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Abstract The CXXR project aims gradually to refactor the fundamental parts of the
R interpreter from C into C++ whilst retaining the full functionality of the standard
distribution of R. It is hoped that this will enable researchers more easily to enhance
the functionality of R by allowing them to extend the interpreter’s internal C++ class
hierarchy. The paper summarises progress to date and describes key aspects of the
internal implementation of the CXXR where this differs from the standard interpreter.
It also explains stratagems used to facilitate updating CXXR to reflect a new release
of R, and examines the relative performance of CXXR and the standard interpreter.
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1 Introduction

The aim of the CXXR project (http://www.cs.kent.ac.uk/projects/cxxr) is
gradually to refactor the fundamental parts of the R interpreter—the material within
the src/main directory of the R source distribution—from C into C++, whilst all the
time retaining the full functionality of the standard distribution of R. In particular, it
is intended that the behaviour of R code be unaffected when run under the CXXR in-
terpreter, unless the code probes into the interpreter internals, and that the R functions
.C, .Fortran and .Call work as before to enable R code to call code written in C,
C++ and Fortran. Moreover this foreign-language code will need no change provided
it communicates with R only via the R.h or S.h APIs. However, external functions
compiled against the Rinternals.h API may need small changes, as indicated in
the CXXR documentation.

Work on CXXR started in May 2007, at that time shadowing R 2.5.1; the current
release shadows R 2.9.2. This paper will refer to the standard R interpreter as CR,
and will assume some familiarity with the internals and interfaces of the standard in-
terpreter, as documented in ‘R Internals’ (R Core 2009a) and ‘Writing R Extensions’
(R Core 2009b).
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An important motivation for the project was to provide a basis for introducing
provenance tracking into R, so that for any R data object, an R user can determine
exactly which primary data sources it is based on, and exactly which sequence of op-
erations was used to produce it from the primary data, thus emulating and extending
the AUDIT facility of S (Becker et al. 1988).1 However, it is also hoped that CXXR
will help other researchers to produce experimental versions of the R interpreter,
this adaptability being achieved partly by improving the internal documentation, and
partly by tightening up the encapsulation boundaries within the software. Although
CXXR was initiated independently of the proposals in (Temple Lang 2009), it reflects
very similar aspirations.

2 CXXR Structure

CXXR code falls into three categories, which can be considered roughly to form three
concentric layers. At the centre is the CXXR core, which contains functionality that
has been fully refactored into C++, following as far as possible the programming
idioms of that language, and making free use of the C++ standard library, including
some use of the TR1 library extensions (Becker 2006). Everything in the CXXR core
is placed in the C++ namespace CXXR. The interfaces to the core are defined by header
files in src/include/CXXR and have been carefully documented using the Doxygen
documentation tool (van Heesch 1997).

The following functionality is now within the CXXR core:

– Memory allocation and garbage collection.
– An extensible class hierarchy replacing CR’s SEXPREC union.
– Object duplication (now handled essentially by C++ copy constructors).
– Environments (i.e. variable to object mappings), with hooks to support prove-

nance tracking.

These topics will be described in more detail in later sections.
The outermost of the three layers is the packages and modules layer, which as

the name suggests comprises R packages and modules. As was the intention, very
few changes have been necessary here, particularly in the packages: for example,
only seven files under src/library have any (non-comment) changes, and in sev-
eral cases these rectify what are at least arguably bugs in the CR code. It should be
remarked, however, that only packages forming part of the standard R distribution
have so far been tested.

In between the core and the packages and modules layer is the transition layer,
which consists of the CR files in src/main adapted to work with the CXXR core.
With a few exceptions, C source files have been redesignated as C++, but the pro-
gramming idioms largely remain those of CR (which in addition to C idioms fre-
quently exhibits those of Fortran and especially LISP). Indeed the general philos-
ophy within the transition layer—not always respected in the early days of CXXR

1 Provenance tracking facilities are being developed as a separate developmental thread by C. Silles,
and are not (yet) an integral part of CXXR; consequently, they will be mentioned only incidentally in this
paper.
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development—is to avoid any changes to transition layer files that are not strictly
required to deploy functionality from the CXXR core. This conservative approach
facilitates upgrading CXXR when there is a new release of CR.

Despite this general philosophy, there have been a number of systematic changes
to files in the transition layer. For example, in choosing identifier names CR coders
often choose C++ reserved words such as this, new and class, and these have to
be changed to something else. Also, C++ often requires explicit type conversions in
places where C allows implicit conversions. Thirdly, within transition-layer files that
are now in C++, C-style casts have everywhere been replaced by C++ casts (such
as static cast, const cast, reinterpret cast), which are more conspicuous
and give a clearer indication of the programmer’s intent. As CXXR development has
proceeded, it has proved to be particularly useful to make these systematic changes
in such a way that they can easily be reversed by a simple Perl script uncxxr.pl.

When it is necessary to upgrade CXXR to a new release of CR, changes to files
within the transition layer are scrutinised using a graphical three-way differencing
tool to compare (a) a file as it appeared in the previous release of CR, (b) the file
as it appears in the new release of CR, and (c) the corresponding CXXR file back-
transformed towards CR using uncxxr.pl. This backtransformation removes a lot
of ‘noise’ from the comparison, and makes it easier to see where substantive changes
have taken place in CR that need to be incorporated into CXXR: these changes can
then be accomplished by editing the CXXR code in a separate editor window.

Files within the CXXR transition layer occasionally exhibit unorthodox use of
whitespace, and use C preprocessor macros defined within the header file uncxxr.h
(contrary to general C++ practice which is to shun the use of macros). All this is to
enable uncxxr.pl better to do its work.

3 The RObject Class Hierarchy

A ubiquitous data type within the CR code is SEXP, whose underlying definition is
‘pointer to SEXPREC’ (SEXPREC*). SEXPREC itself is a C union of no fewer than 23
distinct datatypes, distinguished from each other—after the fashion of a Pascal variant
record—by a ‘SEXPTYPE’ field. However, most CR code does not see the definition
of SEXP as ‘pointer to SEXPREC’; instead it sees SEXP defined as an opaque pointer,
i.e. a pointer to an undefined C struct. Consequently, the CR code can access and
manipulate SEXPRECs only via a number of predefined functions such as REAL() or
CAR().

The resulting encapsulation has been of enormous help to the CXXR refactorisa-
tion effort. However, the fact that SEXPREC is a C union has disadvantages. It means
that the majority of type checking within the CR interpreter must be done at runtime.
It has also allowed some questionable programming practices to find their way into
the CR codebase. In particular, access functions which are intended to be applied to
one type within the union are sometimes applied to an object of another such type,
and this inevitably makes it difficult subsequently to change the underlying type def-
initions.
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CXXR::GCNode

CXXR::Frame

CXXR::RObject

CXXR::StdFrame

CXXR::ConsCell

CXXR::Environment

CXXR::ExternalPointer

CXXR::FunctionBase

CXXR::Promise

CXXR::S4Object

CXXR::Symbol

CXXR::VectorBase

CXXR::WeakRef

CXXR::ByteCode

CXXR::DottedArgs

CXXR::Expression

CXXR::PairList

CXXR::BuiltInFunction

CXXR::Closure

CXXR::DumbVector< T, ST >

CXXR::HandleVector< T, ST >

CXXR::String CXXR::CachedString

CXXR::UncachedString

Fig. 1 The main class hierarchy within CXXR (generated using Doxygen and slightly simplified).

SEXPREC does not exist in CXXR: it has been replaced by a class hierarchy rooted
at the class RObject. This is part of a continuing programme to try, as far as possible,
to move all program code relating to a particular datatype into one place, and then to
use C++ public/protected/private access controls to conceal details of implementation
and to defend class invariants. To give an example of a class invariant within CXXR,
the code of the base class RObject ensures that every attribute of an RObject has a
distinct Symbol object as its tag.

CXXR aims to make it easy for researchers to extend the class hierarchy, and so
introduce new sorts of object into R at the interpreter level.

Fig. 1 shows the resulting class hierarchy. RObject is the base class of objects
intended to be visible in the R language. C++ code sees SEXP defined as ‘pointer to
RObject’; C code continues to see SEXP as an opaque pointer. RObject is also the
home of R attributes. For the most part the leaf nodes of the subtree rooted at RObject
correspond in an obvious way to the various SEXPTYPEs described in (R Core 2009a),
and merit no particular comment. An exception is CHARSXP, which corresponds to
CXXR::String in the diagram; this is an abstract class with two implementations,
CachedString and UncachedString, the latter of which is obsolescent.

All the vector classes inherit from an abstract class VectorBase, which is pro-
vided mainly to allow a simple implementation of CR’s function LENGTH(), which
gives the number of elements in the vector. Data vectors (LGLSXP, RAWSXP, REALSXP
etc.) are implemented as instantiations of the C++ template DumbVector<T, ST>,
where the template parameter T indicates the C++ type of the elements of the vector,
and ST indicates the SEXPTYPE of the vector as a whole. ‘Dumb’ in the class name re-
flects the fact that this template is for use with element types with trivial constructors
and destructors and bitwise copying logic: ‘plain old data’ as it is sometimes called.

R vector types such as VECSXP and EXPRSXP which comprise pointers to other
RObjects are implemented using the C++ class template HandleVector<T, ST>;
the reason for ‘handle’ in the name will become apparent in Sec. 5.
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Classes CachedString and Symbol are unusual in that their constructors are
private. Instances of these classes have to be produced using the relevant class’s static
member function obtain(), and these functions enforce the requirements that at any
time there can be at most one CachedString object with a given text and character
encoding, and at most one Symbol object corresponding to a given CachedString.
Applying these constraints means that various hash tables within CXXR can be keyed
on the address of a CachedString object, or the address of a Symbol, knowing
that this corresponds uniquely to the underlying text and encoding. Incidentally, hash
tables within the CXXR core are always based on the relevant templates from the TR1
extensions to the C++ standard library, which offer tighter typing than the hashing
code within CR.

CR includes a special ‘null object’, of type NILSXP, pointed to by the global vari-
able R NilValue. This null object is used a stub, to indicate the absence of a more
substantive object. For example, the CDR (successor) field of the last element in a
list points to the null object. Because the various SEXPTYPEs of CR are mapped onto
distinct C++ types within CXXR, having a real null object would be unworkable,
because this object would need to belong simultaneously to all the C++ types that the
null object stands in for. Instead of a null object, CXXR simply uses a null pointer:
it defines R NilValue as a macro expanding to NULL. This entails some extra com-
plexity in the implementation of accessor functions such as CAR(), which in CR are
frequently applied to R NilValue; CXXR needs to handle this case specially.

A deficiency in the RObject class hierarchy as currently defined is the fact that in
several places, for example in the inheritance from ConsCell, inheritance represents
commonality of implementation rather than the ‘is a’ relationship favoured by canons
of object-oriented programming. Future restructuring of the hierarchy is consequently
likely.

4 Memory Allocation and Garbage Collection

Memory allocation and garbage collection (GC) are entirely decoupled from each
other in CXXR. Memory allocation is handled by the class MemoryBank, all of
whose members are static. Principal among its member functions are allocate()
and deallocate, which present an interface similar to malloc() and free() in
C. MemoryBank::allocate() routes requests for ‘large’ memory blocks (currently
those of at least 128 bytes) directly to C++’s global operator new. Requests for
smaller blocks are serviced from pools of preallocated cells carved out of ‘superblocks’
of about 4 kB (cf. Meyers 1998, Item 10). These pools are implemented by class
CellPool and are provided for various cell sizes from 8 bytes upwards. MemoryBank
keeps track of the total number of bytes currently allocated.

There are two principal clients of MemoryBank. First, there is a class called
CXXR::Allocator, which is a memory allocator of the sort used by the C++ stan-
dard library containers. Using this it is straightforward to declare standard vectors,
sets, maps and so on which draw their memory from MemoryBank.
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Secondly, there is class GCNode, which is the base class for all objects subject to
garbage collection. GCNode defines its own operator new method, which obtains
memory via MemoryBank.

During 2009 CXXR development has experimented with different garbage col-
lection approaches. At the time of the DSC2009 conference, the svn repository was
split three ways:

– On the development trunk, the approach used was generational mark-sweep,
much as in CR itself.

– The branch refcount+gen used reference counting, backed up by generational
mark-sweep to handle cyclic references. This was an intermediate refactorisation
step.

– The branch gclab used reference counting backed up by simple, i.e.
non-generational, mark-sweep.

The third of these approaches, which is comparable to that in (DeTreville 1990),
has moved onto the development trunk as from release 0.21-2.8.1 of CXXR. Refer-
ence counting has the advantage that once a memory block becomes garbage, it is
quickly reclaimed and reallocated, thus increasing the probability that a newly allo-
cated memory block is already mapped by a processor cache. Reverting from gen-
erational mark-sweep to simple mark-sweep means that it is no longer necessary to
enforce a ‘write barrier’, and this greatly simplifies coding, and in particular makes it
possible to deploy the facilities of the C++ standard library more extensively.

The remainder of this paper will assume this third approach unless otherwise
indicated. In this approach, each GCNode has a one-byte saturating reference count:
if the reference count ever reaches 255, it stays at that value, and the node can then
only be garbage-collected by the mark-sweep mechanism.2

When one GCNode needs to refer to another, it does so not with an ordinary pointer
but with a ‘smart pointer’ (cf. Meyers 1996, Item 28) from the GCEdge<T> class
template; such a pointer automatically adjusts the reference count of the node referred
to.

Class GCManager manages the mark-sweep garbage collection process, includ-
ing ensuring the correct handling of weak references and finalisers. (Each WeakRef
object refers to itself via a GCEdge, to prevent weak references being culled by the ref-
erence counting mechanism.) GCManager also controls the threshold at which mark-
sweep garbage collection takes place; this threshold is based exclusively on the num-
ber of bytes allocated from MemoryBank, unlike CR which also considers the number
of nodes allocated.

A frequent requirement within the interpreter is temporarily to protect a GCNode
against garbage collection, either because it has not yet been incorporated into the
main directed graph of object references, or because it has been detached from this
graph. In CR, this is achieved using the PROTECT(), UNPROTECT() and kindred func-
tions. These functions continue to be available in CXXR (for use in the transition
layer), but a better approach is to use a smart pointer from the GCStackRoot<T>

2 Note that this reference count is not visible outside the GCNode class. In particular, it does not re-
place the NAMED mechanism used within CR for controlling object duplication, which for the time being
continues unchanged within CXXR.
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template. The template parameter T indicates the type of GCNode pointed to, by de-
fault RObject itself. For most purposes, a GCStackRoot can be handled exactly like
an ordinary pointer of type T*: it can be dereferenced, and a pointer destination can be
copied from an ordinary T* pointer to a GCStackRoot<T> pointer using ordinary as-
signment syntax, and vice versa. But the destination object of GCStackRoot pointer
will be protected from garbage collection for as long as the GCStackRoot points to
it.

The GC protection offered by a GCStackRoot object automatically ceases when
the GCStackRoot itself ceases to exist, typically when it goes out of scope: this is ac-
complished by the class destructor. Consequently, using GCStackRoots sidesteps the
need manually to balance PROTECT() and UNPROTECT() operations that is necessary
in CR. Another advantage is that if a GCStackRoot is declared in the outermost block
of a function, its GC protection extends up to and including the return statement of
the function, whereas CR’s UNPROTECT() must necessarily precede the return.

Conceptually, GCStackRoot objects form a stack, and they are consequently sub-
ject to the constraint that they must destroyed in the reverse order of their creation, as
with pop and push operations on a stack. (There is just one stack, irrespective of the
template parameter T.) It is recommended GCStackRoot pointers are always auto-
matic C++ variables, i.e. variables stored on the process’s execution stack, in which
case the C++ compiler will itself ensure that they are destroyed in the reverse order
of creation.

Because of this constraint, GCStackRoots are best suited to short-term protection
against GC. Long-term protection is achieved using the GCRoot<T> smart pointer
template, which behaves in exactly the same way as GCStackRoot but is not subject
to any destruction-order constraints. The disadvantage with GCRoot is that construc-
tion and destruction take longer than for GCStackRoot. Increasingly, R objects which
need to be in existence throughout an R session are implemented within CXXR using
GCRoot static members of the relevant class: an example is R NaString (the ‘not
available’ string).

4.1 Class GCNode’s internal lists

Internally, class GCNode arranges all GCNode objects on a number of lists, imple-
mented as static members of the GCNode class. Principal among these are the live list
s live and the moribund list s moribund. Newly created nodes are placed on the
live list. If a GCNode’s reference count falls to zero, it is transferred to the moribund
list.

Such moribund nodes cannot immediately be deleted, because it is quite common
for the reference count to go up again after falling to zero: in fact this happens in
about one case in four. This arises because CR code relies widely on the fact that no
garbage collection will take place unless memory allocation is attempted. For exam-
ple, it is very common for functions within the interpreter to return an unprotected
SEXP: a pointer to an RObject that was protected within the body of the function
now returning, and will again be protected within the calling code, but which for the
moment—in CXXR—has a reference count of zero.
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The destructor of class GCNode is private, and likewise the destructors of all
classes inheriting from GCNode are either private or protected. This means that the
only possible way of creating such an object is dynamic allocation using the new oper-
ation (cf. Meyers 1996, Item 27). However, GCNode defines its own operator new,
so that when an object of a class inheriting from GCNode is created, the compiler au-
tomatically routes the request for memory to GCNode’s own operator new function,
rather than to the global operator new.

What GCNode::operator new does first is to scan through the moribund list.
Any node whose reference count is still zero gets deleted, and other nodes get re-
turned to the live list. Then, if the number of bytes allocated via MemoryBank ex-
ceeds a threshold set by class GCManager, GCNode::operator new calls upon class
GCManager to initiate a mark-sweep garbage collection. Finally, operator new al-
locates the requested number of bytes by calling MemoryBank::allocate().

4.2 Infant Immunity

In one aspect, the way in which C++ works is rather at odds with automatic garbage
collection. Suppose that Foo is a class that inherits from GCNode. From what has
already been said, one might suppose that a statement such as the following would be
sufficient to create a Foo object pointed to by f:

GCStackRoot<Foo> f = new Foo ( · · · ) ;

where Foo(· · ·) is a constructor expression.
The compiler will convert this into the following sequence of operations:

1. GCNode::operator new is called to allocate enough memory for a Foo object;
2. The relevant constructor of Foo is called to initialise the object. However, before

this constructor can start its own work, the C++ language requires it first (implic-
itly or explicitly) to call a constructor of GCNode to initialise the GCNode part of
the object.

3. After the GCNode constructor returns, the Foo constructor initialises the Foo part
of the object.

4. The code then returns a pointer to the newly-created Foo.
5. This pointer is assigned to the smart pointer f, and this assignment increments

the reference count of the newly-created Foo and takes other steps to protect it
from garbage collection.

But consider what happens if Foo’s constructor needs to create a subobject which
is also a GCNode. (As we shall see in Sec. 5, this happens for example in the copy
constructor of class PairList, which automatically copies subsequent elements of
the list.) Suppose further that allocating memory for the subobject gives rise to a
mark-sweep garbage collection. What happens is that the object under construction—
the Foo object—gets garbage-collected. The subobject is allocated at Step 3, in Foo’s
constructor. Step 2 is already complete, which means the garbage collector is aware
of the new node: it is already on the live list. But not until Step 4 do we get a pointer
to the node under construction, so it cannot be protected from garbage collection until
Step 5.
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The solution that CXXR adopts is for each GCNode to be immune from garbage
collection while it is construction. This means that code must specifically signal to
class GCNode that the construction of a node is complete, and this is done using the
expose() method, which acts like an identity function, but with the side effect of
terminating infant immunity. The object construction idiom thus becomes:

GCStackRoot<Foo> f = GCNode : : expose ( new Foo ( · · · ) ) ;

If CXXR is built with the preprocessor variable CHECK EXPOSURE defined, checks
are inserted to verify that each node has been exposed to garbage collection before
any substantive use is made of it.

During CXXR development, various approaches have been explored for imple-
menting infant immunity on a node by node basis, but all these approaches proved to
have substantial drawbacks. The approach now used is much simpler:
GCNode::operator new will not initiate a mark-sweep collection if any GCNode is
still under construction. The ‘under construction’ status is signalled by a flag within
each GCNode object, which is set by the constructor and cleared by the expose()
function. Class GCNode also keeps a tally of the number of nodes currently under
construction.

5 Object Duplication

Each class inheriting from RObject defines whether and how objects of that class can
be duplicated. Class RObject defines a virtual method clone(), but by default that
returns a null pointer, signifying that the object is not clonable. Many classes in the
RObject hierarchy define a C++ copy constructor, which encapsulates the behaviour
of CR’s duplicate() function with regard to that class, and most such classes also
reimplement clone() so that foo->clone() returns a pointer to a copy of foo made
with the copy constructor.

CXXR here exploits yet another smart pointer template called
RObject::Handle<T>. This inherits from GCEdge<T>, and like GCEdge<T> each
handle encapsulates a pointer—possibly null—to a particular type T of RObject.
When a (non-null) handle is copied, it tries to copy the object it points to by invok-
ing clone(). If that succeeds, i.e. returns a non-null pointer, then the copied handle
points to the copied object, but if the clone fails, the copied handle points to the orig-
inal object. This greatly simplifies the implementation of copy constructors, and in
some cases the default copy constructor supplied by the compiler does exactly what
is needed.

To illustrate this, Fig. 2 shows how a PairList (LISTSXP) object is laid out in
CXXR.3 Notice that the attributes field m attrib is declared as a handle, so that
when a PairList object is cloned, the copy constructor will automatically try to
duplicate the attributes too. Similarly for the ‘CAR’. But the tag is simply declared as
a GCEdge, so the cloned PairList will point to the original tag: there is no attempt
to duplicate it.

3 The last few fields in the figure, from m missing onwards, have been ‘pushed down’ the inheritance
hierarchy from the gp field of SEXPREC; some or all of them may be removed in future refactorisation.
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vptr

Link* m_prev

Link* m_next

m_refcountm_bits SEXPTYPE
Misc.
bits

Handle<PairList> m_attrib

Handle<RObject> m_car

GCEdge<PairList> m_tail

GCEdge<RObject> m_tag

m_missing m_argused
m_active
_binding

m_binding
_locked

GCNode

ConsCell

RObject

PairList

HeterogeneousListBase
::Link

Fig. 2 Layout of a PairList object (schematic, for 32-bit architecture). vptr is a compiler-generated
pointer to class PairList’s table of virtual functions.

The tail (CDR) is a special case: the tail is duplicated on copy, but not using
the Handle mechanism, which would entail recursing down the list. Instead there
is special code inside the PairList copy constructor that duplicates the tail using
iteration.

The rationale behind the name of HandleVector<T, ST> will probably now be
apparent: the class is implemented using a C++ standard vector with elements of
type RObject::Handle<T>. Consequently, cloning a HandleVector will attempt
to clone the objects its elements point to.

6 Environments

In CXXR, all environments work in the same way, and this includes the base envi-
ronment and base namespace, which CR handles in a completely different way from
other environments. Each environment contains a pointer to its enclosing environ-
ment, and a pointer to an object of class Frame. The only unusual feature of the
base environment and the base namespace is that they both point to the same Frame,
though they have different enclosing environments.

Frame itself is an abstract class—it defines an interface without defining an imple-
mentation—which defines a mapping from Symbol objects to Frame::Binding ob-
jects. These Frame::Bindings in turn refer to arbitrary RObjects. This structure
means that it is entirely straightforward to encapsulate lazy loading strategies into
classes inheriting from Frame. Similarly, functionality similar to R’s RObjectTables
package (Temple Lang 2001) is readily obtainable: for example it is possible to de-
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fine a type of Frame that looks symbols up in an external database. (However, CXXR
does not support the RObjectTables package directly.)

Class Frame inherits from GCNode, but not from RObject (cf. Fig. 1). The class
includes the facility to set up callback functions to monitor when a binding within
the frame is read or modified. Such monitor functions are used in object provenance
tracking.

There is currently no analogue to CR’s ‘global cache’, which provides a short
cut for locating symbol definitions on the search path. This means that when CXXR
looks up a symbol that is defined in the base environment, it has every time to work its
way down the search list before it finds it. Although the use of package namespaces
sidesteps the problem for many lookups, which will terminate at the base namespace
rather than the base environment, the absence of a global cache nevertheless appears
to have a serious impact on performance, and it is likely that some such mechanism
will be reintroduced into CXXR in due course.

7 Performance

Benchmark CR CXXR GMS CXXR RC/MS
(secs) (secs) (secs)

bench.R 111 113 112
(Jan de Leeuw)
kaltime10.R 95 144 113
stats-Ex.R 30 61 69

The performance of CXXR is currently disappointing. The table above shows
timing tests on various benchmarks carried out on a 2.8 GHz Pentium 4 with 1 MB L2
cache, comparing R-2.8.1 with CXXR revision 599, using comparable optimisation
options. The column headed ‘CXXR GMS’ is the implementation using generational
mark-sweep for garbage collection, and corresponds closely to release 0.20-2.8.1 of
CXXR. The right-hand column, headed ‘CXXR RC/MS’ uses reference counting
backed up by simple mark-sweep, and corresponds fairly closely to release 0.21-
2.8.1.

If we consider Jan de Leeuw’s benchmark bench.R (Urbanek 2008), then CR
and CXXR are about the same speed. But since most of the work in bench.R is done
in C functions that are essentially unchanged in CXXR, that is unsurprising.

At the other extreme is stats-Ex.R, which takes over twice as long in CXXR
as in CR, and is even slower in the reference-counted version of CXXR. The reasons
for this are not yet fully understood.

Closer study has been made of the performance of CXXR with a third program,
kaltime10.R, as follows:

k a l t i m e <− f u n c t i o n ( d , n ){
p h i <− matrix ( 0 . 9 / d , nrow=d , nco l =d )
p <− matrix ( 0 , nrow=d , nco l =d )
q <− diag ( d )
f o r ( i i n 1 : n ) p <− p h i %∗% p %∗% p h i + q
p

}

k a l t i m e ( 1 0 , 5000000)
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CR CXXR (GMS) CXXR (RC/MS)
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Fig. 3 Analysis of time consump-
tion running kaltime10.R. Clocktick
samples are allocated to the following
categories. RBLAS: libRblas.so

basic linear algebra system. COM:
common, i.e. functions little changed
between CR and CXXR. ENV: envi-
ronments, inc. symbol look-up. MM:
memory allocation, garbage collec-
tion, C++ destructors. ATT: R at-
tributes. LIBC: libc-2.9.so. PROT:
initiating and ending protection from
garbage collection. Other: anything
not clearly attributable to the preced-
ing categories.

Basically, the code carries out 5 000 000 iterations of a Kalman filter time update
(naı̈vely implemented, and with a matrix transposition omitted), operating on 10×10
matrices. With kaltime10.R, the reference-counted version of CXXR is about 20%
slower than CR, but the generational mark-sweep version is about 50% slower.

Fig. 3 presents an analysis of which parts of the interpreter consume most time
when running kaltime10.R, by allocating clocktick samples to a number of cate-
gories. (The sample counts are based on flat profile data obtained using Intel’s VTune
tool; the use of this tool means that total timings are not quite in the same proportions
as in the table earlier.) For the most part this is self-explanatory, but three comments
are in order:

– Although the functions in category COM are textually little changed between
CR and CXXR, they include many invocations of functions which are inlined in
CXXR but not in CR. This appears largely to account for the timing differences
in the category.

– In the case of CR much of the time in category LIBC is accounted for by calls to
isnan(). In C++, isnan() is inlined, and the time will show up instead in the
COM category.

– As regards the MM category, the difference between the two versions of CXXR
seems almost entirely to be due to better cache utilisation in the reference-counted
version. Why the reference-counted version is so much slower than CR is not fully
understood.

One aspect of performance where the reference-counted version of CXXR shows
particular promise is L2 cache misses, as the following table shows. The table was
obtained using cachegrind (Valgrind Developers 2009) running kaltime10.R but
with just 100 000 iterations.
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CR CXXR GMS CXXR RC/MS
D1 misses 12 864 395 (0.4%) 36 063 852 (1.1%) 21 130 898 (0.6%)
L2d misses 6 655 104 (0.2%) 14 193 172 (0.4%) 373 466 (0.0%)
I1 misses 25 843 389 (0.4%) 31 854 095 (0.5%) 73 659 529 (1.2%)
L2i misses 63 323 (0.0%) 97 394 (0.0%) 55 400 (0.0%)
Brch mispred. 37 427 870 (5.4%) 41 119 592 (5.8%) 47 800 867 (6.3%)

8 Future Work

Near-term priorities for future work on CXXR are as follows:

– Introduce a virtual function RObject::evaluate(), and use it to move eval-
uation code out from CR’s eval() function into the appropriate place in the
RObject class hierarchy. In the process reduce internal use by the interpreter of
PairList objects in favour of lighter-weight data structures.

– Similarly factor out serialisation/deserialisation code into the class hierarchy. Also
possibly switch to a serialisation format (XML perhaps) in which the end of the
serialized form of any object can be determined on syntactical grounds alone.
This will enable a deserialiser to make some sense of a saved session even if it
does not understand every type of object in the session (e.g. because of miss-
ing packages). Extension to the serialisation facilities is also necessary to support
cross-session provenance tracking.

With evaluation and serialisation thus moved out into the class hierarchy, it is to be
hoped that more implementation details can be concealed within these classes, so
improving encapsulation.

In the rather longer term, it is expected that the global cache will be reintroduced
in some form, and that R contexts (RCNTXT) and error handling will be refactored in
a manner that exploits C++ exception handling idioms. It would also be desirable for
attributes and slots to be implemented by distinct mechanisms at the C++ level, and
for the C++ classes implementing R types to enforce appropriate constraints on the
setting of attributes and slots.
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