

Greenfoot can be seen as a micro-world meta framework that allows the
quick and easy creation of specific micro-worlds. Existing systems, such as
Turtle Graphics or Karel the Robot, can easily be implemented in Greenfoot,
and Greenfoot goes much beyond the restrictions of those systems.

Traditional systems integrate the programming functionality (move, turn,
etc.) with a specific scenario (a turtle with a pen, for example, or a robot col-
lecting “beepers”1). As a result, if students start with robots and beepers, after
some weeks of work they are still stuck with robots and beepers. If students
get bored with this idea, or are not interested in robots in the first place, there
is no easy way out for them.

Greenfoot separates these two aspects: The available programmed function-
ality is separated from a specific scenario, allowing the implementation of a
wide variety of examples. This supports the goals of engagement and flexibility
(goals number 1.3 and 1.4 above).

As a result, many substantially different scenarios can be created, cover-
ing many different topics. Examples include games (Figure 5), simulations
(Figure 6 and Figure 7), music (Figure 8) and other visualizations (Figure 9).

The opportunity to cover widely different contexts with the same framework
has a number of advantages. Examples and context can be tailored to differ-
ent age groups or different interests, either by a teacher or individually by
students themselves. If a learner is most interested in games, they can start

1“Beepers” are objects for robots to collect in the Karel the Robot micro-world.

ACM Transactions on Computing Education, Vol. 10, No. 4, Article 14, Pub. date: November 2010.

14: 10 · M. Kölling

Fig. 6. A simulation of ants collecting food.

by building a game. If another student looks for a more useful application of
computing, they can work on simulations with an environmental theme, for
example. More scientifically minded users can work with biological, physics
or chemistry-inspired simulations, and teachers can easily adapt examples to
their context.

Some of the technical aspects that make this flexibility possible is a frame-
work, embodied in the Greenfoot API, that does not specialize too strongly in a
specific small subclass of simulation, and a world model with flexible resolution
of the world cells.

As a result, many programs that use two-dimensional, animated graphics as
their main user interface can easily be implemented in Greenfoot.

7. COMPLEXITY OF DEVELOPMENT

A typical method of using Greenfoot initially, with complete novices, is to
provide students with a partially implemented scenario that they then mod-
ify. Student activities often start with executing and experimenting with
the provided material, followed by implementing extensions of the existing
functionality.

We have argued above that scenarios can easily be adapted to match the in-
terests of students. For this to work, it must be feasible for teachers to develop
these teaching scenarios themselves. Teachers at secondary school level typi-
cally do not have much time for development of material, and sometimes lack
specific expertise in technical details. Thus, the necessary complexity of well-
made, completed scenarios has a large influence on the feasibility of custom
development of scenarios.
ACM Transactions on Computing Education, Vol. 10, No. 4, Article 14, Pub. date: November 2010.

The Greenfoot Programming Environment · 14: 11

Fig. 7. A lift simulation.

Fig. 8. An on-screen piano.

Creating interesting, good looking interactive animations and games in
Greenfoot is relatively straightforward. A typical initial scenario, commonly
used as a framework in the first few lessons, consists of about 40 to 70 lines
of code. More complex and sophisticated completed scenarios typically consist
of only a few hundred lines of code. For example, a full implementation of the
Asteroids game (Figure 5) has about 620 lines of code, while a sophisticated
ants simulation (Figure 6) consists of about 490 lines of code.

This is a scale and level of complexity where many teachers are able to de-
velop these scenarios themselves. Of course, not every teacher needs to develop
new scenarios. The more common case for most teachers is that they browse
through a pool of existing teaching scenarios and choose one that suits their
needs. However, enough teachers are in a position to develop scenarios that

ACM Transactions on Computing Education, Vol. 10, No. 4, Article 14, Pub. date: November 2010.

14: 12 · M. Kölling

Fig. 9. A weather map, with real data from the Internet.

such a pool can be created and built up. What is necessary for this to work is
a mechanism for sharing these scenarios among the teaching community. This
is discussed further in Section 11, below.

The development of prepared teaching scenarios is only necessary in the
early stages of learning. After some time (depending on age, engagement, and
talent, some days, weeks, or a small number of months) learners will be able
to design and develop entire new scenarios from scratch without needing the
scaffolding to get started.

The initial starting scenarios are typically provided by a teacher if the learn-
ing takes place in a classroom. For self-directed study, teaching material is pro-
vided online, with references provided directly in the Greenfoot environment,
so that learners can work independently. The material includes both educa-
tional scenarios and tutorials. This, too, is discussed further in Section 11.

8. TARGET AUDIENCE

The target audience of users of Greenfoot includes pupils from about 14 years of
age, and scales up into introductory university education. (Age, in this context,
should be seen as a rough approximation. We have seen Greenfoot successfully
used with classes of 13-year-olds—what is needed is a level of literacy and ma-
turity that individual children will naturally reach at varying stages in their
development).

While the output of Greenfoot scenarios is graphical, its programming inter-
action is textual. This imposes a higher hurdle of competence than that needed
for Scratch [Maloney et al. 2008] or Alice [Dann et al. 2008].

Users of Greenfoot may be complete programming novices within that age
group, or they may have prior programming experience in Scratch, Alice, or
comparable systems. Concepts learned in Alice and Scratch transfer well into
Greenfoot. Where concepts correspond, they are presented in a similar manner,
supporting a similar mental model, while Greenfoot introduces some additional
concepts that build on the material learned in those systems. This is discussed
further in Section 15.

The purpose of using Greenfoot with novices may be similar to that of using
Scratch and Alice—generating interest and enthusiasm in programming (and
ACM Transactions on Computing Education, Vol. 10, No. 4, Article 14, Pub. date: November 2010.

The Greenfoot Programming Environment · 14: 13

maybe computer science in general) and conveying fundamental programming
principles—but can also be more formal. Higher level software development
concepts, such as good class design, separation of concerns, encapsulation and
cohesion, coupling, and additional levels of abstraction can also be taught.

9. JAVA AS A LANGUAGE

The programming language used in Greenfoot is standard Java. This has a
strong effect on many of the characteristics of Greenfoot—some of them benefi-
cial, others imposing limitations and complexities.

Firstly, the use of a textual language in general (as opposed to the
Scratch/Alice model of drag-and-drop instruction blocks) is considerably harder
for young learners to master. This imposes a minimum maturity level. While
Scratch and Alice can be used with very young kids, Greenfoot does not usually
work for pre-teens.

This is mostly a result of the language, not the conceptual model of Green-
foot. Informal experiments with Greenfoot and 10-year-olds have shown that
learners of that age can understand the underlying model and concepts quite
easily, but struggle with the syntax of the Java programming language to a
degree that they cannot progress on their own.

The second aspect is the use of Java specifically. Other textual languages
are available that are easier to master. Here, the main problems are not with
the object-oriented nature of Java (as some teachers sometimes speculate), but
with the choice of syntax. The concepts of object orientation seem to impose
no conceptual problems even for learners at the lower boundary of our target
age group. The mental model of independently acting and communicating ob-
jects, the concept of classes and even the idea of inheritance seem to pose no
overly difficult challenge. The syntax of Java however, with its nested textual
block structure coupled with poor error messages, presents a hard challenge
for young novices.

Using Java in Greenfoot is considerably easier than using Java in a stan-
dard professional environment (be it a text editor/command line environment
or a standard professional IDE). Since actors can be created independently and
interactively and methods called individually, no testing framework or main
method is needed. This, coupled with the automatic provision of simple class
templates, leads to the ability of starting by writing and executing single lines
of code, with immediate visual feedback. This makes Java in Greenfoot suit-
able for the target age group, but the Java syntax still provides a problem for
younger children.

On the positive side, using a standard, industry strength programming lan-
guage has a number of advantages. Firstly, Greenfoot scales well into older
age groups. More sophisticated and technically demanding ideas can be imple-
mented than is possible in systems with custom-made educational languages.
Language constructs and libraries are available for advanced topics.

Secondly, performance is good enough to develop and run fairly complex sce-
narios with hundreds of objects.

ACM Transactions on Computing Education, Vol. 10, No. 4, Article 14, Pub. date: November 2010.

14: 14 · M. Kölling

Thirdly, a wealth of infrastructure is available for Java, including teaching
material, textbooks, and technical development to port the virtual machine to
new platforms, improve performance, and many other ongoing improvements.
Greenfoot can tap into those, making many improvements to our platform eas-
ier than it would be if we had to develop these elements from scratch. Some of
these benefits are discussed in more detail in the next section.

10. EXTENDABILITY AND PERFORMANCE

The fact that Greenfoot uses Java, while presenting problems for young learn-
ers, has benefits at the older end of our target age group. In effect, there is no
age limit at the upper end.

Since Greenfoot supports the full Java language, including use of all li-
braries, very sophisticated scenarios can be created. And since execution is car-
ried out on the standard Java VM—a highly optimized professional platform—
performance is good for many cases. Scenarios such as the ants simulation,
with several hundred objects on screen, each performing collision detection
against hundreds of other objects, perform smoothly without problems on typi-
cally available medium range hardware.

Educationally, this means that Greenfoot can easily be used in introductory
university courses. All concepts that are commonly introduced there have a
natural representation in Greenfoot. Greenfoot is also occasionally used in
advanced university agent modelling and AI modules. In these cases, teachers
are mostly interested in the ease of creating graphical animations of the agents’
behavior, while the actual implementation of each agent class may be highly
complex.

For motivation of learners, this means that they do not easily hit a brick
wall where their ambition outstrips the capabilities of the programming sys-
tem. With systems based on simpler educational languages and graphical code
editing, especially older teenagers often reach a point where their ideas cannot
easily be realized within that system. The problem might be in the expressive-
ness of the language or in performance. At that time, graduating to Greenfoot
can give them a welcome path forward. The price we pay in the added complex-
ity for early beginners pays off when students reach a level of competence and
ambition to aim for more advanced and demanding projects.

In addition to performance, the Java infrastructure also provides a wealth of
specialized functionality through its standard libraries. More advanced users
can connect to databases, use networked communication, build multi-user sce-
narios, communicate with mobile phones, and integrate any other functionality
that is supported by a Java library.

Lastly, the use of a standard language commonly used in programming ed-
ucation eases transfer out of the system into more general development envi-
ronments. Since all educational IDEs are interim tools—the goal is, after all,
to motivate students to learn more, and move on to other systems—transfer
out of the system should not be neglected. While we often discuss the chal-
lenges of getting started in a system, moving out poses its own set of challenges.
ACM Transactions on Computing Education, Vol. 10, No. 4, Article 14, Pub. date: November 2010.

The Greenfoot Programming Environment · 14: 15

Ideally, concepts learned in an educational IDE carry over smoothly into future
systems.

The use of Java in Greenfoot makes this connection more direct and imme-
diate. Progression to the BlueJ IDE [Kölling et al. 2003] is specifically well
supported. BlueJ was designed by the same development team as Greenfoot,
and consistency of representation of the same concepts in the two environments
is an explicit design goal. Thus, transferring between the two, including par-
allel use in a course with frequent switches between them, is easily possible.
We have used this approach in our own introductory programming course at
university level with good success.

Transfer to other IDEs using class-based, object-oriented languages is also
fairly straightforward, as all concepts encountered in Greenfoot should eas-
ily transfer. As such, Greenfoot may provide an ideal stepping stone between
Scratch or Alice on one hand, and more general IDEs on the other.

11. ECOSYSTEM

Greenfoot is supported by the usual collection of material, including a Web
site [Greenfoot 2010], tutorials [GF Tutorial 2010], and a full textbook [Kölling
2009].

In addition, two of the design objectives of Greenfoot were to provide social
interaction and sharing for learners (listed as design goal 1.7 in Section 4) and
support for teachers (goal 2.6). Both of these require infrastructure beyond the
immediate development environment.

11.1 The Greenfoot Gallery

For students, two paths of social interaction are available. The first is an online
discussion forum, Greenfoot Discuss, provided as a group on the Google Groups
platform.2 Here, learners can ask for help, ask technical questions, and discuss
ideas.

The more interesting path is the Greenfoot Gallery [Gallery 2010]. This is
a Web site where Greenfoot scenarios can be published, and other people can
execute those scenarios and leave ratings and comments for them. Greenfoot
scenarios run directly on the site within the Web browser. Scenarios can be
published to the Greenfoot Gallery directly from within the Greenfoot environ-
ment with just a few mouse clicks.

To publish scenarios, comment or rate them, users must create an account
on the Greenfoot Gallery site. Simply playing the scenarios is possible without
an account.

The Gallery serves as a highly motivating element in the Greenfoot ecosys-
tem, with frequent discussion threads attached to scenarios where other users
provide feedback, report errors or suggest improvements [Fincher et al. 2010].
As a result, students in organized teaching courses often spend additional time
after an assignment has finished improving and extending their projects.

2Available at http://groups.google.com/group/greenfoot-discuss.

ACM Transactions on Computing Education, Vol. 10, No. 4, Article 14, Pub. date: November 2010.

14: 16 · M. Kölling

11.2 The Greenroom

The second Web-based system external to the Greenfoot environment itself—
but linked into its infrastructure—is the Greenroom [Greenroom 2010]. The
Greenroom is an online community site exclusively for teachers. It provides
functionality for discussions, resource sharing, and news announcements.

The Greenroom allows new teachers adopting Greenfoot to ask questions, get
advice, and find teaching material. Existing resources include worksheets, test
questions, assignment and project ideas, handouts, slides, teaching scenarios,
written tutorials, and tutorial videos.

The Greenroom has so far avoided the fate of many other resource
repositories—quickly waning interest after a short burst of initial use. It has
proven highly popular, with more than 800 teachers subscribed, many active
discussions, dozens of resources, and daily activity.

12. STRENGTHS

For the purpose of comparison with Alice and Scratch, we discuss three of the
main strengths of the Greenfoot system.

(1) Good illustration of OO concepts.
(2) Good scaling up (number of objects, performance).
(3) Relatively simple start.

We will discuss each of these in more detail.

12.1 Good Illustration of OO Concepts

While students play with creating games or simulations, they are implicitly ob-
serving and interacting with many major concepts of object-oriented program-
ming, as present in many modern OO programming languages. Concepts that
are implicitly illustrated include the following.

—A program consists of a collection of classes.
—From classes, we can instantiate objects.
—One class can create many objects.
—Objects have separate state.
—We can communicate with objects via method calls.
—Methods may have parameters and return values.
—Several more.

These are concepts that are traditionally hard to learn and teach. In Greenfoot,
these become implicitly apparent without much verbal explanation, and they
transfer well to other widely used programming languages which students may
transfer to later.
ACM Transactions on Computing Education, Vol. 10, No. 4, Article 14, Pub. date: November 2010.

The Greenfoot Programming Environment · 14: 17

12.2 Good Scaling Up (Number of Objects, Performance)

Greenfoot scales well when students become more competent and want to cre-
ate more sophisticated programs. The creation of many objects is not a prob-
lem, since programmatic instantiation is part of the language. Thus, games or
simulations with many objects (traffic simulations, ant simulations, etc.) can
be created easily. This enables the creation of scenarios that display true emer-
gent behavior, which is highly motivating. The performance is good (scenarios
with several hundreds of objects, all checking collisions between each other,
run smoothly). Also, the user language is standard Java, and any Java library
can be used in Greenfoot. This means that very sophisticated algorithms can
be written (e.g., AI algorithms for actor behavior) and access to external tech-
nologies (databases, network access, external devices such as game controllers)
can be implemented.

12.3 Relatively Simple Start

In contexts other than comparing with Scratch and Alice, we claim that it is
easy to get started in Greenfoot. Early examples are very easy to write and in-
teresting results are quick to achieve. In comparison with most programming
systems, especially producing animated graphics is very easy in Greenfoot. In
comparison with Scratch and Alice, Greenfoot gets beaten by those systems in
terms of ease of entry. However, in context of its design goals—use of a stan-
dard programming language, ability to scale up to sophisticated programs in
scope and performance—it provides an extremely easy path of entry for young
programmers.

13. LIMITATIONS

As with all systems, there are also clear weaknesses and limitations—
situations where Greenfoot is not a good solution. They include:

(1) Tinkering by younger kids.
(2) Error handling and reporting.
(3) 3D.

13.1 Tinkering by Younger Kids

The use of Java as the user language brings with it an unavoidable minimum
of complexity. Java is a text-based, syntax-oriented language that requires
a certain level of conceptual and linguistic maturity to cope with its struc-
ture. Younger children often get caught in structural syntax errors (such as
unmatched scope brackets) which they find hard to diagnose and fix. Explo-
ration and tinkering—which we highly value and encourage—requires reading
of textual documentation of APIs, which requires an ability and willingness to
work with written documentation or sample programs. All of these impose a
fairly hard minimum of required maturity, which many children reach around
the age of 14.

ACM Transactions on Computing Education, Vol. 10, No. 4, Article 14, Pub. date: November 2010.

14: 18 · M. Kölling

13.2 Error Handling and Reporting

Another side effect of using Java as the language is the comparatively poor
quality of error messages. Firstly, syntax errors are common, as is the case
in most text-based programming languages, and every programmer knows the
deep feeling of frustration that occasionally sets in when struggling with errors
over some period of time. Secondly, the messages used to report the errors are
often not especially helpful, and interpreting the error messages is a skill that
needs time to acquire. This occasionally wastes time in a non-productive state
and has the potential to frustrate learners.

13.3 3D

Greenfoot is designed as a 2D system. All APIs are aimed towards support-
ing 2D animation. It is possible to create 3D scenarios, as several impressive
projects submitted to the Greenfoot Gallery have demonstrated. However, do-
ing so is hard work, and Greenfoot offers little specific support for making this
easier than it is in standard Java. The existence of these projects in the Gallery,
however, shows that there is an interest—at least for some users—to create
those kinds of games. This is not well supported in Greenfoot.

14. EXPERIENCE

Greenfoot has been used extensively at high school level, at colleges and in
introductory university courses. Lengths of courses stretch from single-day
outreach activities with novices (sometimes as short as two hour sessions) to
full semester formal modules.

A large amount of feedback and anecdotal data exists; however, no formal
study of the effects of teaching Greenfoot has been carried out. Thus, firm
conclusions are hard to draw.

Some of the data that is available is interesting nonetheless and provides
a basis for further work on the system. It may also form a possible basis for
research questions for more formal studies of the effectiveness of Greenfoot in
learning situations.

Accurate user numbers are not collected for Greenfoot, but some lower
boundaries can be established. The Greenroom has, at the time of writing,
over 800 members, almost all of which are instructors using Greenfoot. About
two thirds of these are at a secondary school, and most of the remainder are
at college or university. Since its first release in mid 2006, Greenfoot has been
downloaded more than half a million times from our Web site.

Feedback from teachers often emphasises motivation and engagement of
students:

“Greenfoot worked really well with my students, I was very im-
pressed how absorbed they were.”

“Greenfoot is a brilliant instructional tool, and it’s setting off sparks
in my student’s heads like I’ve never seen before.”

ACM Transactions on Computing Education, Vol. 10, No. 4, Article 14, Pub. date: November 2010.

The Greenfoot Programming Environment · 14: 19

“My students love Greenfoot! They worked harder than ever on this
challenge.”

“We are having a great time working with Greenfoot. The students
can relate to the scenario and are anxious to add additional capabil-
ities.”

Another aspect regularly mentioned in user feedback is ease of use. Green-
foot seems to succeed in providing fewer stumbling blocks than other systems
teachers had experience with.

“I’ve been enjoying both the system and the book; it’s great to see
my students making real progress on their projects, free from the
normal development obstructions and roadblocks.”

The Greenfoot system (software and material) also seems successful in pro-
viding help for less experienced teachers.

“I had my first class yesterday, and having done no programming
whatsoever before, I was worried that I would not be able to get into
it, however using Greenfoot to program the ‘little crab’ has reassured
me, and I feel that I will be able to do this well.”

At high school level, Greenfoot is regularly used both in curricular instruc-
tion and in extracurricular activities, such as after-school clubs.

At university level, most use is in introductory programming courses. Here,
it is sometimes used for an initial part of the first semester (e.g., the first six
weeks), and sometimes throughout the semester in parallel or alternating with
other environments (this pattern seems to work especially well with BlueJ, be-
cause of the commonalities in interface and programming model). Universities
also use Greenfoot for school outreach and engagement activities.

15. RELATION TO SCRATCH AND ALICE

Greenfoot is a teaching system designed to make the creation and understand-
ing of computer programs easier. In the taxonomy presented by Kelleher
and Pausch [Kelleher and Pausch 2005], it is grouped in the Teaching Sys-
tems/Mechanics of Programming category, and within this, covers the following
sub-categories: Simplify Typing Code, Making New Models Accessible, Track-
ing Program Execution, Make Programming Concrete and Models of Program-
ming Execution.

Greenfoot shares many design objectives and teaching philosophies with
Scratch and Alice, such as the encouragement of creative exploration, tinker-
ing, experimentation, discovery, and social interaction. All three systems make
use of graphics and sound as motivators, while teaching fundamental program-
ming concepts.

The main target age groups differ. Both Scratch and Alice can be used with
younger children than Greenfoot, while Greenfoot scales better for more profi-
cient users. Scratch has a target user group almost entirely complementary to

ACM Transactions on Computing Education, Vol. 10, No. 4, Article 14, Pub. date: November 2010.

14: 20 · M. Kölling

Greenfoot (8- to 16-year-olds, to Greenfoot’s 14+), while Alice aims at a broader
range from 12 to about 19.

Greenfoot can follow on well from either Alice or Scratch. However, because
of the good complementary fit in target age group, as well as the common focus
on 2D graphics, a sequence of Scratch-to-Greenfoot is especially interesting.

Concepts between those systems transfer well. Scratch has a simpler ob-
ject model without classes which allows a very quick and easy start, but has
drawbacks for some kinds of more advanced projects, especially those involv-
ing many objects of the same kind. This is an ideal opportunity to motivate
a switch to Greenfoot once learners reach a stage where they aim for more
ambitious projects. Concepts learned in Scratch can then be generalized and
extended. The move to Greenfoot’s text-based editing and class-based object
model adds complexity, but the functionality gained in return provides more
power for the programmer. This presents a well working, realistic trade-off
in a move to a more powerful system as learners progress in their program-
ming ability. Some resources exist in the Greenroom to explicitly facilitate this
transition from Scratch to Greenfoot.

Alice’s object model is, like Greenfoot’s, based on Java3, and the Alice-
equivalent Java code can be produced and edited. Thus, Alice’s mental model is
very close to that of Greenfoot. This would allow smooth transition between the
two systems. However, the Alice team also propose use of Alice at introductory
university level, covering much of the same age group that Greenfoot is aimed
at. Here, the switch into Greenfoot is not quite as obvious an opportunity as
with Scratch, since continuing in Alice is a possible alternative. The choice
in this case comes down to preference of teachers between different kinds of
systems.

16. CONCLUSION

Greenfoot is a system straddling the balance point between relatively un-
trained programmers and a professional programming language. It is designed
for users with no or little programming experience, but aims at providing prac-
tice with standard programming concepts and techniques used in a current
mainstream language. This is intended to make adoption in schools and uni-
versities easier, since traditional curricula can easily be taught using it.

Greenfoot aims at making the use of the standard language, Java, easy by
providing a custom-designed environment that removes much of the complexity
commonly associated with object-oriented programming. At the same time,
it adds functionality to easily create graphics, animation and sound, so that
engaging examples can be treated early.

Using Greenfoot, young learners can easily create simple games and sim-
ulations while learning fundamental programming principles. Feedback from
users appears to indicate that the goal of engaging learners through the use
of these kinds of examples is successful. Greenfoot can be used as a first pro-
gramming system for learners in the mid-teens or older, or as a second system

3As of Alice version 3.0.

ACM Transactions on Computing Education, Vol. 10, No. 4, Article 14, Pub. date: November 2010.

The Greenfoot Programming Environment · 14: 21

after outgrowing environments aimed at younger learners, such as Scratch or
Alice.

ACKNOWLEDGMENTS

Greenfoot is a team project, built by a group of people over the last four or five
years, and several current and past members of our research group have played
crucial roles in its development. People who were closely involved in the design
and development of Greenfoot include Poul Henriksen, Davin McCall, Bruce
Quig, Neil Brown, Phil Stevens, Marion Zalk, Ian Utting, and John Rosenberg.

REFERENCES

CASPERSEN, M. E. AND CHRISTENSEN, H. B. 2000. Here, there and everywhere – On the recur-
ring use of turtle graphics in CS1. In Proceedings of the 4th Australasian Conference on Comput-
ing Education (ACE’00).

COLLEGEBOARD (ADVANCED PLACEMENT PROGRAM) 2010. GridWorld case study.
http://apcentral.collegeboard.com/apc/public/courses/teachers corner/151155.html
(accessed 5/10).

DANN, W. P., COOPER, S., AND PAUSCH, R. 2008. Learning to Program with Alice 2nd Ed. Prentice
Hall Press.

FINCHER, S., KÖLLING, M., BROWN, N., STEVENS, P., AND UTTING, I. 2010. Repositories of
teaching material and communities of use: Nifty assignments and the greenroom. In Proceedings
of the 6th International Workshop on Computing Education Research (ICER’10).

GALLERY 2010. Greenfoot Gallery. http://greenfootgallery.org/ (accessed 8/10).
GREENFOOT 2010. Greenfoot – The Java object world. http://www.greenfoot.org/ (accessed 8/10).
GF TUTORIAL 2010. Greenfoot tutorial. http://www.greenfoot.org/doc/tutorial/tutorial.html

(accessed 8/10).
GREENROOM 2010. Greenroom. http://greenroom.greenfoot.org/ (accessed 8/10).
KELLEHER, C. AND PAUSCH, R. 2005. Lowering the barriers to programming: A taxonomy of

programming environments and languages for novice programmers. ACM Comput. Surv. 37, 2,
83–137.

KÖLLING, M., QUIG, B., PATTERSON, A., AND ROSENBERG, J. 2003. The BlueJ system and its
pedagogy. J. Comput. Sci. Educ. 13, 4.

KÖLLING, M. 2009. Introduction to Programming with Greenfoot – Object-Oriented Programming
in Java with Games and Simulations. Pearson Education.

LUKAS, G. 1972. Uses of the LOGO programming language in undergraduate instruction. In
Proceedings of the ACM Annual Conference (ACM’72).

MALONEY, J. H., PEPPLER, K., KAFAI, Y., RESNICK, M., AND RUSK, N. 2008. Programming by
choice: Urban youth learning programming with scratch. In Proceedings of the 39th Technical
Symposium on Computer Science Education (SIGCSE’08).

MILLER, G. A. 1956. The magical number seven, plus or minus two: Some limits on our capacity
for processing information. Psychol. Rev. 63, 2, 81-97.

PATTIS, R., ROBERTS, J., AND STEHLIK, M. 1994. Karel the Robot: A Gentle Introduction to the
Art of programming 2nd Ed. John Wiley & Sons.

Received September 2010; accepted September 2010

ACM Transactions on Computing Education, Vol. 10, No. 4, Article 14, Pub. date: November 2010.

