
TOWARDS MODULAR, SCALABLE AND OPTIMAL

DESIGN OF TRANSCRIPTIONAL LOGIC SYSTEMS

a thesis submitted to

The University of Kent at Canterbury

in the subject of computer science

for the degree

of doctor of philosophy.

By

Nicolae Radu Zabet

October 2010

Abstract

Living organisms can perform computations through various mechanisms. Under-

standing the limitations of these computations is not only of practical relevance

(for example in the context of synthetic biology) but will most of all provide new

insights into the design principles of living systems.

This thesis investigates the conditions under which genes can perform logical

computations and how this behaviour can be enhanced. In particular, we identified

three properties which characterise genes as computational units, namely: the

noise of the gene expression, the slow response times and the energy cost of the

logical operation.

This study examined how biological parameters control the computational

properties of genes and what is the functional relationship between various com-

putational properties. Specifically, we found that there is a three-way trade-off be-

tween speed, accuracy and metabolic cost, in the sense that under fixed metabolic

cost the speed can be increased only by reducing the accuracy and vice-versa. Fur-

thermore, higher metabolic cost resulted in better trade-offs between speed and

accuracy. In addition, we showed that genes with leak expression are sub-optimal

compared with leak-free genes. However, the cost to reduce the leak rate can

be significant and, thus, genes prefer to handle poorer speed-accuracy behaviour

than to increase the energy cost. Moreover, we identified another accuracy-speed

trade-off under fixed metabolic cost, but this time the trade-off is controlled by

the position of the switching threshold of the gene. In particular, there are two

optimal configurations, one for speed and another one for accuracy, and all con-

figurations in between lie on an optimal trade-off curve.

ii

Finally, we showed that a negatively auto-regulated gene can display better

trade-offs between speed and accuracy compared with a simple one (a gene without

feedback) when the two systems have equal metabolic cost. This optimality of

the negative auto-regulation is controlled by the leak rate of the gene, in the

sense that higher leak rates lead to faster systems and lower leak rates to more

accurate ones. This in conjunction with the fact that many genes display low but

non-vanishing leak rates can indicate the reason why negative auto-regulation is

a network motif (has high occurrence in genetic networks).

These trade-offs that we identified in this thesis indicate that there are some

physical limits which constrain the computations performed by genes and further

enhancement usually comes at the cost of impairing at least one property.

iii

Acknowledgements

Firstly, I am really grateful to my supervisor Dr. Dominique Chu for believing

in me and for his support and valuable guidance over the last three years. His

passion for research was an inspiration for me.

Furthermore, I would like to thank my supervisory panel, Dr. Tim Hopkins and

Dr. Colin Johnson, for all their support, encouragements and valuable comments

on my research.

In addition, I would like to thank Professor Andy Hone for the great collabo-

ration we had and for his help during various stages of my PhD. I would also like

to use this opportunity to thank David Barnes for his continuous support during

my PhD.

I owe a big thank to my wife Dana for all her support, understanding and love

during my PhD. I would also like to thank her and Chris Silles for proofreading

and correcting the English of my thesis and my articles.

Also, I would like to present my deepest love and respect to my parents,

Mariana and Alecsandru, for raising me and most importantly for instilling in me

the intense desire to learn.

Finally, I would like to acknowledge and thank the School of Computing at

the University of Kent for the financial support, which made my PhD possible.

iv

Dedication

For my wife Dana, my mother Mariana and my father Alecsandru.

v

Contents

Abstract ii

Acknowledgements iv

Dedication v

List of Tables 5

List of Figures 8

1 Introduction 9

1.1 Challenges of Designing Transcriptional Logic Gates 13

1.2 Aim and Objectives . 15

1.3 Original Contributions . 17

1.4 Overview of the Thesis . 17

1.5 Publication List . 19

2 Molecular Computing 21

2.1 Introduction . 21

2.2 Biological Background . 25

2.3 DNA Computing and Hard Combinatorial Problems 30

2.4 Molecular Logic Gates . 32

2.4.1 DNA Logic Gates . 34

2.4.2 Enzymatic Logic Gates . 37

2.4.3 Genetic Logic Gates . 43

1

CONTENTS 2

2.5 Computational Properties of Transcriptional Logic Gates 57

2.5.1 Noise in Gene Expression 58

2.5.2 Switching Time . 66

2.5.3 Integrated Studies . 67

2.6 Summary . 72

3 Stochastic Methods 75

3.1 Markov Chains . 75

3.1.1 Discrete-Time Markov Chains 76

3.1.2 Continuous Time Markov Chains 78

3.2 The Chemical Master Equation 80

3.3 Stochastic Simulation Algorithms 83

3.3.1 Direct Method . 83

3.3.2 First Reaction Method . 85

3.4 Analytical Method . 86

3.4.1 Fluctuation Dissipation Theorem 87

3.4.2 Considerations on the Method 90

3.5 Our Simulation Method . 91

3.6 Summary . 94

4 A Genetic Switch 96

4.1 Introduction . 96

4.2 The Model of a Genetic Switch 98

4.2.1 Metabolic Cost . 100

4.2.2 Switching Time . 101

4.2.3 Output Noise . 103

4.3 Considerations on the Switching Mechanism 107

4.3.1 One Binding Site . 108

4.3.2 Two Binding Sites . 110

4.3.3 Biological Significance . 115

4.4 Considerations on the Noise . 117

CONTENTS 3

4.4.1 Stochastic Gene Expression 118

4.4.2 Assessment of the Analytical Method 123

4.4.3 Discussion . 123

4.5 Summary . 125

5 Computational Limits to Binary Genes 128

5.1 Introduction . 128

5.2 The Model of the Binary Gene . 130

5.3 Noise, Time and Cost . 132

5.3.1 Noise in the Case of Non-Vanishing Leak Expression . . . 135

5.3.2 General Case . 139

5.3.3 Noise and the Regulation Threshold 141

5.3.4 Noise and the Hill Coefficient 142

5.4 Summary . 145

6 Optimality Analysis of Binary Genes 147

6.1 Introduction . 147

6.2 The Model of the Binary Gene . 149

6.3 Noise, Time and Cost . 150

6.3.1 Optimal Switching Time 151

6.3.2 Optimal Trade-off Curve 152

6.3.3 Optimality and the Leak Rate 154

6.3.4 Optimality and the Hill Coefficient 155

6.4 Negative Auto-Regulation . 156

6.4.1 Switching Time . 159

6.4.2 Noise . 167

6.5 Biological Significance . 172

6.6 Summary . 175

7 Design of a Genetic Full-Adder 177

7.1 Introduction . 177

CONTENTS 4

7.2 Building a Genetic Full-Adder . 180

7.3 Analysis of the Genetic Full-Adder 183

7.3.1 Interconnecting Logic Gates 184

7.3.2 Optimality Analysis . 187

7.4 Considerations on the Approach 195

7.5 Biological Significance . 197

7.6 Summary . 198

8 Conclusions 200

8.1 Contributions . 201

8.2 Further Work . 205

List of Tables

1 Noise, time and cost . 140

5

List of Figures

1 DNA structure . 25

2 Protein synthesis . 26

3 Gene regulation . 27

4 Hill regulation function . 28

5 Enzymes . 29

6 Hamiltonian path problem . 31

7 Boolean Logic . 33

8 Non modular DNA logic gates . 35

9 Modular DNA logic gates . 37

10 Single-enzyme logic gates . 38

11 Multi-enzyme logic gates . 39

12 Enzymatic cascades . 40

13 Single-regulator genetic logic gates 45

14 Transcriptional logic gates . 47

15 The lac operon can mimic an AND gate 50

16 Combinatorial approach on transcriptional logic gates 51

17 Rational design of transcriptional logic gates 52

18 Stochastic fluctuations and protein synthesis 57

19 Response time . 67

20 The model of a genetic switch . 99

21 Switching time . 104

22 Comparison between analytical solution to the noise and simulation

data . 106

6

LIST OF FIGURES 7

23 The gene regulation model . 108

24 Occupancy probability as a function of TF abundance 110

25 Full occupancy probability as a function of TF abundance 111

26 The model with two cooperative binding sites 113

27 Full occupancy probability as a function of TF abundance in the

case of cooperative behaviour . 114

28 Fitting the gene regulation function to a Hill function 115

29 Assessment of the FDT in the case of a binary gene 124

30 Relation between output noise, switching time, and metabolic cost

of the binary gene . 135

31 Comparison of various α at fixed metabolic cost. 136

32 Noise reduction sensitivity to cost increase 139

33 The noise as a function of K in the repressor case 142

34 The noise as a function of h . 145

35 The threshold position controls the switching time 152

36 The threshold position controls the trade-off between speed and

accuracy . 154

37 The leak rate changes the noise levels 155

38 The Hill coefficient can enhance the trade-off between speed and

accuracy . 156

39 The model of the negatively auto-regulated gene 156

40 Negative auto-regulation enhances the switching on speed 163

41 Negative auto-regulation enhances the switching off speed 165

42 Fast non-instantaneous input change and speed 166

43 Slow non-instantaneous input change and speed 167

44 Leak rate influences the performance of negative auto-regulation . 170

45 Non vanishing low relative leak rates enhance the optimal trade-off

curve . 171

46 Optimality analysis and biological experiments (1) 172

47 Optimality analysis and biological experiments (2) 174

LIST OF FIGURES 8

48 The logic diagram of a full-adder 181

49 Regulation functions which mimic logic behaviour 183

50 The steady state output of the full-adder for any combination of

the input . 186

51 The time to reach the threshold for the full-adder 190

52 Detailed map of the propagation time of the full-adder 190

53 The longest propagation time in the full-adder as a function of the

threshold position . 191

54 Optimal threshold position for time in a system with sigmoid reg-

ulation functions . 193

55 Noise of the full-adder . 194

56 Trade-off curve of the full-adder 195

Chapter 1

Introduction

Currently, computing hardware is made from inorganic materials (silicon). How-

ever, in principle, computations can also be performed on other mediums, includ-

ing components of living systems such as biological molecules. The viability of

using biological molecules in computational problems was proven both theoreti-

cally and experimentally in previous studies [29, 175]. These studies modelled and

some even built systems able to perform different types of computations, such as:

numerical computations (e.g., arithmetic units [38] or counters [52]), combinato-

rial problems (e.g., Hamiltonian Path Problem [3] or satisfiability problem [99])

and logic computations (e.g., logic gates [32], binary arithmetic units [81, 121, 96]

and even a tic-tac-toe game [160]).

This thesis aims to examine theoretically various aspects of the design of

computational systems constructed from biological molecules, from an interdis-

ciplinary perspective, reuniting knowledge from biology, computer science, math-

ematics, physics, engineering, and chemistry. Particularly, we want to identify a

modular and optimal design of genetic logic computational systems.

Usually, we want computations to be performed as fast as possible, but com-

putations carried out using biological molecules are much slower compared with

silicon based ones [3, 29]. Thus, first we need to answer the question: what are

these biological computations best suited for? Despite the slow speed, these bi-

ological computational units have the advantage of miniaturisation, low energy

9

CHAPTER 1. INTRODUCTION 10

consumption and natural interaction with biological organisms. This indicates

that one area where these bio-computers can be very useful is in biological appli-

cations.

For example, these biological computational units can be used in smart drug

delivery systems. The bio-computer can perform in situ diagnosis of a disease and,

depending on the diagnosis, it can release the appropriate drug [23]. Alternatively,

bacterial cells can be engineered to detect high density of mammalian cells (usu-

ally associated with tumours) and then invade these cells and release a chemical

kill signal [7]. Other examples of possible applications include: bacterial cells able

to ‘eat’ oil spills [107], sensor cells aimed to detect the presence or absence of a

substance in an inaccessible environment [164], tissue engineering and fabrication

of biomaterials [16], mechanisms which control the density of a bacterial popula-

tion [183] or cells engineered to produce synthetic drugs [180]. To summarise, we

can say that these bio-computers may prove to be of extreme importance for ap-

plications in the pharmaceutical industry, environmental applications and various

branches of the economy.

From the above examples we can infer that, in general, we may want cells

to take decisions based on various internal and external factors. Often, these

decisions need to be taken based on the presence or the absence of various chem-

ical factors and, thus, the decision systems can be modelled by logic functions.

This logic function approach is inspired by the fact that cells seem to display a

Boolean logical behaviour. For example, the proteins associated with the lactose

metabolism are produced only when the glucose is absent and the lactose is present

and this is often approximated by a NIMPLIES gate [148]. Although there are

various types of computations that can be performed in biological systems, in this

thesis, we will limit our focus only to logical computations, which, as we have seen

above, are of extreme importance in biological applications.

The first step to engineer logical computations within the cell consists of build-

ing a library of elementary components [9, 172] and, using the analogy with elec-

tronic circuits, this library should include: logic gates [71, 32, 39], memory units

CHAPTER 1. INTRODUCTION 11

[57, 91], clocks [47], counters [52], pulse generators [17]; see http://partsregistry.org.

Once this toolbox is complete, more complex logical systems can be constructed.

In this contribution, we will address only logic gates and logic gate systems, but

similar mechanisms can be employed in the design and analysis of other types of

parts (such as memory units, clocks or counters).

Depending on the biological molecules used in constructing logic gates, there

are mainly three types of biochemical logic gate: (i) DNA based, (ii) enzymatic

and (iii) genetic logic gates. DNA based logic gates use the fact that two com-

plementary DNA strands anneal (bind). The input of the gate is a DNA strand

able to anneal to a second DNA strand (representing the gate) and to perform a

transformation on a third DNA strand (the output).

Alternatively, logic gates can be implemented from allosteric enzymes. These

proteins can selectively catalyse the transformation of a substrate into a product

only when the enzyme is activated. The state of the enzyme is controlled by

inducer molecules which represent the input in the system, while the output is

represented by the transformed product protein.

Finally, logic gates can be constructed from genes by exploiting the fact that

genes express output proteins based on the occupancy state of their cis-regulatory

area. If we consider the regulatory molecules to be the input of the system and the

product protein the output, then a gene can mimic the behaviour of a gate, i.e.,

the gene processes one or more inputs and, based on a built-in function, produces

an output. Genetic logic gates that integrate multiple inputs in the cis-regulatory

area are called transcriptional logic gates. In this type of model, we can think of

cells as being a sort of Turing machine, where environmental signals (chemical or

physical) activate an existing gene program (encoded on DNA) which performs

certain tasks by expressing the appropriate proteins [153].

In addition to being able to mimic logic behaviour, logic gates also need to

address various design aspects, such as: (i) to have a reset mechanism, (ii) to

possess an addressing mechanism, (iii) to allow interconnection and (iv) to be

easily fine-tuned. All three types of biochemical logic gate can display a reset

CHAPTER 1. INTRODUCTION 12

mechanism. In the case of DNA and enzymatic gates, the reset mechanism consists

of adding another substance able to process the output molecules [41]. For genetic

logic gates, the cell has a simple built-in auto-reset mechanism through the decay

process, i.e., proteins (both output and input ones) are decayed by either active

degradation (carried out by large macromolecules within the cell) or dilution (due

to the increase in size of the cell).

Moreover, signals in a molecular based logic gate are not separated spatially,

as in the case of electronic circuits, but they are encoded by proteins, which flow

together in a common compartment [174, 8]. These signals are addressed (they are

plugged in the input of a gate) based on the specificity of the encoding protein, in

the sense that the encoding protein can react only with specific gates. If we have

a high number of signals in a single compartment, then these signals can affect

each other (there can be unwanted reactions between different proteins) and this

leads to cross-talk. Thus, the addressing mechanism used by biological molecules

puts an upper limit on the number of signals that a logical system can have.

Nevertheless, the advantage of this addressing mechanism is that multicasting

and broadcasting are easier to implement in a molecular based system compared

with an electronic one. These two mechanisms (multicasting and broadcasting)

assume that one signal can be fed simultaneously into multiple gates (or in all

gates, in the case of broadcasting).

Furthermore, to allow the interconnection of logic gates, we need that the

output and the inputs to be of the same type so that one gate’s output can be

fed into the input of another one. In the literature, this is, sometimes, referred

to as modularity of the design [147, 150]. All types of gate (DNA, enzymatic and

genetic) can have inputs and outputs of the same type, namely molecules and,

thus, interconnection can be ensured by all types of biological gate.

Finally, we want to have fine control over both the behaviour of the gate and

its parameters. This higher level of control is essential in systems that need to

function with high precision. For example, in a smart drug delivery system we

want the bio-computer to release a drug only after several conditions are strictly

CHAPTER 1. INTRODUCTION 13

met. Also, we do not want the wrong drug to be released. We consider this

higher degree of control to be an essential aspect of the logic gates which we aim

to investigate in this thesis. Enzymatic gates can be fine-tuned by changing the

concentrations of the gates [120], while genetic ones can be evolved (by performing

point mutations on the gene) to optimise the parameters, but also to change the

behaviour of the gate [182, 174, 105, 145]. The change of behaviour results from

the fact that, in the case of genetic logic gates, the complexity of the logic gate

is combinatorially built in the cis-regulatory area (as opposed to enzymatic logic

gates, where the complexity arises from the complexity of the enzyme) [32].

In this thesis, we will limit our attention only to genetic logic gates and par-

ticularly to transcriptional logic gates, which are genetic logic gates that integrate

inputs in the cis-regulatory area. Nevertheless, similar approaches can also be

employed to design and analyse logic gates built from other biological molecules,

such as DNA based logic gates or enzymatic ones.

1.1 Challenges of Designing Transcriptional Logic

Gates

The input and output of the gene are quantified by the concentration of the

relevant proteins. Logic gates strictly assume an output with two discrete values,

but the output of a gene is continuous in nature (concentrations are continuous)

[153]. In the case when the gene regulation function has a sigmoid shape (displays

two plateaus, one for low and one for high expression rates), we can consider

this sigmoid output to be binary, i.e., the low output concentration codes for a

logical value of 0 while the high output concentration for a logical value of 1.

Nevertheless, the quality of this approximation depends on the steepness of the

gene regulation function in the sense that a steeper gene regulation function leads

to better binary behaviour. Thus, when modelling transcriptional logic gates we

first need to ensure that the gene expression function has a sigmoid shape and

CHAPTER 1. INTRODUCTION 14

high steepness; see Figure 4.

Logic gates are usually meant to be components of larger logical systems and

thus we need to also address interconnection between logic gates. Transcriptional

logic gates use molecules as inputs and outputs and, thus, they display a modular

design which allows feeding the output of one gate (the upstream gate) into the

input of another (the downstream gate). Nevertheless, the process of connecting

two biological logic gates is not simple, mainly because the parameters of the two

gates which are connected do not always match. More precisely, if the regulatory

threshold of the downstream gate (the input value which delimits the high and the

low outputs) is not margined by the low and the high abundance of the output of

the upstream gate, then changes in the upstream gate will not be reflected in the

downstream one [10, 174]. In the case of transcriptional logic gates, one solution

consists of using direct evolution to change the synthesis rate of the upstream

gene or the threshold of the downstream one adequately, so that the parameters

of two gates will match [182] (for more details see page 53). Note that, due to

lower controllability, in the case of enzymatic or DNA logic gates, the only way to

achieve this matching is through adding additional gates, such as amplifier ones

[10, 147, 189].

Furthermore, when interconnecting a large number of logic gates, the difference

between the high and the low output states of a gate tend to be reduced at the

end of the cascade [103, 147]. This reduction between high and low steady states

can make it difficult to distinguish between the two binary values of the output

(whether we have a low or a high output). We want our design to be scalable, in

the sense that adding more genes will not change the binary quality of the output

of the system. In the case of enzymatic and DNA logic gates, this is ensured

by constructing amplification logical gates and inserting them in the network

where the signal quality has significantly degraded [147, 189]. Alternatively, in

the case of enzymatic reactions one could add new reactions or change the reaction

stoichiometry (the number of reactants or products in a reaction) to achieve this

scalability [103]. The first solution would increase both the propagation time of

CHAPTER 1. INTRODUCTION 15

a signal and the noise [32], which is undesirable, while the second one cannot

be applied in the case of genetic systems. Nevertheless, we can use again direct

evolution to select desired parameters and, thus, to achieve scalability.

In addition to these design features of transcriptional logic gates, we are also

concerned with their quality. The main drawback of transcriptional logic gates

compared with other molecular logic gates is the fact that they are much slower,

i.e., enzymatic logic gates switch in the orders of a tenth of a second [29] while

genes need tens of minutes [5]. Moreover, due to low copy numbers and slow

reactions, genes are affected by noise [87]. This can make it difficult to distinguish

whether the output is in a high or low state. Additionally, each gene has a

metabolic cost attached to it and this cost is limited by the availability of resources,

in the sense that the production rate of a gene cannot be increased further unless

more resources are available. Previous research has tried to address these aspects

in an independent fashion, i.e., looking at either noise or switching time one at

a time. We consider that an integrated optimality analysis which investigates

simultaneously the speed, accuracy and metabolic cost of genes or gene systems

is essential to provide better (i.e., faster and more accurate) transcriptional logic

gates.

Note that there are two types of noise that affect a genetic logic gate, namely

analogue noise and digital noise. Analogue noise is the noise in the output re-

sulting from intrinsic fluctuations and fluctuations in the input controlled by the

shape of the gate. Digital noise is the noise in reading the gate output and is

caused when the output, which is affected by analogue noise, will have the wrong

concentration at the time of reading. In this thesis we address only analogue noise,

which we simply call noise, while we assume that digital noise can be addressed

by specific error connection techniques [132].

1.2 Aim and Objectives

The aim of this thesis can be summarized by the following sentence:

CHAPTER 1. INTRODUCTION 16

We aim to provide a modular, scalable and optimal design for logic

systems built from genes.

In particular, we aim to determine the relationship between the parameters of the

genes and the computational properties that characterise a system, but also to

investigate how changes in one computational property affect the other properties.

This aim will be achieved by attaining several objectives. First, we want to

design modular and scalable transcriptional logic systems. To design logic gates

from genes we need to ensure that the output concentration as a function of the

input(s) displays a sharp sigmoid shape. This allows the approximation of the

gene output by a binary output, which is a key requirement of logical systems.

Furthermore, themodularity of the design is achieved by imposing a condition that

the parameters of two interconnected genes match, in the sense that the output

range of an upstream gene should span the transition area of the downstream gene.

Additionally, we want the design of the logic system to be scalable, in the sense

that adding or removing gates from the system should not significantly worsen

the quality of the binary behaviour of the output.

Once we model a working logical system using genes, we want to optimise its

behaviour. The optimality should address three properties, namely: switching

time, output noise and metabolic cost. The first two properties aim to reduce

the main drawbacks of transcriptional logic gates compared with enzymatic ones.

Our analysis also investigates metabolic cost, due to the fact that we want the

optimality of the systems to be valid even for cells living in environments with

limited resources. As opposed to previous attempts, we aim to perform an in-

tegrated analysis with the objective to identify methods to optimise these three

properties simultaneously. Alternatively, we will also examine whether certain

network topologies can improve these genetic logic systems.

CHAPTER 1. INTRODUCTION 17

1.3 Original Contributions

Previous research mainly investigated noise, switching speed and metabolic cost

of genes (or gene networks) as stand-alone properties. This independent approach

identified possible solutions to optimise a certain property without investigating

how these solutions affect other properties. In this thesis, we considered an inte-

grated approach and determined the functional relationship between output noise,

switching time and metabolic cost of binary genes (genes with two expression lev-

els, high and low). The main result of this analysis is that under fixed metabolic

cost, there is a trade-off between the output noise and the switching time.

Our analysis addresses two cases: (i) instantaneous input change and (ii)

non-instantaneous input change. In the case of the former, the trade-off between

speed and accuracy is controlled by the decay rate of the protein and can be

enhanced by increasing the metabolic cost, i.e., higher metabolic cost results in

better trade-off curves. Furthermore, we showed analytically that a gene which

does not have a leak rate displays a better trade-off curve compared with a gene

with equal metabolic cost but with non-vanishing leak rate, where the leak rate

is the quantity of the output of the gene which is expressed when the gene is fully

repressed (in the repression case) or when it is not activated (in the activation

case).

In the case of non-instantaneous input change, the position of the threshold

controls a trade-off between output noise and switching time. Particularly, there

are two configurations which optimise the system in either output noise or switch-

ing time. The trade-off curve bounded by these two values is the optimal trade-off

curve and points residing outside this optimal trade-off curve are sub-optimal in

both speed and accuracy.

1.4 Overview of the Thesis

The thesis is structured as follows:

CHAPTER 1. INTRODUCTION 18

Chapter 2 reviews various mechanisms to perform computations using biological

molecules. We establish that transcriptional logic gates can be used to im-

plement basic logic gates and we present the advantages and disadvantages

which these genetic gates have compared with other types of biologically

inspired logic gates (such as enzymatic ones).

Chapter 3 introduces the methods used to describe the stochastic behaviour of

chemical reaction systems and genetic systems. These methods are used

in the research part of the thesis to compute the noise levels for different

genetic systems. There are two categories of stochastic methods used in

this contribution: (i) analytical methods to compute the noise levels and

(ii) stochastic simulations to validate the analytical results. Moreover, we

describe how we use these methods to generate the simulation results and

also list various software used.

Chapter 4 describes the model of the switching mechanism necessary to con-

struct the logic gates. A switch is constructed from a single gene (the bi-

nary gene) with multiple binding sites and regulated by transcription factors

(TF) monomers. In addition, we describe the three properties that we are

interested in: output noise, switching time and metabolic cost.

Chapter 5 presents an integrated analysis of binary genes as stand-alone ele-

ments, where the regulatory input of the gene is changed instantaneously.

Our analysis investigated the three properties (noise, time and cost) simul-

taneously. The functional relationship between the three properties shows

that, under fixed metabolic cost, there is a trade-off between the output

noise and switching time and this trade-off is controlled by the decay rate

of the protein. Furthermore, we found that higher metabolic cost results in

better trade-off curves, and leak-free systems are optimal in terms of noise

and time compared with the non-vanishing leak systems.

Chapter 6 extends the analysis from the previous chapter and considers the

CHAPTER 1. INTRODUCTION 19

case of non-instantaneous input change. The optimality analysis identified

a trade-off between switching time and output noise under fixed metabolic

cost, but this time the trade-off is controlled by the position of the regulatory

threshold relative to the high and low input abundances. The results show

that there is an optimal trade-off curve which is delimited by the optimal

configuration in speed and the one in accuracy, and any other configura-

tion (outside this optimal trade-off curve) is sub-optimal. In addition, we

also investigated how negative auto-regulation affects the trade-off curves

and found that this feedback mechanism can enhance at least one of the

properties (speed or accuracy).

Chapter 7 shows how this optimality analysis is useful in the context of genetic

logic systems. As a case study, we modelled a binary full-adder using five

logic gates. The design of the full-adder is modular and also scalable. The

optimality analysis indicated how this system can be optimised in terms of

speed or accuracy.

Chapter 8 draws the conclusions of the thesis, critically analyses the results and

also indicates future research directions.

1.5 Publication List

Some of the work presented in this thesis was published by the author in the

following peer-reviewed journal articles and conference papers.

Journal Articles

• Chu, D. F.; Zabet, N. R. & Hone, A. N. W. (2011), ‘Optimal Parameter Set-

tings for Information Processing in Gene Regulatory Networks’, BioSystems

doi:10.1016/j.biosystems.2011.01.006

• Zabet, N. R. & Chu, D. F. (2010), ‘Computational limits to binary genes’,

Journal of the Royal Society Interface 7, 945-954. doi: 10.1098/rsif.2009.0474

CHAPTER 1. INTRODUCTION 20

• Chu, D.; Zabet, N. R. & Mitavskiy, B. (2009), ‘Models of transcription factor

binding: Sensitivity of activation functions to model assumptions’, Journal

of Theoretical Biology 257(3), 419-429. doi: 10.1016/j.jtbi.2008.11.026

Peer-reviewed Conference Papers

• Zabet, N. R.; Hone, A. N. W. & Chu, D. F. (2010), ‘Design Principles

of Transcriptional Logic Circuits’, In Artificial Life XII: Proceedings of the

12th International Conference on the Synthesis and Simulation of Living

Systems, 19-23 August, Odense, Denmark, MIT Press.

• Zabet, N. R. & Chu, D. F. (2010), ‘Stochasticity and Robustness in Bi-

Stable Systems’, In Bioinformatics and Biomedical Engineering (iCBBE),

2010 4th International Conference on, 18-20 June, Chengdu, China, pp. 1-4,

IEEE Xplore. doi: 10.1109/ICBBE.2010.5518099

Chapter 2

Molecular Computing

In this chapter, we will review various methods to perform computations using

biological molecules and special emphasis will be placed on genetic logic gates.

In addition, we will compare genetic logic gates to other types of molecular logic

gates, identifying their advantages and disadvantages. Furthermore, we show that

certain limitations of the basic components can hamper the increase in complex-

ity of these transcriptional logic systems. This justifies the need for an integrated

analysis which aims to optimise simultaneously multiple properties of stand-alone

transcriptional logic gates, but also of transcriptional logic systems (systems con-

sisting of many gates).

2.1 Introduction

Traditionally, biological molecules have been used to perform two types of com-

putations: hard combinatorial problems and logic functions. The paradigm of

molecular computing was first introduced by Adelman [3] who used DNA oligonu-

cleotides to solve a hard combinatorial problem, the Hamiltonian path problem

(HPP). Although this approach proved to be successful and was applied even to

other combinatorial problems, such as the satisfiability problem [99], researchers

raised concerns regarding the scalability of DNA computing. Alternatively, bio-

logical molecules can be used to perform logic functions, but these systems are

21

CHAPTER 2. MOLECULAR COMPUTING 22

slower compared with silicon based ones. Nevertheless, molecular logic gates have

the advantage of naturally interacting with biological systems. Benenson et al.

showed as a proof of concept that this type of systems can be used in smart drug

delivery system where they can perform in situ diagnosis of a disease and adminis-

tration of the appropriate drug [23]. The purpose of these genetic logic gates is not

limited only to smart drug delivery systems, but rather include sensor arrays (to

detect the presence or absence of a substance in the environment), improved drug

synthesis and even the processing of certain chemicals (e.g., bacterial cells able to

clean oil spills). Given the importance of their multiple applications, we consider

that further research of these molecular logic systems is essential. Thus, in this

thesis, we will focus on logical computations performed by biological molecules.

We consider it essential that molecular logic gates display a modular design

and a reset mechanism. Thus, we will evaluate various designs of molecular logic

gates with respect to these requirements. Furthermore, we will also examine the

degree of control over the parameters of these logic gates.

DNA molecules can also be used to implement logic gates and even complex

Boolean systems (such as full-adder or a tic-tac-toe game) [34]. These gates

exploit the fact that complementary DNA strands anneal (bind), and based on

the presence or absence of a chemical input (usually an oligonucleotide) they

produce a chemical or photonic output. The main drawback of DNA logic gates

is that they are affected by low speeds.

A faster solution for biological gates can be implemented with the help of

allosteric enzymes. These enzymes have binding sites where inducers can bind

and, depending on the occupancy state, the enzymes can selectively catalyse the

transformation of a substrate into a product. However, the complexity in enzy-

matic logic gates results from the complexity of the enzymes and is not built in a

modular fashion.

By comparison, genes offer a solution to this modularity problem. They have a

cis-regulatory area, which controls the activity of the gene and integrates multiple

regulatory inputs. This indicates that the complexity of a genetic system can be

CHAPTER 2. MOLECULAR COMPUTING 23

built combinatorially in this cis-regulatory area [32, 9]. The advantage of having

a logic gate built combinatorially consists of the fact that new logic gates can be

constructed just by rearranging the cis-regulatory area in an automatic fashion,

thus simplifying the process.

Several models of logic gates constructed from genes were proposed theoreti-

cally [32, 78, 146, 58], but also engineered synthetically within live cells [182, 71,

105, 39, 8, 145]. What all these models have in common is that the inputs of

the gates are represented by the transcription factors, which regulate the gene,

and the output by the expressed protein. Although there are various approaches

by which these genetic logic gates integrate multiple inputs, in this thesis, we

will focus only on transcriptional logic gates, which are logic gates built from

single genes where the multiple inputs are integrated in the cis-regulatory area.

Note that these types of systems (transcriptional regulation ones) are the most

implemented and best characterised modules at present [9].

The most important advantage of genetic logic gates consists of the fact that

they can be evolved to change the behaviour of the gate, but also to fine-tune its

parameters [182]. This aspect allows an extra degree of freedom to genetic logic

systems compared with other types of logic gates (DNA and enzymatic ones).

In particular, this means that synthetic biologists have a greater control on the

behaviour of these genetic gates.

The signals of these logic gates are, in most cases, encoded by molecules

and they are quantified by the concentration of the species. Nevertheless, while

Boolean logic assumes only two discrete values, the concentration which quantifies

the signals is a continuous measure. Despite this, it is usually very practical to

make an abstraction and assume that these systems mimic a logical value. In

addition, due to the fact that these signals flow in a common compartment they

are prone to crosstalk, i.e., different signals affect one another undesirably. This

limits the maximum number of signals that can flow in a common compartment

and, thus, can reduce the number of applications where these systems can be

implemented.

CHAPTER 2. MOLECULAR COMPUTING 24

As mentioned in the previous chapter we consider only molecular logic gates

that have a modular design and a reset mechanism. Modularity assumes that

the inputs and the output are of the same type so that the output of a gate

can be fed into the input of another one. All three types of logic gate (DNA

based, enzymatic and genetic ones) have a modular design. However, in certain

cases, the DNA based gates and the allosteric enzymatic ones also display a non-

modular design, especially when the input is a chemical substance and the output

is photonic (chemophotonic gates). Moreover, modularity also addresses issues

related to parameter mismatch, in the sense that gates cannot always be connected

with their original set of parameters and require various approaches to set their

parameters accordingly.

The reset mechanism ensures that, once an input signal is no longer fed into the

system, the output will automatically reflect the change. DNA based gates and

enzymatic ones need an explicit reset mechanism, meaning that a step involving

chemical reactions is required to clear the output of the gate. Genetic gates,

however, have a built-in automatic reset mechanism, the decay of the signals. The

decay is ensured by active breakdown or dilution inside a cell and is responsible

for clearing a signal that is not sustained.

Finally, we will investigate the computational properties of transcriptional

logic gates. In particular, we review noise in gene expression, response time and

metabolic cost and how these three properties are related to the biological pa-

rameters of the genes. We will show that these three properties influence one

another and we need to investigate how changes in one property affect the other

properties.

This chapter is divided up as follows. We will start by presenting briefly the

biological background related to molecular computing in bacterial cells. Next, we

will review how DNA molecules were used to solve hard combinatorial problems

(see section 2.3) and to engineer logic gates (see subsection 2.4.1). Furthermore,

we will present various attempts to both model and construct logic gates using

enzymes (see subsection 2.4.2) and genes (see subsection 2.4.2). Finally, in section

CHAPTER 2. MOLECULAR COMPUTING 25

2.5 we review the computational properties of transcriptional logic gates. At the

end of this chapter, we will draw some conclusions.

2.2 Biological Background

Living organisms store their genetic information in the DNA (Deoxyribonucleic

acid). The DNA consists of oligonucleotides (or DNA strands), which are chains

of nucleotides attached to a sugar-phosphate backbone [6]; see Figure 1. The

information on the DNA is encoded by four nucleotides (adenine A, guanine G,

cytosine C and thymine T) which pair up with each other using hydrogen bonds to

form units called base pairs, i.e., adenine pairs up with thymine using two hydro-

gen bonds (A-T) while cytosine with guanine using three hydrogen bonds (C-G).

The DNA strands have orientation, which is ensured by the two endings: a 5′ and

a 3′ one. Two strands will bind (anneal) and form a double helix structure if they

have complementary base pairs and opposite polarities, i.e., one strand extends

from 5′ to 3′ while the other from 3′ to 5′ and the base pairs are complementary

under this orientation; see Figure 1.

(a) DNA structure [6] (b) Double helix shape

Figure 1: DNA structure. The DNA has a double helix structure.

Specific regions on the DNA which encode proteins are called genes. A gene

CHAPTER 2. MOLECULAR COMPUTING 26

has three sections: promoter, coding area and termination site. Proteins are syn-

thesised in a two step process, where initially the gene is transcribed and then the

transcript is used as a template in the translational process; see Figure 2. The

transcription takes place when an RNA polymerase (RNAp) molecule binds to

the promoter and moves downstream on the DNA, where it splits the two DNA

strands. The RNAp molecule reads one of the strands and creates a complemen-

tary, anti-parallel RNA strand called messenger RNA (mRNA). Note, however,

that the mRNA includes uracil (U) in all instances where thymine (T) would have

occurred. When it reaches the termination site of the gene, the RNAp molecule

detaches from the gene and releases the mRNA molecule. The mRNA molecule

provides a template for the second step in protein synthesis, the translation, which

is carried out by large macromolecular assemblies within the cell [176].

Figure 2: Protein synthesis. The RNAp molecule binds to the promoter (1) and
copies the information stored in the gene sequence to a new molecule messenger
RNA (mRNA) (2). At the termination area, the RNAp unbinds from the gene
and releases the mRNA molecule (3), which is translated into the output protein
(4).

Gene activity is mediated by site-specific transcription factors (TFs). Their

binding to defined regions on the DNA (binding sites) determines the rate at which

their target genes are transcribed. TFs control gene activity by either increasing

(activators) or reducing (repressors) the transcription rate of their target genes;

see Figure 3. Usually, activation is achieved by additional binding sites where

regulatory molecules bind and change the affinity between the promoter and the

RNAp molecules. Repression is obtained when the binding site overlaps the gene

CHAPTER 2. MOLECULAR COMPUTING 27

promoter and, thus, obstructs the transcription process [5]. All the binding sites

for one or more TFs, which regulate the activity of a gene, are generically called

the gene cis-regulatory area.

(a) activation (b) repression (c) repression

Figure 3: Gene regulation. The activity of a gene can be regulated by transcription
factors. (a) Bound activator molecules (A) to the gene binding site can attract
RNAp molecules or they can increase the affinity between the gene promoter
and the RNAp molecule (green line). (b) The repressor molecules (R) have the
opposite effect by repelling RNAp molecules or decreasing the affinity between
the promoter and the RNAp molecules (red line). (c) Most commonly, repression
is achieved when the binding site overlaps with the gene promoter, thus, blocking
the RNAp binding to the promoter.

The gene activity function (or gene regulation) is usually modelled as a hy-

perbola or a sigmoid function, where the latter (sigmoid function) is achieved

when the gene has more than one binding site or when the molecules can bind

only in dimers or oligomers (molecules consisting of two similar subunits called

monomers) [2, 21, 22, 75, 27, 36]. Note that the gene regulation function has been

derived using statistical thermodynamic models [2, 21, 22, 27], chemical kinetics

[75] and even Markov chains [36].

The Hill function is traditionally used as the gene regulation function due to

the fact that it can capture both the shape of a hyperbola or a sigmoid shapes and

that the parameter which controls the steepness (the Hill coefficient) is usually

approximated by the number of binding sites (in the case when only monomers

regulate a gene),

φ(x) =
xl

xl +K l
and φ̄(x) =

K l

xl +K l
. (1)

CHAPTER 2. MOLECULAR COMPUTING 28

The first function, φ(x), represents the regulation function in the activation case,

while the second one, φ̄(x), represents the regulation function in the repression

case. The parameter K is the threshold and represents the regulatory input con-

centration required for half activation of the gene. The Hill coefficient is denoted

by l and quantifies the steepness of the regulation function.

A statistical study on a bacterial genome indicated that a significant number

of genes have more than one binding site for the same TF; 37% of the genes in

E.coli have more than one binding site [78]. In the context of the gene regulation

functions, this indicates that many bacterial genes display sigmoid regulation

functions. Furthermore, closer examination of the statistical data revealed that

several genes display a steep response to regulatory input (l ≥ 4); see Figure 4.

ge
ne

 e
xp

re
ss

io
n

activator abundance

activeinactive inactive

ge
ne

 e
xp

re
ss

io
n

repressor abundance

activeinactive inactive

Figure 4: Hill regulation function.

In addition, genes are usually regulated by more than one species and, thus,

the regulation function of the gene has a more complicated shape with more than

one regulatory input. Altogether, we can conclude that genes can display sharp

switching behaviour and that they are capable of integrating multiple inputs.

Alternatively to genes, enzymes are also able to process information [29]. An

enzyme is a biomolecule, usually a protein, which can catalyse the transforma-

tion of a substrate into a product. The main difference between enzymes and

other catalysts is that enzymes are selective, meaning that they catalyse only

the transformation of some specific substrates and do not affect other species.

The transformation mechanism assumes that an enzyme E binds reversibly to a

CHAPTER 2. MOLECULAR COMPUTING 29

substrate S and then converts irreversibly the substrate into a product P ,

E + S −⇀↽− ES → E + P. (2)

Note that this mechanism is usually known as the Michaelis-Menten enzyme ki-

netics [110], which is also called the ‘basic enzyme reaction’, e.g. [116].

(a) Enzymes (b) Allosteric enzymes

Figure 5: Enzymes. (a) An enzyme can catalyse the transformation of a substrate
into a product. (b) Allosteric enzymes are able to catalyze the transformation of
substrate only in the active form and this is usually controlled by ligands which
bind to the enzyme.

Allosteric enzymes are enzymes that have more than one conformation and

a set of uncorrelated binding sites [111, 112]. The binding or unbinding of the

inducers to the binding sites determines the current conformation of the enzymes.

In particular, inducers can either activate or deactivate an enzyme and only in

the active state can the enzyme catalyse the transformation of the substrate. If

we consider the inducers to be the inputs of a system, then allosteric enzymes

can be viewed as systems able to integrate multiple inputs (if they have multiple

binding sites for different inducers) and display a switch-like behaviour (if they

have multiple binding sites for the same inducer).

In the following sections, we will use the notions introduced here to review how

DNA molecules, allosteric enzymes and genes are able to perform both numerical

and logical computations.

CHAPTER 2. MOLECULAR COMPUTING 30

2.3 DNA Computing and Hard Combinatorial

Problems

Adleman was the first one to use the DNA strands to solve an intensive computa-

tional problem, the Hamiltonian path problem (HPP) [3]. This problem identifies

whether there is a route which starts from a selected node (start node), passes

through all nodes exactly once and ends in another selected node (ending node);

see Figure 6. This is a well known to be an NP-complete problem [3].

The algorithm used by Adleman can be summarised in three steps.

1. The input of the problem is first encoded on DNA molecules (encoding step)

2. The DNA molecules are put in a test tube where they form solutions and

under appropriate condition certain solutions are selected (computing step)

3. Finally, the DNA molecules encoding solutions to the problem are extracted

from the test tube (extraction step).

The speed performance of DNA computing is not impressive. The solution

to the HPP in the case of seven nodes (see Figure 6) was obtained after seven

days. Nevertheless, the experiment revealed some impressive advantages such as

the massive parallelism, energy efficiency (approximately 2 × 1019 operations/J)

and compact information storage.

The satisfiability problem (SAT) also received great attention in the field of

DNA computing [99]. The SAT problem identifies whether there is any combi-

nation of the input values of a logical function, which ensure that the function

will evaluate TRUE. This is also known to be an NP-complete problem [99]. Any

logical function can be written in conjunctive normal form, where clauses are con-

nected by AND operator and each clause contains combination of literals (variables

or their negation) connected by OR operator; e.g., F = (x∨ y)∧ (x̄∨ ȳ). Writing

the logical expression into conjunctive normal form reduces the SAT problem to

finding values for which each clause evaluates TRUE.

CHAPTER 2. MOLECULAR COMPUTING 31

0

4

3

6

1

2 5

Figure 6: Hamiltonian path problem. This graph has a Hamiltonian path starting
from node 0 and ending in node 6, 0→ 1, 1→ 2, 2→ 3, 3→ 4, 4→ 5, 5→ 6.

Similar to the case of the Hamiltonian path problem the problem is encoded on

DNA strands [28, 101], but was also encoded on RNA strands [49]. Solutions that

do not meet the satisfiability condition are removed successively by considering

each clause individually and, thus, the number of cycles per experiment equals to

the number of clauses in the logical formula. Braich et al. where able to solve a

SAT problem with 20 variables, 24 clauses and 3 literals per clause, which required

searching through more than 1 million solutions.

One of the main disadvantages of DNA computing consists of the fact that

the method requires a series of manual steps. In the case of the SAT problem the

number of manual steps increases linearly with the number of clauses. Sakamoto

et al. overcame this problem by combining all computation cycles (for all clauses)

into one cycle [142]. The solution involves the encoding of literal strings (conjunc-

tions of literals from each clause) into a single stranded DNA sequence (ssDNA).

For example F = (x ∨ y) ∧ (x̄ ∨ ȳ) leads to the following four literal strings

x − x̄, x − ȳ, y − x̄, y − ȳ. ssDNAs of literals and their complements will form

hairpins which can then be removed. Literal strings that do not have hairpins are

valid solutions. Nevertheless, despite the advantage of unassisted experiments,

this method assumes higher effort in the initial encoding step and high ineffi-

ciency with respect to the used DNA quantity compared with the other methods.

Taking the unassisted process a step forward, Baumgardner et al. [18] solved

CHAPTER 2. MOLECULAR COMPUTING 32

the HPP problem in vivo by using the recombination site hixC [98], i.e., Hin re-

combinase inverts DNA fragments which are delimited by hixC sites. Although,

the implementation addressed a simple 3 node - 3 edge graph, it stands as a

proof of concept. The nodes, except the last one, where encoded using fluorescent

proteins so that the output could be visualised. This represents the main disad-

vantage of the method, in the sense that adding more nodes would require new

fluorescent proteins and this imposes an upper limit on the number of nodes in

the graph. Moreover, even for a small number number of nodes it can be difficult

to distinguish between similar colours.

A solution to the in vivo scalability problem of the experiment led by Baum-

gardner et al. [18] was proposed by Frisco et al. [54]. They suggested that the

nodes should be encoded using bacteriophage DNA in such a way that the virus

is functional only when a Hamiltonian path exists. In this scenario the existence

of a solution can be assessed more easily by verifying whether the virus is present

or not (the formation of plaque if we considered the operon for the production of

the capsid and tail proteins of the bacteriophage λ).

Despite all these improvements, researchers still raised concerns as to whether

hard combinatorial problems are the most suitable application for DNA comput-

ing [6, 73]. Hartmanis showed that increasing the size of the HPP problem (by

adding more nodes) would require so much DNA that the experiments would be-

come impractical. He computed that a graph with 200 nodes would need a DNA

molecule heavier than the Earth [73]. This suggests that DNA based computing

might be aimed for other types of problems (not NP complete), such as performing

logical computations for example [6].

2.4 Molecular Logic Gates

Logic gates are systems which perform logic operations on one or more inputs

and produce a binary output. The inputs and outputs of logic gates are restricted

to two discrete logical values: 0 (or false) and 1 (or true). The simplest logic

CHAPTER 2. MOLECULAR COMPUTING 33

gates transform one input into an output, as seen in Figure 7(a), but, in order to

implement more complex logic functions, logic gates with at least two inputs are

required; see Figure 7(b).

(a) single input logic gates

(b) double input logic gates

Figure 7: Boolean Logic. Note that IMPLIES gate is also known as AND NOT
gate or IF gate, while NIMPLIES as NAND NOT or NOT IF.

Biological molecules can be used to implement systems that mimic logic gates.

We use the word mimic because the output of the molecular logic gates is con-

tinuous while logic gates strictly require an output with only two possible val-

ues. Nevertheless, this abstraction (of assuming molecular systems to mimic logic

gates) is often required in dealing with larger systems and can also support the

design of new synthetic ones.

Next, we will review three mechanisms based on biological molecules which

display logic behaviour: (i) DNA based, (ii) enzymatic and (iii) genetic logic

gates.

CHAPTER 2. MOLECULAR COMPUTING 34

2.4.1 DNA Logic Gates

DNA molecules were used to implement logic functions based on chemical or pho-

tonic inputs [34]. A first example of DNA based logic gates is Liu and Balasubra-

manian’s YES gate [100]. Initially a single strand oligonucleotide (X) is in a closed

conformation; see Figure 8(a). Increasing the pH levels leads to conformational

changes, i.e., the original oligonucleotide (X) attaches to another oligonucleotide

(Y) leading to an open state complex. The output is measured by ensuring that

a fluorescence marker is turned on only in the open state. The switching speed,

although still slow compared with electronic devices, is impressive for molecular

gates; the YES gate can be switched in approximately 5 seconds. The input in

this gate is the pH level while the output is the conformational state of the DNA.

A different design of logic gates using DNA strands was proposed by Saghatelian

et al. [141]. They built an AND logic gate consisting of an oligonucleotide which

has a fluorescent protein attached at one end; see Figure 8(c). Only in the pres-

ence of the complementary oligonucleotide (the first input), a Hoechst protein can

bind to the complex and turn on the fluorescent protein of the gate. Note that,

this gate consists of three different types of inputs/outputs, an oligonucleotide

and a Hoechst protein as inputs and fluorescence as output.

Okamoto et al. designed logic gates, and even a full-adder, based on hole

transport technology [121]. The logic gates consists of a single DNA strand in

which one or more transport bases (X = MDA to allow transport and X = G

to repress it) are flanked by two GGG sites (a proximal Ga and a distal one Gb);

see Figure 8(b). Note that MDA is the adenine base (A) which was modified to

enhance hole transport. The input in the gate consists of another ssDNA which

has as complement for the MDA site either thymine (T) or cytosine (C) which code

for the logic values (T ≡ 1 and C ≡ 0). If the input contains thymine then the hole

transport is enhanced while in the case of cytosine the hole transport is reduced.

The output of the gate is represented by the ratio (Gb/Ga) of the cleavage on the

proximal site to the one on the distal site after exposure to photoirradiation. The

CHAPTER 2. MOLECULAR COMPUTING 35

inputs of these gates are base sequences while the output is the cleavage rate.

A lot of effort has also been invested into designing hybrid logic gates where

DNA strands and allosteric enzymes work together to implement the logic be-

haviour. Gianneschi and Ghadiri [59] constructed logic gates consisting of an

enzyme which has attached a single strand DNA molecule (DE); see Figure 8(d).

When a DNA strand attached to an enzyme inhibitor (DI) is added together

with the gate (DE), the two DNA strands form a single double strand and the

inhibitor gets attached to the enzyme, resulting in the inactivation of the latter.

The switching off mechanism was achieved by adding single DNA strand that was

either able to move the inhibitor further from the enzyme or to replace the DI−D
complex from the enzyme and take its place. The inputs of these gates are DNA

strands and the output is the state of an enzyme (active or inactive).

(a) Liu and Balasubra-
manian YES gate [100]

(b) Okamoto et al. YES and NOT gates [121]

(c) Saghatelian et al. AND
gate[141]

(d) Gianneschi and Ghadiri YES and NOT gates
[59]

Figure 8: Non modular DNA logic gates.

Modularity in design can be achieved when the inputs and the output are of

CHAPTER 2. MOLECULAR COMPUTING 36

the same type [147]. However, the four gates presented above lack this property

and, thus, they do not have a modular design. Below we present two types of

logic gates which implement Boolean logic with the help of DNA strands and also

have a modular design.

Stojanovic and co-workers [158, 159] implemented logic gates using deoxyri-

bozymes (DNA molecules which are able to catalyse the transformation of other

proteins). Their model consists of deoxyribozymes which are able to cleave an

oligonucleotide when the former is in an active state. The state of the deoxyri-

bozymes logic gates (active/inactive) is regulated by input oligonucleotides; see

Figure 9(a). As opposed to the previous example of logic gates, this design is

modular due to the fact that both the inputs and the output are represented by

oligonucleotides.

Despite the modularity of the design, the implementation of Stojanovic and co-

workers of different logic systems (such as full-adder or tic-tac-toe) is not modular,

in the sense that the output of a logic gate is not fed into the input of another

[160, 96]. Their approach consists of writing the logical expression for these logic

systems in the disjunctive normal form where clauses are connected by the OR

operator and each clause contains a combination of literals (input variables or their

negation) connected by the AND operator. Each gate implements a clause (AND

operations between inputs) which is able to cleave a common output substrate into

two oligonucleotides. If at least one gate (clause) is active (true) then the output

substrate will be cleaved into two oligonucleotide leading to an OR operation

between all clauses.

An interesting aspect observed by the authors during the experiments is that

there is a trade-off between the quality of the binary behaviour and the transient

time (the time to reach the steady state) which is controlled by the length of the

gate, i.e., longer gates lead to better binary behaviour and slower response time

while shorter ones lead to poorer binary behaviour but faster response [160].

Seelig et al. constructed modular logic gates where the inputs, the output

and even the gates themselves are oligonucleotides and the logic mechanism relies

CHAPTER 2. MOLECULAR COMPUTING 37

only on sequence recognition and strand displacement [147, 150]; see Figure 9(b).

A gate consists of a double stranded oligonucleotide except for a small toehold

(recognition site) which is not covered. An input oligonucleotide binds to the

recognition site of the gate and displaces the output oligonucleotide, taking its

place. One of the main disadvantages of these gates is that they are very slow; for

example it, takes up to 2 hours for an AND gate to reach half of the steady state.

(a) Stojanovic et al. NOT gate [158] (b) Seelig et al. YES gate [150]

Figure 9: Modular DNA logic gates.

Seelig et al. [147] observed that, when interconnecting gates in a logic system,

the quality of the binary output (which is essential for performing logic functions)

is worsened by adding more gates. This suggests that their initial design was not

scalable. To address this issue, they constructed an additional gate to restore a

binary response, but this comes at the cost of a longer transient time (about 10

hours for a system with 11 gates).

2.4.2 Enzymatic Logic Gates

Alternatively, biologically inspired molecular logic gates can also be constructed

from enzymes [10, 29]. Enzymes which mimic the behaviour of logic gates were

studied theoretically [80, 81, 79, 10, 29, 170], but also engineered synthetically

[43, 14, 15, 120, 132, 114, 109, 189].

In the simplest case, logic gates can be implemented using single enzymes

[10, 29]. The enzyme, in its active state, can catalyse the transformation of a

protein from state A to state B. In the presence of an inducer protein, I, the

enzyme is inactivated and consequently A is not transformed to B. If we assume

CHAPTER 2. MOLECULAR COMPUTING 38

that inducer I is the input and that protein B is the output then this enzyme

mimics the behaviour of a NOT gate. Note that if we consider that, instead of

inactivating the enzyme, the inducer activates it, then the system will mimic a

YES gate behaviour. Similarly, an AND gate can be constructed by using only

one enzyme which is activated only in the presence of two inputs I1 and I2; see

Figure 10(b).

(a) NOT gate (b) AND gate

Figure 10: Single-enzyme logic gates. The inputs are proteins I, I1 and I2, while
the output by protein B. To activate/inactivate an enzyme, n or m monomers of
input are required. Substrate A has a fixed abundance (∗) and is transformed by
active enzyme E into product B which decays at a fixed rate.

An example of such a single enzyme AND gate is the N-WASP-Arp2/3 system

[131]. The N-WASP protein (Neuronal Wiskott-Aldrich Syndrome Protein) can

be activated individually by Cdc42 (cell division control protein 42 homolog) or

PIP2 (phosphatidylinositol 4, 5-bisphosphate) proteins, but due to the masking

of their binding sites individual binding is weak. Nevertheless, in the presence of

both Cdc42 and PIP2, the protein N-WASP is strongly activated and regulates

the polymerization of Arp2/3 protein.

Boolean logic requires that the output is limited to two values 0 and 1 while

biologically inspired logic gates produce a continuous output. Despite this fact,

the enzymatic gates can mimic logic gates fairly well, but the quality of this binary

behaviour is constrained by the steepness of the output in the sense that a steeper

function produces a better binary behaviour. To achieve a steep response from

CHAPTER 2. MOLECULAR COMPUTING 39

these single enzyme gates, we need to assume that the enzyme can be toggled by

more than one monomer and this can be implemented in two ways: (i) only dimers

or oligomers are allowed to bind to the enzyme or (ii) the enzyme has a number of

binding sites where input molecules can bind. However, these mechanisms come

at the cost of an increase in the size of the enzymes; for example high steepness

can be achieved using an enzyme with many binding sites which would imply a

very large enzyme.

An alternative method to achieve high steepness consists of gates formed from

multiple enzymes [68, 80, 81, 79, 10]. This model (also known as the Goldbeter-

Koshland model) assumes that a protein can exist in two states (A and B) and

that two external factors, usually two enzymes (E1 and E2), can change the protein

from one state to the other and vice versa; see Figure 11(a). The steepness of this

model is controlled by the kinetic parameters of the system and can be fine-tuned

to display high steepness [68, 10].

(a) NOT gate (b) AND gate

Figure 11: Multi-enzyme logic gates. (a)E1 in its active state transforms protein
A into B, while enzyme E2 catalyses the reverse transformation. In addition E1

is activated by an inducer protein I. The input of the system is represented by
protein I, while the output by protein B. (b) A protein exists in three states A, B
and C. Enzymes E1 and E3, in their active states, catalyse the transformation of
A into B and C respectively. These two enzymes are inactivated by two inducer
proteins I1 and I2. Additionally, two more enzymes, E2 and E4, catalyse the
reverse transformation from B or C into A.

In zero order kinetics (the total concentration of the enzyme is much smaller

CHAPTER 2. MOLECULAR COMPUTING 40

than the total concentration of the protein), the multi-enzyme system displays

ultrasensitivity, i.e., very steep transition between the two binary states. Never-

theless, the assumption of zero order kinetics does not always hold in real protein

interaction systems. A solution to this limitation was proposed by Xing and Chen

[181] who added intermediary chemical reactions with higher stoichiometry [40]

into the model, resulting in first order kinetics ultrasensitivity.

The binary behaviour of these multi-enzyme gates can be enhanced even fur-

ther by using different interaction mechanisms, such as positive feedback [51].

Tyson and co-workers modelled an enzymatic toggle switch formed from two

proteins which enhance each other’s transformations [170, 140]. Their analysis

revealed that the bi-stable behaviour can be achieved by adding intermediary

chemical reactions with higher stoichiometry [40].

(a) enzymatic toggle switch
[170, 140]

(b) enzymatic cascade

Figure 12: Enzymatic cascades. (a) A protein X can enhance the phosphorylation
of another protein Y P , while this other protein when unphosporylated can increase
the decay rate of the first protein. (b) A modular design of covalent modifica-
tion based gates using the phosphorylation-dephosphorylation cycle. This process
assumes the addition and removal of the PO4 group to/from a protein. The
phosporylated protein in the first module acts as an enzyme to catalyse phospho-
rylation in the second module.

A multi-enzyme AND logic gate can be constructed from a protein which can

exists in three states (A, B, C) and the reversible transformation between these

states is mediated by four enzymes; see Figure 11(b). An example of naturally oc-

curring multi-enzyme AND gate is the Hexose-phosphate Interconversion Pathway

in glycolysis/gluconeogenesis pathway. Under the control of Citrate1 (cytosolic

CHAPTER 2. MOLECULAR COMPUTING 41

citrate) and cAMP (cyclic adenosine monophosphate) the F6P protein (fructose

6-phosphate) can be converted reversibly into either F16BP (fructose 1, 6 biphos-

phate) or F26BP (fructose 2, 6-biphosphate). The theoretical investigation of this

system revealed that the concentration of F6P as a response to the concentration

of Citrate1 and cAMP mimics the behaviour of an AND gate [10].

Researchers also focussed on interconnecting these enzymatic logic gates and

one solution was to assume that the modified protein is either an enzyme or an

activator/inactivator of another enzyme [10, 29]. An example of such modular co-

valent modification system is the phosphorylation-dephosphorylation cycle, where

the phosphorylated protein from a cycle catalyses the phosphorylation of another

protein [29]; see Figure 12(b). In addition, the interconnection step also requires

that inputs of the downstream gate should have their transient region spanned

between the two output values of the upstream one [10]. Two methods were pro-

posed to deal with this type of problem: (i) constructing an amplification gate

able to alter the output of the upstream gate [10, 189] or (ii) adding new inter-

mediary reactions with higher stoichiometry and adapting the kinetic parameters

[103]. The former comes at the cost of constructing a new gate which will in-

crease the number of required enzymes while the latter might not be viable to be

engineered synthetically.

So far, we presented only theoretical studies on enzymatic networks that mimic

logic behaviour, but biologists also managed to engineer synthetic logic gates us-

ing enzymes. Deonarine et al. [43] implemented an enzymatic logic gate based on

protein folding, similar to the DNA based logic gate of Liu and Balasubramanian.

The cytochrom c protein gets unfolded in the presence of various inputs (such

as acid, base or urea) and in the unfolded state it expresses high fluorescence

intensity. These gates are generically called chemophotonic gates because they

take chemical substances as inputs and produce an optical output. The fact that

the model displays different types of inputs and output (chemical and photonic)

indicates the lack of modularity in the design. In addition to this lack of mod-

ularity, the gate also needs an additional dialysis step so that the gate can be

CHAPTER 2. MOLECULAR COMPUTING 42

reset. Nevertheless, this enzymatic gate is interesting due to the fact that it im-

plements multifunction logic gates, i.e., an additional chemical input can control

the performed logical function [43].

The modularity in the design of the enzymatic logic gates can be ensured when

the inputs and the outputs are of the same type, in our case molecules. Willner

and Katz groups have engineered several two-input enzymatic logic gates (AND,

OR, XOR, NIMPLIES, NOR, NAND) experimentally [15, 14, 120, 114, 132, 189,

109]. To prove the modularity of the design, these gates were also cascaded and

displayed the expected logical behaviour [120, 189].

In the case of digital electronic circuits, input and output signals are transmit-

ted on wires which simplifies the interconnection between gates by connecting the

output of one gate to the input of another. Nevertheless, in the case of molecular

computations, different signals (molecules) flow together in a single compartment

which may lead to crosstalk between signals, i.e., signal proteins can interact with

each other or with other proteins resulting in an undesirable change of signals

[41]. Previous experimental results proved that more than one logic gate can be

engineered in a single compartment by careful selection of the proteins and en-

zymes for each logic gate and by numerous optimisation experiments aimed to

select appropriate concentrations of substances [14, 120, 189].

The effort to select the chemical species in enzymatic logic gates seems greater

compared with the case of DNA logic gates, because the latter requires the con-

struction of a specific oligonucleotide able to interact only with a specific gate

which is an automated process. In this context, Zhou et al. [189] constructed a

gate able to convert an output signal into the form of input signals. This proce-

dure ensures that enzymatic gates can be interconnected easier, but only if they

are put in separate compartments or otherwise the output signal could interfere

with the input one.

In addition to crosstalk, enzymatic logic gates can also be affected by noise,

which can become a significant problem in the case of interconnected logic gates.

Privman et al. [132] engineered an enzymatic AND gate and they modelled how

CHAPTER 2. MOLECULAR COMPUTING 43

the noise propagates through a cascade of gates. The results indicated that, even

in the case of a small noise in the inputs (5%), the original design allowed only

two gates to be connected without the output becoming too noisy to be read

(the low and the high concentrations become undistinguishable due to random

fluctuations). A further theoretical investigation optimised the system parameters

to such an extent that up to ten gates could be interconnected while keeping the

last gate output readable [132].

Enzymatic logic gates were advertised as the fast solution for bio-molecular

logic gates (the transient time is in the range of a tenth of a second [29, 41]). This

would represent a great advantage compared with other types of biological logic

gates which are significantly much slower (such as DNA or gene regulatory logic

gates which have a transient time in the order of tens of minutes). However, the

experimental implementations seem to indicate that these theoretical limits are

not always easy to reach when engineering synthetic systems and that speeds can

vary in the range of tens of minutes [43, 14, 15, 120, 114, 189]. In addition, the

complexity of the enzymatic gates relies in the complexity of the enzyme, which

makes it difficult to automate the construction of logic gates. An alternative to

these enzymatic logic gates are the genetic logic gates which are described in the

next section.

2.4.3 Genetic Logic Gates

The development in genetics allowed researchers to modify current genes in live

bacterial cells and even add new ones [175]. This opened the possibility to engineer

genetic systems able to implement various functions, including logical computa-

tions. In a genetic system, transcription factors (the inputs) control the rate at

which a gene (the gate) expresses the product protein (the output). Due to the

fact that both the inputs and the output are of the same type, namely proteins,

the system has a modular design [175]. These signals (inputs and output) can be

quantified by the concentration of the relevant proteins. Although protein con-

centration is a continuous variable, in the case of a sigmoid regulation function

CHAPTER 2. MOLECULAR COMPUTING 44

the behaviour of the gene can be approximated by the binary form which indi-

cates whether a gene is ON or OFF [32]. This abstraction is a useful approach to

understand better current systems, but also to help engineer new ones.

Interestingly, genetic logic gates display a built-in automatic reset mechanism,

by having the input/output mRNAs and proteins decayed (by active degradation

or dilution) so that signals that are not sustained will have a finite lifetime. We

note that this is an essential mechanism, which enzymatic or DNA logic gates do

not possess, due to the fact that it allows new inputs to be processed without ex-

ternal intervention; for example, in the case of the enzymatic logic gates designed

by Deonarine et al., the researchers had to perform dialysis to reset the gate [43].

The simplest logic gates are the single input gates, YES and NOT. Weiss et

al. [175] proposed the design of a NOT gate by using a repressor gene; see Figure

13(a). The input in this gate is the mRNA template of the protein which regulates

the gene. This input is amplified by translation and converted into the repressor

protein, which binds in dimers and in a cooperative manner (to enhance step-like

behaviour) to the gene to repress it. In the presence of the input mRNA, the

gene is repressed and not transcribed any more, resulting in low output mRNA

concentration, while in the absence of the input mRNA the gene is transcribed

and produces output mRNA. This system mimics the behaviour of a NOT gate.

The quality of this NOT-like behaviour depends on the steepness of the gate in the

sense that the NOT-like behaviour can be enhanced by increasing the steepness

of the regulation function.

In addition to these single input logic gates, Weiss et al. [175] also proposed

a design for two input logic gates such as NAND, AND and IMPLIES. Note that

the NAND gate represents a functionally complete set in the sense that any logical

function can be built using only NAND gates. The NAND gate modelled by Weiss

et al. [175] consists of two genes repressed by two different inputs (X and Y),

but which encode the same output protein. This output protein is synthesised

when at most one of the two inputs (X or Y) is present so that at least one gene

remains active; see Figure 13(b). The mechanism of having two genes encoding

CHAPTER 2. MOLECULAR COMPUTING 45

(a) NOT gate (b) NAND gate

(c) AND gate (d) IMPLIES gate

Figure 13: Single-regulator genetic logic gates [175]. The operator regions where
TFs bind are denoted by O, while the promoters of the genes by P. Repression is
represented by the overlapping between the operator and promoter. The inputs
are the TFs which regulate the genes. For AND and IMPLIES gates, the inputs
are the TFs (A or R) and the inducer which activates/inactivates the TFs. Two
inputs logic gates can be designed by either using OR wiring between two genes
(b) or by using an allosteric enzyme and an inducer as the two inputs, where the
enzyme can regulate the gene only in the active state, (c) and (d).

CHAPTER 2. MOLECULAR COMPUTING 46

for the same protein is called OR-wiring.

In an OR wiring mechanism, a high state can be achieved when one of the

repressor or none are present. In the case of one repressor being present, only one

gene is expressed while, when none are present, both are expressed. Thus, there

is an approximate two-fold difference between concentration values encoding the

same logic value. This is undesirable and may lead to further problems when logic

gates are interconnected.

Alternatively, two input logic gates which use only one gene can be constructed

by assuming that the transcription factor (TF) displays two states (active and

inactive) and only in the active state it can regulate the gene. In addition, the

activity of the TF is controlled by inducer molecules, i.e., inducers can either

activate or inactivate the TF. In the case when the inducer activates an inactive

gene regulator and this regulator increases the gene transcription rate, then the

gene is transcribed only in the presence of both the regulator and the inducer,

resulting in an AND behaviour; see Figure 13(c). This approach suffers from the

lack of interchangeability between the inputs. For example the IMPLIES gate is

turned off only when the first input is present and the second one is absent, but

the regulator/inducer mechanism can be applied only by considering the repressor

to be the first input and the inducer the second one and not vice versa; see Figure

13(d).

Buchler et al. [32] proposed the implementation of logic gates using combina-

torial signal integration at the cis-regulatory transcription control level. In partic-

ular, they addressed the design of logic gates through the regulated recruitment of

transcription factors (TFs) and RNAp without involving complex protein-protein

interactions such as allosteric enzymes. These gates are called transcriptional logic

gates and they represent the main focus of this thesis. Two TFs and two operator

zones can be used to construct simple two-input logic gates, such as AND and OR.

For example the OR gate was constructed from a gene which is turned on when

at least one of the operator sites is occupied. The operator sites of the OR gate

permit only the binding of specific TFs and this binding occurs independently, in

CHAPTER 2. MOLECULAR COMPUTING 47

the sense that the binding of one TF does not influence the binding of the other

one; see Figure 14(b).

The AND gate has a similar design to the OR one but requires that TFs

bind in a hetero-cooperative way. This means that the TFs have low affinity to

bind alone, but together their binding affinity increases; see Figure 14(a). Hetero-

cooperativity can be found in some wild type systems, but it can also be engineered

in a modular fashion. The modular approach uses scaffold proteins (proteins able

to colocalize other proteins close to them) to bind to DNA sites and recruit RNAp

molecules to initiate transcription [143].

(a) AND gate [32] (b) OR gate [32]

(c) XOR gate [32] (d) NOR gate [78]

Figure 14: Transcriptional logic gates. X and Y molecules can bind to their op-
erator sites upstream of the gene and either attract or repeal RNAp molecules
to initiate transcription. The operator sites can consist of one or more identical
binding sites for the same TF and the binding to these binding sites takes place
is a homo-cooperative manner. Note that in (d) we explicitly represented each
individual binding site of the operator. (a) Hetero-cooperativity is used to imple-
ment AND logical behaviour, where this mechanism assumes that the two TFs
can bind with high affinity only together. (b) OR logic gates are implemented
using an independent binding motif, where the binding of one TF does not influ-
ence the binding of the other one. (c) The XOR gate was implemented using a
modular design. There are two distal sites where R subunits can bind depending
on the presence or absence of TFs and, once bound, these R subunits recruit an S
subunit and initiate a DNA looping, resulting in the activation/repression of the
gene. (d) The NOR gate was designed using competitive binding of two TFs to
the promoter, thus, blocking the binding of RNAp. Homo-cooperativity is also
used to achieve a steep response.

CHAPTER 2. MOLECULAR COMPUTING 48

More complex gates, such as XOR gate, can be constructed by connecting these

elementary gates. However, this leads to slower, noisier and more metabolically

expensive systems [32]. A different approach consists of using OR wiring for two

genes where, in the case of the XOR gate, each gene is activated in the presence of

one TF and repressed in the presence of the other TF. As mentioned above, OR

wiring has the disadvantage of coding a logical value with different concentrations.

Buchler et al. [32] proposed a modular mechanism for designing complex logic

gates which avoided crowding and used only one gene. This mechanism consists

of transforming the logical function in either disjunctive or conjunctive normal

forms and using hetero-dimers subunits and DNA looping. Based on the presence

or absence of the TF, an R subunit can attach at a distal site and attract another

subunit, S, there. Through DNA looping the S subunit can bind to the gene

promoter and repress the gene or to a nearby site to activate it; see Figure 14(c).

This method also avoids crowding of binding sites for more complex functions and

eliminates the need for more than one gene [32]. Nevertheless, this method can

suffer from crosstalk between different R and S subunits which would limit the

number of gates within a cell [32].

As opposed to Buchler et al.’s [32] rational design of transcriptional logic gates,

Hermsen et al. [78] designed cis-regulatory regions in silico, able to perform var-

ious logic functions, by using evolutionary algorithms. In addition to hetero-

cooperativity, they observed a high occurrence of homo-cooperativity and over-

lapping binding sites; for example, in E.coli, 37% of the TF-DNA interactions

are mediated by more than one binding site and 39% of the binding sites over-

lap. Homo-cooperativity had the main purpose of increasing the steepness of

the switching mechanism, while the overlapping binding sites of implementing an

efficient repression mechanism; see Figure 14(d).

TFs seem to use a variety of binding mechanisms, such as hetero-cooperative,

competitive or independent binding. Usually it was observed that hetero-cooperativity

was associated with AND/NAND behaviours while competitive binding with

OR/NOR behaviours [78, 146]. Schilstra and Nehaniv [146] compared, from the

CHAPTER 2. MOLECULAR COMPUTING 49

point of view of Boolean logic, all these TF-DNA binding mechanisms using statis-

tical thermodynamics. Their results indicated that, although all these mechanisms

can lead to behaviour that can be interpreted by logic functions, only indepen-

dent binding strictly follows the rules of Boolean logic. According to De Morgan’s

theorems, the rules to write AND and OR logic operators in terms of each other

using negation are the following

x ∨ y = x ∧ y and x ∧ y = x ∨ y

Only in the case of independent binding, the steady state abundance which en-

codes for x ∨ y equals the one that encodes for x ∧ y. In the case of other mech-

anisms (such as hetero-cooperative and competitive binding) the steady state

abundances of the genes will have similar, but not necessarily equal, values. Nev-

ertheless, the behaviour of these genes can still be interpreted using logic func-

tions. In this thesis, we will consider genes which can be interpreted as displaying

a Boolean logical behaviour and we will say that these genes mimic the behaviour

of logic gates.

We presented so far only theoretical studies aimed to identify and propose

mechanisms to implement logic gates using genes. In addition to these theoretical

studies, there was also a lot of interest to engineer logic gates, which use the above

mentioned mechanisms, synthetically. In the remaining part of the section we will

review logic gates which were engineered synthetically within live cells. A classic

example of a genetic system which exhibits logical behaviour is the lac operon in

E.coli. The genes associated with the lactose metabolism (lacY , lacZ and lacA)

are transcribed at a high rate only in the absence of the lac repressor (LacI) and

the presence of CRP; see Figure 15. Alon group [148] showed that using two

inducers as inputs, IPTG to repress lacI and cAMP to activate CRP, the system

functions as an intermediate logic gate between AND and OR gates, in the sense

that output concentrations for input logical values of (0, 1) and (1, 0) are neither

low nor high (they are halfway between high and low concentrations). An AND

CHAPTER 2. MOLECULAR COMPUTING 50

behaviour can be enhanced by reducing the concentration of the intermediary

states, while an OR one by increasing these concentrations.

In addition to this theoretical study, Alon group [105] changed the behaviour

of the lac operon in pure AND, pure OR and single input switches (only one

input controls the system) synthetically, by performing a few point mutations

in the cis-regulatory area. Although the behaviour of the system is changeable,

the cis-regulatory area is plastic, meaning that the gene is able to perform new

functions without altering its essential features. This fine-tuning of behaviour

and parameters represents one of the most important advantages of the genetic

logic gates compared with enzymatic ones. Note that, although this model of

lactose operon uses both transcription factors and inducers, the logic function is

integrated in the cis-regulatory area as modelled by Buchler et al. [32].

CRP Plac lacZ lacY lacA

CRP

cAMP

lacI

IPTG

Figure 15: The lac operon can mimic an AND gate. IPTG acts as a derepressor
for the Plac and it can be considered to be an activator for the system. The
operon is transcribed with high rate only when both inputs, IPTG and cAMP,
are present, thus, resulting in an AND behaviour.

A different approach was used by Guet et al. [71] who constructed logic gates

by considering various network topologies of a three genes system (lacI, λcI and

tetR), where each gene is regulated by only one TF. The activity of each gene

can be controlled by one of the five promoters: PL
1 and PL

1 repressed by LacI, P T

repressed by TetR and P λ
− and P λ

+ repressed and activated respectively by cI; see

Figure 16(a). The input in the system consists of two inducers, IPTG (able to

inactivate LacI) and aTC (able to inactivate TetR repressor), while the output

is a gene encoding the green fluorescence protein (GFP) and controlled by a P λ
−

promoter. The system, formed of four genes connected in different configurations,

CHAPTER 2. MOLECULAR COMPUTING 51

performed various logic operations (such as NAND, NIMPLES and NOR) in re-

sponse to the two inducer inputs. In most cases, the output was unambiguous and

displayed a clear binary form. This experiment proved that, using a basic tool kit

of regulatory elements, one can generate a wide variety of logic behaviours just

by changing the connectivity of the genes.

(a) Guet et al. gates [71]

Promoter

distal core proximal-35 lux-10

(b) Cox III et al. gates [39]

Figure 16: Combinatorial approach on transcriptional logic gates. (a) Guet at al.
designed logic gates using a combinatorial network architecture by changing the
regulatory connections between three genes. Each of the three promoters (Pi, Pj

and Pk) can be one of the following: PL
1 , P

L
1 , P

T , P λ
− and P λ

+. Note that PL
1

and PL
1 are repressed by LacI, P T by TetR and P λ

− by cI, while P λ
+ is activated

by cI. (b) A logic gate consists of a promoter with three sites (distal, core and
proximal) where TFs (AraC, LuxR, LacI and TetR) can bind to enhance or inhibit
the transcription rate. The RNAp molecules bind on the core area, between −35
and −10 boxes, to initiate transcription. Repression can be achieved at any site
while activation only at the distal site.

A combinatorial approach was also employed in designing promoters; see Fig-

ure 16(b). Cox III et al. [39] constructed 288 promoters in E.coli, each being

regulated by up to three TFs. Four proteins were used as TFs: two activators

(AraC and LuxR) and two repressors (LacI and TetR). The states of these inputs

were toggled by four inducers Lara, VAI, IPTG and aTc to activate/inactivate

AraC, LuxR, LacI and TetR respectively. The results showed that genes mim-

icked the behaviour of three logic gates, YES, NOT and AND. In addition, Cox

III et al. [39] observed that repressor gates display a better binary behaviour than

activator gates and that gates with more inputs display a poorer binary behaviour

compared with the ones with fewer inputs.

Alternatively to combinatorial design, researchers have also used rational ap-

proaches to engineer genetic logic gates. Anderson et al. constructed an AND

CHAPTER 2. MOLECULAR COMPUTING 52

gate with three genes where the two inputs of the gate were integrated through

translation regulation [8]. Sayut et al. [145] designed an AND gate but this time

using one gene which integrates the two inputs in the cis-regulatory area as previ-

ously proposed by Buchler et al. [32]; see Figure 17(a). As opposed to Alon group

[148, 105] who exploited an already existing promoter (the lac operon), Sayut et

al [145] fused together two cis-regulatory areas synthetically, one regulated by

LuxI and the other one by LacI. This proved that complexity in transcription

gates can be constructed combinatorially in the cis-regulatory area by adding the

appropriate regulatory sequences. Nevertheless, combining two regulatory areas

is not always easy and can lead to a behaviour which is undesirable in the design

of synthetic logic gates. For example, in the case of the lac operon, the behaviour

was an intermediary one between AND and OR and not a clear logical behaviour

[148, 105].

Plac GFP

LuxR

OHHL

lacI

IPTG

Plux

(a) Sayut et al [145]

PlacI LacI

Plac cI

IPTG
LacI

CFP

P YFPλ

cI

(b) Yokobayashi et al. [182]

Figure 17: Rational design of transcriptional logic gates. (a) The gene which
expresses green fluorescence protein is controlled by two regulatory proteins: LuxR
which activates the gene at a distal site and LacI which represses the gene at a
proximal site. The inputs in this gate are represented by two inducer proteins,
OHHL which activates LuxR protein and IPTG which inactivates LacI protein.
(b) The system consists of two gates connected serially: an IMPLIES gate which
has an output that feeds into a NOT gate. The IMPLIES gate is implemented
by the Plac promoter, where the two inputs are IPTG and LacI and the output
is the cI. The second gate, the NOT gate, takes cI as input and produces yellow
fluorescence protein as output.

After building basic toolboxes with logic gates, researchers have also focussed

on constructing larger logical circuits, where logic gates are interconnected in a

network with the aim of performing complex functions. Logic gate interconnection

CHAPTER 2. MOLECULAR COMPUTING 53

is not simple even in the case of a modular design where the inputs and the

outputs are of the same type. One of the problems which can be encountered is

the mismatch of parameters, where, for example the lowest output value of a gate

can be higher than the regulation threshold of the downstream one. In this case,

changes in the output of the first gate will not reflect in any output change of the

downstream gate.

Yokobayashi et al. [182] used both a rational and an evolutionary approach

to tune the regulation function of a gene by performing point mutations limited

to specific areas on the DNA (such as the promoter or the coding area of a gene).

They were able to transform a non-functional circuit (IMPLIES-NOT gate) into

a functional one by altering protein-DNA interactions, but also protein-protein

interactions; see Figure 17(b). This underlines that evolvability offers another

degree of freedom to fine tune or optimise transcriptional logic gates [182, 145],

and even supports the construction of new logic functions for a given genetic

system [105].

The transcriptional logic gates presented above used simple transcription fac-

tors as signals, e.g., LacI, TetR, cI, LuxR etc. Nevertheless, the pool of available

signals is not restricted to these TFs, but can be extended to include other inter-

action mechanisms such as chemical complementation, that is a linker molecule

is used to attach a DNA binding domain (which is able to bind to the DNA)

to an activation domain (which recruits RNAp molecules and helps initiate tran-

scription). Bronson et al. [30] showed that a gene regulated by this TF (linker

molecule, DNA binding domain and activation domain) can implement an AND

logic gate with three inputs, where the inputs are represented by the three com-

ponents of the TF. In this model, the gene is activated and is transcribed at high

rate only when all three components are present.

As a final remark, we would like to pinpoint that these types of logic gates

are not restricted to prokaryotic organisms as it might be inferred from most of

the examples listed above. Kramer et al. [93] showed that similar mechanisms as

in prokaryotic cells (such as promotor integrated logic or logic gates constructed

CHAPTER 2. MOLECULAR COMPUTING 54

from multiple genes) can be engineered in mammalian cells to build synthetic

logic gates. Rinaudo et al. [136] proposed and validated experimentally a general

framework for building logic systems in mammalian cells (by assuming the con-

junctive or disjunctive normal form of the logic function) using oligonucleotides

as gene regulatory inputs. These examples indicate that mechanisms modelled for

prokaryotic cells can be adapted and used in mammalian cells.

Considerations on Transcriptional Logic Gates

Above, we presented several mechanisms by which genes integrate multiple inputs,

namely: transcriptional integration, OR wiring, allosteric transcription factors or

translational regulation. Nevertheless, in this thesis, we address only transcrip-

tional logic gates, which are logic gates constructed from genes that integrate the

inputs in the cis-regulatory area of the gene.

Transcription based logic gates have several advantages compared with other

types of biological logic gates. First, due to the fact that these gates can function

only inside cells (they require the protein synthesis machinery), the gates display

an automatic reset mechanism using the decay process, i.e., a logic gate is reset

when a signal is no longer fed into the system by decaying the proteins in the cell

[175].

Moreover, the complexity of the logic function performed by an allosteric en-

zyme resides in the complexity of the enzyme, but in the case of transcriptional

logic gates, this complexity results from the combination of elementary parts in

the cis-regulatory area [32, 9, 145]. Thus, by combining elementary regulatory

regions, usually in the upstream region of the gene, more complex logic functions

can be achieved and this process can be automated [32].

Combining different regulatory regions is not a simple process and can lead

to undesirable results (see the case of the lac operon where the gene can show

an intermediary behaviour between AND and OR logic functions). Nevertheless,

genetic logic gates can be evolved to display a desired behaviour by changing the

logic function or the kinetic parameters [182, 105, 145]. In the case of allosteric

CHAPTER 2. MOLECULAR COMPUTING 55

enzymes, one usually has to modify the concentrations of the substances to change

the behaviour of the gates [120], but in the case of transcription logic gates the

change in behaviour can be achieved by mutations in the base pairs of the cis-

regulatory area [182]. Hence, transcription based logic gates display a higher

degree of freedom in terms of control parameters compared with enzymatic logic

gates.

Despite the advantages mentioned above, the design of transcriptional logic

gates may be hampered by the specificity of their environment, the cell. In tran-

scriptional logic circuits, the signals are separated by encoding different proteins

rather than spatially, as in the case of electronic circuits. As a result, all molecu-

lar based systems implemented in a single compartment can suffer from cross-talk

between signals. In the case of genetic gates, crosstalk can be avoided only by

a careful selection of the TFs and by limiting the total number of TF molecules

within the cell. Buchler et al. [32] approximated the total number of TF molecules

to be around 104, which, in the case of 100 TFs (signals) in a system, it indicates

that each signal contains around 100 molecules. Usually, noise is reduced by in-

creasing the particle number in the cell [87] and, this suggests that there is a

trade-off between noise and number of signals in the system if we require no or

negligible cross-talk between signals.

This chapter presents several implementations of elementary biological com-

ponents able to mimic the behaviour of logic gates. Nevertheless, researchers also

focussed on the design and analysis of other digital components from genes, such as

toggle switches [35, 57, 91], oscillators [47, 188], pulse generators [17], associative

memory units [55, 50] and even counters [52]. The community is now concentrat-

ing their efforts to build a library of elementary biological components [9, 172]

which can be used in constructing more complex functions such as bio-computers

in smart drug delivery systems or biochemical sensors. One example is BioBrick

(see http://partsregistry.org), a project which aims to build a catalogue of stan-

dardised biological parts that mimic the behaviour of digital components. Once

these libraries and various standards are completed, it is crucial to interconnect

CHAPTER 2. MOLECULAR COMPUTING 56

and optimise these basic components [74].

In this thesis, we investigate genes as computational units. In particular, we

are interested in how genes can compute and what properties they have. Previous

research addressed this, but certain critical aspects were overlooked, such as how

genes can be interconnected and what is their optimal design [74]. To overcome

these limitations, we analysed both the interconnection and optimality of logic

gates by examining how these two are influenced by the biological parameters of

the genes.

When interconnecting molecular logic gates, researchers have pinpointed that

there are two aspects which need to be addressed: (i) modularity in parameters

[10, 160, 182] and (ii) scalability of the design [103]. The former requires that the

threshold of a downstream gate to be bounded by the low and the high steady

states of an upstream gate, so that changes in the upstream gate can be reflected

in the downstream one. This issue was addressed theoretically and experimen-

tally in the case of both enzymatic logic gates and DNA based ones [10, 147].

Yokobayashi et al. [182] investigated the modularity in parameters in the context

of transcriptional logic gates, but from an experimental point of view (they per-

formed direct evolution and then selected the gates which displayed modularity

in parameters).

The second aspect, the scalability of the design, assumes that an arbitrary

number of logic gates can be interconnected without affecting the binary behaviour

of the system. This was approached both theoretically [103] and experimentally

[147, 189] in enzymatic and DNA based logic gates, but, to our knowledge, was not

considered in the case of genetic logic gates. In this contribution, we systematically

investigate the set of parameters which satisfy these two properties (modularity

in parameters and scalability of the design) simultaneously.

Next, we review several studies that analysed and optimised genes, with respect

to various properties which characterise their computational behaviour.

CHAPTER 2. MOLECULAR COMPUTING 57

2.5 Computational Properties of Transcriptional

Logic Gates

In the case of a low number of molecules, inherent fluctuations in reaction rates,

caused by thermal noise, induce stochastic fluctuations (noise) in the copy number

of molecules [97, 31]. Usually, in living cells, there are few copies of mRNA

molecules, and one or two copies per gene. Consequently, the protein synthesis

process is affected by noise. In this case, the deterministic analysis is no longer

sufficient to describe a reaction system adequately and a stochastic analysis is

required; compare green dotted line (deterministic behaviour) to the red solid one

(stochastic behaviour) in Figure 18(a).

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 2 4 6 8 10

x(
t)

time

deterministic
stochastic

(a) Stochastic and deterministic behaviour

 10

 15

 20

 25

 30

 35

 0 2 4 6 8 10

x(
t)

time

stochastic
deterministic steady state 0
deterministic steady state 1

(b) Noise and binary behaviour

Figure 18: Stochastic fluctuations and protein synthesis. On the x-axis we rep-
resented the time measured in arbitrary units and on the y-axis the number of
molecules of a protein x. (a) The dashed line represents the continuous determin-
istic behaviour, while the solid line the stochastic behaviour. (b) In the case of
binary behaviour, the noise can make it difficult to determine the deterministic
steady state.

In the context of genes as computational units (the topic of our research),

stochastic fluctuations can hide useful signals in noise [70]. For example, in Fig-

ure 18(b), if we look only at a short time frame, it can be difficult to say whether

the system is in deterministic steady state 0 or 1. Thus, it is essential to con-

sider stochastic fluctuations in protein numbers in order to represent adequately

CHAPTER 2. MOLECULAR COMPUTING 58

a genetic system.

2.5.1 Noise in Gene Expression

Spudich and Koshland [155] were among the first ones to observe that molecular

species within a cell are prone to noise. In their experiment they investigated

bacterial movements by adding a stimulus into the environment and found great

variability in the time required to return to the pre-stimulus behaviour. This vari-

ability is determined by variations in populations, which could not be explained

by genetic mutations. Thus, they hypothesised that the phenotypic variability of

the cells was caused by intrinsic fluctuations in the number of molecules.

Sources of Noise

Protein synthesis can be divided into three processes: regulation, transcription

and translation. Several studies investigated the contributions that these three

sub-processes have to the output noise. Arkin and co-workers [106, 11] modelled

the protein synthesis process and observed that the stochastic behaviour is en-

hanced by low copy number of mRNA molecules, i.e., the systems with fewer

transcripts displayed higher noise compared with the ones with more transcripts

despite the fact the average number of output proteins was equal in both cases.

Thus, translational burst (few copy numbers of mRNA transcripts are translated

in high copy numbers of proteins) was identified as the main cause for noise in

gene expression. However, this study analysed the gene expression process through

stochastic simulations. Although simulations can match experimental data, they

do not always provide an insight into the underling mechanisms which control the

noise.

Thattai and van Oudenaarden [167] and, later, Elf and Ehrenberg [45] inves-

tigated noise in gene expression by using an analytical method, the Linear Noise

Approximation (LNA). Their model predicted that the size of the translational

burst (the number of proteins produced per transcripts) controls the size of the

CHAPTER 2. MOLECULAR COMPUTING 59

fluctuations. In particular, they computed that the mRNA noise is a Poisson

noise (where the mean equals the variance) and the protein has the variance ap-

proximately equal to the burst size multiplied by the mean. This shows that high

translational bursts increase noise, while low bursts reduce noise.

High particle number is usually associated with less noise [56]. All the above

mentioned studies (Arkin and co-workers [106, 11], Thattai and van Oudenaarden

[167] and Elf and Ehrenberg [45]) show that the output noise of gene expres-

sion can be controlled without increasing the number of molecules of the output

protein, by changing the transcriptional and translational rates. However, these

transcriptional and translational rates control the number of mRNA molecules

and a higher number of mRNA molecules means a higher metabolic cost. Thus,

they suggested that there is a trade-off between noise and metabolic cost, in the

sense that a higher cost leads to less noise and a lower cost to more noise.

Ozbudak et al. [122] confirmed these theoretical results [106, 167, 45] experi-

mentally. Using a single reporter GFP (Green Fluorescence Protein) in B.subtilis

they measured the fluctuations in the fluorescence levels of a single cell and ob-

served that translational bursts seem to contribute the most to the total output

noise.

Alternatively, noise could stem from fluctuations in the activity state of the

promoter [89]. Kepler and Elston [90] showed that, due to the fact that genes have

low copy number, the activation state of the promoter is subject to fluctuations,

even in the case of high copy number of TFs. The fluctuations in the activation

state of the promoter can result in mRNA burst and, consequently, the out-

put protein bursts would be generated by transcription (rather than translation).

This result was also proven experimentally by Golding et al. [69], who tagged

the mRNA transcripts with green fluorescence and observed that transcription

happens in bursts.

Although in this thesis we only address bacterial cells, it is worthwhile not-

ing that fluctuations in the gene expression of eukaryotic organisms, such as

CHAPTER 2. MOLECULAR COMPUTING 60

S.cerevisiae, seem to result mainly from fluctuations in the mRNA number. Bar-

Even et al. [13] and Newman et al. [118], in two independent studies, showed

that noise from random birth and death of mRNA molecules or from promoter

fluctuations dominates the output noise, while translation seems to only to scale

this transcription noise. Furthermore, their results showed that the noise of gene

expression is a scaled Poisson noise as predicted by the theoretical models [167, 45].

On a similar note, the analysis of Pedraza and Paulsson [128] supports the

idea that noise stems mainly from transcription and that translation only scales

the transcriptional noise. They also showed that it is difficult to determine what

contributes the most to noise in gene expression. For example, these authors

obtained similar results by using different mechanisms such as burst-like or graded

transcription and exponential or non-exponential decay.

Reaction Speed and Noise in Gene Expression

Above we reviewed studies which identify low numbers of molecules as the main

source of noise. In addition to this, the speed of reaction seems to also influence

the noise in gene expression. In this context, Elston and co-workers [90, 130] inves-

tigated noise and regulation speed analytically and observed that slow regulation

leads to larger noise, but also to binary output, which is caused by transcriptional

bursts. These results can be explained by the fact that, when the regulation pro-

cess is slow (comparable in speed with transcription), the downstream process

(transcription) will follow fluctuations in the activity state of the promoter and,

consequently, the regulation noise will propagate to the output. However, when

the regulation process is fast, the transcription process (which is slower) will not

be able to follow the fast regulation fluctuations and the regulation noise will

be time-averaged [125, 167, 90]. Experimental evidence supports these analytical

results by indicating that the regulation speed can contribute significantly to the

output noise [19, 69].

Alternatively, the speed in other sub-processes of gene expression, such as

transcription and translation, can contribute to noise. Zhu et al. [190] considered

CHAPTER 2. MOLECULAR COMPUTING 61

the speed of the transcription and translation processes, but they did this through

stochastic simulations. They found that the output noise is highly dependent on

the time it takes for the transcription and translation processes to complete and

on the burst size. In particular, slow transcription or translation leads to higher

noise level in the output protein. In conclusion, the speed of all sub-processes

related to gene expression (regulation, transcription and translation) can affect

the noise levels, in the sense that lower speeds leads to higher noise and higher

speed to less noise.

The Distribution

In addition to measuring noise levels in proteins, several studies also addressed

the distribution of the protein numbers. The LNA approximates each reaction as

being a Gaussian distributed one, which displays a negligible error only for high

mean values. Friedman et al. [53] computed the noise assuming an exponential

distribution of the burst size. They showed that the actual distribution of the

output protein is a Gamma distribution with the variance equal to the burst

size multiplied by the mean. Although the distribution differs from the previous

studies, the variances are the same.

Recently, Taniguchi et al. [166] also proved the existence of the Gamma distri-

bution experimentally by investigating the noise in 1018 genes from E.coli. They

found that fitting the distribution to a Gamma distribution gives better results

than for any other distribution. For low abundant proteins, the authors were able

to correlate the distribution parameters to real biological parameters, namely: the

noise (variance divided by the square mean) equals the transcription rate and the

Fano-factor (variance divided by the mean) equals the burst size.

The difference between this Gamma distribution and a normal distribution is a

skewness to the right, which becomes strong only for low abundant proteins. Note

that, in this thesis, when we plot the distribution of protein abundances we use

a normal distribution. This approach is justified by the fact that our numerical

examples consist of medium and high abundant proteins for which the normal

CHAPTER 2. MOLECULAR COMPUTING 62

distribution approximates the Gamma distribution with high accuracy.

Contributions to Noise

Due to low copy number in the molecular species involved in gene expression,

stochastic fluctuations affect the output protein. The noise which is generated by

fluctuations in the three sub-processes (regulation, transcription and translation)

is intrinsic to each gene and depends on the kinetic parameters of the biochemical

processes [161, 48, 129].

In addition to the inherent noise in the biochemical processes related to gene

expression (intrinsic component), the output is also affected by fluctuations in

other cellular compartments, such as the number of RNAp or ribosome molecules,

the cell division time, the degradation machinery and the cell environment [161].

These fluctuations are called extrinsic noise and they affect all genes within a

cell equally. Theoretical studies showed that the variances of the extrinsic and

intrinsic components are additive and that their sum equals the variance of the

output protein [161, 123, 165].

Elowitz et al. [48] proved the existence of the intrinsic (from the process

itself) and extrinsic (from external factors) components of noise experimentally by

using two fluorescence genes (cyan and yellow) with identical promoters in E.coli

bacterium. The difference between the two fluorescence intensities was generated

by independent intrinsic fluctuations in the two genes and, thus, was quantified as

the intrinsic contribution to noise. Furthermore, the degree of correlation between

the noise in the two genes resulted from noise in the cellular compartments that

affected all genes equally and was measured as the extrinsic component of the

noise.

It worthwhile noting that Taniguchi et al. [166] observed experimentally that,

for low mean protein abundances, the intrinsic noise is dominant while, for high

abundances, the extrinsic noise sets a lower limit on the total noise.

Finally, genes can also be affected by noise from an upstream gene [161, 129].

This upstream noise is different from the extrinsic noise and from the intrinsic one

CHAPTER 2. MOLECULAR COMPUTING 63

in the sense that it quantifies the contributions of the fluctuations in the tran-

scription factors. Pedraza and van Oudenaarden showed both theoretically and

experimentally that the variance of the upstream component of noise is additive

to the variances of the intrinsic and extrinsic components [129]. In the context

of gene networks, the upstream noise plays a crucial role because increasing the

number of genes in a system can lead to higher total noise.

Noise in Gene Circuits

Thattai and van Oudenaarden [168] investigated theoretically the propagation of

noise in cascades of genes. A gene cascade is a network of genes where genes are

connected serially, i.e., a gene regulates only the next gene in the cascade and is

regulated by the previous one. They found that the output noise can be bounded

from above even in the case of an arbitrarily large cascade. The main condition is

that the absolute value of the derivative of the synthesis rate with respect to the

transcription factor abundance is smaller than 1. If one considers that the gene

regulation function has a sigmoid shape, this means that, as long as the steady

state of the genes are on the two plateaus (the inactive area in Figure 4), the noise

level in a cascade cannot increase arbitrarily. In this context, we should mention

that theoretical studies have shown that the noise level in the transient area (the

active areas in Figure 4) is much higher compared with the one in the inactive

ones [167]. This result was also proven experimentally in several studies, such as

Hooshangi et al. [82], Dunlop et al. [44] and Murphy et al. [115].

Two studies [82, 129] investigated experimentally how the noise propagates

through a network of genes which repress each other in a cascade. Pedraza et

al. found that the upstream noise had the most significant contribution to the

output noise. In addition, they also used an analytical method (Linear Noise

Approximation) and correctly predicted the noise levels observed experimentally.

This suggests that analytical methods can be a reliable tool to investigate the

stochasticity of genes and genes networks. Furthermore, Weiss and co-workers

[82, 83] observed that adding more genes in a cascade affected mainly the noise in

CHAPTER 2. MOLECULAR COMPUTING 64

the transient area rather than the noise in the two plateaus, which indicates that,

for certain set of parameters, a gene cascade can indeed hamper noise propagation

as predicted by Thattai and van Oudenaarden [168].

Noise Control using Negative Feedback

As we saw above, genes and genetic networks can be strongly affected by noise.

The question that we need to answer now is: what mechanisms can be used to

reduce the noise in gene expression. Alternatively, the literature proposes negative

auto-regulation as a mechanism able to achieve reduction in noise, where negative

auto-regulation (or negative feedback) assumes that the expressed protein of a

gene becomes a transcription factor and acts as a repressor for the same gene; see

section 6.4 and Figure 39. The first who engineered negatively auto-regulated gene

synthetically in live bacteria were Becskei and Serrano [20]. Their experiments

revealed that the negatively auto-regulated gene displays lower noise compared

with the gene without any type of auto-regulation.

Several theoretical studies examined whether negative auto-regulation can lead

to lower noise by comparing a negatively auto-regulated gene to a gene without any

type of auto-regulation. These theoretical studies confirmed that under certain

conditions negative feedback can lead to a reduction in noise output [167, 126, 123,

84, 31, 188]. Paulsson [123] investigated analytically a negatively auto-regulated

gene and identified that negative auto-regulation alters the noise of the output in

three ways:

1. it reduces intrinsic noise (see section 2.5.1) by reducing the mean behaviour;

2. it increases extrinsic noise (see section 2.5.1) by increasing the speed and,

consequently, reducing time averaging;

3. it reduces the sensitivity which compensates for the reduction in time aver-

aging and produces an overall reduction of extrinsic noise,

where sensitivity is defined as the relative change in the output as a response to

a change in the input.

CHAPTER 2. MOLECULAR COMPUTING 65

Supporting the idea that negative auto-regulation can lead to lower extrinsic

noise configurations, Brugemman et al. [31] compared a negatively auto-regulated

gene with a simple one and considered both transcription and translation pro-

cesses. They observed that slow protein dynamics will generate large noise in

transcription when the latter is fast. Thus, there is a trade-off between the noise

in transcription and noise in translation, i.e., higher noise in mRNA leads to less

noise in protein and lower noise in mRNA to higher noise in protein.

A similar two steps system was assumed by Paulsson and Ehrenberg [126], who

observed that noise in the repressor protein can reduce the noise of a negatively

auto-regulated gene under the value of intrinsic noise. As opposed to Brugemman

et al. [31], Paulsson and Ehrenberg [126] kept the average number of molecules and

the synthesis rate fixed. This indicates that their comparison analysed systems

which displayed similar metabolic costs.

As we will show in this thesis, different metabolic cost can lead to different noise

levels. Thus, if one compares two systems (or two configurations) to identify how

a component (or a parameter) affects the noise, the two systems should display

equal metabolic costs. This way, the results are not affected by changes in the

metabolic cost, but by changes in the configuration (or parameters) of interest.

Hornung and Barkai [84] compared the negatively auto-regulated system to

a simple gene and observed that, although negative feedback reduces noise, the

reduction in the sensitivity of the signal is greater. This reduction in sensitivity

makes it difficult to distinguish signals from stochastic noise. However, the study

of Hornung and Barkai [84] did not consider two systems with equal metabolic

costs, which as mentioned above represents a drawback.

Zhang et al. [187] investigated how negative auto-regulation affects the noise

under the assumption of fixed gain and average number of molecules, which in-

dicates that the authors aimed to keep the costs of the simple system and the

negatively auto-regulated one equal. They found that there is an optimal value

for the auto-repression strength, for which the noise is minimum. In addition,

CHAPTER 2. MOLECULAR COMPUTING 66

they compared the negative auto-regulation mechanism with the positive auto-

regulation one and showed that negative feedback always reduces the intrinsic

noise while the positive one increases it.

In addition, noise in negatively auto-regulated genes was examined also in the

frequency domain. Simpson and co-workers [154, 12] showed both theoretically

and experimentally that negative auto-regulation not only reduces the variance

of the output, but also shifts the noise spectrum to higher frequencies. Higher

frequency noise can be averaged out by the cell and, thus, it is easier to remove

compared with low frequency noise [138].

2.5.2 Switching Time

In this thesis, we investigate genes as computational units and are particularly

interested in their computational limits. The noise hampers the accuracy of the

computation and, as we saw above, it can strongly affect genetic based compu-

tations by hiding useful signals [25]. A more general problem related to compu-

tations is the speed at which computations are performed [102]. Genes do not

process information instantaneously, but are rather affected by a time delay [5].

This time delay, which can be thought of as computational lag, is the time required

for the output protein to build up or to be decayed once the input was changed.

From the computational point of view, this delay is undesirable, because we want

to perform computations as fast as possible.

The response time (or switching time) is defined as the time required by a

gene (gene network) to achieve a fraction of the new steady state once the input

is changed. Usually, the response time measures the time to reach half the distance

between the initial state and the steady state of the gene [5]; see Figure 19.

Hooshangi et al. [82] performed stochastic simulations and measured the re-

sponse time as the time to reach half of the steady state. Their results show

that the response time increases linearly with the length of the cascade. Thus,

alternative methods to decrease the response time of a gene should be employed

in conjunctions with methods to reduce the length of a network.

CHAPTER 2. MOLECULAR COMPUTING 67

 0

 5

 10

 15

 20

 25

 30

 0 1 2 3 4 5

x(
t)

time

initial state

steady state

half way

tresponse

(a) switch on

 0

 5

 10

 15

 20

 25

 30

 0 1 2 3 4 5

x(
t)

time

steady state

initial state

half way

tresponse

(b) switch off

Figure 19: Response time. The response time, tresponse, is the time required to reach
half activation of a gene. We considered both switching on (a) and switching off
(b).

Negative auto-regulation was suggested as an alternative approach to reduce

the response time of a single gene. Rosenfeld et al. [137] showed theoretically

that negative auto-regulation can speed up only the turn on response time, i.e.,

the turn on time of a negatively auto-regulated gene is five times smaller than

the one of a simple gene. However, their results indicated that the turn off time

remains unaffected by negative auto-regulation. In the context of our analysis

(gene as computational units) the direction of switching is not important in the

sense that we need the system to turn on and off as fast as possible. One of their

assumptions is that the auto-repressed gene does not have a leaky expression,

which is not always biologically plausible. As we will show in this thesis, this

assumption has the potential to affect the results significantly and, thus, it is

necessary to investigate systems with non-vanishing leak rates as well.

2.5.3 Integrated Studies

The processing speed and accuracy of the computations are, usually, intercon-

nected [25, 104], in the sense that changing one computational property affects

the other. Thus, it is important to investigate speed and accuracy in an integrated

fashion to be able to determine how changes in one property affect the other one.

CHAPTER 2. MOLECULAR COMPUTING 68

There are relatively few studies where accuracy and speed were investigated

together. Stojanovic and Stefanovic [160] observed a speed-accuracy trade-off

curve when constructing DNA based logic gates, i.e., higher speeds were achieved

at reduced accuracies and, conversely, higher accuracies were achieved at lower

speeds. In their system, the trade-off was controlled by the length of the DNA

strands used in constructing the gates, meaning that shorter DNA strands led to

faster and less accurate gates, while longer strands led to slower and more accurate

gates. However, increasing the length of the DNA strands means that more DNA

material is required and, consequently, the cost is increased.

Furthermore, Wang et al. [173] also observed a connection between the switch-

ing time and the output noise in enzymatic feedback loops, in the sense that a

fast turning on and a slow tuning off ensured the lowest output noise. A higher

number of molecules in a protein-protein interaction system leads to lower noise

[56], but this comes at a higher cost, aspect which was not considered in their

study.

Integrated analyses of speed and accuracy did not focus only on DNA based

logic gates or enzymatic networks, but several studies also investigated speed and

accuracy of genes. For example, Rosenfeld et al. [138] investigated the noise prop-

erties of a two genes cascade, where the product of a gene represses a second gene.

Their results indicated that noise can deviate significantly the gene regulation

function from its mean behaviour. Furthermore, they analysed the time scales

of the fluctuations and found that the intrinsic and extrinsic components of the

noise have different time scales. Namely, the intrinsic component has a short time

scale so that it can be time averaged by the cell cycle while the extrinsic one has

a longer time scale and, thus, it will be propagated to the daughter cells. This

means that cells need to integrate signals for longer time periods to time average

the noise which would lead to a noise-time trade-off [86].

Another study which investigated speed and accuracy in a gene cascade is

the one of Hooshangi et al. [82]. Their results indicated that gene cascades

can increase sensitivity in the response (higher steepness) without increasing the

CHAPTER 2. MOLECULAR COMPUTING 69

output noise, but this comes at the cost of a slower response. Alternatively,

Nevozhay et al. [117] showed that the sensitivity in the response of a cascade

can be reduced by adding negative auto-regulation to the genes in the cascade

(the response can even be linearised, i.e., the response function of the cascade

becomes piecewise linear with two linear regions: one for the transient area and

one for the steady state area). This leads to a finer control over the sensitivity

of the response. Both of these approaches do not consider metabolic cost. Since

increasing the length of the cascade or adding negative feedback changes the

number of molecules in the system and, consequently, the metabolic cost, this

element should be taken into account as well.

Shahrezaei et al. [149] analysed both noise and speed in a negatively auto-

regulated gene. They observed that the intrinsic noise increases and the extrinsic

one decreases with increasing the strength of the negative auto-regulation. This

suggested that there is an optimal auto-regulation strength for which the noise

is minimised. For the optimal configuration in noise they performed stochastic

simulations and measured the response time. In comparison to the simple gene,

not only that the mean response time is faster, but also the distribution of the

response times is shifted more to the left, i.e., a higher subset of the population will

respond faster that the average compared with the simple gene. However, their

results were obtained without comparing two systems with equal cost and, in fact,

the negatively auto-regulated system uses less proteins. It would be interesting

to observe whether these results will still hold by imposing the condition that the

metabolic costs of the simple and auto-repressed gene are equal.

In addition to speed and accuracy, computations are constrained by energy

cost. Lloyd [102] showed that the maximum speed at which a physical device

can perform computations is limited by the energy it uses. Furthermore, Bennett

[24, 25] showed that the transcription mechanism (which can be thought of as a

Turing copy machine) displays a limit on the speed and accuracy of the compu-

tations which is controlled by the energy cost of the process. Returning to our

analysis (genes as computational units), we note that genes have an energy cost

CHAPTER 2. MOLECULAR COMPUTING 70

(metabolic cost) attached to them [4], which is defined by production, degradation

and general cell maintenance costs. We expect that the metabolic cost will, most

likely, influence both the speed and the accuracy of the genes.

Stekel and Jenkins [156] studied the relationship between speed and accuracy

under fixed number of molecules (metabolic cost) in negatively auto-regulated

genes. Their results indicated that intrinsic noise is actually increased by strong

negative auto-regulation. In addition, they found that this feedback mechanism

can significantly reduce the mRNA concentration and, consequently, the metabolic

cost. Finally, they showed by performing stochastic simulation that negative auto-

regulation can increase turn on speed. Interpreting these results, the authors

speculated that it is possible that the negative auto-regulation was selected by

evolution to reduce the metabolic cost or speed up turning on times rather than

to reduce the noise. Nevertheless, as well as Rosenfeld et al. [137], Stekel and

Jenkins [156] did not considered leaky gene expression and turning off times.

Another study that considers speed, accuracy and cost is the one of Tan et

al. [163], which investigated these three properties in genetic systems that used

frequency encoded signals. Their results show that, for fixed noise, the speed can

be increased only by increasing the cost. In addition, they observed that negative

feedback can decrease noise and increase speed while keeping the metabolic cost

fixed.

Mehta et al. [108] investigated switching time and noise in a positively auto-

regulated gene which displayed bi-stable behaviour. Under fixed number of output

proteins (metabolic cost), they identified a trade-off between switching time and

noise controlled by the burst size of translation. In particular, low burst size lead

to slow switching and smaller noise, while a high burst size to faster switching

and higher noise.

The above mentioned studies, which addressed metabolic cost, assumed that

this is given by the average number of molecules. We consider that the measure

of metabolic cost should also depend on the time, in the sense that the metabolic

cost should be defined as the energy consumption per time unit. For example,

CHAPTER 2. MOLECULAR COMPUTING 71

consider the case of two proteins (X1 and X2) that have the same average number

of molecules, but the first one (X1) is produced and decayed faster compared

with the second one (X2). Then, more molecules of the first protein (X1) will be

produced and decayed compared with the second one (X2) and, consequently, the

metabolic cost associated the first protein (X1) will be higher compared with the

one of the second protein (X2). Thus, we consider that studies which investigate

the computational properties of the genetic systems ought to include the metabolic

cost per time unit.

The aim of this thesis is to investigate three computational properties of genes

(output noise, response time and metabolic cost), but we will address a differ-

ent scenario compared the ones mentioned above. Specifically, we will investigate

analytically (or numerically) systems where simple genes (not bi-stable systems)

perform computations and where signals are encoded as abundance levels of pro-

teins (not as frequencies of oscillatory inputs). Note that, in addition to the

analytical approach, we will also perform stochastic simulations aimed to validate

the results.

In particular, we will investigate the output noise, response time and metabolic

cost in three types of systems:

1. in simple genes,

2. in genetic networks that consist of simple genes and

3. in genes that repress themselves (negative feedback).

Furthermore, we consider that our systems have the following assumptions:

1. the response time is determined by the maximum of turning on and turning

off times,

2. the genes can display leaky expression,

3. the metabolic cost will be a measure of the energy consumption per time

unit.

CHAPTER 2. MOLECULAR COMPUTING 72

2.6 Summary

In this chapter, we presented different mechanisms employed in performing compu-

tations with biological molecules. We started this review by presenting Adelman’s

DNA computing [3] which uses DNA oligonucleotides to solve the Hamiltonian

path problem (HPP). This type of solution was also employed in solving other

combinatorial problems, such as the satisfiability problem [99]. Nevertheless, re-

searchers raised concerns regarding whether DNA computing is best suitable for

these types of problems [6]. Hartmanis [73] addressed the scalability of the ap-

proach and computed that, to solve the HPP problem for 200 cities, would require

a DNA quantity equal to the size of the Earth, making the approach infeasible.

In addition to these combinatorial problems, biological molecules have also

been employed in logical computations. We can distinguish three classes of molec-

ular logic gates: DNA based, enzymatic and genetic logic gates. DNA based logic

gates use oligonucleotides (the gate) to transform other oligonucleotide molecules

(input) into output ones. The design of these gates is modular, but they suffer

from slow switching speeds (of the order of tens of minutes) and lack of an auto-

reset mechanism (a mechanism to clear the current state once the input is no

longer present) [160].

Enzymatic gates solve the problem of speed due to the fact that they can be

switched in the order of a tenth of a second [29]. These gates consist of allosteric

enzymes able to transform a substrate into a product only in the presence of

specific ligands. Enzymatic gates come at the cost of an increased complexity in

the design, in the sense that altering a gate and adding additional inputs cannot

be achieved unless the enzyme is replaced. Furthermore, these gates are usually

fine tuned by changing the concentration of the species of the system, which is

not always possible.

Next, we reviewed logic gates constructed from genes. Gene activity is me-

diated through the presence or absence of transcription factors. In this type of

systems, the concentration of the TF (input) controls the state of the gene (gate)

CHAPTER 2. MOLECULAR COMPUTING 73

and as a response to this state a certain concentration of product protein (out-

put) is expressed. These genetic logic gates are mainly affected by noise and slow

speeds, but their parameters and even their logic function can be changed through

direct evolution.

Note that, although there are various mechanisms used by genetic logic gates

to integrate two inputs (such as transcriptional integration, OR wiring, allosteric

transcription factors or translational regulation), in this thesis, we consider only

transcriptional logic gates, which are genetic logic gates that integrate the inputs

in the cis-regulatory area. Henceforth, when we refer to genetic logic gates we

mean only transcriptional logic gates.

To be able to perform complex logical computations with genes we need to

ensure that the genetic logic gates can be interconnected and, based on previous

studies on DNA based and enzymatic logic gates, we identified two main tasks

that would allow interconnection. Firstly, the parameters of the gates should

match, in the sense that a downstream gene threshold should be bounded by the

maximum and minimum steady states of the upstream gene. Secondly, we want

to impose the condition that the gates will not reduce the signal strength (the

difference between the maximum and minimum abundances), which means that a

strong input signal is not decreased at the output. The second requirement is not

essential in the functioning of a logic system, but will allow the interconnection

of an arbitrary number of gates in a modular and automated fashion.

In addition to interconnection, we evaluated previous work on the compu-

tational properties of transcriptional logic gates. We identified three properties

which characterise genes and logic gates, namely: output noise, response time

and energy cost. In section 2.5 we reviewed several studies that investigated

these properties both as stand-alone properties but also in an integrated fashion.

We identified that the integrated approach is essential for determining how these

computational properties are interconnected.

We also found that previous research, usually, did not consider systems or

configurations that display similar energy cost when investigating methods to

CHAPTER 2. MOLECULAR COMPUTING 74

reduce noise or increase speed. Some studies assumed that, by keeping a fixed

average number of molecules, the metabolic cost was kept fixed. However, we

consider that a better measure of energy cost is the metabolic cost per unit time,

which will measure how many molecules are produced (or degraded) on average

per unit time rather than how many molecules are in the system.

Furthermore, we observed that various studies did not investigate methods to

reduce both turn on and turn off response times. Due to the fact that we analyse

genes as computational units, it is important that the genes display fast response

times in both directions and, thus, we aim to identify methods to enhance both

turning on and turning off times.

Finally, we identified that leaky expression was disregarded in several studies.

As we will show in this thesis, leaky expression can affect both speed and noise,

but leak-free systems come at high metabolic costs.

Chapter 3

Stochastic Methods

In this chapter, we present the methods required to quantify the stochastic be-

haviour of chemical reaction systems. First, we give a short introduction on

Markov chains and then we present the Chemical Master Equation (CME) which

describes a set of chemical reactions stochastically. Furthermore, we present two

types of analyses (based on the CME) used to approximate noise levels in a chem-

ical system: stochastic simulations and analytical methods. Finally, we discuss

the process by which we generated the simulation results in this thesis and what

software we used to achieve this.

3.1 Markov Chains

We start this chapter by introducing the reader to Markov chains. This has a

double purpose: to present to the reader the tools needed in the next chapter and

to provide support for the next section, The Chemical Master Equation.

A stochastic process is a process that involves a set of random variables which

depend on a parameter (usually time), that is

{X(t), t ∈ T}, (3)

where X(t) is the state of the system at time t.

75

CHAPTER 3. STOCHASTIC METHODS 76

Consider a fixed set of states called the state space and a system within a

certain state. A Markov process is a process which displays the Markov property,

i.e., the next state of the system depends only on the most recent state and not

on any previous states. If we consider that t0 < t1 < . . . < tn < tn+1, then the

Markov property can be written as

Pr{X(t) = x|X(t0) = x0, . . . , X(tn) = xn} = Pr{X(t) = x|X(tn) = xn}. (4)

There are two types of Markov Chains: Discrete Time Markov Chains (DTMC)

and Continuous Time Markov Chains (CTMC). In a DTMC, the state of the

system is observed at discrete time units, while in a CTMC the system may

change state at any time. In the next two subsections, we will present briefly

these two frameworks drawing from the books of Stewart and Tijms [157, 169].

3.1.1 Discrete-Time Markov Chains

In a discrete-time Markov chain the probability that the system is in state in+1

at step (n+ 1) depends only on the state of the system at step n

Pr{Xn+1 = in+1|X0 = i0, . . . , Xn = in} = Pr{Xn+1 = in+1|Xn = in}, (5)

where the system can only be in a state from the state space I, so that i0, . . . , in, in+1 ∈
I. In this contribution, we consider only time-homogeneous Markov-chains, which

can be described by the following equation

pij = Pr{Xn+1 = j|Xn = i}, ∀n. (6)

This means that the transition probability pij is the one-step transition probability

that the system will jump from state i to state j independent of current step n.

CHAPTER 3. STOCHASTIC METHODS 77

This probability needs to satisfy the following two properties:

pij ∈ [0, 1], ∀i, j ∈ I, and
∑

j∈I

pij = 1, ∀i ∈ I. (7)

The first condition ensures that the value is a probability, while the second requires

that the sum of all the transition probabilities from a state needs to be 1, i.e., it

is a sure event that the system will stay in the current state or move to one of the

other allowed states.

These probabilities can be written into a matrix form, P, where each element

in this matrix represents the probability to go from the state indicated by the row

into the state indicated by the column, (P)ij = pij.

If we denote by πi(n) the probability that a Markov chain is in state i at step

n, then we can write

πi(n) = Pr{Xn = i}. (8)

We can then say that it is a sure event that the system is in a state from the state

space
∑

i∈I

πi(n) = 1. (9)

The probability distribution at step n, π(n), represents the row vector formed by

all the probabilities πi at step n.

A Markov chain is described completely by the state space, I, the initial proba-

bility distribution, π(0), and the transition probability matrix, P. The probability

distribution at step n can then be computed as

π(n) = π(0)Pn. (10)

An ergodic state is a state where: (i) the system is guaranteed to return

infinitely often (recurrent state), (ii) the average number of steps required to

return is finite (positive recurrent state) and (iii) the system can return to this

state in any number of steps (aperiodic state). An ergodic system is a system

CHAPTER 3. STOCHASTIC METHODS 78

which contains only ergodic states.

The ergodicity theorem states that, in an ergodic system, the distribution π(n)

always converges to a stationary distribution π, independent of the initial state.

πP = π. (11)

This stationary distribution is called the steady state.

3.1.2 Continuous Time Markov Chains

A continuous-time Markov chain is a Markov process with a set of discrete states

were the transitions are not deterministic, but rather stochastic.

As in the discrete case, we consider only time-homogeneous Markov chains

pij(τ) = Pr{X(s+ τ) = j|X(s) = i}, (12)

where the probability pij is independent of s. The sum of all transition probabil-

ities from a state is equal to 1 for all τ ; i.e.,

∑

j

pij(τ) = 1, ∀τ. (13)

In a continuous-time Markov chain, the probability that a transition will occur

depends not only on the current state, as in the discrete case, but also on the

observation time interval, τ = dt. To avoid this, we will use a different quantity,

the transition rate, which represents the number of transitions per time unit

qij(t) = lim
dt→0

pij(dt)− pij(0)

dt
. (14)

Note that we assumed that the probability of observing multiple transitions in

the interval dt is negligibly small compared with dt as dt → 0. Thus, we denote

CHAPTER 3. STOCHASTIC METHODS 79

this probability by o(dt), where

lim
dt→0

o(dt)

dt
= 0. (15)

In the extreme case when the observation time interval is zero (dt = 0), the

probability that the system will change state becomes zero.

pij(0) = 0, ∀i 6= j ∈ I and pii(0) = 1, ∀i ∈ I. (16)

Going back to equation (14), the transition rate to go from a state i to a different

state j becomes

qij(t) = lim
dt→0

pij(dt)

dt
, ∀i 6= j ∈ I. (17)

We can also use the inverse formula to compute the transition probability as

pij(dt) = qij(t)dt+ o(dt), ∀i 6= j ∈ I. (18)

This shows that the probability that a transition from state i to state j takes

place is equal to the product between the transition rate and the time interval.

The transition rate that the system remains in the same state, qii, is defined

using the difference between the maximum probability 1 and all transition prob-

abilities, pij, i 6= j. From equation (13), we can write the probability that the

system remains in the same state in the time interval [t, t+ dt] as

pii(dt) = 1−
∑

i 6=j

pij(dt) = 1−
∑

i 6=j

[qij(t)dt + o(dt)] . (19)

where in the last equality we used equation (18).

Now, using equations (14) and (16) the transition rate to remain in the same

CHAPTER 3. STOCHASTIC METHODS 80

state becomes

qii(t) = lim
dt→0

pii(dt)− 1

dt

= lim
dt→0

−∑i 6=j [qij(t)dt+ o(dt)]

dt

= −
∑

i 6=j

qij . (20)

Note that the rate at which a process remains in the current state is negative.

This is a consequence of the fact that the transition rate is the derivative of

the transition probability and, as the interval increases, the probability that the

system will transfer to another state increases as well, while the probability that

the system will remain in the same state decreases.

In matrix terms, the transition rate matrix Q can be defined based on equa-

tions (14) and (16), as

Q(t) = lim
dt→0

P(dt)− I

dt
⇒ P = Qdt+ I, (21)

where I is the identity matrix and P(dt) is the transition probability matrix,

(P)ij(dt) = pij(dt).

At steady state, the continuous-time Markov chain displays a probability dis-

tribution vector π, which contains the steady-state probabilities that the system

is in the corresponding state. From equation (11) we can write the steady state

equation as

πP = π ⇒ π (Qdt+ I) = π ⇒ πQ = 0. (22)

3.2 The Chemical Master Equation

The deterministic approach assumes that both reactants and products of a chem-

ical reaction are measured in continuous units and that chemical reactions are

CHAPTER 3. STOCHASTIC METHODS 81

fast. These assumptions lead to the deterministic behaviour of a chemical sys-

tem and allow stochastic fluctuations to be disregarded. Genes are measured in

discrete units, they have low copy numbers and they are slowly expressed, mak-

ing the deterministic approach an inappropriate one for gene regulatory systems

[106, 11, 87].

We begin our stochastic analysis of a chemical system by deriving the chemical

master equation [127, 67]. The model assumes a well stirred biochemical reaction

system in a constant volume Ω and at a constant temperature. In this system,

there are N molecular species, {S1, . . . , SN}. These N molecular species interact

through M reaction channels, {R1, . . . , RM}. The dynamics of the system are

specified by Xi(t) which represents the number of molecules at time t for specie

Si.

Each reaction is described by the state-change vector and the propensity func-

tion. The former, the state-change vector νj , contains N elements and each

element quantifies the change in number of molecules of a species if reaction j is

fired, i.e., νij represents the number of molecules of species Si which have to be

added or removed if reaction Rj is fired. Note that the matrix formed from all νj

as its columns is the stoichiometry matrix of the reaction system.

The propensity function of a reaction channel Rj is denoted by aj and aj(x)dt

represents the probability that the reaction Rj will occur in the interval [t, t+ dt)

when the system is in a given state x = (X1(t), . . . , XN(t))
T . This propensity

function can be written as

aj(x) = cj · hj(x). (23)

Here, hj(x) represents the product of the abundances of all reactants involved in

reaction Rj , e.g., if reaction Rj is x1 + x2
k1−→ x3, then hj(x) = x1 · x2. The first

term in the right hand side of equation (23), cj , is the specific reaction probability

rate constant and cjdt represents the probability that a randomly chosen pair of

reactants of reaction Rj will react in the next infinitesimal amount of time dt in a

volume Ω [63]. This is related to the deterministic reaction rate in the sense that

CHAPTER 3. STOCHASTIC METHODS 82

it is equal to the deterministic reaction rate divided by the volume (and multiplied

by 2 if the reactant species are the same), e.g. in the case of the aforementioned

reaction (x1 + x2
k1−→ x3) c1 becomes c1 = k1/Ω.

From the fact that aj(x)dt represents the probability that a chemical reaction

Rj is fired in interval dt, we can consider that the state vector x(t) is a continuous

time Markov process on a positive N -dimensional integer lattice [64]. For this

type of process we can compute the probability of being in a state x at time t

knowing that at time t0 the system was in state x0. This probability is given

by the sum of the probability that the system was in state x and remains there

(Premain) and the probability that it was in a different state and moves to state x

(Parrive).

P (x, t+ dt|x0, t0) =

[

1−
∑

j

aj(x)dt

]

P (x, t|x0, t0)

︸ ︷︷ ︸

Premain

+
∑

j

aj(x− νj)dtP (x− νj , t|x0, t0)

︸ ︷︷ ︸

Parrive

(24)

The chemical master equation (CME) is the time derivative of the probability

that the system will be in state x at time t knowing that at time t0 (t0 ≤ t) the

system was in state x0; see equation (14).

∂P (x, t|x0, t0)

∂t
= lim

dt→0

P (x, t+ dt|x0, t0)− P (x, t|x0, t0)

dt

Using equation (24), this yields

∂P (x, t|x0, t0)

∂t
=

M∑

j=1

[aj(x− νj)P (x− νj, t|x0, t0)− aj(x)P (x, t|x0, t0)] . (25)

This equation describes the time evolution of the probability of the system being

in a certain state (each species having a certain abundance level). In the case

when fluctuations are negligible, we can use the CME to obtain the reaction rate

CHAPTER 3. STOCHASTIC METHODS 83

equation

d

dt
〈X(t)〉 =

M∑

j=1

νj · 〈aj(X(t))〉 . (26)

Note that we used the notation 〈X(t)〉 to emphasise that this is the averaged

behaviour of x at time t. The reaction rate equation (the macroscopic differential

equation) can be obtained from this equation if the reaction propensities are linear

so that 〈aj(x)〉 = aj(〈x〉), but reaction rates are not always linear.

The CME (25) can rarely be solved analytically for other than simple systems

[65]. One solution is to use stochastic simulation algorithms, such as Gillespie

algorithm, in order to generate a statistically correct trajectory of the equation.

3.3 Stochastic Simulation Algorithms

In a Stochastic Simulation Algorithm (SSA) every chemical reaction is explicitly

simulated and, thus, the dynamic behaviour of the system becomes a random

walk in the N dimensional space representing the N species. There are two types

of stochastic simulations algorithms: the exact stochastic simulations algorithms

(such as Direct Method and First/Next Reaction Method) and the approximate

ones (Poisson τ -leap methods). In this thesis we use only exact stochastic simula-

tion algorithms and, consequently, we will present solely this class of algorithms.

3.3.1 Direct Method

The Direct Method algorithm is an exact stochastic simulation algorithm which

relies on defining and computing the next-reaction density function. The next-

reaction density function p(τ, j|x, t) is defined as the probability that the next

reaction will occur in an infinitesimal time interval [t + τ, t + τ + dτ) and it will

be the reaction Rj. This function can be written as

p(τ, j|x, t) = aj(x) exp (−a0(x)τ), (27)

CHAPTER 3. STOCHASTIC METHODS 84

where we introduced the notation a0(x) =
∑M

i=1 ai(x) [61].

There are various Monte Carlo methods to generate a random pair (τ, j) from

the probability density function given by equation (27). The Direct Method as-

sumes that the next-reaction density function can be written as the product of

two probabilities p1 and p2 given by

p1(τ |x, t) = a0(x) exp (−a0(x)τ) and p2(j|τ,x, t) =
aj(x)

a0(x)
. (28)

This indicates that τ is an exponential random variable with mean 1/a0(x) and j

is a statistically independent random variable. Using the standard Monte Carlo

inversion generating rule, Gillespie generated the pair (τ, j) by extracting two

uniformly distributed random numbers r1 and r2 from the interval [0, 1] and then

computing τ and j as

τ =
1

a0(x)
ln

(
1

r1

)

, (29)

j = the smallest integer satisfying

j−1
∑

i=1

ai(x) < r2 · a0(x) ≤
j
∑

i=1

ai(x). (30)

Putting it all together we can write the Gillespie SSA (also known as the

Direct method) [61, 62] as fo llows

1. Compute the propensity function for each reaction channel aj(x).

2. Draw two uniform random variables r1, r2 ∈ [0, 1].

3. Compute τ as τ = 1
a0(x)

ln
(

1
r1

)

.

4. Compute j so that
∑j−1

i=1 ai(x) < r2 · a0(x) ≤
∑j

i=1 ai(x).

5. Increase time by τ : t = t+ τ .

6. Apply the change vector for reaction channel Rj: x← x+ νj .

7. Go to Step 1.

CHAPTER 3. STOCHASTIC METHODS 85

In this contribution, we use a faster exact algorithm called the Gibson-Bruck

SSA (also known as Next Reaction Method) [60], which is an efficient implemen-

tation of Gillespie’s First Reaction Method [61, 62]. Next, we present the first

reaction method and indicate the implementation particulars of this method as

proposed by Gibson and Bruck [60].

3.3.2 First Reaction Method

As well as the Direct Method, the First Reaction Method it is an exact stochastic

simulation algorithm which relies on selecting a random pair (τ, j). This approach

assumes generating M random numbers representing the time when each reaction

will take place, τi, i = 1, . . . ,M . The procedure to generate these numbers is

similar to the one of the Direct Method and it relies on determining the probability

that a reaction Ri will fire in the time interval [t+ τ, t+ τ + dτ). This probability

pi(τ |x, t) is given by

pi(τ |x, t) = ai(x) · exp (−ai(x)τ). (31)

Note that the exponential term of this probability contains only the propensity

of reaction i (ai(x)), not the sum of all propensities (a0(x)) as it was the case

with the next-reaction density function (27). The way the pair (τ, j) is generated

implies that the two methods are fully equivalent [61, 62].

The algorithm for the First Reaction Method can be summarized as:

1. Compute the propensity function for each reaction channel aj(x).

2. Draw M uniform random variables ri ∈ [0, 1], i = 1, . . . ,M .

3. For each reaction channel compute τi as τi =
1

ai(x)
ln 1

ri
.

4. Choose the smallest τi value and the corresponding index will be the new j.

5. Increase time by τj : t = t + τj .

6. Apply the change vector for reaction channel Rj: x← x+ νj .

CHAPTER 3. STOCHASTIC METHODS 86

7. Go to Step 1.

The most time consuming process in these algorithms consists of drawing the ran-

dom numbers. At each step, the Direct Method generates two numbers, while the

First Reaction Method generates a number of random values equal to the number

of chemical reactions of the simulated system. This indicates that the former is

faster compared with the latter. Gibson and Bruck [60] managed to optimise the

First Reaction Method by reusing the unselected M − 1 random values from the

current step in the next one, so that in each step only one new random uniform

variable is required. Furthermore, the Gibson-Bruck algorithm uses additional

constructions to increase the speed, such as the dependency graph (a graph which

tells which propensities change when a reaction is executed, reducing the delay of

step 1) and the priority queue (a tree structure which stores the next time each

reaction fires in an ordered fashion, thus, reducing the execution time of step 4).

Both Gillespie algorithms (Direct Method/First Reaction Method) and Gibson-

Bruck algorithm (Next Reaction Method) are exact stochastic simulation algo-

rithms and they simulate a random walk on the chemical master equation. Note

that these algorithms do not scale well to systems with many reaction pathways.

3.4 Analytical Method

Stochastic simulations algorithms are very useful in determining the degree of

stochasticity which affects a certain system. Nevertheless, to get a better insight

into the underling mechanisms that control the noise, it is often necessary to de-

scribe the stochastic effects by an analytical formula. Since the chemical master

equation (CME) cannot be solved exactly in most cases, we can apply an approx-

imate method, the van Kampen Ω expansion, which is able to compute the size

of the fluctuations for all species in a common compartment [171, 45, 123, 76, 56].

This method, also known as the Linear Noise Approximation (LNA), uses the

second order Taylor expansion of the chemical master equation. Furthermore,

the method assumes that the system is affected by small fluctuations around the

CHAPTER 3. STOCHASTIC METHODS 87

macroscopic steady state (which is usually valid for large volumes Ω). Thus, all the

measures are written in terms of concentration, rather than number of molecules.

To emphasise this in our notation, we use the same notation as in the case of

number of molecules, but with a tilde over the symbol, e.g. C = ΩC̃.

The LNA generates the following Lyapunov equation

ÃC̃+ C̃ÃT + B̃ = 0, (32)

which can be used to determine the covariance matrix C̃ at steady state [171,

45, 123, 76, 56]. The two other matrices in this equation are: Ã, the Jacobian

matrix attached to the chemical reactions system, and B̃, the diffusion matrix,

which quantifies the stochasticity and depends on stoichiometry and macroscopic

reaction rates (all evaluated at steady state). These two matrices can be written

as

Ãik =

M∑

j=1

νij
∂ãj(φ)

∂φk
and B̃ik =

M∑

j=1

νijνkjãj(φ), (33)

where φ is the vector which contains the macroscopic concentrations of each

species in the system and ã is the macroscopic transition rate (the macroscopic

counterpart of the propensity function a).

Ã and B̃ can be computed from the set of chemical reactions associated to the

system and, consequently, C̃ is completely determined. To compute the covariance

matrix in the number of the number of molecules we have to multiply the matrix

C̃ by the volume, C = ΩC̃.

3.4.1 Fluctuation Dissipation Theorem

Paulsson reformulated the LNA and derived an equivalent method called the Fluc-

tuation Dissipation Theorem (FDT) [123, 124, 127]. This method consists of two

steps. First, he wrote the Lyapunov equation (32) in terms of the number of

molecules, as

AC+CAT +B = 0, (34)

CHAPTER 3. STOCHASTIC METHODS 88

where A is the Jacobian matrix in terms of number of molecules, Aik =
∑M

j=1 νij ·
(∂aj(x)/∂xk), and B the diffusion matrix in terms of number of molecules, Bik =
∑M

j=1 νijνkjaj(x).

The second step of the derivation of FDT consists of rewriting equation (34)

so that instead of computing the covariance matrix, the FDT will compute the

noise matrix, where each variance is normalized by the square of the average, i.e.,

ηij = σij/(〈xi〉 · 〈xj〉), ∀i, j = 1, . . . , N . In this thesis, we will use only equation

(34) to produce the variances of all species in a system and then we will normalize

the variances manually in each case.

Nevertheless, it is important to discuss the argument behind Paulsson’s choice

to normalize the variance by the square root of the average and not by the average,

as it was proposed previously [123]. To follow his argument we will consider the

case of two proteins, where the first protein regulates the production of the second

one. The Jacobian matrix of this system, A, is a 2× 2 triangular matrix and the

diffusion matrix, B, is a 2 × 2 diagonal matrix. Solving the Lyapunov equation

associated to the system, we can write the variance of the second species as

σ2
2 =

B22/2

−A22

+

(
A21

A22

)2
1

1 + A11/A22

(
B11/2

−A11

)

. (35)

In the case when both species are affected only by exponential decay (e.g., when

proteins are only diluted) then Bii = 2〈xi〉/τi and Aii = −1/τi. We denoted by

τi the average lifetime of a protein, which, here, is the inverse of the decay rate,

τi = 1/µi (µi is the decay rate of protein i). To have a high accuracy of the

method, we assume that the synthesis rate of the second species is linear. Thus,

we can write the reaction rate equation of the second species as

d〈x2〉
dt

= α〈x1〉 − 〈x2〉/τ2.

CHAPTER 3. STOCHASTIC METHODS 89

Noting that at steady state we have 0 = α〈x1〉 − 〈x2〉/τ2 we can write

A21 = α ⇒ A21

A22
= −ατ2 = −

〈x2〉
〈x1〉

. (36)

Then, the variance of the second species becomes

σ2
2 = 〈x2〉

︸︷︷︸

intrinsic

+

regulation
︷ ︸︸ ︷
(〈x2〉
〈x1〉

)2

time averaging
︷ ︸︸ ︷

1

1 + τ2/τ1

input
︷︸︸︷

σ2
1

︸ ︷︷ ︸

upstream

. (37)

Note that the first species is affected by Poisson noise, σ2
1 = 〈x1〉. The variance of

the second species can be broken into two components, the intrinsic component,

which results from the randomness in the birth/death processes associated with

the second species, and the upstream component, which is generated from scaling

and time averaging the variance of the input component (σ2
1) [48, 123]. Usually,

the second term in the right hand side is called the extrinsic component, but, to

emphasise that the noise is generated by the first protein in the system, we will

call it the upstream component.

The variance is the absolute measure of the stochastic fluctuations. To get

more meaningful information on the noise, a relative measure (size-independent)

is required. The literature proposes two types of measures: (i) the Fano-factor

and (ii) the noise. The Fano-factor consists of the variance normalized by the

mean value. Note that the Fano-factor for a Poisson process is 1 and, thus, it can

be thought of as measuring the distance from a Poisson process. For our system,

the Fano-factor of the second species yields

σ2
2

〈x2〉
= 1 +

〈x2〉
〈x1〉

1

1 + τ2/τ1
· σ2

1

〈x1〉
. (38)

The intrinsic noise becomes size independent, but the upstream one increases

linearly with 〈x2〉. The second method (ii) assumes the variance to be normalized

CHAPTER 3. STOCHASTIC METHODS 90

by the square of the average behaviour:

σ2
2

〈x2〉2
=

1

〈x2〉
+ 1 · 1

1 + τ2/τ1
· σ2

1

〈x1〉2
. (39)

Under this new normalization, the upstream component becomes independent of

〈x2〉 and the intrinsic component is now a normalized measure of the fluctuations.

Paulsson supported the idea that normalizing the variance by the square of the

average is essential in determining the exact source of noise when modelling bi-

ological systems. He argues that this approach can identify the exact source of

high noise and then appropriate methods can be employed to reduce this. Thus,

the normalization of the variance by the square of the average provides a relative

measure for the noise and, in addition, it is offers an insight into the source of the

noise. However, in this thesis, we will consider a slightly different normalization

of the variance, which is adapted to our specific case, genes with binary output

(see chapter 4 for more details).

3.4.2 Considerations on the Method

It was shown that the Linear Noise Approximation method works correctly in

most cases with a few exceptions [76]. These exceptions include: (i) small average

number of molecules, (ii) multi-stable systems (i.e., there are two or more stable

steady states and, in the deterministic case, the state the system takes depends

on the initial conditions) and (iii) near critical behaviour. The first exception,

small average number of molecules, is a consequence of the fact that the noise is

approximated to be Gaussian [171]. This is clearly not the case with a real system

because the Gaussian noise could lead to negative abundances. Nevertheless,

for high average number of molecules, the actual distribution, such as a Poisson

distribution [76] or a Gamma distribution [53], is well approximated by a normal

distribution. This is the main reason that the method displays high accuracy for

large abundances and, conversely, a reduced accuracy for low abundances.

Furthermore, as Gillespie pointed out, multi-stable systems are not amenable

CHAPTER 3. STOCHASTIC METHODS 91

analytically to these type of methods (LNA or FDT), because the solutions to the

deterministic equations (on which the LNA and FDT are based) do not provide

an accurate picture of the long-time behaviour the system, i.e., spontaneous fluc-

tuations can generate transitions of the system between steady states and, thus,

the long time behaviour is not the deterministic one [64].

Finally, another problem of the method was pointed out by Elf and co-workers

[46, 127]. When the system is in a near critical point, a point where large fluc-

tuations happen and the relaxation times are slow, the method seems to produce

wrong results. A more general statement would be that the LNA works correctly

only for small noise around the steady state, while large noise can reduce accu-

racy. In particular, there are two examples where the method seems to fail: (i)

high stoichiometry of the chemical reaction network generates large noise (noise

produced by bursts of production) and (ii) when an element acts like an amplifier

(i.e., small fluctuations in the regulatory input of a gene produce high fluctuations

at the output).

3.5 Our Simulation Method

In this thesis we used both simulations and analytical results. Due to the fact that

the chemical master equation can be solved only for a few very simple systems,

our stochastic analysis of genetic systems used an approach based on approxi-

mate analytical methods aimed to extract qualitative behaviour from the system

as a response to changes in its parameters, but also stochastic simulations aimed

to verify whether the approximate analytical methods provided the correct re-

sults. For our stochastic simulations, we used only the Gibson-Bruck algorithm

to simulate a system stochastically (see subsection 3.3.2).

When performing the simulations, we did not implement these stochastic al-

gorithms, but rather used the implementation of these algorithms in the Dizzy

software [134]. This software package benefits from ODE solvers (to compute the

deterministic behaviour), exact stochastic simulation algorithms (Gillespie [61]

CHAPTER 3. STOCHASTIC METHODS 92

and Gibson-Bruck [60] algorithms) and approximate stochastic simulation algo-

rithms (Poisson τ -leap algorithm [66]). Dizzy comes with a GUI interface where

one can load/write a model and then simulate it. The models are specified in

the Chemical Model Definition Language (CMDL), which allows interoperability

between this application and other available software. We used the GUI interface

when we needed just one run of the simulation or when we produced histograms.

In addition, Dizzy comes with a programmatic interface, which actually con-

sists of all the core classes used by the GUI. Using the Java programming language,

we created CMDL files and then simulated the system using the Dizzy libraries.

The advantage of using this approach consisted of the fact that we could easily

change the parameters in the CMDL file and then reload the file into the Dizzy

module to simulate it. This allowed us to automate the process of simulating a

system stochastically for different sets of parameters.

Once the simulations for each point were performed, we exported the results

into a text csv file (comma-separated values file). Using these csv results files we

computed the average number of molecules and the variances for all the species

in the analysed system, namely

〈X〉 = 1

N

N∑

i=1

Xi and σ2
X =

〈
(X − 〈X〉)2

〉
, (40)

where 〈(X)〉 represents the time average and σ2
(X) the variance. We denoted by

N the number of simulation points and by Xi the abundance at time step i.

Usually, we checked the accuracy of our simulations by running multiple stochas-

tic simulations for the same set of parameters. This resulted in more than one

value for the variance and was graphically represented by using error bars. The

error bars where constructed by defining three points: the minimum, the average

and the maximum values calculated from the entire set of simulations. These

three points were computed by parsing in Java the csv file generated by the Dizzy

programmatic interface. Note that we used both 10 and 20 simulations per set to

produce the error bars.

CHAPTER 3. STOCHASTIC METHODS 93

In this thesis we also represented graphically the stochasticity of the systems

by drawing histograms with the number of molecules of a certain species. These

histograms where constructed by using stochastic simulations and counting the

times a species had a certain number of molecules normalized by the number of

time steps for each possible number of molecules. We parsed the csv files generated

by Dizzy in Maple and produced a csv file with the histogram data.

Furthermore, in the captions of the figures, we usually represent values in

concentrations instead of particle numbers, in order to keep the numbers small.

Using a cell volume of V = 8 × 10−16 l, which is the average volume of E.coli

[144], we convert from concentrations into number of molecules using

x = x̃× V ×NA, (41)

where x̃ is the concentration of species x and NA is the Avogadro number (NA =

6.02 × 1023 mol−1). Hence, a concentration of 1 µM in E.coli corresponds to

approximately 500 molecules. Note, that when we considered a different cell

volume, we explicitly mentioned this in the caption of the figure.

Finally, we would like to acknowledge that we used the following software to

generate the data in this thesis:

• Dizzy (Version 1.11.4) to stochastically simulate chemical reaction systems

[134] (http://magnet.systemsbiology.net/software/Dizzy/);

• Java (Java SE 6) to automate the process of stochastic simulations and to

parse the data resulted from the simulation (http://java.sun.com/javase/6/);

• Maple (Versions 11, 12 and 13) for numerical computations and to produce

the histograms (http://www.maplesoft.com/);

• GNU Octave (Version 3.0.1) for numerical computations

(http://www.gnu.org/software/octave/);

• Prism model checker (Version 3.2) to verify our Continuous Time Markov

Chain model [94, 95, 77] (http://www.prismmodelchecker.org/);

CHAPTER 3. STOCHASTIC METHODS 94

• Gnuplot (Version 4.2) for generating the plots (http://www.gnuplot.info/);

• Inkscape (Version 0.46) for producing the explanatory pictures

(http://www.inkscape.org/).

3.6 Summary

In this chapter we reviewed the methods used to describe and analyse chemical

reaction networks (gene networks) stochastically. First, we introduced the reader

to Markov chains. This provides the required methods for deriving the steady state

occupancy probability of the cis-regulatory area of a gene (see next chapter).

Chemical reaction systems are described stochastically by the chemical master

equation (CME). The main idea behind this equation is the assumption that the

state of the system (the number of molecules associated to each species) is a

Markov process, i.e., it depends only on the current state and not on previous

states. The CME defines the time derivative of the probability of a system to be

in a certain state.

The CME can be solved exactly only for a few very simple systems. This led

to two alternatives for the stochastic analysis of chemical reaction systems being

proposed in the literature. The first method consists of explicitly simulating each

chemical reaction in the system and generates a statistically correct trajectory

of the CME. Here, we presented two simulation algorithms: the Gillespie algo-

rithm (the Direct Method) and the Gibson-Bruck algorithm (First/Next Reaction

Method). The Gibson-Bruck algorithm is the fastest exact algorithm. All these

algorithms can be very useful tools, but they have three main problems: (i) they

can be very slow for large networks, (ii) they do not show what happens in the

limit cases (like an infinite volume or synthesis rate) and (iii) they do not usually

give an insight into the underling processes which control the stochastic behaviour

of the analysed systems.

To overcome all these limitations, we used an approximation of the CME.

The van Kampen system size expansion (LNA) can predict with high accuracy

CHAPTER 3. STOCHASTIC METHODS 95

(in most cases) the size of the fluctuations around the deterministic steady state

behaviour. A reformulation of this method is Paulsson’s Fluctuation Dissipation

Theorem (FDT). This method is able to produce directly the variance normalized

by the square of the average behaviour of any species in the system.

Finally, we presented how we performed the simulations in this thesis and

what software we used to achieve this. Note also that in the following chapters we

will use both simulation techniques (Gibson-Bruck), but also analytical methods

(LNA/FDT).

Chapter 4

A Genetic Switch

The switching mechanism is essential in the design of logic gates. In this chapter,

we present a model of a genetic switch, the binary gene. We also define three

parameters which characterise the binary gene, namely metabolic cost, switching

time and output noise. In addition, we describe how these three parameters are

computed.

4.1 Introduction

Electronic elements (such as transistors) are able to compute because they display

a switch-like behaviour, which means that, for most of the input values, the output

is either high or low and not in between. Genes are also able to display this type

of binary behaviour and, thus, we can think of them as being able to compute.

In this chapter, we construct a model of a genetic switch using a single gene

which is regulated by a transcription factor (TF). The abundance of TF represents

the input in the system, while the quantity of the expressed protein is the output.

This model will be the basic model for our genetic logic gates. To construct

it, we must note that the quality of the genetic switch depends strongly on the

steepness of the regulation function. We address this by investigating under which

conditions genes display a switch-like behaviour and how this behaviour can be

96

CHAPTER 4. A GENETIC SWITCH 97

enhanced. Our results show that it is often the case that genes display a switch-

like behaviour, but this behaviour has poor steepness. Due to this switch-like

behaviour we call our genetic switch the binary gene.

In addition, we also define three properties which characterise genes, namely:

(i) output noise, (ii) switching speed and (iii) metabolic cost. Understanding how

these properties influence our model of a genetic switch is vital for its design.

Usually, genes are not stand-alone elements, but rather they are components

of a network. In a network, it is important that any downstream element (an

element which has as input, the output of the gene that we analyse) needs to

distinguish between the high and the low output of the binary gene. The problem

is that this output is afflicted by noise [155, 11, 48, 19, 138, 87, 89, 44, 133], which

makes it harder to distinguish between the two states and, thus, it reduces the

computation accuracy.

Furthermore, these genes are also beset by computational lag, i.e., they ‘com-

pute’ with a certain delay. Even instantaneous changes of the regulatory protein

will normally be processed with a delay called the switching time. This switching

time represents the transient time required for the output concentration of the

gene to reach (a fraction of) the steady state corresponding to the new input. In

this thesis we will consider the cases of both instantaneous and non-instantaneous

change of input. From a computational point of view, this switching time is

relevant because it imposes an upper limit on the frequency with which gene reg-

ulatory networks can detect and process changes in the environment. In a very

direct sense, this limiting frequency can be seen as the computational speed of the

gene.

Finally, all proteins have an associated metabolic cost, which describes the

necessary energy for their production, destruction and maintenance. In biological

cells, the metabolic cost of any process can be measured by the number of ATP

molecules it requires [4]. In this thesis, we will not be interested in a quantitatively

exact measure of the energy expense, but rather in how the cost scales as various

parameters are changed. We will therefore assume that the metabolic cost of a

CHAPTER 4. A GENETIC SWITCH 98

particular gene is measured well by the maximum expression rate of the gene in

question; see section 4.2.1. Note that the real cost will depend on the average

proportion of time over which this gene is activated, plus a number of additional

factors, such as the length of the protein to be produced and so on.

This chapter is divided as follows. In the next section, we present the model

of the genetic switch used in this thesis and we define the three properties which

we use to characterise our genetic switch: metabolic cost, switching speed and

output noise. In section 4.3 we investigate the biological mechanisms responsible

for the switching behaviour and examine under which conditions this switch-like

behaviour can be enhanced. Finally, we assess our method of computing the noise

analytically by both considering biological examples and performing extensive

stochastic simulations.

4.2 The Model of a Genetic Switch

Our model system consists of a single gene Gy (the binary gene), which has an

output y and is regulated by a single input species x (see Figure 20). This system

is described by the following set of chemical reactions

∅ α+βf(x)−−−−−→ y, y
µ−→ ∅ (42)

Here, α is the leak expression rate, α + β is the maximal expression rate of the

gene, f(x) the regulation function, x the concentration of the regulator, and µ is

the degradation rate of the product of the gene.

This system evolves according to the dynamical law given by the differential

equation
dy(t)

dt
= α + βf(x(t))− µy(t) (43)

Note that, to emphasise the dynamic behaviour, we wrote the concentrations of

the species as functions of time. At steady state, the input in this system (x) can

take one of the two values: xL (leading to a low abundance of the output y = L)

CHAPTER 4. A GENETIC SWITCH 99

or xH (leading to a high abundance of the output y = H).

L =
α+ βf(xL)

µ
and H =

α + βf(xH)

µ

(a) activation (b) repression

K

x

φ
(x
)

(c) activation

K

x

φ̄
(x
)

(d) repression

Figure 20: The model of a genetic switch. (a) Protein x activates gene Gy. (b)
Protein x represses gene Gy. (c) and (d) represent the gene activity as a function
of the regulator concentration.

Gene regulation functions are often approximated by Hill functions [2, 27, 36];

the validity of this approximation is assessed in section 4.3. A Hill function is char-

acterized by two parameters, namely the threshold (K), and the Hill coefficient

(h). The latter determines the steepness of the function, whereas K represents

the required input concentration to achieve half activation of the gene. In this

thesis, we consider two families of regulation functions, namely the Hill activation

function (f ≡ φ) and the Hill repression function (f ≡ φ̄); see Figures 20(c) and

20(d).

φ(x) =
xh

Kh + xh
and φ̄(x) =

Kh

Kh + xh
(44)

The quality of the binary output of the gene is quantified by two parameters:

Hill coefficient and signal strength. The former, the Hill coefficient, measures the

CHAPTER 4. A GENETIC SWITCH 100

steepness of the regulation function in the sense that high Hill coefficients lead to

steeper functions and, conversely, lower Hill coefficients to less steep regulation

functions. For very high Hill coefficients, it is usually useful to approximate the

regulation function by a step function which results in a perfect binary behaviour;

i.e., a step function is a piecewise linear function which displays three regions: two

horizontal lines (the two steady state plateaus) connected by a vertical one (the

transient area). However, real genes have finite, often, very low Hill coefficients

which make this approximation wrong. In this thesis, we will consider mainly the

case of finite low Hill coefficients, but we will also address the case of very high

ones.

The second parameter, the signal strength, determines the absolute distance

between the high and the low steady state abundances of the output (H−L). The
signal strength needs to be high so that the two steady states remain distinguish-

able even when stochastic fluctuations affect the gene. Nevertheless, high signal

strengths usually come at a high metabolic cost, which is undesirable in our case.

The integrated optimality analysis which we will perform in this thesis inves-

tigates three properties: (i) metabolic cost (ii) switching time and (iii) output

noise. Next, we will determine the three properties of the system required by our

optimality analysis: cost, time and noise.

4.2.1 Metabolic Cost

At any time, the actual metabolic expense attributed to a gene will be given by

the time dependent production rate of the system, α+βf(x(t)). Averaged over all

environmental conditions, a gene will spend a certain fraction of time in the high

state H ; the maximum production rate is therefore an indicator of the metabolic

cost ζ associated with the gene,

ζ = α + βf(xH). (45)

In the case of α = 0, the metabolic cost becomes ζ = βf(xH).

CHAPTER 4. A GENETIC SWITCH 101

Our notion of cost is an idealisation of the real case. We only take into account

production costs, whereas in reality there are a number of other costs related to

the maintenance of protein signals. For example, if proteins are actively broken

down (rather than just diluted) then this comes at an additional cost. This

additional cost, however, is a constant factor and can be added to the production

cost because ultimately every molecule that is produced will have to be broken

down again. Also, in addition to the cost of gene expression itself, the living cell

has significant extra metabolic costs associated with the overall maintenance of the

cell. These extra costs are equally not taken into account here because, again, they

are not relevant for our analysis which aims to investigate the scaling relationship

between three properties of a binary gene (metabolic cost, switching time and

output noise). Instead, as far as costs are concerned, the relevant measure is

the marginal cost of protein production, rather than the total metabolic cost

associated with protein levels. The production rate reflects this well and, thus, is

a relevant indicator of cost when probing the fundamental limitations associated

with the computational properties of genes.

4.2.2 Switching Time

We are interested in the time required for the output of a gene to reach a new

steady state once the input was changed. Knowing that the regulatory input, x,

evolves in time as a function x(t) from x0 to x∗ (between xL and xH), we write

the dynamics of species y as

y(t) = e−µt

[

y0 +

∫ t

0

eµz (α+ βf(x(z))) dz

]

(46)

where y changes its concentration from y0 to y∗. The input x(t) can take any

form, but to keep the mathematics simple we will first assume that x evolves

exponentially.

x(t) = x∗ − e−µxt(x∗ − x0). (47)

CHAPTER 4. A GENETIC SWITCH 102

The differential equation which describes species x is given by

x(t)

dt
= αx − µxx(t), (48)

where x is produced with rate αx and removed with rate µx. Note that αx switches

instantaneous between two values, αL
x which leads to xL and αH

x which leads to

xH .

This means, for example, that the gene which synthesizes x is instantly turned

on/off or that the protein x is activated/inactivated by another enzyme/protein

in a basic enzyme reaction. Note that different types of dynamic behaviours of

the input can lead to similar results.

We define the deterministic switching time, Tgene of the gene, as the time

required to reach the steady state to within a fraction θ of H − L, see below.

Thus, we compute the time to reach yθ = y0 + (y∗ − y0)θ. We do not always

have an analytical formula for the switching time, but we can solve equation (46)

numerically and determine it.

Instantaneous Input Change

In the case when the transformation or synthesis of x is very fast compared with

the synthesis of y, we can assume that x changes instantaneously, so x(t) = x is

constant for time t. Solving the differential equation attached to the system (43),

we determined the dynamical behaviour of species y as

y(t) = y∗ − e−µt(y∗ − y0), (49)

where y0 and y∗ are the steady state solutions of equation (43) for the two input

concentrations, x0 and x∗ respectively, that is

y0 =
α + βf(x0)

µ
and y∗ =

α + βf(x∗)

µ
.

From equation (49) we can obtain the time required to reach a value of y0 +

CHAPTER 4. A GENETIC SWITCH 103

(y∗ − y0)θ given that we start from y0, by setting the left hand side equal to

y0 + (y∗ − y0)θ and solve the equation for t:

y0 + (y∗ − y0)θ = y∗ − e−µt(y∗ − y0).

Calling this solution Tgene we obtain the switching time of a gene:

Tgene =
1

µ
ln

(
1

1− θ

)

. (50)

The switching time is influenced by the decay rate of the product, in the sense

that higher decay rates generate faster responses. When we increase the decay

rate and keep the production rate (metabolic cost) constant the high and the low

state get closer to each other and the signal strength is reduced. Due to the fact

that the distance between the high and the low steady states gets shorter, the

switching time between the two states is also reduced.

Figure 21 confirms that this equation produces an accurate result even in the

case of stochastic fluctuations.

4.2.3 Output Noise

Genes are stochastic; their products are measured in discrete units (number of

molecules) and are affected by noise. The quantifiable nature of molecules means

that there is a logical minimum signal strength of H − L = 1 molecule. More

importantly, for low signal strengths (even when they are well above the logical

minimum) the noise may make it difficult to distinguish between the input and

the output states. The signal strength needs to be large compared with stochas-

tic fluctuations around the steady state concentrations, so that fluctuations do

not mask the output of the gene and any downstream element could distinguish

between the high and the low state.

In the deterministic case, the abundances of the chemical species are mea-

sured in concentrations, while in the stochastic case in number of molecules. Here,

CHAPTER 4. A GENETIC SWITCH 104

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 0.5 1 1.5 2 2.5 3 3.5 4

nu
m

be
r

of
 m

ol
ec

ul
es

time [min]

L

H

H0.9

Tgene = ln(10)/µ

deterministic
stochastic

(a) L→ H

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 0.5 1 1.5 2 2.5 3 3.5 4

nu
m

be
r

of
 m

ol
ec

ul
es

time [min]

L

H

L0.9

Tgene = ln(10)/µ

deterministic
stochastic

(b) H → L

Figure 21: Switching time. We set the cell volume to V = 8·10−16 l. The following
set of parameters was used: K = 0.5 µM and µ = 1 min−1. The two steady states
are L = 0.2 µM and H = 0.8 µM . We consider both switching (a) from low state
to high state and (b) from high state to low state. We chose θ = 0.9. Stochastic
fluctuations do not influence significantly the time required to reach a fraction θ
of the steady state concentration. For the deterministic system we solve equation
(49) when (a) (y0 = L, y∗ = H) and (b) (y0 = H, y∗ = L).

we will not reflect the distinction between particle numbers and concentrations

in our notations. Nevertheless, it is implicitly understood that stochastic sys-

tems/simulations always refer to particle numbers, rather than concentrations.

Note that section 3.5 from Stochastic Methods chapter provides details on how to

convert concentrations in particle numbers and vice versa.

One can compute the variance of the output protein, σ2
y , by applying the

Linear Noise Approximation (LNA) or Fluctuation Dissipation Theorem (FDT)

[171, 45, 123, 124]. These methods assume that at steady state we have (see

chapter Stochastic Methods):

AC+CAT +B = 0, (51)

where A is the Jacobian matrix, B the diffusion matrix, and C is the covariance

matrix. In our case, the Jacobian matrix A associated with equations (48) and

CHAPTER 4. A GENETIC SWITCH 105

(43) yields:

A =




−1/τx 0

βf ′(x) −1/τy





where τx is the average lifetime of protein x and τy = 1/µ is the average lifetime

of protein y .

In the case when each chemical reaction adds or removes only one molecule,

B is diagonal and, for system (43), it becomes

B =




2〈x〉/τx 0

0 2〈y〉/τy





Having determined A and B, one can solve equation (51) and completely deter-

mine the covariance matrix C. The variance of species y, σ2
y , is given by

σ2
y = y + [βf ′(x)τy]

2 τx
τx + τy

σ2
x (52)

The linear noise approximation is only valid when the mean of the stochastic

system corresponds to the solution of the deterministic system, which is the case

here. We checked the accuracy of the linear noise approximation by performing

extensive simulations using Gillespie’s algorithm (see subsection 4.4.2 and Figure

22 for details). A comparison with the analytic results shows good agreement

between values of the noise obtained from simulations and the one computed

analytically.

Alternatively, if gene Gy is regulated by two input species x1 and x2, we can

write the variance of the output as [171, 45, 123, 151, 165]

σ2
y = y +

[

β
∂f(x1, x2)

∂x1
τy

]2
τx1

τx1 + τy
σ2
x1

︸ ︷︷ ︸

generated by x1

+

[

β
∂f(x1, x2)

∂x2
τy

]2
τx2

τx2 + τy
σ2
x2

︸ ︷︷ ︸

generated by x2

. (53)

Note, that in the case of multiple inputs, the noise contains a component, corre-

sponding to each input, which adds to the total noise.

CHAPTER 4. A GENETIC SWITCH 106

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0.045

 50 100 150 200 250 300 350 400 450 500

fr
eq

ue
nc

y

number of molecules

simulation, x
analytical, x

simulation, y
analytical, y

Figure 22: Comparison between analytical solution to the noise and simulation
data. We considered a cell volume of V = 8 · 10−16 l. The following set of
parameters was used (h = 3, K = 0.5 µM , L = 0.2 µM , H = 0.8 µM , and
µ = 1 min−1). At steady state, the two species have the following concentrations
x = 0.2 µM , and y = 0.8 µM . The probability distributions of species x and y
can be approximated by normal distributions.

In this contribution, we are interested in how noise affects our ability to distin-

guish between the two known output states, H and L. To get a meaningful mea-

sure of this, we will change the conventional definition of noise. Normally, noise is

defined as the variance normalised by the square of the average behaviour. Since

we are interested in how noise affects our ability to distinguish between two known

values, we will adjust the conventional definition of noise and use as the following

one: the variance normalised by the square of the signal strength. The variance

will be much higher in the H state than in the L state. We will, henceforth, only

use this pessimistic estimate and consider that the noise of the system is given by

the noise in the high state (the highest noise of the system), η = σ2
H/(H − L)2,

η =
H

(H − L)2
︸ ︷︷ ︸

intrinsic

+

Γyx

︷ ︸︸ ︷
[
βf ′(xH)

H − L
τy

]2
Tyx

︷ ︸︸ ︷
τx

τx + τy
σ2
x

︸ ︷︷ ︸

upstream

. (54)

The first term on the right hand side in equation (54) represents the intrinsic

CHAPTER 4. A GENETIC SWITCH 107

noise (ηin), while the second term represents the upstream noise (ηup). The intrin-

sic component of the noise represents the randomness in the birth/death process

(fluctuations in the biochemical process of gene expression), while the upstream

noise represents the propagated noise from upstream components. The upstream

noise has two components, namely the time factor (Tyx), which can be thought of

as the time over which the gene averages its input. The other term is the regula-

tion factor (Γyx), which determines the amplification/reduction of the upstream

noise (see [151, 123, 19, 129, 152]).

4.3 Considerations on the Switching Mechanism

The quality of our genetic switch relies strongly on the steepness of the regulation

function. In particular, it is essential that the regulation function of the genetic

model described in equation (43) displays a sigmoid shape. Furthermore, we want

this sigmoid shape to be as steep as possible. In this section we will investigate

under which assumptions we can achieve sigmoid regulation functions and high

steepness.

As mentioned above, we consider the case when the switching mechanism is

implemented by the gene regulation function. Transcription factors (TFs) control

the gene regulation process by binding to the specific binding sites on the DNA.

In our model, we assume that TFs can be either specifically bound to a binding

site or free in the cytoplasm. In this setting, the cytoplasm acts as a perfectly

mixed reservoir for TFs. The binding process happens with a specific rate that

depends on the affinity of the TF to the binding site and the concentration of the

TFs (see Figure 23) and, thus we can describe the system by the following set of

chemical reactions:

BS +R
kb−−⇀↽−−
kub

BSR, (55)

where we denote by BS the specific binding site, by R the TF molecules and

CHAPTER 4. A GENETIC SWITCH 108

by BSR the complex formed between the binding site and a TF molecule. TFs

molecules bind to the binding site with rate kb and unbind with rate kub.

Figure 23: The gene regulation model. TF molecules (R) bind/unbind to/from
the binding site BS with specific reaction probabilities (kb for the binding event
and kub for the unbinding event).

4.3.1 One Binding Site

Using the gene regulation model defined by equation (55) and assuming that a gene

has l binding sites, we built a continuous-time Markov chain with (l+1) states; the

individual states of this chain correspond to 0, 1, . . . , l specific sites being occupied

(see section 3.1 from previous chapter Stochastic Methods). Furthermore, in this

model, we consider only individual bindings, meaning that the system can go from

state i (where i activator molecules are bound to the gene) to either i+ 1 (where

another molecule binds) or i − 1 (where a molecule unbinds). Note that Markov

chains were used to describe chemical reaction systems previously, e.g., Roussel

and Zhu [139] used a continuous time Markov chain to describe the binding of an

RNAp molecule to a promoter.

Initially, we construct the Markov model for the simplest case, the case where

a gene has only one binding site. We measure the abundance of the free (in the

reservoir) TF in number of molecules. Markov chains are normally represented

as (l + 1) × (l + 1) matrices which describe the rate (in the case of continuous-

time Markov chains) or probability (in the case of discrete time Markov chains) of

CHAPTER 4. A GENETIC SWITCH 109

transition between the possible states. The transition rate from a state to another

can be computed as the propensity function for a reaction to take place, i.e., the

product between the number of molecules of the reactants and the specific reaction

probability. When a TF molecule binds to the binding site, the transition rate is

given by R · 1 · kb, where R represents the number of TF molecules, 1 the number

of binding sites and kb the specific reaction probability of the binding process.

Analogously, when a molecule unbinds from a binding site the transition rate is

given by 1 · kub. The diagonal elements in the case of a continuous-time Markov

chain are computed so that the sum on each row is zero. The transition matrix

in the case of one binding site yields

Q =




−Rkb Rkb

kub −kub





The steady state distribution vector π of such a continuous-time Markov chain

is given by the solution to

π ·Q = 0 and
∑

i

πi = 1, (56)

where πi represents the steady state probability that the Markov chain is in state

i [157]. We are interested in π1, the probability that the operator site is full:

π1 =
R

R + kub/kb
=

R

R +K
. (57)

The steady state probability that an operator with one binding site is full (π1)

is a hyperbola (see Figure 24) and can be written as a Hill function with a Hill

coefficient of h = 1 and a threshold of K = kub/kb. Thus, the change in output

as response to the change in input is gradual, not switch-like. This shows that

a gene with one binding site where TF monomers can bind does not display the

required switching behaviour.

Although most of the genes, in bacterial cells, have only one regulatory binding

CHAPTER 4. A GENETIC SWITCH 110

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000

π 1

R [number of molecules]

Figure 24: Occupancy probability as a function of TF abundance. We assumed
the following parameters : kb = 1 and kub = 240.

site for each TF, there are still a considerable number of genes which have more

than one binding site (37% in E.coli)[78]. In the next two sections, we will address

the case of genes with multiple binding sites by considering genes with two binding

sites.

4.3.2 Two Binding Sites

Next, we consider the case of two binding sites, BS1 and BS2, where regulatory

molecules can bind or unbind with equal probability, kb and kub. The binding sites

operate independently, meaning that binding/unbinding of TF molecules to/from

one binding site does not influence the binding/unbinding probabilities to/from

the other site. In this scenario, the system can be in one of the following three

states: none, one or two TF molecules bound to the gene. The transition matrix

is then given by

Q =








−2Rkb 2Rkb 0

kub −kub − (R − 1)kb (R− 1)kb

0 2kub −2kub








CHAPTER 4. A GENETIC SWITCH 111

Note that the transition rate from state 0 to state 1 becomes Q0,1 = 2Rkb. The

term is multiplied by 2 because there are two binding sites that are free, instead

of one as in the previous case. Similarly, because there are two occupied binding

sites, the transition rate from full occupancy (state 2) to half occupancy (state 1)

is given by Q2,1 = 2kub.

Using equation system (56), one can compute the probability that both binding

sites are occupied, π2, as

π2 =
R(R− 1)

R(R− 1) + 2Rkub/kb + (kub/kb)2
, (58)

where R needs to be higher than 0. For R ≤ 0 the probability of both sites being

occupied will be π2 = 0.

Figure 25 shows that the probability that both sites are occupied is a sigmoid

function (it has a S shape), i.e., for low number of regulatory molecules the

probability for the operator site to be fully occupied is very low, while for high

number of regulatory molecules is very high.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000

π 2

R [number of molecules]

Figure 25: Full occupancy probability as a function of TF abundance. We assumed
the following constants: kb = 1 and kub = 240.

It was previously postulated that TFs bind to binding sites in a cooperative

CHAPTER 4. A GENETIC SWITCH 112

manner, in the sense that, after the first binding site is occupied, the probabil-

ity that the second site is occupied changes [2, 21, 22, 27]. Cooperativity can

be included easily in the Markov chain model as a scaling of both binding and

unbinding reaction propensities (see Figure 26). In this scenario, the transition

rate matrix becomes:

Q =








−2Rkb 2Rkb 0

kubC
− −kubC− − (R − 1)kbC

+ (R− 1)kbC
+

0 2kub −2kub








where C± is the cooperativity modifier, i.e., a factor that determines how the

forward and backward binding rates are changed when there are free binding sites

in the case of C− or when there are occupied binding sites in the case of C+. If

this value is > 1 then we deal with positive cooperativity (i.e., once one site is

bound binding to further sites is facilitated), otherwise cooperativity is negative.

To illustrate the origin of the entries of this matrix, we consider the case when

one molecule is bound to a binding site (state 1). Another molecule can bind to

the free binding site (moving the system in state 2) or the already bound molecule

can unbind (moving the system to state 0). Both transition rates from state 1,

Q12 and Q10, are affected by cooperativity, binding cooperativity (C+) in the case

of Q12 and unbinding cooperativity (C−) in the case of Q10.

We determined the steady state probability that both binding sites are occu-

pied, when the sites are cooperative, as

πc
2 =

R(R − 1)

R(R− 1) + 2 1
C+R

kub
kb

+ C−

C+

(
kub
kb

)2 =
R(R− 1)

R(R− 1) + 2 1
C+R ·K + C−

C+K2
. (59)

Note that if both cooperativity terms have high positive values then state 1

becomes a transient state (the system stays in this state only for short a period

of time), while states 0 and 2 become stationary states (the system stays in these

CHAPTER 4. A GENETIC SWITCH 113

Figure 26: The model with two cooperative binding sites. Once a TFmolecule binds
to a binding site (BS1 in the graph) it attracts/repels other TF molecules to the
other binding site (BS2) through binding cooperativity (see red line). If both
sites are occupied, then a stable complex is formed, which changes the unbinding
probability from kubC

− to kub (see green line).

states for a long period of time). Thus, we obtain

πc
2 =

R(R− 1)

R(R− 1) +K2
, for C+ = C− ≫ 1. (60)

Figure 27 shows the effects of cooperative behaviour on the probability that

all binding sites are occupied. The figure confirms that cooperativity can enhance

regulation steepness. Considering only cooperative binding between sites steep-

ens the functions, but simultaneously shifts the curve to the left (the number of

required molecules that fully occupy the gene decreases). However, if the model

assumes both cooperative binding and cooperative unbinding, the steepness of the

function is enhanced while the curve does not shift to the left.

The probability that a gene is turned on or off is usually modelled as a Hill func-

tion, a sigmoid function described by two parameters: the Hill coefficient (which

determines the steepness of the function) and the threshold (which determines the

input required for half activation of the gene). For very high cooperativities, in

the case when both binding and unbinding cooperativity is considered, the max-

imum Hill coefficient is limited from above by the number of binding sites while

the threshold is limited from bellow by kub/kb (see Figure 28). Nevertheless, in

the case when we take into account only cooperative binding, these limits do not

CHAPTER 4. A GENETIC SWITCH 114

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000

πc 2

R [number of molecules]

C-=10, C+=10
C-=1 , C+=10
C-=1 , C+=1

Figure 27: Full occupancy probability as a function of TF abundance in the case of
cooperative behaviour. We assumed the following constants: kb = 1 and kub = 240.
We consider three cases: no cooperativity (dotted line), only binding cooperativity
(dashed line) and both binding and unbinding cooperativity (solid line).

exist; the threshold falls bellow kub/kb and the Hill coefficient can go over the

number of binding sites (for very high cooperativity terms C+ > 104).

Figure 28 also reveals that, for the same cooperativity terms, the system which

considers both types of cooperativity is better in terms of Hill coefficient and

threshold compared with the system which takes into account only binding coop-

erativity, in the sense that it can produce higher Hill coefficients without signifi-

cantly reducing the regulation threshold. If we consider only binding cooperativity

the Hill coefficient increases, but the threshold is reduced significantly. Usually,

very low thresholds are undesirable, because they indicate that the low output

plateau shrinks and, thus, the low state is more prone to noise. However, for very

high cooperativity terms (C+ > 104 in Figure 28(a)), the system which considers

only cooperative binding will have a higher Hill coefficient.

Our Markov model assumes that TFs float freely in the cytoplasm from where

they bind directly to their specific binding site on the DNA. This is unlikely

to be the case for real cells. Instead, most of the TFs will be non-specifically

bound to the DNA from where they can randomly search their target specific

CHAPTER 4. A GENETIC SWITCH 115

 1

 1.2

 1.4

 1.6

 1.8

 2

 2 4 6 8 10 12 14 16 18 20

H
ill

 c
oe

ffi
ci

en
t

cooperativity

binding cooperativity
binding and unbinding cooperativity

(a) Hill coefficient

 0

 100

 200

 300

 400

 500

 600

 2 4 6 8 10 12 14 16 18 20

th
re

sh
ol

d

cooperativity

kub/kb

binding cooperativity
binding and unbinding cooperativity

(b) threshold

Figure 28: Fitting the gene regulation function to a Hill function. We assumed
the following constants: kb = 1 and kub = 240. We consider two cases: only
cooperative binding (dashed line) and both cooperative binding and cooperative
unbinding (solid line).

site [26, 177, 92, 72, 178]. To address this, we compared our Markov model to a

more biological plausible model, the computational model, which assumes spatial

aspects of gene regulation. The results indicate good agreement between the two

models [36]. Nevertheless, under certain special conditions, the Markov model

was unable to capture all the details of the computational model. For example,

in the case of high cooperativity and TF crowding, the computational model

displays stochastic bi-stable behaviour (the cis-regulatory area can be either fully

occupied or completely free and this is stochastic), which could not be observed

in the Markov model.

4.3.3 Biological Significance

Our results showed that if TF-TF interactions are ignored and only TF monomers

regulate a gene, then the gene needs more than one binding site to display a

switch-like behaviour (binary response). This in conjunction with the fact that

a considerable number of genes in bacterial cells have more than one binding

site for the same TF [78] suggests that living organisms enhanced the switch-like

behaviour of genes by adding additional binding sites. Nevertheless, the number

CHAPTER 4. A GENETIC SWITCH 116

of genes that display more than one binding site decreases exponentially with the

number of binding sites, indicating poor switch-like behaviours, i.e., Hill coefficient

≥ 4 are not very common if we consider only multiple binding sites as a source of

switch-like behaviour [78].

Then, how are biological systems capable of steeper responses to regulatory

inputs? There are two main mechanisms, which were not considered in this con-

tribution and can enhance the switch-like behaviour: (i) gene networks and (ii)

protein-protein interactions. Gene networks, such as gene cascade and toggle

switches are capable of increasing the steepness of the system’s response to an

input. Speed is one of the most important disadvantages of genes compared with

electronic devices. Gene networks are even slower than single genes and the delay

time can increase linearly with the number of genes in the network [82]. This is

the main reason for which we did not consider gene networks as an alternative

to single genes as biological switches. Additionally, having more than one gene

requires an extra metabolic cost in the cell, which again is not desired. However,

despite all these disadvantages, these genetic networks (gene cascade and feedback

loops) are network motifs [5], which means that they have high occurrence in bi-

ological organisms. Why then did evolution select these types of gene network?

One possible answer is that under certain conditions, these gene networks can also

act as noise filters (see the toggle switch [185]) and genes are sometimes prone to

high levels of noise [87].

Another recurrent mechanism in living systems are protein-protein interaction

systems. One way to increase the steepness of the regulation function consists of

modifying the input before it actually regulates the gene. For example, it was

shown that oligomerization process (molecules of the same type can bind and

form bigger molecules: dimers, trimers, etc. which then regulate the target gene),

a very common mechanism in bacterial cells, can enhance the Hill coefficient

[33, 113]. Note that, in the context of our Markov model, binding of dimers can

be incorporated easily, by assuming infinite binding cooperativity between two

monomers (once one TF monomer binds, the second one is automatically bound

CHAPTER 4. A GENETIC SWITCH 117

as well). Another example of protein-protein interaction that enhances switch-

like behaviour is the Goldbeter-Koshland model [68, 162, 70, 181], which assumes

that TF can be activated and deactivated by two enzymes. If one of the enzyme

represents the input of the system and the other enzyme has a fixed concentration,

then the system can display a step-like response.

In this thesis, we investigate only the computational properties of genes. Protein-

protein interactions are faster compared with gene expression and, thus, analysing

systems which contain these types of interactions may lead to better results in

terms of speed and accuracy. Nevertheless, the details of this assumption are to

be left to future research.

We conclude that, due to the fact that the interactions between genes and TF

are mediated by multiple binding sites, genes display a switch-like mechanism.

This switch-like mechanism often has a poor quality, in the sense that genetic

switches do not display a high steepness between the two binary values. Never-

theless, although the number of binding sites is an indicator of how switch-like a

gene is, there are also other mechanisms which can enhance the binary behaviour

of genes.

4.4 Considerations on the Noise

Our model of noise ignores several sources of noise and this might lead to limita-

tions on the usefulness of the approach. Gene expression is usually modelled as

a three step process: regulation, transcription and translation. In this thesis we

ignore the noise produced by the regulation and translation steps. However, as we

will see bellow (in subsection 4.4.1) this assumption is often valid in the context

of bacterial cells.

Furthermore, we also performed extensive stochastic simulations, aimed to

verify the accuracy of the analytical formula; see subsection 4.4.2. The results

indicated that the error between the noise computed by the analytical formula

and the one measured in the stochastic simulations is negligible.

CHAPTER 4. A GENETIC SWITCH 118

As a final remark we would like to mention that in this section we normalize

the noise by the square of average behaviour and not by the square of the sig-

nal strength. This is aimed to simplify the mathematics, but do not affect the

generality of the results.

4.4.1 Stochastic Gene Expression

Gene expression is modelled as a three steps process: (i) regulation, (ii) transcrip-

tion and (iii) translation. In the regulation process, the gene(s) gets activated or

deactivated. We will denote the number of active genes by n1 and the number of

total genes by nmax
1 . Thus, the number of inactive genes is nmax

1 −n1. Furthermore,

we denote by λ+
1 the rate at which a gene gets activated and by λ−

1 the deactivation

rate. An active gene can be transcribed with rate λ2 into mRNA molecules which

can decay with rate 1/τ2. Finally, each mRNA molecule can be translated into

the final protein with rate λ3 and decayed with rate 1/τ3. Note that we assumed

exponential decay to be able to consider that the decay rate is the inverse of the

average life time. The gene expression system can be summarised by the following

differential equations.

d〈n1〉
dt

= λ+
1 (n

max
1 − 〈n1〉)− λ−

1 〈n1〉 = λ+
1 n

max
1 − 〈n1〉

τ1
,

d〈n2〉
dt

= λ2〈n1〉 −
〈n2〉
τ2

,

d〈n3〉
dt

= λ3〈n2〉 −
〈n3〉
τ3

, (61)

where we denoted by τ1 =
(
λ+
1 + λ−

1

)−1
.

At steady state, we can compute the noise by applying the Linear Noise Ap-

proximation (see equation 51). Initially, we have to determine two matrices, the

Jacobian matrix (A) and the drift matrix (B), and then, using these two matri-

ces, we can compute the covariance matrix of the system. One can determine the

CHAPTER 4. A GENETIC SWITCH 119

Jacobian matrix of this system as

A =








−1/τ1 0 0

λ2 −1/τ2 0

0 λ3 −1/τ3








Assuming that each chemical reaction either adds or removes only one molecule,

we can write the diffusion matrix B as

B =








2λ−
1 〈n1〉 0 0

0 2〈n2〉/τ2 0

0 0 2〈n3〉/τ3








Solving the Lyapunov equation (51) we can determine the noise of the three species

as

η1 =
σ2
1

〈n1〉2
=

1− Pon

〈n1〉
, (62)

η2 =
σ2
2

〈n2〉2
=

1

〈n2〉
+

1− Pon

〈n1〉
τ1

τ1 + τ2
, (63)

η3 =
σ2
3

〈n3〉2
=

1

〈n3〉
︸︷︷︸

intrinsic noise

+
1

〈n2〉
τ2

τ2 + τ3
︸ ︷︷ ︸

noise from mRNA

+

+
1− Pon

〈n1〉
τ2

τ2 + τ3

τ1
τ1 + τ3

τ1 + τ3 + τ1τ3/τ2
τ1 + τ2

︸ ︷︷ ︸

noise from regulation

, (64)

where Pon = 1/(1+λ−
1 /λ

+
1). The only assumption behind this derivation was that

the fluctuations were small enough to be approximated as weakly non-linear.

Biological Significance

We are interested under which conditions the noise generated by the regulation

and translation processes is negligible. To assess the validity of approximating

the noise in the gene expression by the noise in the transcription process, we will

consider a particular case, the case of E.coli bacteria.

CHAPTER 4. A GENETIC SWITCH 120

The activation rate of a gene, λ+
1 , can be written as the product between the

binding rate and the number of molecules of the TF. Thus, we can write τ1 as

τ1 =
1

λ−
1 + λ+

1

=
1

λ−
1 + k+

1 · R
,

where we denoted by R the number of molecules of TF and by k+
1 the affinity of

the regulator molecules for the gene.

Using some common parameters from E.coli (λ−
1 = 0.1, k+

1 = 0.2 nM ·
min−1)[82], and the fact that TF can be found in abundance of even R = 10

molecules per cell, like it is the case of LacI repressor [179], the τ1 becomes

τ1 ≈
1

0.1 + 0.2 · 10 ≈ 0.5,

Note that, for higher repressor abundances, this time τ1 is much lower and, thus,

it is more accurate to say that τ1 . 0.5 min.

Furthermore, under these considerations, the regulation noise can be approxi-

mated by

η1 =
1

nmax

λ−
1

λ+
1

≈ 1

1

0.14

0.2 · 10 ≈ 0.75× 10−1, (65)

where we assumed that there is only one gene in the cell. Note that we could say

again, that this is an upper value of the noise due to the fact that usually the

abundance of the repressor can be higher that 10, η1 . 0.75× 10−1.

The half-life time of proteins affected only by dilution is approximated by the

cell division time, which is usually taken to be τdivision ≈ 50 min [144, 138, 33, 69].

Thus, we can write τ3 ≈ τdivision/ ln (2) ≈ 70 min. Moreover, we consider the

average lifetime of the mRNA transcript in E.coli to be τ2 = 2.2 min [144]. From

equations (63) and (64) we computed the contribution of regulation to the noise

in the mRNA and output protein as

η12 =
1− Pon

〈n1〉
τ1

τ1 + τ2
≈ 1.4× 10−2,

η13 =
1− Pon

〈n1〉
τ2

τ2 + τ3

τ1
τ1 + τ3

τ1 + τ3 + τ1τ3/τ2
τ1 + τ2

≈ 0.5× 10−3.

CHAPTER 4. A GENETIC SWITCH 121

In addition, we computed the contribution of the intrinsic components of the

noise in mRNA and output protein to the total noise in the output protein. On

average, each transcript is translated two times [83] and, thus, the relationship

between the number of molecules and transcripts is given by 〈n3〉 = λ3τ3〈n2〉 ≈
140×〈n2〉. The noise in the protein generated only by translation and transcription

processes yields

η233 =
1

〈n3〉
+
λ3τ3
〈n3〉

τ2
τ2 + τ3

=
1

〈n3〉
τ2 + τ3 + λ3τ3τ2

τ2 + τ3
≈ 1

〈n3〉
(1+λ3τ2) =

1

〈n3〉
C, (66)

where in the third equality we approximated that the average life time of the

mRNA is much lower than the one of the protein τ2 ≪ τ3. In our case, we

obtained C ≈ 5.5.

Next we consider a numerical example. Assuming that the number of molecules

of the output protein lie in the range 〈n3〉 ∈ [10, 1000], we can compute the noise

in the number of output proteins as

η3 = η233 + η13,

〈n3〉 = 101 : η3 ≈ 0.5 + 0.5× 10−3 ≈ 0.5,

〈n3〉 = 102 : η3 ≈ 0.5× 10−1 + 0.5× 10−3 ≈ 0.5× 10−1,

〈n3〉 = 103 : η3 ≈ 0.5× 10−2 + 0.5× 10−3 ≈ 0.5× 10−2,

where the first term in the right hand side is the noise resulted from transcrip-

tion and translation while the second term the noise generated by the regula-

tion process. These sets of parameters justify that regulation noise is negligible

compared with transcription and translation noise. For the set of parameters

that we choose, we will need that the abundance of the protein to be around

104 molecules ≈ 20 µM in order for the regulation noise to have a significant con-

tribution to the output protein. This is unlikely to be the case in bacterial cells

[179] and, thus, in the case when proteins are affected only by dilution, regulation

noise is negligible.

CHAPTER 4. A GENETIC SWITCH 122

Proteins are not always affected only by dilution, but also by active decay.

As a second numerical example, we consider that the output proteins are decayed

fast, τ3 = 7 min, and this leads to η13 ≈ 0.4×10−2. In this case, assuming that the

average number of molecules of the output protein range between 〈n3〉 ∈ [10, 1000],

the noise of the output protein yields

η3 = η233 + η13,

〈n3〉 = 101 : η3 ≈ 0.5×+0.4× 10−2 ≈ 0.5,

〈n3〉 = 102 : η3 ≈ 0.5× 10−1 + 0.4× 10−2 ≈ 0.5× 10−1,

〈n3〉 = 103 : η3 ≈ 0.5× 10−2 + 0.4× 10−2 ≈ 0.9× 10−2.

For fast protein decay, when the average abundance of the output protein is around

1000 molecules, the regulation noise has a significant contribution to the output

noise. An abundance level of 1000 molecules is not common in bacterial cells [179],

but this indicates that for really fast decays and high average abundances of the

output protein, the regulation noise cannot be neglected any more. Hence, we can

state that, for the regulation noise to have a significant contribution some of the

following three conditions need to be met: (i) the output protein to be produced

in high abundance, (ii) the output protein to decay fast or (iii) the binding of the

regulatory protein to be slow τ1 6≪ τ2.

Proteins in bacterial cells have a slow decay rate (usually just dilution [33]) and

are not present in high abundance [179]. Thus, regulation can play a significant

role in the protein noise, mainly, when the affinity of the regulatory protein for

the gene is week τ1 6≪ τ2 [89]. Nevertheless, in this contribution, we will limit our

attention only to genes which are not slowly regulated [87, 89].

From equation (66) we observed that the noise from translation only scales the

transcription noise and does not qualitatively change its behaviour. This result is

supported by experimental evidence, which shows that the noise in the expressed

protein mainly stems from the low copy number in mRNA transcripts [122, 48, 161,

69]. Therefore, in this thesis, we will approximate the gene expression by a one step

CHAPTER 4. A GENETIC SWITCH 123

process (ignoring regulation and translational noise) and assume that the intrinsic

noise of this process is a Poisson noise. In this context, it is worthwhile noting

that experimental evidence from a eukaryotic organism, S.cerevisiae, suggests that

the gene expression noise is often a Poisson noise, scaled by a constant factor C

[13, 118]. In addition, Taniguchi et al. [166] investigated 1018 genes from E.coli

and found that these genes have a skewed distribution of the noise with a variance

usually higher than the mean abundance.

4.4.2 Assessment of the Analytical Method

In order to investigate the area of validity of the FDT, we performed extensive

simulations of our system (43). Figure 29 shows a number of panels comparing

the noise determined analytically to explicit stochastic simulations. Throughout

the tested parameters, the error between simulation and the analytic result is

negligible.

According to Figure 29, the accuracy of FDT can be reduced when the regula-

tion threshold K is close to one of the input steady states (xL or xH). In this case,

small fluctuations in the input generate high fluctuations of the output. FDT as-

sumes that the average stochastic behaviour equals the deterministic one, but in

this case it does not, and, thus, FDT fails to accurately describe the behaviour of

the system.

4.4.3 Discussion

In this thesis, we considered that the cell is essentially a perfectly mixed reactor.

This assumption is necessary to keep the mathematics tractable, and is commonly

made. We expect that the analytical formula of the noise to be broadly valid in

spatially extended systems as well [118]. However, this is not addressed here.

Our model of the noise ignores two sources of noise: (i) regulation noise and

(ii) post-transcriptional sources of noise, especially translation. The justification

for disregarding the former is that we assume that the binding and unbinding

CHAPTER 4. A GENETIC SWITCH 124

 0.0024

 0.0026

 0.0028

 0.003

 0.0032

 0.0034

 0.0036

 0.0038

 0.004

 0 5 10 15 20 25 30

h

FDT
simulations

η

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

K [µM]

FDT
simulations

η

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0.016

 0.018

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

x [µM]

FDT
simulations

η

 0.0012

 0.0014

 0.0016

 0.0018

 0.002

 0.0022

 0.0024

 0.0026

 0.0028

 0.003

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

αy [µM min-1]

FDT
simulations

η

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

βy [µM min-1]

FDT
simulations

η

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 0 0.5 1 1.5 2

µy [min-1]

FDT
simulations

η

Figure 29: Assessment of the FDT in the case of a binary gene. We considered
a cell volume of V = 8 · 10−16 l and an initial set of parameters: K = 0.5 µM ,
µ = 1 min−1, α = 0.04 µM ·min−1], β = 0.81 [µM ·min−1], and x = 0.2 µM .
We varied individually each of these parameters: h ∈ [1, 32], K ∈ [0.1, 0.875] µM ,
x ∈ [0.1, 0.875] µM , α ∈ [0, 0.775] µMmin−1, β ∈ [0.03, 1] µM · min−1, µy ∈
[0.06, 2] [min−1]. The comparison between the variance normalized by square
average number of molecules predicted by FDT matched the one observed in
simulations. The error bars were computed by running 10 sets of simulations for
105 min.

CHAPTER 4. A GENETIC SWITCH 125

dynamics of regulatory molecules to the operator site of the gene are very fast

compared with the transcription process. This assumption is often valid in the

case of gene regulation [106, 87, 82, 89]. Moreover, there is experimental evidence

that mRNA production is indeed the dominant source of noise in the cell [122,

48, 69, 118, 13]. In particular, it seems that, typically, translation just scales

the transcriptional noise [13], and thus does not directly alter the computational

properties of gene regulation.

In addition, we do not consider explicitly extrinsic noise, the noise in other

cellular components which affects all the genes in the cell equally [48]. However,

due to the fact that this type of noise affects all genes equally it can be incorporated

in the intrinsic component, i.e., both intrinsic and extrinsic noise can be summed

up into the intrinsic component.

Finally, using stochastic simulations, we showed that, for most parameters,

LNA/FDT estimates the noise accurately for the systems we consider (see sub-

section 4.4.2). We also found that when the Hill parameter K is close to xH or

xL then the accuracy of the method suffers. This is expected since, in this case,

the mean behaviour of the stochastic system may deviate from the behaviour of

the deterministic system.

4.5 Summary

In this chapter, we presented the model of a switch built from a single gene, the

binary gene. The switching mechanism is included in the cis-regulatory area of

the gene where one (or more) transcription factors, the input(s), bind and change

the rate at which the gene is expressed. The gene regulation function is usually

modelled as a Hill function [2, 27, 36] which is described by two parameters: the

Hill coefficient (which determines the steepness) and the threshold (which rep-

resents the required regulatory input for half activation of the gene). Depending

on the Hill coefficient the graph of the function can be either a hyperbola (a Hill

coefficient of 1) or sigmoid (a Hill coefficient higher than 1).

CHAPTER 4. A GENETIC SWITCH 126

Logic gates require that the model displays a step-like behaviour. In section

4.3, we investigated how genes are turned on/off using a continuous-time Markov

chain model. This model showed that the steady state probability that all the

regulatory binding sites are occupied can be approximated by a Hill function.

Most importantly, the model was able to make a connection between empirical

parameters (Hill coefficient and threshold) and biological parameters (reaction

rates and binding sites). The results revealed that, in the case when TFs bind to

the DNA as monomers, the threshold can be approximated by the ratio between

the unbinding and binding rates of individual molecules, while the maximum Hill

coefficient equals the number of binding sites. This suggests that genes can have

switch-like behaviour if they have more than one regulatory binding site, which is

the case for many genes in bacterial cells [78].

In addition to the model of the genetic switch, in this chapter, we presented

three properties of the system which we will use in our analysis: (i) metabolic

cost, (ii) switching time and (iii) noise. We measure the metabolic cost as the

maximum gene expression rate of the binary gene. This definition does not provide

an exact quantitative measure of the actual metabolic cost, but rather determines

its scaling properties. The additional factors that affect the actual metabolic cost

are not important for our aim and only complicate the analytical argument.

If we assume that genes are able to compute, then we also need to consider the

speed at which these biological components are able to process information. We

consider the switching time of a gene as the time needed by the output to reach

a new steady state when the regulatory input was changed.

Genes are usually affected by noise. In the context of gene networks, it is

important that any downstream element distinguishes correctly between the two

steady states of the output. Using the LNA, we were able to determine that the

noise in a gene can be computed as the sum between the intrinsic component

(resulted from random births/deaths) and the upstream one (propagated from

the inputs). We also verified the accuracy of this analytical method (LNA) by

performing extensive stochastic simulations and the results confirmed that the

CHAPTER 4. A GENETIC SWITCH 127

analytical method computes the noise with high precision. Finally, we observe

that for biologically realistic parameters (from E.coli bacteria), the noise in the

gene expression comes mainly from the transcription process, while translation

just scales this noise. Moreover, the noise from the activation/inactivation of the

genes becomes negligible for many biologically plausible parameters.

Chapter 5

Computational Limits to Binary

Genes

In the previous chapter, we presented the model of a genetic switch, the binary

gene. In addition, we also described and defined three parameters which char-

acterise the system: metabolic cost, switching time and output noise. Here we

perform an integrated optimality analysis which aims to reduce these three pa-

rameters simultaneously, if possible. The model presented in this chapter assumes

that the input of the binary gene is changed instantaneously. Note that the case

of non-instantaneous change of input will be considered in the next chapter.

5.1 Introduction

Genes which maintain a functional relationship between the concentration of regu-

latory input protein(s) and the concentration of the output protein can be thought

of as capable of performing computations. In this chapter, we will probe some

of the fundamental limitations on the computational capabilities of binary genes,

i.e., regulated genes which can only be in one of the two activation states: a high

state (corresponding to high concentration/particle number of the expressed pro-

tein) or a low state (corresponding to low concentration/particle number of the

expressed protein).

128

CHAPTER 5. COMPUTATIONAL LIMITS TO BINARY GENES 129

As we saw in the previous chapter, binary genes have a metabolic cost associ-

ated with their expression process and are affected by output noise and computa-

tional lag. Each cellular process (protein production, protein decay and mainte-

nance processes) has a metabolic cost attached to it, which is, usually, measured

in number of ATP molecules [4]. Our notion of cost is not the exact measure of

the actual metabolic cost, but rather a number which describes how the actual

metabolic cost scales when the parameters of the binary gene are changed. It

is essential to consider this parameter in our analysis due to the fact that the

cost can be limited by the number of available resources and, thus, it cannot be

increased arbitrarily.

Furthermore, gene expression is affected by noise. This noise is a consequence

of the fact that genes have low copy numbers and that they are slowly expressed

[87]. In the context of binary genes, this output noise is undesirable because it

makes difficult the assessment of the output of the gene as either low (0) or high

(1).

Finally, we want to perform computations as fast as possible, but genes are

very slow, in the sense that the time required to turn on/off a gene (the switching

time) is in the order of tens of minutes, even for an instant input change. In

this chapter, we considered that the abundance of the regulatory input is changed

instantaneously, aiming to identify approaches to reduce the switching time.

Our results show that, under fixed metabolic cost, the noise can be reduced

only by slowing down the gene. This suggests that, under limited resources

(metabolic cost), a gene can be fast or accurate, but not both at the same time.

We also observed that genes with higher metabolic cost display better trade-off

curves compared with genes with lower metabolic cost.

Additionally, we proved that any leak-free system (a gene without basal rate)

is optimal in terms of speed and noise; it will display better noise/speed trade-off

curves than any system with non-vanishing leak rate and equal metabolic cost.

However, systems with non-vanishing leak rates have a more favourable scaling

behaviour than leak-free systems, in the sense that for a given increase of the cost,

CHAPTER 5. COMPUTATIONAL LIMITS TO BINARY GENES 130

leak systems show a more pronounced decrease of noise than leak-free systems.

Hence, leak-free systems are optimum under a fixed metabolic cost, but they are

less efficient in noise reduction by cost increase compared with non-vanishing leak

systems.

In the next section, we will give a brief overview of the model of the binary

gene and the mathematical definitions of the three computational properties of

the system which we use in our analysis, namely switching time, metabolic cost

and noise. In section 5.3 we perform an optimality analysis and identify the

interconnection between these parameters. Finally, we draw the conclusions based

on our results.

5.2 The Model of the Binary Gene

As a reminder from the previous chapter, we will briefly present the model and

the properties which characterise the binary gene. Our model of the binary gene

is given by

∅ α+βf(x)−−−−−→ y, y
µ−→ ∅, (67)

where protein y is synthesised with leak rate α and maximal rate α+β. The syn-

thesis rate of y is controlled by transcription factor x through the Hill regulation

function, f(x), which can be written as

φ(x) =
xh

Kh + xh
and φ̄(x) =

Kh

Kh + xh
. (68)

The system defined in equation (67) is described by the following differential

equation
dy

dt
= α + βf(x)− µy, (69)

where x can take one of the two values: xL (resulting in y = L) or xH (resulting

in y = H).

Next, we will describe again, but this time succinctly, the three properties of

CHAPTER 5. COMPUTATIONAL LIMITS TO BINARY GENES 131

the system required by our optimality analysis: metabolic cost, switching time

and output noise.

We measure the metabolic cost of the system as the maximum synthesis rate,

ζ = α + βf(xH). (70)

Furthermore, in the case of instantaneous input change, the switching time,

Tgene, (the time required to reach a fraction θ of the steady state) is given by

Tgene =
1

µ
ln

(
1

1− θ

)

. (71)

The only parameter which influences this switching time is the decay rate

of the product, in the sense that higher decay rates generate faster responses.

This suggests an immediate mechanism to reduce the switching time, namely to

increase the decay rate µ as much as possible. Note that doing this also decreases

the signal strength, H − L = β[f(xH)− f(xL)]/µ.

In the deterministic system small signal strengths do not pose any problems

and do not limit the computational usefulness of the gene. Thus, we can conclude

from equation (71) that the switching time can be decreased (and hence the com-

puting speed increased) arbitrarily, as long as the gene output is noise free and

varies continuously.

However, genes are affected by noise and, consequently, the signal strength

cannot be reduced arbitrary. In the previous chapter we showed that the noise of

a gene regulated by one transcription factor can be written as

η =
H

(H − L)2
︸ ︷︷ ︸

ηin

+

regulation factor
︷ ︸︸ ︷
[
βf ′(xH)

H − L
τy

]2
time factor
︷ ︸︸ ︷

τx
τx + τy

σ2
x

︸ ︷︷ ︸

ηup

. (72)

Note that variance is normalized by the square of the signal strength (see previous

chapter for more details). The noise of the binary gene consists of two components:

CHAPTER 5. COMPUTATIONAL LIMITS TO BINARY GENES 132

the intrinsic noise, ηin, (generated by the randomness of the birth/death process)

and the upstream noise, ηup, (propagated from the upstream component) [48, 151,

123, 19, 129, 152].

5.3 Noise, Time and Cost

So far, we have defined the noise, switching time and metabolic cost as indepen-

dent parameters of the system. In order to perform a complete analysis on a

binary gene, we also investigated the functional relationship between these three

properties (noise, switching time and metabolic cost). We start this optimality

analysis, by assuming the ideal case of no leak rate, i.e., α = 0 and we will further

assume that L = 0. Following equation (72), the noise can be written as

η =
1

H
+

[
f ′(xH)

f(xH)

]2
τx

τx + τy
σ2
x. (73)

We consider the scaling of several parameters of the model.

Scaling of β

First, we assume that the production rate scales by a factor of γ, i.e.,

β −→ β ′ = γβ.

Note that scaling β by γ we also scale the metabolic cost by the same factor,

ζβ′ = β ′f(xH) = γβf(xH) = γζβ.

Here, the subscript β indicates that the cost is generated by a system with pro-

duction rate β. The average particle number at the high state H also scales by

the same factor,

Hβ′ =
β ′f(xH)

µ
= γ

βf(xH)

µ
= γHβ.

CHAPTER 5. COMPUTATIONAL LIMITS TO BINARY GENES 133

According to equation (73), scaling β leaves the upstream noise, ηup, unaf-

fected. However, the intrinsic noise, ηin, scales with γ−1. Hence, if we assume

that the binary gene has no leak rate and that the production rate scales by a

factor γ, we have the following relationship between noise, time and cost:

ζ ∼ γ and Tgene = constant ⇒ ηin ∼
1

γ
and ηup = constant. (74)

As expected, increasing the production rate of a gene product increases the cost,

but reduces the noise correspondingly. This suggests a noise-metabolic cost trade-

off. Note that by scaling only the synthesis rate β, the switching time remains

unaffected (see equation 71).

Scaling of τ

Next, we scale the average lifetime of the output by a factor γ,

τy −→ τ ′y = γτy.

The average life time of a species is inversely proportional to the decay rate,

τy =
1

µ
⇒ µ −→ µ′ =

1

γ
µ.

The switching time and τy scale in the same direction,

Tτ ′y = τ ′yln

(
1

1− θ

)

= γτyln

(
1

1− θ

)

= γTτy .

Note that the subscript indicates the system with the corresponding average life-

time. Analogously, using the steady state equation, one can observe that the H

and µ scale in opposite directions,

Hτ ′y =
βf(xH)

µ′
= γ

βf(xH)

µ
= γHτy .

CHAPTER 5. COMPUTATIONAL LIMITS TO BINARY GENES 134

Scaling the average lifetime leads to an overall change of the noise of Gy, even

at constant cost ζ , as follows

η =
1

γH
+ ΓL=0

yx

τx
τx + γτy

σ2
x

∣
∣
∣
∣
ζ=const

. (75)

Here Γyx is defined as:

Γyx =

[
βf ′(xH)

H − L
τy

]2

⇒ ΓL=0
yx

[
f ′(xH)

f(xH)

]2

.

In the case of no leak rate, ΓL=0
yx does not depend on the average lifetime τy.

Increasing the average lifetime makes the system slower (increases the switch-

ing time), but, at the same time, reduces the noise of the system. In the case

in which the average life time of the output protein scales by a factor γ, we can

summarise the relationship between noise, time and cost as follows:

Tgene ∼ γ and ζ = constant ⇒ ηin ∼
1

γ
and ηup ∼

1

ν
. (76)

Note that we do not scale β or f(xH) and, thus, the cost remains constant. We

denoted by ν the fraction

ν =
τx + τy
τx + γτy

,

which is inverse proportional to γ, i.e., it decreases when γ increases and, con-

versely, it increases when γ decreases.

Equation (76) presents the noise-speed trade-off at fixed metabolic cost. Figure

30 illustrates this trade-off for various costs. For a fixed metabolic cost, the noise

can be reduced only by increasing the switching time. Conversely, the switching

time can be reduced only by increasing the noise, in the case of fixed metabolic

cost. This suggests that, under fixed cost, the accuracy and the speed of the

gene are inverse proportional, i.e., they cannot be increased simultaneously. In

addition, we observed that a higher cost ensures better trade-off curves (lower

noise and switching time) compared with a lower one (see Figure 30).

CHAPTER 5. COMPUTATIONAL LIMITS TO BINARY GENES 135

 100

 150

 200

 250

 300

 350

 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5
Tgene [min]

 0.001

 0.0012

 0.0014

 0.0016

 0.0018

 0.002

 0.0022

 0.0024

 0.0026

 0.0028

η

(a) analytical

 0.001

 0.0012

 0.0014

 0.0016

 0.0018

 0.002

 0.0022

 0.0024

 0.0026

 0.0028

 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5
Tgene [min]

simulation
analytical

η

(b) simulations

Figure 30: Relation between output noise, switching time, and metabolic cost of
the binary gene. The metabolic cost of each point is indicated by a shade of
grey. The equal cost points fall onto a line. Different costs were achieved by
varying the maximum production rate of β. The following set of parameters
was used: x = 0.2 µM , α = 0, K = 0.5 µM and h = 3. The degradation
rate was varied in interval µ ∈ [0.36, 1] min−1 and the synthesis rate in interval
β ∈ [0.34, 0.85] µM ·min−1. The time was computed for θ = 0.9. We considered
a cell volume of V = 8 · 10−16 l. In both figures we assumed that y is repressed
by x. In (a) we plotted the results obtained from the analytic solution. We found
close agreement between these analytical results and the results from stochastic
simulations (b). The error bars were computed by running 10 sets of stochastic
simulations (Gibson-Bruck [60]), each for 105 min.

We will show below that, under fixed metabolic cost, equation (76) describes a

theoretical computational performance limit of the gene at fixed cost, in the sense

that the accuracy and speed characteristics cannot be simultaneously improved,

without also increasing the metabolic cost.

5.3.1 Noise in the Case of Non-Vanishing Leak Expression

We will now relax the assumption of no leak rate (α = 0) and consider a non-

vanishing α. A consequence of this is that L > 0. For any fixed value of α there

exists a (non-optimal) set of noise-speed trade-offs at fixed cost. This can be

CHAPTER 5. COMPUTATIONAL LIMITS TO BINARY GENES 136

obtained by modifying equation (75) as follows

η =
H

γ(H − L)2
+ ΓL>0

yx

τx
τx + γτy

σ2
x

∣
∣
∣
∣
ζ=const

. (77)

The main difference between equations (75) and (77) is the first term (intrinsic

noise). In the case of no leak rate (L = 0), the intrinsic noise reduces to 1/γH .

For a given cost ζ , the set of possible noise-speed trade-offs with α > 0 is worse

than the optimal noise-speed trade-off set in the sense that for a fixed noise, the

speed is always lower in the leak-free system, and conversely. We illustrate this

for some parameters in Figure 31.

 0.001

 0.0012

 0.0014

 0.0016

 0.0018

 0.002

 0.0022

 0.0024

 0.0026

 0.0028

 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5
Tgene [min]

αy = 0.00 µM
αy = 0.05 µM
αy = 0.10 µM

η

Figure 31: Comparison of various α at fixed metabolic cost. We plot the speed and
noise trade-off for different leak rates under fixed metabolic cost. The metabolic
cost of the three curves is constant, ζ = 0.8 µM · min−1. We consider three
cases: α = 0 µM ·min−1, α = 0.05 µM ·min−1 and α = 0.10 µM ·min−1. The
following set of parameters was used: x = 0.2 µM , K = 0.5 µM and h = 3. The
degradation rate was varied in interval µ ∈ [1, 0.36] [min−1]. We considered a cell
volume of V = 8 ·10−16 l. We assumed the repression case f(x) = φ̄(x). The error
bars were computed by running 10 sets of stochastic simulations (Gibson-Bruck
[60]), each for 105 min.

The sub-optimality of α > 0 can be seen directly from the expression of the

noise (equation 72) as follows: The upstream noise is unaffected by α, so we only

CHAPTER 5. COMPUTATIONAL LIMITS TO BINARY GENES 137

need to consider the intrinsic noise given by:

ηin =
α + βf(xH)

(βf(xH)− βf(xL))2
τy
τ 2y

. (78)

From this equation, we see that increasing the leak rate, increases the intrinsic

noise. At the same time, increasing α also increases the cost; this follows from

the definition of the metabolic cost in equation (70). Altogether, this shows that

any binary gene with non-vanishing α is sub-optimal with respect to its noise and

cost characteristics.

Scaling of α while ζ is constant

Next, we investigate what happens at fixed cost when the leak rate is increased.

Thus, we scale the leak rate by a factor γ, but at the same time we keep the

metabolic cost fixed at ζ = α + βf(xH),

α −→ α′ = γα and β ′ =
ζ − γα

f(xH)
.

Replacing α′ and β ′ into equation (78) gives

ηin =
γα + ζ−γα

f(xH)
f(xH)

[
ζ−γα
f(xH)

]2

[f(xH)− f(xL)]2

1

τy
=

ζ

(ζ − αγ)2
[
f(xH)−f(xL)

f(xH)

]2

1

τy
. (79)

From equation (79) we can see that, by increasing α (γ > 1) and keeping every-

thing else constant, the intrinsic noise (ηin) increases.

Scaling of β while α ≥ 0

We now consider how the noise scales with β when α > 0. If β is scaled by γ

and α = 0, then the corresponding change of the total cost will inversely scale

the noise. When there is a leak expression, that is α > 0, then this is no longer

the case. Instead, if β scales by a factor γ, then the cost will scale by a different

CHAPTER 5. COMPUTATIONAL LIMITS TO BINARY GENES 138

factor,

β ′ = γβ ⇒ ζβ′ = δζβ,

where δ is given by

δ =
α + γ βf(xH)

α + β f(xH)
.

Solving for γ, we obtain,

γ =
(δ − 1)α + δβf(xH)

βf(xH)
.

Considering that the intrinsic noise is given by,

ηin =
α + γβf(xH)

[γβ(f(xH)− f(xL))]2τy
, (80)

we see that the intrinsic noise scales as

ηβ
′

in =
δβ2f(xH)

2

[−α + δ (α + βf(xH))]
2η

β
in, (81)

whereas the total cost scales as ζβ′ = δζβ. If we assume that δ > 1, i.e., we

increase the cost, then the scaling term is smaller than 1/δ,

δβ2f(xH)
2

[−α + δ (α + βf(xH))]
2 ≤

δβ2f(xH)
2

[δβf(xH)]
2 =

1

δ
.

This implies that the actual decrease in noise is more than the inverse of the

increase in metabolic cost. For α = 0, this scaling factor reduces to 1/δ, which in

turn reduces to 1/γ, thus recovering the above scaling from equation (74). This

scaling relation implies that systems with α > 0 have a more favourable scaling

behaviour than leak-free systems, in the sense that for a given increase of the cost,

leak systems show a more pronounced decrease of noise than leak-free systems (see

Figure 32). A corollary of this is that for increasing expression rates the systems

with and without leak become more similar.

CHAPTER 5. COMPUTATIONAL LIMITS TO BINARY GENES 139

 0.0025

 0.003

 0.0035

 0.004

 0.0045

 0.005

 0.0055

 0.006

 0.0065

 0.007

 1 1.5 2 2.5 3 3.5 4

γ

α = 0.0 µM
α = 0.2 µM

η

Figure 32: Noise reduction sensitivity to cost increase. We plot the noise as a
function of cost increase. On the x-axis we represented γ, the scaling factor of
β. We consider two cases: α = 0 µM · min−1 and α = 0.2 µM · min−1. The
following set of parameters was used: x = 0.2 µM , K = 0.5 µM , h = 3 and β =
1.08 µM ·min−1. The degradation rate was varied in interval µ ∈ [1, 0.36] [min−1].
We considered the repression case f(x) = φ̄(x) and a cell volume of V = 8 ·10−16 l.

5.3.2 General Case

Previously, we stated that increasing the metabolic cost generates better noise-

time trade-off curves. In order to check the validity of this statement, we investi-

gate analytically whether increasing the cost can lead to simultaneous reduction

of both noise and switching time. We consider the case when both α and β scale

by γ and, at the same time, the average life time of the output species scales by

δ,

α −→ α′ = γα , β −→ β ′ = γβ and τy −→ τ ′y = δτy.

from equations (70) and (71), we notice that the metabolic cost and the switching

time scale as

ζ −→ ζ ′ = γζ and T −→ T ′ = δT.

The output steady states will then scale by γδ

y′ =
α′ + β ′f(x)

µ′
=

γα + γβ ′f(x)

µ′/δ
= γδ

α + βf(x)

µ
= γδy.

CHAPTER 5. COMPUTATIONAL LIMITS TO BINARY GENES 140

δ < 1 δ = 1 δ > 1

γ < 1

Tgene: (ց) Tgene: (=) Tgene: (ր)

ηin: (ր) ηin: (ր) ηin:







(ր), δ < 1/γ
(=), δ = 1/γ
(ց), δ > 1/γ

ηup: (ր) ηup: (=) ηup: (ց)
ζ : (ց) ζ : (ց) ζ : (ց)

γ = 1

Tgene: (ց) Tgene: (=) Tgene: (ր)
ηin: (ր) ηin: (=) ηin: (ց)
ηup: (ր) ηup: (=) ηup: (ց)
ζ : (=) ζ : (=) ζ : (=)

γ > 1

Tgene: (ց) Tgene: (=) Tgene: (ր)

ηin:







(ր), δ < 1/γ
(=), δ = 1/γ
(ց), δ > 1/γ

ηin: (ց) ηin: (ց)

ηup: (ր) ηup: (=) ηup: (ց)
ζ : (ր) ζ : (ր) ζ : (ր)

Table 1: Noise, time and cost. We considered three cases for δ (the scaling of
the average life time of the protein) and γ (the scaling of the synthesis rates):
< 1, = 1, and > 1. We use three symbols to represent the behaviour of the three
properties (noise, ηin and ηup; time T and cost ζ): it decreases (ց), it remains
constant (=) and it increases (ր).

Considering all these scaling terms, the equation of noise becomes

η =
H

γδ(H − L)2
+

[
f ′(xH)

f(xH)− f(xL)

]2
τx

τx + δτy
σ2
x. (82)

Table 1 displays the system behaviour when the cost and time are scaled

simultaneously. We noticed from the table that a higher metabolic cost, γ > 1,

can lead to a simultaneous decrease in the propagation time and intrinsic noise.

However, for this to happen, the average life time of the output species needs to

be decreased (1 > δ), and this decrease needs to be slower than the increase in

the metabolic cost (δ > 1/γ).

In addition, from Table 1, it is easy to observe that no scaling combination can

ensure a simultaneous enhancement in all three properties (noise, time and cost).

This suggests that, in order to improve any property of the system, at least one

CHAPTER 5. COMPUTATIONAL LIMITS TO BINARY GENES 141

other property needs to be worsened. The last statement defines the three-way

trade-off between noise, time and cost of a binary gene. Note that, when the cost

is kept fixed, the table shows that there is no scaling which improves speed and

accuracy simultaneously.

5.3.3 Noise and the Regulation Threshold

In the case of repressed genes (i.e., f ≡ φ̄), non-zero low states (L > 0) can be

generated due to incomplete repression (even when α = 0). It is clear from the

shape of the repression function φ̄ that complete repression can only be achieved

in the limiting cases of either an infinite number of repressor molecules or an

infinite Hill coefficient h. Neither is biologically realisable. If we assume the input

signal (that is xH and xL) to be fixed, then the leak rate will depend on the

Hill parameter K. Physically, this parameter is, in essence, the fraction of the

association and dissociation rate constants of the regulatory protein to/from the

specific binding site of the operator. It is evident that, the lower the K, the fewer

molecules are required to achieve a certain level of repression. The value of K

which maximises signal strength (H − L) is given by K∗ =
√
xHxL. This K∗ is

not identical to the value of K that optimises noise, which is given by the solution

to
d

dK
η = 0, (83)

where K is margined by the two steady states of the input (xL and xH), i.e.,

xL < K < xH in the activation case or xH < K < xL in the repression case.

The corresponding formula is too complicated to be useful, but can be cal-

culated numerically; it will typically be similar, but not equal, to the value that

optimises signal strength. Moreover, a numerical analysis suggests that, around

the optimal value of K, the noise depends only very weakly on K, particularly

when the signal strength of the input, |xL − xH |, is large (see Figure 33).

This result was recently supported by experimental evidence. Murphy et al.

[115] showed that performing point mutations on the promoter (more specifically

CHAPTER 5. COMPUTATIONAL LIMITS TO BINARY GENES 142

 0

 0.005

 0.01

 0.015

 0.02

 0 1 2 3 4 5

K [µM]

xL=3

xL=4
xL=5

xL=6

η

Figure 33: The noise as a function of K in the repressor case. We used the
following set of parameters (h = 3, xH = 0.2 µM , τx = 1 min, τy = 1 min,
σ2
x = 96). We considered a volume of V = 8 · 10−16 l.

in the TATA box) can lead to a shift of the threshold without affecting other pa-

rameters. By varying the threshold, the noise changes only slightly. Nevertheless,

they noticed that there is an intermediary threshold position which minimises the

noise level.

5.3.4 Noise and the Hill Coefficient

To understand the dependence of noise on h it is necessary to consider f ≡ φ

and f ≡ φ̄ separately. Since we always consider the noise at y = H , the scaling

relation of the repressor needs to be evaluated at very low particle numbers of x,

whereas the noise of the activator needs to be evaluated at high x.

CHAPTER 5. COMPUTATIONAL LIMITS TO BINARY GENES 143

Repression

We start with the repression case, f ≡ φ̄. In this case, the intrinsic noise is given

by:

ηin =
H

(H − L)2
=

α + β Kh

xh
H
+Kh

β2

(
Kh

xh
H +Kh

− Kh

xh
L +Kh

)−2
1

τy

≈
[

α + β
Kh

Kh + xh
H

] [

β

(

1− Kh

xh
L

)]−2
1

τy

≈ (α+ β)

[

β

(

1− Kh

xh
L

)]−2
1

τy

≈ α+ β

τyβ2
. (84)

We used the following approximation: xH ≪ K and xL ≫ K. Similarly, if C

summarises factors in the upstream noise which are not affected by h, then the

upstream noise scales like

ηup = C

(
Khhxh−1

H

(Kh + xh
H)

2

)2(
Kh

xh
H +Kh

− Kh

xh
L +Kh

)−2

≈ Ch2

(
xh−1
H

Kh

)(

1− Kh

xh
L +Kh

)−2

≈ Ch2

(
xh−1
H

Kh

)2

. (85)

Both the intrinsic and upstream noise are decreasing functions of h; however,

the equations indicate that, for higher values of h, the slope of both equation (84)

and equation (85) approaches 0 relatively rapid. Hence, with increasing h, the

dependence of the noise on h becomes increasingly weaker. Altogether, we obtain

the following equation for the noise as a function of h (see Figure 34)

ηφ̄ ≈
α + β

τyβ2
+ Ch2

(
xh−1
H

Kh

)2

. (86)

CHAPTER 5. COMPUTATIONAL LIMITS TO BINARY GENES 144

Activation

Using analogous approaches, but now assuming that xH ≫ K, xL ≪ K and

f ≡ φ, we obtain the following expression for the intrinsic noise

ηin ≈
α+ β

τyβ2
. (87)

The upstream noise can be written as

ηup = C

[

hxh−1
H

Kh + xh
H

(

1− xh
H

Kh + xh
H

)−1
]2 [

xh
H

Kh + xh
H

− xh
L

Kh + xh
L

]−2

≈ Ch2

(
Kh

xh+1
H

)2

. (88)

Hence, in the activation case, the noise depends on h as follows:

ηφ ≈
α + β

τyβ2
+ Ch2

(
Kh

xh+1
H

)2

. (89)

Figure 34 illustrates how the noise depends on h. For a specific example,

the graph suggests that improvements in the noise for increased h diminish fast

as h increases. This diminishing effect of h can be seen directly from equations

(86) and (89). In both equations, in the second terms on the right hand side,

the factors next to h2 are very small and decrease with h faster than with h2; C

summarizes terms in the noise equation that do not change with h. Hence, the

overall upstream noise tends to zero as h increases.

This begs the question regarding the metabolic cost of increasing h. In this

context it is worthwhile noting that increasing the Hill coefficient leads to an al-

most linear increase in the metabolic cost [184]. This increase in the metabolic cost

combined with the diminishing efficiency in noise reduction suggests that there is

an optimal Hill coefficient beyond which further increase is not cost effective any

more.

CHAPTER 5. COMPUTATIONAL LIMITS TO BINARY GENES 145

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 1.6 1.8 2 2.2 2.4 2.6 2.8 3

h

intrinsic
upstream

total

η

(a) repression

-0.0005

 0

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 0.003

 0.0035

 0.004

 0.0045

 1.6 1.8 2 2.2 2.4 2.6 2.8 3

h

intrinsic
upstream

total

η

(b) activation

Figure 34: The noise as a function of h. We used the following set of parameters:
K = 0.5 µM , τx = 1 min, τy = 1 min, α = 0.05 µM ·min−1 and β = 0.8 µM ·
min−1. We use a cell volume of 8 · 10−16l. In the repression case we considered:
xH = 0.05 µM , xL = 5 µM and σ2

x = 1.204 × 103; and in the activation one
xH = 5 µM , xL = 0.05 µM and σ2

x = 7.22655×106. Note that we used a different
noise input in order to ensure a good visibility of the graphs.

5.4 Summary

In an ideal, deterministic system, binary genes could be driven at an arbitrary

speed without increasing the metabolic cost. However, real systems are afflicted

by noise and this imposes strict limits on the computational efficiency of genes. We

identified a three-way trade-off between the output noise of a gene, its switching

time and the metabolic cost necessary to maintain it.

For a fixed metabolic cost, there is an accuracy-speed trade-off, in the sense

that the speed can be increased only by decreasing the accuracy and vice versa.

Equations (74) and (76) define this trade-off analytically. Figure 30 illustrates

ideal trade-off sets for α = 0 and various costs (indicated by the shades of grey of

the points). Figure 31, on the other hand, shows that the trade-off set for α > 0

has worse noise-time characteristics than the leak-free system. A non-vanishing

α is sub-optimal; see equation (78). However, it is cheaper (in terms of metabolic

cost) to improve the sub-optimal system (α > 0) compared with the optimal one

(α = 0); see equations (78) and (81).

An extensive map of the three-way trade-off between noise, time and cost is

CHAPTER 5. COMPUTATIONAL LIMITS TO BINARY GENES 146

presented in Table 1. The table shows that there is no combination which ensures

the enhancement of all the three properties (noise, time and cost) simultaneously.

Moreover, in order to enhance one of these three properties at least another one

needs to be worsened. The table also shows that, under certain conditions (re-

duction of switching time, but slower than the increase in metabolic cost), noise

and time can be enhanced simultaneously when the metabolic cost is increased.

Finally, we showed that there is an optimal regulation threshold, K, which

minimises the output noise; see equation (83) and Figure 33. Similarly, we showed

that increasing the Hill coefficient reduces the noise (see equations (86) and (89)

and Figure 34). However, the efficiency of noise reduction is attenuated really

fast. This in conjunction with the fact that increasing h increases the metabolic

cost suggests that there is an optimal Hill coefficient. Hence, in a system of binary

genes, there are optimal values for the parameters α, K and h, whereas there is a

trade-off for β and µ.

Chapter 6

Optimality Analysis of Binary

Genes

In chapter 5, we investigated the trade-off between the speed and accuracy of

a binary gene under the assumption of instantaneous input change. Here we

extend this analysis and consider the case of non-instantaneous input change.

We developed an optimality analysis which defined a trade-off between speed and

accuracy under the assumption of fixed metabolic cost. Furthermore, we examined

whether at least one of the two properties (speed and accuracy) can be enhanced

by negative auto-regulation without worsening the other one.

6.1 Introduction

Under the assumption of fixed metabolic cost, binary genes (genes which have two

expression levels, high and low) regulated by inputs which change instantaneously

display a trade-off between the speed at which the output changes states and

the accuracy of the output at steady state. This trade-off is controlled by the

decay rate, in the sense that lower decay rates ensure slower switching, but also

higher accuracy, and vice versa. Instantaneous input change happens rarely within

biological systems, where, for example, the input can be subject to exponential

decay due to dilution. Thus, in this chapter we will analyse the three way trade-off

147

CHAPTER 6. OPTIMALITY ANALYSIS OF BINARY GENES 148

between switching time, output noise and metabolic cost under the assumption

of a non-instantaneous change in the input.

Our results revealed that, based on the regulatory threshold position, a binary

gene displays different speed-accuracy configurations. In addition, the binary

gene is characterised by two specific threshold positions: one which optimises the

system in speed and another, which optimises the system in terms of accuracy.

The analysis shows that there is an optimal trade-off curve between speed and

accuracy, which is controlled by the position of the regulation threshold. Moreover,

this optimal trade-off curve is delimited by the two values that optimise the system

in terms of speed and accuracy. Points that reside outside this optimal trade-off

curve are sub-optimal because they worsen the system in both speed and accuracy.

It was previously postulated that negative auto-regulation can enhance the

speed [137, 5] and that in some cases it can reduce noise [20, 83, 84, 31]. Here,

we investigated the speed and accuracy properties of a negatively auto-regulated

gene systematically and found that, for low but non-vanishing leak rates, the

negative auto-regulated system outperforms the simple binary gene in both speed

and accuracy. In addition, for vanishing leak rates, the system is enhanced only in

accuracy and worsened in speed while, for high values of the leak rate, the system

displays higher noise and faster switching. Note that low leak rates are easy to

achieve in the case when the gene is activated by a regulatory input. When the

binary gene is repressed by the regulatory input, low leak rates require either a

high Hill coefficient or high input abundance, both of which increase the metabolic

cost [184].

We start this chapter by presenting the model of the system which we analyse

and how we measure its properties (cost, speed and accuracy). Then, in section

6.3, we present the optimality analysis of a simple binary gene. Furthermore,

in section 6.4 we will analyse whether negative auto-regulation can enhance the

system in either speed or accuracy without worsening the other property. Finally,

we investigate how this analysis can be applied to biological data and then we

draw some conclusions.

CHAPTER 6. OPTIMALITY ANALYSIS OF BINARY GENES 149

6.2 The Model of the Binary Gene

We use the same model as in our previous chapters, where a gene Gy has an output

y which is regulated by a single transcription factor x (see Figure 20 from chapter

4). This model of the binary gene is described by the following set of chemical

reactions

∅ α+βf(x)−−−−−→ y, y
µ−→ ∅, (90)

where α is the leak rate, α + β the maximum production rate and µ the decay

rate. The regulation function, f(x), is usually approximated by a family of sigmoid

functions, namely the Hill functions [2, 27, 36]. As previously, we consider that

the regulation function can be either the activator Hill function (f ≡ φ) or the

repressor one (f ≡ φ̄),

φ(x) =
xh

Kh + xh
and φ̄(x) =

Kh

Kh + xh
. (91)

The differential equation associated to the species y yields

dy(t)

dt
= α + βf(x(t))− µy(t), (92)

where the species concentration are written as function of time to emphasise their

dynamical behaviour. The transcription factor, x, has two steady states: xL

(corresponding to y = L) or xH (corresponding to y = H). Note that the input

does not change states instantaneously.

Our optimality analysis uses three properties which we briefly review here: (i)

metabolic cost, (ii) switching time and (iii) output noise. For more details on

these properties please read chapter 4. In the previous chapters, we approximated

the metabolic cost by the synthesis rate in the high state,

ζy = α + βf(xH). (93)

We would like to remind the reader that our definition of cost determines the

CHAPTER 6. OPTIMALITY ANALYSIS OF BINARY GENES 150

scaling properties of the metabolic cost and not the exact quantitative measure.

In this chapter, we adopt a different scenario relating to the dynamical be-

haviour of the system. In this new setting, the change in x is not instantaneous

any more. We will assume that x evolves exponentially from x0 to x∗ (between

xL and xH),

x(t) = x∗ − e−µxt(x∗ − x0), (94)

where we assumed that x is removed with rate µx. Then the dynamics of species

y yields

y(t) = e−µt

[

y0 +

∫ t

0

eµz (α + βf(x(z))) dz

]

, (95)

where y changes its concentration from y0 to y∗.

We are interested in the time to reach a fraction θ of the distance between the

initial and the new steady state (y0 and y∗) and, thus, we compute the time to

reach yθ = y0+(y∗−y0)θ. To compute the switching time, we solve equation (95)

numerically, and determine the time at which the system reaches this fraction of

the steady state (yθ).

Finally, since, at steady state, the system remains the same as in the previous

sections, we will use the same formula to compute the noise,

η =
yH

(yH − yL)2
︸ ︷︷ ︸

ηin

+

regulation factor
︷ ︸︸ ︷
[
βf ′(xH)

yH − yL
τy

]2
ηup

︷ ︸︸ ︷
τx

τx + τy
σ2
x

︸ ︷︷ ︸

upstream

, (96)

where the noise in the species is the sum between the intrinsic component of the

noise (ηin) and the upstream one (ηup) (see [151, 123, 19, 129, 152]).

6.3 Noise, Time and Cost

The only difference between the system analysed here and the one in the previous

chapter, is that the input of the current system is not changed instantaneously.

Due to the fact that we only compute the noise at steady state, the noise properties

CHAPTER 6. OPTIMALITY ANALYSIS OF BINARY GENES 151

of both systems are identical. In section 5.3.3 we showed that there is an optimal

position of the threshold which optimises the system in terms of noise. We will

denote this position by λη, where λ is the position of the threshold relative to the

input steady states,

λ =
K − xL

xH − xL
. (97)

Note that this is valid only in the case when the Gy gene is an activator gene

(xH > xL). Nevertheless, in the case where Gy is a repressor gene, xL and xH

swap places in equation (97).

6.3.1 Optimal Switching Time

Next, we look at the time properties of the system. Our gene, Gy, has two

switching times, TLH and THL, which represent the time necessary to switch

from low state to high state and from high state to low state respectively. If the

input switches instantaneously, the switching time is independent of the threshold

position. However, in our case, the input does not change instantaneously. If the

threshold of the gene is closer to the low state of the input, then switching from

low state to high state is faster because the gene will be at least half activated

faster. Analogously, if the threshold is closer to the high state, switching from

high state to low state is faster because the gene will be again half activated faster.

This suggests that when the input does not change instantaneously the threshold

position influences the switching time.

TLH is lower when the threshold is closer to the low state, being minimum when

the threshold equals the low state, and is higher when the threshold is closer to the

high state. Similarly, THL is lower when the threshold is closer to the high state,

being minimum when the threshold equals the high state, and higher when the

threshold is closer to the low state. Noting that the two minimum values of the

switching times are similar, if not equal, and the fact that the time to switch as a

function of the threshold position is a monotonic function we can say that the two

functions, TLH(λ) and THL(λ), will intersect in only one point. In our case, when

CHAPTER 6. OPTIMALITY ANALYSIS OF BINARY GENES 152

computing the speed, it is not important whether a gene is turned on or off and,

thus, we consider that the switching time of the gene is the maximum of the time

to switch on and the time to switch off, T = max(TLH , THL). This transforms

the optimality problem into a minimax problem, i.e., we are interested in the

minimum point when the maximum switching time is considered. The position

which ensures this minimum switching time of a gene is exactly the intersection

point between the two functions, TLH(λ) and THL(λ). We denote the point which

optimises the time by λT . Figure 35 confirms that the solution to the minimax

problem is the intersection point between the two functions

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 0 0.2 0.4 0.6 0.8 1

T
im

e
[m

in
]

λ

tLH

tHL

(a) activation

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 0 0.2 0.4 0.6 0.8 1

T
im

e
[m

in
]

λ

tLH

tHL

(b) repression

Figure 35: The threshold position controls the switching time. We have used
the following parameters: θ = 0.9, α = 0.2 µMmin−1, l = 2, µ = 1min−1,
µx = 1min−1, xL = 0.1 µM and xH = 0.9 µM . The threshold was varied in the
interval k ∈ [0.1, 0.9]. The synthesis rate β is computed so that the cost remains
fixed to ζy = 1.2 µM ; see bellow equation (98).

6.3.2 Optimal Trade-off Curve

There is no indication that the two optimal threshold positions for noise and time

(λη and λT) coincide, λT 6= λη. In the case of λT > λη, the threshold can be

positioned in three areas: (i) λ > λT , (ii) λT ≥ λ ≥ λη and (iii) λη > λ. Note

that a similar argument as the one developed below can be provided in the case

of λT < λη.

CHAPTER 6. OPTIMALITY ANALYSIS OF BINARY GENES 153

When λ = λT then the system is optimal in speed. We know that the time

curve displays one minimum and, thus, moving away from this optimum point

will make the system slower, no matter the direction. Analogously, λ = λη is the

threshold position which minimises noise. Selecting further positions from this

optimum increases the noise of the system.

Decreasing the threshold from λ = λT to λ = λη improves the system in

accuracy, but it reduces the speed. Similarly, increasing the threshold from λ = λη

to λ = λT improves the speed, but reduces the accuracy. Thus, between these

two threshold positions (λT and λη), there is a trade-off curve, which optimises

the system in either speed or accuracy, but not in both.

Furthermore, increasing the threshold above λ = λT or decreasing it under

λ = λη will move the threshold away from the two optimal positions (in speed

and accuracy). This indicates that selecting a position for the threshold in the

interval [λη, λT] is optimal compared with selecting a position outside this interval.

This optimal trade-off curve which depends on the threshold position is graph-

ically represented in Figure 36. When we considered this trade-off, we ensured

that the metabolic cost remains constant. Changing the threshold position modi-

fies the regulation function and, thus, the synthesis rate. The synthesis rate in the

high state quantifies our measure of cost and to keep this fixed, we compensated

any change in K, by a change in the relative synthesis rate β as follows:

β =
(ζy − α)

f(xH,K)
. (98)

Here, we emphasised that the threshold changes the regulation function by denot-

ing the regulation function as a function of K, f(xH,K). The trade-off curves

were computed numerically, but we also run a set of 20 stochastic simulations for

7 points on the curves and the simulations results confirmed that the numerical

results approximate with a negligible error the stochastic simulations.

CHAPTER 6. OPTIMALITY ANALYSIS OF BINARY GENES 154

 0.0029

 0.003

 0.0031

 0.0032

 0.0033

 0.0034

 0.0035

 0.0036

 0.0037

 3.6 3.7 3.8 3.9 4 4.1 4.2 4.3 4.4 4.5 4.6

η

Time [min]

λT

λη

optimal trade-off
sub-optimal trade-off

simulations

(a) activation

 0.0035

 0.004

 0.0045

 0.005

 0.0055

 0.006

 0.0065

 0.007

 0.0075

 0.008

 0.0085

 3.6 3.8 4 4.2 4.4 4.6 4.8 5 5.2

η

Time [min]

λT

λη

optimal trade-off
sub-optimal trade-off

simulations

(b) repression

Figure 36: The threshold position controls the trade-off between speed and accu-
racy. We have used the following parameters: θ = 0.9, α = 0.2 µMmin−1 , l = 2,
µ = 1min−1, µx = 1min−1, xL = 0.1 µM , xH = 0.9 µM and V = 8 · 10−16 l.
The threshold was varied in the interval k ∈ [0.2, 0.8]. The synthesis rate β
was computed so that the metabolic cost of the gene y remains constant to
ζy = 1.2µM ·min−1. The error bars where generated from a set of 20 stochastic
simulations using the Gibson-Bruck algorithm [60].

6.3.3 Optimality and the Leak Rate

The optimality of vanishing leak rates in terms of noise was already proven in

the previous chapter. For our current configuration, changing the leak rate does

not change the switching time (see Figure 37(a)), but it influences the noise as

we saw in the previous chapter. In the limit case of α → ζy, the noise increases

exponentially to infinity. Nevertheless, in the case of vanishing leak rate, α = 0,

the system displays the lowest possible noise (see Figure 37(b)).

In addition, the leak rate controls the length of the optimal trade-off curve.

Figure 37(a) shows that the optimal threshold position of noise λη is reduced by

decreasing the basal rate and, thus, the optimal trade-off curve becomes larger.

This is a consequence of the fact that changing the leak rate amends the noise

properties of the system and consequently the optimal noise configuration.

CHAPTER 6. OPTIMALITY ANALYSIS OF BINARY GENES 155

 0.002

 0.0022

 0.0024

 0.0026

 0.0028

 0.003

 0.0032

 0.0034

 0.0036

 3.6 3.7 3.8 3.9 4 4.1 4.2 4.3 4.4 4.5 4.6

η

Time [min]

α=0.2
α=0.1
α=0.0

(a) activation

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0 0.2 0.4 0.6 0.8 1

η

α

activator
repressor

(b) leak rate and noise

Figure 37: The leak rate changes the noise levels. (a) The switching time of the
trade-off curve does not change while changing the basal rate. (b) The system
displays an optimal configuration for vanishing leak-rates, α = 0. We have used
the following parameters: θ = 0.9, l = 2, k = 0.5 µM , µ = 1min−1, µx =
1min−1, xL = 0.1 µM , xH = 0.9 µM and V = 8 · 10−16 l. The synthesis rate
β was computed so that the metabolic cost of the gene y remains constant to
ζy = 1.2µM ·min−1. In (b) we used a threshold value of K = 0.5 µM .

6.3.4 Optimality and the Hill Coefficient

In the previous chapter, we showed that by increasing the Hill coefficient, the

system will display better noise properties. Here, we observed that increasing the

Hill coefficient leads not only to more accurate systems, but also to faster ones.

Figure 38 shows that the trade-off curve for a higher Hill coefficient (l = 2.5)

is better in both speed and accuracy compared with the one with a lower Hill

coefficient (l = 2.0). The asymptotic limit in speed and accuracy is represented

by the step-like regulation function (l → ∞). We will present a proof of this

optimality in terms of time in the next chapter, where we will consider the case

of step-like regulation functions explicitly.

Note that increasing the Hill coefficient comes at an almost linear increase in

metabolic cost. In this chapter, the optimality analysis considers the case when

the cost is kept fixed and, thus, we assume that the Hill coefficient needs to be

kept fixed.

CHAPTER 6. OPTIMALITY ANALYSIS OF BINARY GENES 156

 0.0027

 0.0028

 0.0029

 0.003

 0.0031

 0.0032

 0.0033

 0.0034

 0.0035

 0.0036

 3.4 3.6 3.8 4 4.2 4.4 4.6

η

Time [min]

l=2.0
l=2.5

(a) activation

 0.003

 0.004

 0.005

 0.006

 0.007

 0.008

 3.4 3.6 3.8 4 4.2 4.4 4.6 4.8 5 5.2

η

Time [min]

l=2.0
l=2.5

(b) repression

Figure 38: The Hill coefficient can enhance the trade-off between speed and accu-
racy. The graph presents two trade-off curves corresponding to two different Hill
coefficients: l = 2 and l = 2.5. We have used the following parameters: θ = 0.9,
α = 0.2 µMmin−1, µ = 1min−1, µx = 1min−1, xL = 0.1 µM , xH = 0.9 µM
and V = 8 · 10−16 l. The threshold was varied in the interval k ∈ [0.2, 0.8]. The
synthesis rate β was computed so that the metabolic cost of the gene y remains
constant to ζy = 1.2µM ·min−1.

6.4 Negative Auto-Regulation

It was previously shown that negative auto-regulation (n.a.r.) leads to higher

speeds [137, 5] and sometimes to lower noise [20, 83, 84, 31, 37]. Here, we inves-

tigate whether this network motif enhances the trade-off curves.

(a) activation (b) repression

Figure 39: The model of the negatively auto-regulated gene. The output protein
of a negatively auto-regulated gene represses its own synthesis.

A negatively auto-regulated gene is a gene which synthesises a protein that

represses its own synthesis (see Figure 39). We write the differential equation of

CHAPTER 6. OPTIMALITY ANALYSIS OF BINARY GENES 157

the n.a.r. gene in the generic form as

dy

dt
= α + βf(x)g(y)− µy, (99)

where g(y) is a Hill repression function,

g(y) = γ
K ln

n

K ln
n + yln

.

Since we want to enhance the performances of the simple gene without increasing

the metabolic cost, we need to ensure that the metabolic cost of the n.a.r. system

is equal to the one of the simple gene,

α + β · f(xH) · g(yH) = α + β · f(xH) ⇒ g(yH) = 1⇒

γ
K ln

n

K ln
n + ylnH

= 1 ⇒ γ =
K ln

n + ylnH
K ln

n

⇒ g(y) =
K ln

n + ylnH
K ln

n + yln
.

Bacterial cells can implement auto-repression through various mechanisms.

One of the mechanisms consists of the output protein binding to the promoter

area of the gene and stopping the RNAp molecules to transcribe the gene. In the

case of this mechanism and assuming that only monomers auto-regulate the gene,

we compute that the auto-repression function displays a Hill coefficient of 1 [36],

g(y) =
Kn + yH
Kn + y

. (100)

Furthermore, the gene could display additional binding sites where the output

protein is able to bind and repress its own synthesis. However, this mechanism

requires additional binding sites, which comes at an increase in the metabolic cost

of the gene and this is undesirable (we want to keep the metabolic cost fixed).

Additional mechanisms used for negative auto-regulation include protein-protein

interactions and competitive binding of the output and input proteins. These

alternative mechanisms are not considered in this contribution. Instead, we limit

our attention to the case of a gene which is auto-repressed by the binding of the

CHAPTER 6. OPTIMALITY ANALYSIS OF BINARY GENES 158

output protein to the gene promoter.

Using the form of the auto-regulation function given in equation (100), we can

compute the steady states of the n.a.r. system as

yH =
α

µ
+

β

µ
f(xH),

ynL =
1

2

(

α

µ
−Kn +

√

α2

µ2
+ 2

α

µ
Kn +K2

n + 4
β

µ
f(xL) (Kn + yH)

)

. (101)

We denoted by ynL the low steady state in the n.a.r. system as opposed to yL, the

low steady state in the simple system. Since both systems display the same high

steady state we denoted this by yH

To keep the mathematics tractable and without losing generality we will con-

sider the case of no basal rate α = 0,

yH =
β

µ
f(xH) and ynL =

1

2

(

−Kn +

√

K2
n + 4

β

µ
f(xL) (Kn + yH)

)

. (102)

From this we can see that the high state remains constant while changing the auto-

repression, but the low state is increased if the auto-repression is strengthened

(Kn ց⇒ ynL ր). The low state of the output varies between the following limits

lim
Kn→∞

ynL =
β

µ
f(xL) = yL and lim

Kn→0
ynL =

β

µ

√

f(xL)f(xH) =
√
yLyH . (103)

Investigating the auto-regulation function (100), we notice that depending on

the relationship between Kn and yH we could write this function in a simpler form.

In particular, there are two extreme cases: (i) Kn ≫ yH and (ii) Kn ≪ yH . In

the first case (Kn ≫ yH), which we call weak auto-repression, the auto-regulation

function becomes

g(y) =
Kn + yH
Kn + y

≈ Kn

Kn
= 1. (104)

This suggests that, in the limit of weak auto-repression, the n.a.r. system is similar

to the simple gene. This case does not pose an interest to us due to the fact that

CHAPTER 6. OPTIMALITY ANALYSIS OF BINARY GENES 159

we are looking for a system able to enhance the properties of the simple gene.

Furthermore, for Kn ≪ yH , the auto-repression becomes strong and the auto-

regulation function is approximated by

g(y) =
Kn + yH
Kn + y

≈ yH
y
. (105)

Note that our definition of strong auto-regulation is slightly different from

Stekel and Jenkins [156] one, which considers strong auto-repression in absolute

values, i.e., smaller than < 10−4 µM . Our definition is rather concerned with the

relative repression strength (Kn) compared with the steady state of the output

species (yH) and aims to determine a parameter space where the auto-regulation

function (100) can be written in a simpler form (105).

First, we analyse the dynamic behaviour of this strongly auto-regulated gene

by determining the switching time. The next step will be to investigate its stochas-

ticity by computing the noise levels.

6.4.1 Switching Time

We start by considering the case of instant input change. The differential equation

of the n.a.r. system becomes

dy(t)

dt
= βf(x)

yH
y(t)
− µy(t). (106)

The solution to this differential equation yields

y(t) =

√

β

µ
f(x)yH +

[

y20 −
β

µ
f(x)yH

]

e−2µt. (107)

where y0 is the initial steady state and x is the new input which leads to the new

steady state y∗. We can extract the time T to reach a fraction θ of the steady

state as

Tn =
1

2µ
ln

β
µ
f(x)yH − µ2y20

β
µ
f(x)yH − µ2y2θ

, (108)

CHAPTER 6. OPTIMALITY ANALYSIS OF BINARY GENES 160

where

yθ = y0 + (y∗ − y0)θ.

We would like to remind that in the case of an instant input change the switching

time of a simple gene is (see section 4.2.2)

T =
1

µ
ln

y∗ − y0
y∗ − yθ

. (109)

To make the comparison easier, we will reduce a parameter, namely the decay

rate, by performing a variable change on the differential equation (106).

Change of Variable

To apply a change of variable, we change the time by scaling it by a constant C1,

t = C1t̃ ⇒ dy

dt
=

dt̃

dt

dy

dt̃
=

1

C1

dy

dt̃
.

The differential equation of the n.a.r. system becomes

dy

dt
=

1

C1

dy

dt̃
= βf(x)

yH
y
− µy,

dy

dt̃
= βf(x)

yH
y
C1 − µC1y.

Assuming that C1 = 1/µ, leads to the new differential equation of the n.a.r.

system:
dy

dt̃
= β̃f(x)

yH
y
− y. (110)

The solution to this differential equation is given by

y(t̃) =

√

β̃f(x)yH +
[

y20 − β̃f(x)yH

]

e−2t̃. (111)

The steady state solution to the differential equation yields

y∗ =

√

β̃f(x)yH ⇒ β̃f(x) = (y∗)2/yH . (112)

CHAPTER 6. OPTIMALITY ANALYSIS OF BINARY GENES 161

We insert this into equation (111) and we obtain

y(t̃) =

√

(y∗)2 + [y20 − (y∗)2] e−2t̃. (113)

The time to reach a fraction θ of the steady state y∗ is computed as

T̃n =
1

2
ln

(y∗)2 − y20
(y∗)2 − (ynθ)

2
. (114)

Analogously, as in the case of the n.a.r. gene, we apply the same change of

variable on the differential equation of the simple gene and obtain

dy

dt̃
= β̃f(x)− y. (115)

The solution to this differential equation yields

y(t̃) = y∗ + e−t̃(y0 − y∗).

The time to reach a fraction θ of the steady state y∗ is then computed as

T̃ = ln
y0 − y∗

yθ − y∗
. (116)

Using these new formulas for the switching time (equations 114 and 116) we

investigate which system turns on and off faster.

Switching On

We begin by analysing the turning on case (y∗ = yH and y0 = yL or y0 = ynL).

Noting that the low steady state of the simple gene is always smaller than the

high steady state, we can denote it by

yL = m · yH , m ∈ [0, 1]. (117)

CHAPTER 6. OPTIMALITY ANALYSIS OF BINARY GENES 162

We call m = yL/yH the relative leak rate. Alike α and yL, m is a measure of gene

leak expression. However, α and yL are absolute measures of leak expression,

while m measures the leak expression relative to the maximum expression.

From equation (112), we compute the low steady state of the n.a.r. gene as

ynL =

√

β̃f(xL)yH =
√
yL · yH = yH

√
m. (118)

The fraction θ of the steady state can be written as:

yθ = yL + (yH − yL)θ = yH [m+ (1−m)θ] ,

ynθ = ynL + (yH − ynL)θ = yH
[√

m+ (1−
√
m)θ

]
. (119)

The switching on time of the simple and the n.a.r. genes can be computed using

equations (116) and (114) as

T̃LH = ln
1

1− θ
,

T̃LH
n =

1

2
ln

1−m

1− [
√
m+ (1−√m)θ]

2 . (120)

We denote the difference in time between T̃LH and T̃LH
n by T̃LH

d ,

T̃LH
d = T̃LH − T̃LH

n

=
1

2
ln

[

1

(1− θ)2
1− [
√
m+ (1−√m)θ]

2

1−m

]

=
1

2
ln

1−m− 2
√
mθ + 2mθ − θ2 + 2

√
mθ2 −mθ2

1−m− 2θ + 2mθ + θ2 −mθ2
.

This time difference is positive (and consequently negative auto-regulation speeds

up the switching on) when the fraction in the logarithm is higher than or equal

to 1,

1−m− 2
√
mθ + 2mθ − θ2 + 2

√
mθ2 −mθ2 ≥ 1−m− 2θ + 2mθ + θ2 −mθ2

⇒ θ(1− θ)(1−
√
m) ≥ 0.

CHAPTER 6. OPTIMALITY ANALYSIS OF BINARY GENES 163

This is true for any θ,m ∈ [0, 1]. Hence, negative auto-regulation always speeds

up the switching on time compared with the simple gene. Figure 40 confirms

this result and shows that higher fractions θ of the steady states display better

increase in speed that lower ones.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0 0.2 0.4 0.6 0.8 1

m

θ=0.9
θ=0.7
θ=0.5
θ=0.3
θ=0.1

T̃
L
H

d

Figure 40: Negative auto-regulation enhances the switching on speed. For any
combination (θ,m) ∈ [0, 1]2 the difference between the switching on time of the
simple gene and of the n.a.r. gene is positive. This means that turning on is
always faster for the n.a.r. gene compared with the simple gene. Note that this
time difference is measured in 1/µ and, thus, the actual time enhancement scales
by 1/µ, i.e., TLH

d = T̃LH
d /µ.

In the special case of no leak rate (the optimum configuration for noise), yL = 0

and consequently ynL = 0, the time gain reduces to

T̃LH
d =

1

2
ln

1 + θ

1− θ
, (121)

which is positive as long as θ > 0.

Switching Off

When the gene is turned off (y0 = yH and y∗ = yL or y∗ = ynL) the steady states

(yL, yH and ynL) remain the same as the ones for switching on, but the fraction θ

CHAPTER 6. OPTIMALITY ANALYSIS OF BINARY GENES 164

of the steady state becomes

yθ = yH + (yL − yH)θ = yH [1− (1−m)θ] ,

ynθ = yH + (ynL − yH)θ = yH
[
1− (1−√m)θ

]
. (122)

From equations (116) and (114) we can compute the switching off time as

T̃HL = ln
1

1− θ
,

T̃HL
n =

1

2
ln

1−m

[1− (1−√m)θ]
2 −m

. (123)

The difference in time between T̃HL and T̃HL
n yields

T̃HL
d = T̃HL − T̃HL

n

=
1

2
ln

[

1

(1− θ)2
[1− (1−√m)θ]

2 −m

1−m

]

=
1

2
ln

1− 2θ + 2
√
mθ + θ2 − 2

√
mθ2 +mθ2 −m

1−m− 2θ + 2mθ + θ2 −mθ2
.

Analogously, as in the case of turning on, we can determine whether the time

difference is positive by verifying if the fraction in the logarithm is higher than or

equal to 1,

1− 2θ + 2
√
mθ + θ2 − 2

√
mθ2 +mθ2 −m ≥ 1−m− 2θ + 2mθ + θ2 −mθ2

⇒ θ
√
m(1− θ)(1−

√
m) ≥ 0.

This means that T̃HL
d is always positive and the time to turn off a n.a.r. gene is at

most equal to the time to turn off a simple gene. Figure 41 confirms these results.

In the case of vanishing leak rates m = yL = ynL = 0, the time difference

between the two systems becomes zero,

T̃HL
d =

1

2
ln

(1− θ)2

(1− θ)2
= 0. (124)

CHAPTER 6. OPTIMALITY ANALYSIS OF BINARY GENES 165

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0 0.2 0.4 0.6 0.8 1

m

θ=0.9
θ=0.7
θ=0.5
θ=0.3
θ=0.1

T̃
H
L

d

Figure 41: Negative auto-regulation enhances the switching off speed. For any
combination (θ,m) ∈ [0, 1]2 the difference between the switching off time for the
simple gene and for the n.a.r. gene is positive. This means that turning off in the
n.a.r. gene cannot be slower compared with the simple gene.

Thus, for vanishing leak rates, the n.a.r. gene turns on faster compared with the

simple gene, but has an equal speed when turning off. Vanishing leak rates are

optimal in terms of noise and require both f(xL) and α to be zero. These two

conditions are usually difficult to achieve. For repressor genes, the gene can be

turn off completely if either the Hill coefficient or xL have high values. This usually

comes at a high metabolic cost, which we want to keep fixed. Even for activator

genes, having a gene completely turned off can be very difficult to achieve, i.e.,

the regulator molecule would need to be totally absent and the affinity of RNAp

for the non activated promoter should be zero. In the case of non-vanishing leak

rates (sub-optimal in terms of noise) it must be pointed out that the negative

auto-regulation speeds the switching in both directions (on and off).

Non-Instantaneous Input Change

In the case of non-instantaneous input change, the solution of the differential equa-

tion (99) can only be computed numerically. For very fast, but non-instantaneous

CHAPTER 6. OPTIMALITY ANALYSIS OF BINARY GENES 166

input change, we expect the behaviour to be similar to the one predicted by the

instantaneous input change. Figure 42 confirms that the difference between the

switching off time of the simple gene and the one of the n.a.r. gene is always

positive.

-0.5

 0

 0.5

 1

 1.5

 2

 1e-05 0.0001 0.001 0.01 0.1

m

Td
LH

Td
HL

Figure 42: Fast non-instantaneous input change and speed. We assumed that the
input changes ten times faster than the output. We used the following set of
parameters: θ = 0.9, α = 0 µMmin−1, l = 2, xH = 0.9 µM , µ = 1 min−1 and
µx = 10 min−1. xL was varied in the interval xL ∈ [0.0, 0.2] and, thus, m varied
accordingly. The regulation threshold is selected so that λ remains fixed to λ = 0.5
and the synthesis rate so that the cost remains fixed to ζy = 1.2 µMmin−1. In
this graph we considered the activation case.

In our models we usually assume that the input and the output are affected

by the same decay rate (dilution) and, thus, they change at a similar speed. The

numerical analysis reveals that for most of the parameter space the relationship

between switching times (the signs of TLH
d and THL

d) is conserved (see Figure

43). However, for no or very small relative leak rate (m ≤ 0.0002 in Figure 43)

the switching off time seems to be increased by negative auto-regulation. This

suggests that negative auto-regulation is beneficial for speed but only for non-

vanishing leak rates of the output gene.

CHAPTER 6. OPTIMALITY ANALYSIS OF BINARY GENES 167

-0.5

 0

 0.5

 1

 1.5

 2

 1e-05 0.0001 0.001 0.01 0.1

m

Td
LH

Td
HL

Figure 43: Slow non-instantaneous input change and speed. We assumed that the
input changes at the same speed as the output. We used the following set of
parameters: θ = 0.9, α = 0 µMmin−1, l = 2, xH = 0.9 µM , µ = 1 min−1 and
µx = 1 min−1. xL was varied in the interval xL ∈ [0.0, 0.2] and m was computed
accordingly. The regulation threshold is selected so that λ remains fixed to λ = 0.5
and the synthesis rate so that the cost remains fixed to ζy = 1.2 µMmin−1. Again,
we considered the activation case.

6.4.2 Noise

Both the simple and the n.a.r. genes are systems consisting of two species (x and

y), in which the first species (x) affects the synthesis rate of the second one (y),

but the second species (y) does not affect the synthesis rate of the first one (x)

[123]. Applying the LNA (or FDT) we can compute the steady state variance of

species y as [123, 151, 171]:

σ2
y = y

−1
A22τ

+

(
A21

A22

)2
1

1 + A11/A22
x
−1

A11τx
. (125)

where Aij are the elements of the Jacobian matrix associated to the reaction

system, τ the decay rate of y and τx the decay rate of y.

The Jacobian matrix of the simple gene system is

A =




−1/τx 0

βf ′(x) −1/τy





CHAPTER 6. OPTIMALITY ANALYSIS OF BINARY GENES 168

where we denoted by τx and τy the average life times of species x and y respectively.

The variance of the simple gene becomes

σ2
y = y + [βf ′(x)τy]

2 1

1 + τy/τx
x. (126)

We measured the noise by computing the variance in the high state, y = yH ,

normalized by the square of the difference between the high and the low state,

(yH − yL)
2 = y2H(1−m)2,

ηy =
1

(1−m)2

[

1

yH
+

(
βf ′(xH)

α + βf(xH)

)2
1

1 + τy/τx
xH

]

. (127)

The first term in the right hand side sum represents the intrinsic component and

the second one the upstream component. For no basal rate α = 0, the noise is

given by

ηy =
1

(1−m)2

[

1

yH
+

(
f ′(xH)

f(xH)

)2
1

1 + τy/τx
xH

]

. (128)

In the case of strong negative auto-regulated genes (Kn ≪ yH), the Jacobian

matrix yields

An =




−1/τx 0

βf ′(x)yH/y −[βf(x)yH/y2 + 1/τy]





From equation (125) we can write the variance of the n.a.r. gene as

σ2
yn =

y

1 + τyβf(x)yH/y2
+

[
τyβf

′(x)yH/y

τyβf(x)yH/y2 + 1

]2
1

1 + τy
τx

1
1+τyβf(x)yH/y2

x.

We consider the variance in the high state (x = xH and y = yH),

σ2
yn =

y

1 + βf(xH)τy/yH
+

[
τyβf

′(xH)

βf(xH)τy/yH + 1

]2
1

1 + τy
τx

1
1+βf(xH)τy/yH

xH .

Furthermore, we assume that the gene has no basal rate (α = 0) and, thus, the

CHAPTER 6. OPTIMALITY ANALYSIS OF BINARY GENES 169

fraction βf(xH)τ/yH becomes 1,

βf(xH)
τy
yH

= βf(xH)
τy

τy(α + βf(xH))
= βf(xH)

1

βf(xH)
= 1.

Replacing this in the variance formula yields

σ2
yn =

y

2
+

[
τyβf

′(xH)

2

]2
1

1 + τy/2τx
xH . (129)

The noise is computed as the variance normalized by the square of the difference

between the high and the low states (yH − ynL)
2 = y2H(1−

√
m)2,

ηyn =
1

2(1−√m)2

[

1

yH
+

(
f ′(xH)

f(xH)

)2
1

2 + τy/τx
xH

]

. (130)

Note that in the case of the negative auto-regulation and no basal rate, the low

state becomes ynL = yH
√
m (see equation 118).

To compare the two components of the noise (the intrinsic and upstream) in

the two systems (n.a.r. and simple genes) we analyse the ratio between the noise

in the n.a.r. gene and the one in the simple gene,

ηinc =
ηinyn
ηiny

=
(1 +

√
m)2

2
and ηupc =

ηupyn
ηupy

=
(1 +

√
m)2

2

1 + τy/τx
2 + τy/τx

. (131)

The intrinsic component of the noise in not amplified by negative auto-regulation

only for low relative leak rates, m ≤ 0.17,

ηinc =
(1 +

√
m)2

2
≤ 1 ⇒ m ≤ (

√
2− 1)2 ≈ 0.17.

The fraction (1 + τy/τx)/(2 + τy/τx) can never be higher than one. Thus, we can

write

ηupc ≤
(1 +

√
m)2

2
≈ 0.17.

Overall, if the relative leak rate is less than a fifth of the high state, then both

the intrinsic and the upstream components of the noise are enhanced.

CHAPTER 6. OPTIMALITY ANALYSIS OF BINARY GENES 170

Optimality and Negative Auto-Regulation

We showed above that for any but very low relative leak rates the negative auto-

regulation can enhance the switching speed of a binary gene (see Figure 43). This

in conjunction with the fact that negative auto-regulation reduces the noise for

low relative leak rates (m ≤ 0.17) suggests that there are some non-zero relative

leak rate values for which the system is enhanced at least in one property (speed

or accuracy). Figure 44 confirms the existence of relative leak rate values able

to enhance the system in both speed and accuracy. Note that in Figure 44 we

considered the case when the gene is activated by a regulatory input x. We did

this due to the fact that for the repressing case to achieve low relative leak rates we

need high Hill coefficient or very high regulatory input and both of these require

high metabolic cost.

 2.4

 2.6

 2.8

 3

 3.2

 3.4

 3.6

 3.8

 4

 4.2

 0 0.02 0.04 0.06 0.08 0.1 0.12

T
im

e
[m

in
]

m

n.a.r. gene
simple gene

(a) time enhancement

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0 0.1 0.2 0.3 0.4 0.5

η

m

n.a.r. gene
simple gene

(b) noise

Figure 44: Leak rate influences the performance of negative auto-regulation. In-
creasing the relative leak rate increases the speed but reduces the accuracy. We
used the following set of parameters: θ = 0.9, α = 0.0 µMmin−1 µ = 1min−1,
µx = 1min−1, xH = 0.9 µM , Kn = 0.01 µM and V = 8 · 10−16 l. β was selected
so that the cost remains fixed to ζy = 1.2µMmin−1 and K so that the relative
threshold position remains fixed, λ = 0.75. The gene is activated by a regulatory
input x.

On the optimality trade-off curves from Figure 35 we vary the threshold and,

consequently, this leads to different values of the relative leak rate. To prove that

negative auto-regulation enhances both the speed and noise we draw the trade-off

CHAPTER 6. OPTIMALITY ANALYSIS OF BINARY GENES 171

curves for very low but non-zero values of the regulatory input. Note that we

considered again the case when the regulatory input x activates the synthesis of

y. Figures 45(a) and 45(b) show that the trade-off curves in the case of negative

auto-regulation are better than in the case of a simple gene, i.e., the trade-off

curve of the n.a.r. gene is shifted to the bottom left side of the one of the simple

system. Hence, for certain low but non-vanishing relative leak rates, negative

auto-regulation can enhance the trade-off curves compared with simple genes,

leading to higher speeds and better accuracies.

 0.001

 0.0012

 0.0014

 0.0016

 0.0018

 0.002

 0.0022

 0.0024

 3 3.2 3.4 3.6 3.8 4 4.2 4.4

η

Time [min]

n.a.r. gene
simple gene

(a) xL = 0.02 µM

 0.0014

 0.0015

 0.0016

 0.0017

 0.0018

 0.0019

 0.002

 0.0021

 0.0022

 0.0023

 0.0024

 2.6 2.8 3 3.2 3.4 3.6 3.8 4 4.2 4.4

η

Time [min]

n.a.r. gene
simple gene

(b) xL = 0.05 µM

Figure 45: Non vanishing low relative leak rates enhance the optimal trade-off
curve. We used the following set of parameters: θ = 0.9, α = 0.0 µMmin−1

µ = 1min−1, µx = 1min−1, xH = 0.9 µM , Kn = 0.01 µM and V = 8 · 10−16 l.
We selected β so that the cost remains fixed to ζy = 1.2µMmin−1 and K so that
the relative threshold position remains fixed λ = 0.75. In (a) and (b) we also
performed a set of 20 stochastic simulations using the Gibson-Bruck algorithm
[60] (the error bars on the n.a.r. curves), which confirmed that the analytical
method (LNA) predicts the noise in the case of negative auto-regulation with
high accuracy [76].

Note that we performed a series of stochastic simulations to verify the reliabil-

ity of the analytical method and the results confirmed that LNA performs well even

for strong auto-regulation [167, 76, 156]; see Figures 45(a) and 45(b). Stekel and

Jenkins showed that for extremely strong auto-repression values (Kn < 10−4 µM)

the analytical method underestimates the simulation results. However, Zhang et

al. [187] showed that although the LNA underestimates the value, it still captures

CHAPTER 6. OPTIMALITY ANALYSIS OF BINARY GENES 172

with high accuracy the dependence of noise on the parameters of the system.

6.5 Biological Significance

The optimality analysis can be used to investigate whether synthetically built

genetic networks are optimal or not. As a case study we consider the PR pro-

moter in λ-page and a synthetic mutant of this promoter, POR∗

2
[138]. Using the

set of parameters published by Rosenfeld et al. [138] we applied the optimality

analysis on the two systems. Figure 46(a) shows that the wild type PR promoter

resides near the optimal point in terms of noise and, thus, we can approximate the

configuration of the PR promoter by the optimal configuration in terms of noise.

 1.00e-04

 1.05e-04

 1.10e-04

 1.15e-04

 1.20e-04

 225 230 235 240 245 250 255 260 265 270

η

Time [min]

optimal trade-off

(a) cI and PR WT promoter

 1.80e-04

 2.00e-04

 2.20e-04

 2.40e-04

 2.60e-04

 238 240 242 244 246 248 250 252 254

η

Time [min]

optimal trade-off

(b) cI and POR∗

2
mutant

Figure 46: Optimality analysis and biological experiments (1). We used the fol-
lowing set of parameters: V = 1.5× 10−15 l, µx = µ = µdilution = ln(2)/45 min−1,
θ = 0.9, α = 0 µMmin−1, xH = 0.006 µM and xL = 0.140 µM [138]. In the case
of the wild type PR promoter (a) we used: ζy = 0.24 µMmin−1, K = 0.055 µM
and l = 2.4 [138]. The measurements have significant errors: K ± 20%, ζy ± 7%,
V ±33% and l±12%. The error bars represent the error in the threshold. For the
POR∗

2
mutant (b) we used: ζy = 0.28 µMmin−1, K = 0.120 µM and l = 1.7 [138].

Again, the measurements have significant errors: K ± 20%, ζy ± 15%, V ± 33%
and l ± 17%.

POR∗

2
is a mutant of the PR promoter, which was obtained by a point mutation

to the OR∗
2 operator [138]. The optimality analysis revealed that the system dis-

plays a configuration close to the fastest configuration (see Figure 46(b)). Overall,

CHAPTER 6. OPTIMALITY ANALYSIS OF BINARY GENES 173

the OR∗
2 mutant is faster but less accurate compared with the PR system. The

fact that it is faster although both systems are exposed to the same decay rate is a

result of the threshold position. The higher noise in the OR∗
2 mutant is caused by

both higher extrinsic noise (due to lower Hill coefficient) and lower normalization

(due to lower distance between the high and the low steady states of the output).

Note that the time necessary for the state of the system to switch is longer than

the cell’s lifetime. This happens because, when the environment changes, the

system first moves to an intermediary steady state (in between the high and low

steady states), from where it is easier to either move to the new state or return to

the previous one. The system will perform a complete switch (moving from low to

high or from high to low states) only in the case of a long time presence/absence

of an input, which protects the system from responding to short (noisy) bursts.

The error bars in Figure 46 suggest that current measurements do not pro-

vide the analysis with reliable parameters in the sense that the errors from just

one parameter (the threshold) make it difficult to state whether the system is on

the optimal trade-off curve or not. In addition to the aforementioned measure-

ment errors, the highest abundance of the input was measured to approximately

.140 µM , but previous measures indicated values ranging between 0.100 µM and

0.220 µM [138]. This error between independent measurements can be explained

by different experimental conditions.

One way to reduce the inaccuracy in parameter measurements is to assume

that the input in the system is the substance that is added externally and then fit

the output of the system to a Hill function. In the lac system, lactose inactivates

the lac repressor, lacI, which in turn represses the lac operon Plac (lactose ⊣
lacI ⊣ lacZ). This relation is called derepression and it is approximated by a Hill

activation function [88]; lactose → lacZ. Hence, we will assume that the input

protein is x = lactose and the output protein is y = lacZ. In this analysis, the

accuracy of the measurements is increased by knowing the exact input abundance

in the system (lactose). Using the set of parameters published by Alon and co-

workers [42, 88] we performed our optimality analysis on the lac system and found

CHAPTER 6. OPTIMALITY ANALYSIS OF BINARY GENES 174

that the system has a configuration which resides on the optimal trade-off curve

near the optimal configuration in speed; see Figure 47(a). This can be explained

by the fact that the noise varies only slightly on the optimal trade-off curve, while

the change in speed is significant. Thus, the system chose to achieve an important

enhancement in speed at the cost of an insignificant loss in accuracy.

 2.3918e-04

 2.3920e-04

 2.3922e-04

 2.3924e-04

 2.3926e-04

 2.3928e-04

 2.3930e-04

 2.3932e-04

 2.3934e-04

 140 160 180 200 220

η

Time [min]

λPlac

optimal trade-off

(a) lactose and Plac promoter

 0.0e+00

 5.0e-05

 1.0e-04

 1.5e-04

 2.0e-04

 220 230 240 250 260 270 280

η

Time [min]

λPLtet-01

optimal trade-off

(b) aT c and PLtet−01 promoter

Figure 47: Optimality analysis and biological experiments (2). In both cases,
the derepression is approximated by a Hill activation function. (a) We used the
following set of parameters: V = 8×10−16 l, µx = µ = µdilution = ln(2)/30 min−1,
θ = 0.9, α = 0 µMmin−1, xL = 0 µM and xH = 300 µM K = 130 µM and
l = 4 [42, 88]. (b) We used the following set of parameters: V = 1.5 × 10−15 l,
µx = µ = µdilution = ln(2)/45 min−1, θ = 0.9, α = 3.6 µMmin−1, xL = 0 µM and
xH = 2.16 µM K = 0.5 µM and l = 2.3 [82, 83].

A similar experiment consists of the derepression of PLtet−01 by aTC, i.e., aTc

inactivates tetR, which in active form represses the PLtet−01 promoter (aTc ⊣
tetR ⊣ PLtet−01 ⇒ aTc → PLtet−01) [82, 83]. Using the optimality analysis, we

showed that the aTc − PLtet−01 system has a sub-optimal configuration in terms

of both accuracy and speed.

The optimality analysis can be an useful tool in finding better designs for

current experimental synthetic systems. For instance, changing the threshold

of the aTc − PLtet−01 system from 1.75 µM to 1.1 µM can ensure an optimal

system in terms of speed, which will also display lower noise compared with the

configuration used in the experiments. This threshold shift can be achieved by

CHAPTER 6. OPTIMALITY ANALYSIS OF BINARY GENES 175

rational (or evolutionary) point mutations in the promoter or regulator region

[174, 182]. Nevertheless, the limitations of the measurements and control of the

parameters (such as the regulation threshold) pose real problems in the usefulness

of this method at least at the current stage of research. Future technological

improvements in the measurements and in the modification of binding affinities

will make this technique a useful tool for synthetic biologists.

6.6 Summary

In this chapter, we extended our investigation on the binary genes by assuming

non-instantaneous change in the regulatory input and fixed metabolic cost. The

analysis showed that, under this assumption, the regulatory threshold controls

how fast a gene is switched and how accurate the output of the gene is. We found

that binary genes are characterised by two threshold positions, one which is the

optimum in terms of speed and another which is the optimum in terms of accuracy.

All the threshold values between these two optimal configurations define systems

which reside on an optimal trade-off curve (see Figure 36). The points on the

optimal trade-off curve determine systems which enhance one of the properties

(speed or accuracy). Threshold values outside this interval are sub-optimal in

both speed and accuracy, in the sense that they worsen both speed and accuracy.

The optimal trade-off curve can be enhanced by reducing the leak rate (see

Figure 37) or by increasing the Hill coefficient (see Figure 38). Vanishing leak

rates can be ensured only for the activator gene in the total absence of regulatory

input. The second solution to enhance the trade-off curve (increasing the Hill

coefficient) comes at an increase in the metabolic cost, which is not desirable.

Furthermore, we extended our analysis and considered the case of negatively

auto-regulated binary genes. Our results indicated that increasing the relative

leak rate leads to the n.a.r. system being faster in both turning on and turning off

compared with the simple gene; see Figure 44(a). Reducing the relative leak rate,

on the other hand, leads to less noise; see Figure 44(b). This suggests that there is

CHAPTER 6. OPTIMALITY ANALYSIS OF BINARY GENES 176

an interval of small but non-vanishing relative leak rates for which negative auto-

regulation enhances both speed and accuracy (see Figures 44 and 45). In addition,

we observed a trade-off between speed and accuracy controlled by the leak rate,

in the sense that lower leak rates lead to more accurate but slower systems, while

higher leak rates lead to noisier but faster systems. We should mention that there

is a clear distinction between the activation and the repression case, meaning that

it is easier to achieve low leak rates in the activator case, while in the repressor

case this comes at a high cost (the Hill coefficient or the abundance of the input

needs to be high). Thus, it is easier to enhance an activator gene by negative

auto-regulation compared with a repressor gene.

Finally, using parameters provided in the literature we were able to draw trade-

off curves for some synthetic experimental systems and to pinpoint where these

systems are on the trade-off curves (see Figure 46). However, the usefulness of

this approach is limited by the accuracy of the measurements. Current measure-

ment techniques produce results highly dependent on the experimental setting

and with significant errors; for example three independent measurements of the

total concentration of cI in a cell generated three significantly different values

0.10 µM , 0.14 µM and 0.22 µM . One solution to this problem is to assume that

the input in the system is the externally added protein and fit the functional rela-

tionship between this input and the first affected gene to a sigmoid function (Hill

function) (see Figure 47). This will eliminate the error measurements in the input

concentration due to the fact that exact measurements of the input concentrations

are usually available. However, error measurements in other parameters (such as

threshold or Hill coefficient) make this approach impractical. For example an error

in the measured value of the threshold of approximately 20% makes it impossible

to say whether the gene is on the optimal trade-off curve or not (see Figure 46).

We expect that future improvements of measurement techniques will lead to our

optimality analysis being a useful tool in engineering synthetic genetic systems.

Chapter 7

Design of a Genetic Full-Adder

In this chapter, we modelled a binary full-adder using binary genes as logic gates

and then we determined the set of parameters which ensure modularity and scal-

ability of the design. In addition, using the optimality analysis presented in the

previous chapter, we identified the subset of parameters that ensure optimal be-

haviour.

7.1 Introduction

Researchers have modelled and engineered genes in bacterial cells which perform

basic computational tasks. These tasks mainly mimic the behaviour of simple elec-

tronic components, such as logic gates, oscillators, toggle switches and counters

[57, 47, 71]. However, when attempting to increase the complexity of these engi-

neered genetic systems, certain limitations of the components are likely to hamper

their construction. Thus, there is an urgent need for an extensive analysis of the

biophysical limits of the elementary components.

Synthetic biologists showed that binary logic gates can be engineered in living

cells using transcriptional logic [71, 93, 182, 39, 8, 145]. Boolean logic can be

implemented using transcriptional logic, that is genes which can integrate multiple

signals at the level of cis-regulatory transcription control using various binary logic

functions (AND, OR, NAND, NOR, XOR, etc.). In this design, the transcription

177

CHAPTER 7. DESIGN OF A GENETIC FULL-ADDER 178

factors represent the inputs of the gate and the protein which is expressed, the

output. The signals (inputs and output) are quantified by the concentrations of

the corresponding proteins.

Biological modellers have successfully identified and described various designs

of these transcriptional logic gates [175, 32, 78, 119, 146, 153, 188, 58]. However,

what is still missing is a complete analysis of how these logic gates can be used

as building blocks for more complex logical systems and what parameters ensure

an optimal design in terms of speed and accuracy under limited (fixed) energy

resources. We will address these questions in the context of a genetic full-adder,

which is an essential logical component that represents a classic challenge for new

computational paradigms [96]. The full-adder is a system able to perform binary

addition (to produce both the sum and the carry) on three binary inputs and

it can be cascaded to perform serial addition for long binary numbers, i.e., two

of the inputs represent the two operands while the third one is connected to the

carry from an upstream full-adder [186].

Our approach to design logic systems consists of three steps: (i) construct all

the required logic gates, (ii) find the set of parameters which allow modularity and

scalability of the system and (iii) find the subset of parameters which optimise

the system. First, we constructed the required logic gates by considering genes

that can be regulated by two proteins in an independent fashion, i.e., binding of

any of the inputs does not alter the binding of the other input (see section 7.2).

Furthermore, we want to have a modular and scalable design, in the sense that

the parameters of any two gates should match and that the system could contain

an arbitrary number of gates and ensure a distinguishable binary output of the

system. In the case when the threshold of any downstream gate is not bounded

by the low and high steady state of the output of the upstream gate, then changes

in the upstream gate are not reflected in the output of the downstream gate

and the gates experience a parameter mismatch [10]. This lack of modularity

in parameters is undesirable, because it removes the Boolean behaviour of the

gates. Consequently, we require our upstream logic gates to display two output

CHAPTER 7. DESIGN OF A GENETIC FULL-ADDER 179

steady states, one that is lower and another one that is higher compared with the

threshold of the downstream gate.

In addition, adding more gates in the system can lead to a reduction in the

signal strength (the difference between the high and the low abundances of the

output) of the downstream gates [103, 147, 189]. This reduction of signal strength

makes it difficult to distinguish between the two binary values of the output and,

thus, it is unwanted. We aim to model a system which is scalable, in the sense

that it is able to connect an arbitrary number of gates without affecting the signal

strength of the output. In this contribution, we ensure scalability by assuming

that the signal strength of the input (the difference between the high and the low

concentrations) does not decrease at the output of the gate (see section 7.3.1).

Finally, we consider that it is essential to select an optimal subset of param-

eters. Thus, we performed our optimality analysis and identified the optimal

trade-off curve between speed and accuracy for a fixed metabolic cost (see section

7.3.2).

Our results show that, in the ideal case of step regulation function (l → ∞),

the system displays an optimal position of the threshold in terms of speed and

accuracy (see subsection 7.3.2) while, in the biologically plausible case of sigmoid

regulation function (finite and low Hill coefficients), there is a trade-off between

these two properties controlled by the position of the threshold (see subsection

7.3.2). In the latter case, our analysis showed that the system displays different

optimal configurations for speed and accuracy under fixed metabolic cost. Fur-

thermore, we determined that there is an optimal trade-off curve bounded by these

two optimal configurations. Any configuration outside this optimal trade-off curve

is sub-optimal in both speed and accuracy.

This chapter is structured as follows. In section 7.2 we present and model

the full-adder. In section 7.3 we determine the parameters which ensure intercon-

nectivity and we also perform the optimality analysis on two types of systems:

genes with step-like regulation function and genes with sigmoid regulation func-

tion. Then, in sections 7.4 and 7.5 we discuss both the validity of our approach

CHAPTER 7. DESIGN OF A GENETIC FULL-ADDER 180

and the biological significance of the results. Finally, in section 7.6 we draw the

conclusions of this chapter.

7.2 Building a Genetic Full-Adder

The signals of our transcriptional logic gates are encoded into proteins and they

flow together into a common compartment, the cell. In the case of a high number

of signals, the system can be affected by crosstalk, in the sense that proteins which

encode different signals can react (which is undesirable). This suggests that it is

better for molecular logic systems built within a common compartment to have

as few genes as possible. In addition, this also indicates that it would be more

feasible for our logic gates to be constructed from single genes so that we have

fewer proteins in the cell.

Furthermore, Cox III et al. [39] observed that transcriptional logic gates which

integrate more inputs display a worse binary behaviour compared with the ones

which integrate fewer input signals. This in conjunction with the fact that, in

order to construct complex systems, we want gates to integrate more than one

input indicates that it is better for our logic gates to have only two inputs.

Several designs which implement a binary full-adder were proposed in the

literature [81, 121, 96]. Based on the two requirements presented above (small

number of genes and each gene should have small number of inputs) we considered

a design which consists of 5 logic gates, where the gates have only two inputs; see

Figure 48. The five logic gates required by the design we selected are the following:

two XOR gates, two AND gates, and one OR gate.

To construct this full-adder from genes, we first build the three logic gates

(AND, OR and XOR) using transcriptional logic. We model transcriptional logic

gates using a single binary gene Gz, which synthesises protein z, where the abun-

dance level of z is assumed to be the output of the gate. This gene is regulated

by two proteins x and y, which are considered to be the inputs of gate. Species z

CHAPTER 7. DESIGN OF A GENETIC FULL-ADDER 181

Figure 48: The logic diagram of a full-adder.

is described by the following deterministic differential equation

dz

dt
= α + βf(x, y)− µz, (132)

where α is the basal synthesis rate, α+ β the maximum synthesis rate, f(x, y) is

the regulation function and µ is the decay rate.

In this contribution we do not consider protein-protein interactions. Thus, we

assume that the two inputs in the gate do not interact; this is usually called the

independent binding model [146]. The gene which implements the logic function

has two operator sites Ox and Oy, each of them having l binding sites. On each

operator site only molecules of a specific transcription factor can bind, and they

do this in a homo-cooperative manner. The probabilities that an operator site is

full are described by a Hill function [2, 27, 36]

px(x) =
xl

xl +K l
, py(y) =

yl

yl +K l
, (133)

where K is the regulation threshold (the required input value for half activation of

the gene) and l is the Hill coefficient (indicates the steepness of the function). To

keep the mathematics tractable and without losing generality, we assumed that

the two operator sites (Ox and Oy) have identical parameters (K and l).

For each logic gate we considered a different cis-regulatory scenario [32, 78,

146]. First, we assumed that the gene is turned on when any of the two TFs

CHAPTER 7. DESIGN OF A GENETIC FULL-ADDER 182

are present. This type of behaviour mimics an OR gate. Analogously, in the

case when a gene is turned on only when both transcription factors are present,

then the regulation function will mimic the behaviour of an AND gate. Despite

all the advantages that our design has compared with others, it mainly suffers

from the fact that it relies on a complex logic gate, the XOR gate. Here we

consider the case when the gene is turned on when any of the TFs is present, but

when both of them are present their effects cancel out and the gene is turned off.

Note that there are cases of AND and OR gates implemented from single genes

which are encountered in both living organisms [148] or engineered synthetically

[182, 105, 8, 39, 136, 145]. To our knowledge, there are no examples of genes

which display XOR behaviour. Nevertheless, for our analysis, it is important only

the shape of the regulation function and not the underlying biological mechanism

which achieves the corresponding logical function.

The three scenarios presented above can be written mathematically as:

fAND(x, y) = px(x)× py(y),

fOR(x, y) = px(x) + py(y), (134)

fXOR(x, y) = px(x) + py(y)− px(x)× py(y).

Expanding the individual binding probabilities using equations (133) yields

fAND =
(xy)l

(xy)l + (Kx)l + (Ky)l +K2l
,

fOR =
(xy)l + (xK)l + (yK)l

(xy)l + (Kx)l + (Ky)l +K2l
, (135)

fXOR =
(Kx)l + (Ky)l

(xy)l + (Kx)l + (Ky)l +K2l
.

Figure 49 confirms that these regulation functions display the desired behaviour.

Using these three logic gates, the full-adder can be constructed as a set of

chemical reactions. Since the full-adder contains five logic gates, then we need

five proteins (signals) to implement this system (e, f , g, sum and carry). Using

CHAPTER 7. DESIGN OF A GENETIC FULL-ADDER 183

fAND

x
y

fAND fOR

x
y

fOR fXOR

x
y

fXOR

Figure 49: Regulation functions which mimic logic behaviour. The threshold was
set to K = 0.5 [µM] and we considered a Hill coefficient of l = 6.

the model of a gene given in equation (132), we construct the chemical reactions

which describe the full-adder as

∅
αe+βefXOR(a,b)−−−−−−−−−⇀↽−−−−−−−−−

µe

e, ∅
αf+βffAND(c,e)−−−−−−−−−−⇀↽−−−−−−−−−−

µf

f, ∅
αg+βgfAND(a,b)−−−−−−−−−−⇀↽−−−−−−−−−−

µg

g,

∅
αs+βsfXOR(e,c)−−−−−−−−−⇀↽−−−−−−−−−

µs

sum, ∅
αco+βcofOR(f,g)−−−−−−−−−−⇀↽−−−−−−−−−−

µco

carry, (136)

where a, b and c are three input species, fAND, fOR and fXOR are the regulation

functions of the genes as described by equations (135), µ(·) the decay rates, α(·)

the basal synthesis rates and α(·) + β(·) the maximum synthesis rates.

7.3 Analysis of the Genetic Full-Adder

In the previous section, we presented the logical design of a full-adder and con-

structed all the required logic gates. Next, for the model of the full-adder, we will

identify the required constraints on the sets of parameters to allow the intercon-

nection of the gates and then we will determine the subset of parameters which

allows the optimal functioning of the full-adder in terms of speed and accuracy

under fixed metabolic cost. We will apply these two analyses for two cases: (i)

step gates, where the genes have step-like regulation functions (l →∞), and (ii)

sigmoid gates, where the genes have regulation functions with finite Hill coeffi-

cients.

CHAPTER 7. DESIGN OF A GENETIC FULL-ADDER 184

To keep the mathematics tractable, and without losing generality, we will con-

sider only the case of identical gates, i.e., all genes are affected by the same decay

rate (µ), have the same synthesis rates (α and β) and the same Hill parameters

(l and K). The logic gates differ from each other in respect with the inputs that

regulate the genes, the expressed proteins and the cis-regulatory function (fAND,

fOR or fXOR).

7.3.1 Interconnecting Logic Gates

It was previously observed that adding more molecular logic gates into the system

resulted in worse binary behaviour of the downstream gates [103, 147, 189]. In this

contribution, we want our logic system to be able to contain an arbitrary number

of logic gates while the output of the system remains binary (it has a low and a

high state). Furthermore, considering that all genes have the same parameters,

adding or removing genes should not require a change in parameters so that the

output stays binary. In the case of enzymatic or DNA logic gates, researchers had

to design an additional amplification gate to solve this problem [147, 189]. In the

case of transcriptional logic gates, we propose that there is a set of values of the

synthesis rates (α and β) which ensure a scalable design.

We assume that the genes in our system have sigmoid regulation functions and

respond to a binary input (low and high abundances at input) with a binary output

(low and high abundances at output). We denote by signal strength the difference

between the high and the low abundance of the output/input of a gene. In the

deterministic case, the signals strengths can be as low as possible as long as they

are not zero, without affecting the computational usefulness of the gene. However,

in the stochastic case, the quantifiable nature of molecules imposes a lower limit

on the signal strength of 1 molecule. Moreover, for low signal strengths, even

higher than 1, noise can make it difficult to distinguish between the two output

states (low and high). To address this, we impose that an arbitrary selected value

of the signal strength is conserved both at the output and input of all the genes

in the system, i.e., the signal strength of the inputs and outputs of all the genes

CHAPTER 7. DESIGN OF A GENETIC FULL-ADDER 185

cannot be lower that an arbitrary selected value.

We start this analysis by considering the ideal case, the gates have an all or

nothing type of response, i.e., the regulation functions of the genes have very high

or infinite Hill coefficient (l →∞). The interconnectivity property can be met by

considering that the output steady states have the same values as the input ones,

Hout = Hin = H and Lout = Lin = L. For example, in the case of the OR gate, if

we take into account the logic function performed by the gene then we have the

following steady state equations:

L =
1

µ
[α + βfOR(L, L)] ,

H =
1

µ
[α + βfOR(L,H)] , (137)

H =
1

µ
[α + βfOR(H,H)] .

For infinite Hill coefficients the solution this system is given by α = L and β =

(H −L). Analogously, it can be shown that the solution is the same for all gates.

These values for the synthesis rates ensure correct steady-state behaviour of the

full-adder; see Figure 50(a).

Real genes are unlikely to display step-like behaviour. This happens because

Hill coefficients are bounded from above by the number of regulatory binding

sites [36], and genes have a small number of binding sites [78]. Thus, next, we will

consider the case of sigmoid regulation functions with finite low Hill coefficients.

For low Hill coefficients, the system of equations (137) has only one solution,

H = L. This is not a useful solution because it removes the binary logic. There-

fore, we will relax the condition that the signal strength is preserved and search

for parameters which ensure that the signal strength of the output is not lower

than the signal strength of the input, (Hout − Lout) ≥ (Hin − Lin). This can be

achieved by solving only the first two equations from system (137) and results in

CHAPTER 7. DESIGN OF A GENETIC FULL-ADDER 186

(L,L,L) (L,L,H) (L,H,L) (L,H,H) (H,L,L) (H,L,H) (H,H,L) (H,H,H)

ab
un

da
nc

e

L

H
SUM

CARRY

(a) step regulation function

(L,L,L) (L,L,H) (L,H,L) (L,H,H) (H,L,L) (H,L,H) (H,H,L) (H,H,H)

ab
un

da
nc

e

L

H
SUM

CARRY

(b) sigmoid regulation function

Figure 50: The steady state output of the full-adder for any combination of the
input. (a) The output abundance based on the input abundance for step-like
regulation functions, l = 50. (b) The output steady state of the full-adder in the
case of finite low Hill coefficients, l = 6. The following set of parameters was used:
µ = 1 min−1, L = 0.2 µM , H = 1.2 µM and K = 0.7 µM .

the following synthesis rates

αOR = µ
LfOR(L,H)−HfOR(L, L)

[fOR(L,H)− fOR(L, L)]
,

βOR = µ
H − L

[fOR(L,H)− fOR(L, L)]
. (138)

Note that the synthesis rates will not have positive values for all sets of parameters

(l, K, µ,H, L). Interestingly, increasing the Hill coefficient increases the space of

allowed parameters and, in the limit case of a step function (l →∞), any values

of the other parameters will generate positive synthesis rates. For Hill coefficient

less than or equal to 1 there is no positive solution for this system. Hence, logic

system constructed from genes with Hill coefficients lower than or equal to 1 cannot

display scalability. Analogously, we used the same mechanism to determine the

CHAPTER 7. DESIGN OF A GENETIC FULL-ADDER 187

synthesis rates for the two other gates, AND and XOR,

αAND = µ
LfAND(H,H)−HfAND(L,H)

[fAND(H,H)− fAND(L,H)]
,

βAND = µ
H − L

[fAND(H,H)− fAND(L,H)]
, (139)

αXOR = µ
LfXOR(L,H)−HfXOR(H,H)

[fXOR(L,H)− fXOR(H,H)]
,

βXOR = µ
H − L

[fXOR(L,H)− fXOR(H,H)]
.

Figure 50(b) confirms that the signal is not decreased and shows that in two

cases the actual output low state (Lout) is lower than the desired one (L).

7.3.2 Optimality Analysis

So far, we have shown that, for our genetic logic gates to display interconnectivity,

the synthesis rates and the high and low states of genes need to be set to certain

values. In this section, we will extend the analysis of the full-adder and determine

the optimal configuration of the system in terms of speed, accuracy and metabolic

cost (see chapter 6). The metabolic cost of a gene Z is defined here as the

maximum synthesis rate of that gene:

ζ = α + β. (140)

Note that compared with our previous notion of metabolic cost, in this chapter, we

disregarded the contribution of the regulation function to this cost, i.e., previously

we had ζ = α + βfH
z . This change is justified by the fact that the two synthesis

rates (α and β) need to be kept fixed to values that ensure a scalable design.

By keeping the synthesis rate fixed (to ensure interconnectivity) the metabolic

cost is maintained constant. Note that this measure of metabolic cost is just an

approximation to the actual value, and that the metabolic cost of the maintenance

of the entire machinery was not included in it (see chapter 4).

CHAPTER 7. DESIGN OF A GENETIC FULL-ADDER 188

Under this setting, the optimality analysis investigates the speed and the ac-

curacy of the full-adder for fixed metabolic cost. As we did in previous section,

we consider two cases: (i) step-like regulation functions (l → ∞) and sigmoid

regulation functions (finite low Hill coefficients).

Step Gates

First, we consider the case when genes display step-like regulation functions (l →
∞). Here, we will define and compute the time to reach steady state after an

instantaneous change of input, as a measure of speed, and the noise level at the

output of the full-adder, as a measure of accuracy.

The switching time, Tgene, of a gene is the time required to reach the steady

state within a fraction θ of H − L. Assuming instantaneous change of input,

the differential equation (132) can be solved analytically and the time to reach a

fraction θ of the steady state, L+(H−L)θ or H− (L−H)θ, can be computed as

Ti = τ · ln
(

1

1− θ

)

, (141)

where τ = 1/µ represents the average life time of the species.

The propagation time through a single gate can only be reduced by decreasing

the average life time of the protein (τ). In the case when the two logical steady

states and the synthesis rates are kept constant (so that the signal strength is

not reduced and the metabolic cost not increased), then the decay rate remains

constant. Thus, there is no optimization that one could attempt to perform

on individual gates under fixed metabolic cost without reducing signal strength.

However in the case of systems of logic gates, like the case of the full-adder, the

input is not changed instantaneously in all gates and the position of the threshold

influences the propagation time.

We assume that the threshold is located between the low and the high state,

K = L + (H − L)λ, (λ ∈ [0, 1]). λ indicates the position of the threshold; for

λ < 0.5, K is closer to L and, for λ > 0.5, K is closer to H . Note that, by

CHAPTER 7. DESIGN OF A GENETIC FULL-ADDER 189

considering K to be outside the interval [L,H], the regulation is removed, i.e., the

gene is always in the same state no matter whether the input is L or H . In order

for a gene to change state and start/stop expressing a protein, one of the inputs,

has to cross over or under K. Using equation (141), we computed the time it

takes one species to move from low state to the threshold (L→ K) and from the

high state to the threshold (H → K) as

tLK = τ · ln
(

1

1− λ

)

, tHK = τ · ln
(
1

λ

)

. (142)

Assuming that the longest cascade in the system has n gates, then a general

formula for the propagation time is given by

T =

n−1∑

i=1

tiK + Tn, (143)

where tiK = tLK if gate ith is turned on and tiK = tHK if it is turned off. Hence,

the propagation time in a cascade equals a sum of tLK and tHK terms and a fixed

time representing the last gene in the cascade Tn.

Figure 51 confirms that, based on the threshold position, a gene can be faster

when switching in one direction and slower in the opposite direction. When the

switching direction is not important, the problem of optimising propagation time

becomes a minimax problem, i.e., minimise the maximum of the time to switch

in one direction and the time to switch in the other direction. In the context

of step-like regulation functions, the optimum threshold resides at the midpoint

between high and low states, λT = 0.5 (see Figure 51 and equation 142).

Analysing the circuit diagram of the full-adder (see Figure 48) one can notice

that the longest path through the circuit consists of three gates, and this is used

when computing the carry. Figure 52 confirms that the propagation time is longest

when computing the carry and the longest path is followed, for example, when

switching between (L, L,H) and (H,L,H).

From equation (143), we know that the propagation time is a sum of tLK and

CHAPTER 7. DESIGN OF A GENETIC FULL-ADDER 190

 0

 1

 2

 3

 4

 5

 0 0.2 0.4 0.6 0.8 1

T
 [m

in
]

λ

tHK
tLK

Figure 51: The time to reach the threshold for the full-adder. The protein average
life time was set to τ = 1 min. The two steady states are L = 0.2 µM and
H = 1.2 µM .

 0

 1

 2

 3

 4

 5

(L,L,L)

(L,L,H)

(L,H,L)

(L,H,H)

(H,L,L)

(H,L,H)

(H,H,L)

(H,H,H)

(L,L,L) (L,L,H) (L,H,L) (L,H,H) (H,L,L) (H,L,H) (H,H,L) (H,H,H)

to

from

(a) sum

 0

 1

 2

 3

 4

 5

(L,L,L)

(L,L,H)

(L,H,L)

(L,H,H)

(H,L,L)

(H,L,H)

(H,H,L)

(H,H,H)

(L,L,L) (L,L,H) (L,H,L) (L,H,H) (H,L,L) (H,L,H) (H,H,L) (H,H,H)

to

from

(b) carry

Figure 52: Detailed map of the propagation time of the full-adder. The propagation
time to reach a fraction θ = 0.9 of the steady state of the (a) sum and (b)
carry. The x-axis represents the initial input steady state and the y-axis the new
state which is instantaneously changed. The shades of grey represent the time to
reach a fraction θ of the steady state. The following set of parameters was used:
µ = 1 min−1, L = 0.2 µM , H = 1.2 µM , K = 0.7 µM and l = 50. The time in
the graphs is computed by solving numerically the differential equations attached
to the chemical reaction set of the full-adder (136). This time coincides with the
one predicted by equation (143).

CHAPTER 7. DESIGN OF A GENETIC FULL-ADDER 191

tHK terms and, from equation (142), we know that the threshold at the midpoint

between the high and the low states minimises tLK and tHK . Hence, the threshold

at the midpoint is the optimum position in terms of propagation time. Figure 53

confirms that the optimum threshold for the full-adder, in the case of step-like

regulation function, resides at the midpoint between high and low state (λ = 0.5).

Also note, that equations (143) and (142) predict the propagation time in the

full-adder correctly in the case of high Hill coefficients.

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 0.2 0.3 0.4 0.5 0.6 0.7 0.8

T
im

e
[m

in
]

λ

(L,L,H) -> (H,L,H)
(H,L,H)->(L,L,H)

Figure 53: The longest propagation time in the full-adder as a function of the
threshold position. We plotted the propagation time when switching between
(L, L,H) to (H,L,H). The following set of parameters was used: µ = 1 min−1,
l = 50, L = 0.2 µM , H = 1.2 µM , α = 0.2 µM ·min−1, β = 1.0 µM ·min−1 and
θ = 0.9.

Now that we determined the speed properties of the full-adder we turn our

attention to the accuracy of this genetic system. We measure the accuracy by

computing the noise at the output of the system (sum and carry in system 136).

At steady state, the absolute value of the stochastic fluctuations (the variance)

of the output z of a logic gate, which has two inputs x and y, can be written as

[171, 45, 123]

σ2
z = z

︸︷︷︸

intrinsic

+

Γzx
︷ ︸︸ ︷
[

βz
∂f(x, y)

∂x
τz

]2
Tzx

︷ ︸︸ ︷
τx

τx + τz
σ2
x

︸ ︷︷ ︸

upstream from x

+

Γzy

︷ ︸︸ ︷
[

βz
∂f(x, y)

∂y
τz

]2
Tzy

︷ ︸︸ ︷
τy

τy + τz
σ2
y

︸ ︷︷ ︸

upstream from y

. (144)

CHAPTER 7. DESIGN OF A GENETIC FULL-ADDER 192

The first term in the right hand side, the intrinsic component, quantifies the

fluctuations generated by the randomness of the birth-death processes. The second

and the third term in the right hand side, the upstream component, represents the

noise transmitted from the upstream species (the species which regulate the gene)

[129]. The upstream noise is composed of three terms: the regulation factor (Γzx

and Γzy), the time average factor (Tzx and Tzy), and the variance of the upstream

species (σ2
x and σ2

y).

In this contribution, we are interested in how noise affects our ability to dis-

tinguish between the two known output states, H and L. To get a meaningful

measure of this, we will normalise the variance by the square of the signal strength,

ηz = σ2
z/(H − L)2, rather than by the square of the mean (which is often used as

a definition of noise, see chapter 4),

ηz =
z

(H − L)2
+

[

βzτz
∂f(x, y)/∂x

(H − L)

]2

Tzxσ
2
x +

[

βzτz
∂f(x, y)/∂y

(H − L)

]2

Tzyσ
2
y . (145)

For a step-like regulation function, the derivatives in (145) will be zero and the

extrinsic component will be zero as well. Thus, the only contribution to the noise

is the intrinsic component and the noise of the output depends only on the steady

state abundance (high and low), but is independent of the number of gates in the

system or threshold position. However, if the threshold is close enough to one of

the steady states (H or L), then small fluctuations in the input generates high

fluctuations in the output and the analytical method is not accurate any more.

Assuming that the threshold is positioned at the midpoint (optimum position for

speed) and the two steady states are far enough from each other, then the noise

will be determined only by the intrinsic component.

Summing up, we can state that, in the case of step-like regulation functions,

the system displays an optimum threshold position (λ = λT = λη = 0.5) which

ensures optimality both for speed and accuracy.

CHAPTER 7. DESIGN OF A GENETIC FULL-ADDER 193

Sigmoid Gates

Above, we performed the optimality analysis of the full-adder in the case of step-

like regulation functions and observed that the system displays an optimal con-

figuration. This optimal configuration is achieved when the regulatory threshold

is position at the midpoint between the high and the low steady states. Now, we

turn our attention to the full-adder with sigmoid regulation functions. For low

Hill coefficients, the optimum threshold in terms of speed in not positioned any

more at the midpoint between the high and the low state (see Figure 54). This is

a consequence of the fact that, for low Hill coefficients, the Hill function loses the

symmetry around the threshold. We also note that decreasing the Hill coefficient

increases the propagation time due to the fact that a gene is not instantly turned

on/off when an input species crosses over/under the threshold (compare Figures

53 and 54). Increasing the Hill coefficient asymptotically reduces the propaga-

tion time to the one of the step-like regulation function and, thus, the optimal

threshold will asymptotically approach the midpoint, λT = 0.5.

 3.2

 3.4

 3.6

 3.8

 4

 4.2

 4.4

 4.6

 4.8

 5

 5.2

 0.3 0.35 0.4 0.45 0.5 0.55 0.6

T
im

e
[m

in
]

λ

(L,L,H) -> (H,L,H)
(H,L,H)->(L,L,H)

λT 6= 0.5

Figure 54: Optimal threshold position for time in a system with sigmoid regulation
functions. We plotted the propagation time when switching between (L, L,H) to
(H,L,H) for a low Hill coefficient. The following set of parameters was used:
µ = 1 min−1, l = 6, L = 0.2 µM , H = 1.2 µM , K = 0.7 µM and θ = 0.9.

Apart from speed, our optimality analysis also requires the computation of

CHAPTER 7. DESIGN OF A GENETIC FULL-ADDER 194

noise. The highest noise levels of the sigmoid gate based full-adder, independent

of the threshold position, are generated at the sum output when the input is

(H,L, L). In this analysis we considered the worst case scenario and, thus, we

determined the dependence of noise in the sum on the threshold position when

the input is fixed at (H,L, L). The mathematical formula of the noise is too

complicated to give any information about the system, but we can use it to gen-

erate numerical solutions. Figure 55 shows that there is an optimal position of

the threshold in terms of noise which differs from the optimal position in terms

of speed, λη 6= λT . Note however, that around the optimal threshold position in

terms of noise (λη) the noise does not vary significantly (see Figure 55).

 0.00245

 0.0025

 0.00255

 0.0026

 0.00265

 0.0027

 0.00275

 0.0028

 0.00285

 0.3 0.35 0.4 0.45 0.5 0.55 0.6

no
is

e

λ

total
intrinsic

λη 6= λT

Figure 55: Noise of the full-adder. The noise dependence on the threshold posi-
tion. The following set of parameters was used: V = 8 × 10−16 l, µ = 1 min−1,
l = 6, L = 0.2 µM , H = 1.2 µM , K = 0.7 µM and θ = 0.9. We assumed a
Poisson noise in the three input species.

The system displays two optimal threshold positions, one for speed (λT) and

one for noise (λη). If these two positions coincide (λT = λη) then the system has an

optimal set of parameters and the threshold needs to take this value, λ = λT = λη.

However, it is most likely that these two threshold positions will differ, as it

is the case with our sets of parameters for the full-adder. In this case, there is an

optimal trade-off curve which is margined by the two optimal configurations (for

CHAPTER 7. DESIGN OF A GENETIC FULL-ADDER 195

time, λT , and for noise, λη). In addition any other trade-off curve is sub-optimal

comparing to this one.

In our example of the full-adder we have 0.5 ≤ λη ≤ λT . Figure 56 represents

the trade-off between noise and time graphically based on the threshold position.

We identified the optimal trade-off curve determined by λη ≤ λ ≤ λT . Any

threshold in this interval can optimise the system either in speed or accuracy, but

never in both. However, for threshold positions outside this interval, the system

displays sub-optimal trade-off curves; for λ < λη or λ > λT both the propagation

time and the noise are worse compared with the ones in the optimal trade-off

curve.

 0.00249

 0.0025

 0.00251

 0.00252

 0.00253

 0.00254

 0.00255

 4 4.2 4.4 4.6 4.8 5 5.2

no
is

e

Time [min]

λ = λT

λ = λη

λ = 0.5

Figure 56: Trade-off curve of the full-adder. Optimal and sub-optimal trade-off
curves of the full-adder. We used the following set of parameters: V = 8×10−16 l,
µ = 1 min−1, l = 6, L = 0.2 µM , H = 1.2 µM , K = 0.7 µM and θ = 0.9. We
assumed a Poisson noise in the three input species.

7.4 Considerations on the Approach

Certain approximations or assumptions made in this chapter are likely to influ-

ence the results of our analysis. Thus, in the following paragraphs, we discuss

these assumptions and approximations and identify how they influence the results

presented in this chapter.

CHAPTER 7. DESIGN OF A GENETIC FULL-ADDER 196

First, our optimality analysis addresses only logic gates formed of individ-

ual genes that are not auto-regulated. Network motifs (such as negative auto-

regulation) can play a significant role in both speed and noise [5]. As we saw in

the previous chapter, negative auto-regulation can lead to faster and more accurate

systems. This suggests that further optimisation of our full-adder can be achieved

by considering various network motifs such as negative auto-regulation. Although

network motifs can lead to better performances of the system, our objective, in

this contribution, was to present a general strategy and specific methods on how

to design synthetic logic circuits. In this chapter, we did not aim to provide the

best design for a genetic full-adder, but rather show how a certain logic design

can be modelled from genes.

Furthermore, to achieve modularity and scalability of design we selected a set

of synthesis rates (α and β), which we kept fixed throughout the optimisation

process. In the previous chapter we compensated any change of the threshold by

an adequate change in β so that the metabolic cost defined as ζ = α+βf(xH , K)

would remain fixed. Due to the fact that, in this contribution, we could not change

the synthesis rates any more, we had to relax our definition of metabolic cost

and assume that the metabolic cost is computed as the maximum synthesis rate

ζz = α+β. This value represents the worst case scenario of the previously defined

metabolic cost, in the sense that our current definition of cost ζz is computed

by assuming the maximum value of ζ , where f(xH , K) reached its highest value,

1. Both of these measures are just crude approximations of the actual metabolic

costs, which also include degradation and maintenance costs. Nevertheless, in

this contribution we are interested how the actual metabolic cost scales with the

parameters of the gene and both definitions (ζ and ζz) capture this aspect, i.e.,

they measure how the metabolic cost scales with the gene expression rate.

Finally, to keep the mathematics tractable we assumed that all genes have

identical parameters. This is unlikely to be biologically realistic. For specific

genetic systems, similar analyses could be employed, where individual trade-off

CHAPTER 7. DESIGN OF A GENETIC FULL-ADDER 197

curves could be determined for each component (gene) in the network. We ex-

pect that the existence of optimal and sub-optimal trade-off curves controlled by

the regulation threshold to be generally valid. Nevertheless, the details of these

assumptions are left for further research.

7.5 Biological Significance

Our analysis investigated the relationship between the parameter space of a ge-

netic system and the computational properties that characterise this system. In

particular, we identified how the biological parameters of the genes control the

properties of the system, but also how the change in one property affects other

properties.

In this contribution, we presented a general method for constructing arbitrarily

large logical systems based on binary genes. For exemplification purpose, we

designed a full-adder system formed of five genes. We modelled logic gates which

were constructed using two cis-regulatory transcription control regions. This type

of logic gates was already engineered in live bacterial/eukaryote cells by synthetic

biologists [71, 93, 182, 39, 8, 145]. Our analysis showed that the synthesis/decay

rates can control the interconnectivity of different gates/genes and also proposed

the set of parameters that ensure this interconnectivity.

In chapter 5 we showed that leak-free systems are optimal in terms of speed and

noise [184]. However, equations (138) and (139) indicate that vanishing leak rates

are very difficult to obtain. This suggests that leak-free systems, although optimal

in speed and noise, are not always desirable because, when interconnecting genes,

leak-free systems can require a higher metabolic cost compared with non-vanishing

leak rates.

We also presented an approach for selecting the set of parameters which op-

timise the system in terms of speed and accuracy under constant metabolic cost.

Increasing the Hill coefficient will optimise both the speed and the accuracy, but

CHAPTER 7. DESIGN OF A GENETIC FULL-ADDER 198

this usually comes at a higher metabolic cost. We showed that the threshold po-

sition, for a fixed Hill coefficient, influences both the speed (see Figure 54) and

the noise (see Figure 55).

Finally, we would like to pinpoint that our approach relies heavily on setting

specific values for the parameters of the gene. While this may be of reach to

synthetic biologists, the accuracy of the measurements makes the entire approach

impractical. For example, in Figure 46 (from the previous chapter) it was impos-

sible to say whether the system is on the optimal trade-off curve or not. However,

we expect that improvements in the measurement techniques and in the control

of the genetic parameters will lead to a better usefulness for our approach.

7.6 Summary

In this chapter, we presented a specific scenario where the optimality analysis can

be applied. As a sample system we used a binary full-adder system formed of

five genes which mimic the behaviour of five logic gates. Our approach included

the construction of all required logic gates from binary genes (see Figure 49),

identification of the parameters of the genes which ensured interconnection of an

arbitrary number of logic gates (see Figure 50 and equations 137, 138, 139) and

also investigation of the optimal design in terms of speed and accuracy under the

assumption of fixed metabolic cost.

In an ideal system, a system with gates that display step-like regulation func-

tions (infinite Hill coefficients), we found that the system has an optimal set of

parameters (threshold positioned at the midpoint between the two steady states).

This set of parameters maximises both speed and accuracy for a fixed cost (see

Figure 53). Moreover, the speed and the accuracy achieved in this type of system

(step-like) are the asymptotic limit that any biological real system (sigmoid) can

aim towards.

Real genes have finite low Hill coefficients and, in this case, a logic system will

display two optimal parameter settings: one for speed (λT) and another one for

CHAPTER 7. DESIGN OF A GENETIC FULL-ADDER 199

noise (λη). We found that there is a trade-off curve between speed and accuracy

which is bounded by these optimal sets of parameters (λT and λη) and any point

between these two can optimise the system in either speed or accuracy (see Figure

56). Nevertheless, any other set of parameters (a threshold outside this interval)

is sub-optimal with respect to accuracy or speed.

Chapter 8

Conclusions

In this thesis, we analysed binary genes as computational units. Binary genes

are genes which display a switch-like behaviour, i.e., they are expressed mostly at

either high or low rates and rarely at intermediary ones. This switching behaviour

and the fact that genes are able to integrate multiple inputs indicate that binary

genes are capable of performing logical computations.

We were interested in the computational limits of binary genes. In particular,

we identified three properties which characterise genes and their computational

performance, namely: (i) noise in gene expression, (ii) the response time and (iii)

the energy cost of functioning. Our results showed that these three properties

are interconnected, in the sense that there is a three way trade-off between them.

This means that enhancing one of the properties cannot be achieved unless at

least one other property is impaired. Furthermore, we revealed that an optimal

configuration can be achieved by reducing the leak rate of the system, which comes

at a higher metabolic cost. Additionally, for non-vanishing leak rates, the system

could be optimised without increasing the metabolic cost only by adding negative

auto-regulation.

The remainder of this chapter is sectioned as follows. In the next section, we

will review the main results of this thesis and, in the final section, we will present

further directions of our research.

200

CHAPTER 8. CONCLUSIONS 201

8.1 Contributions

The model of binary genes, which we used in this thesis, is a coarse grain version

of the biologically realistic one, i.e., we simulate in one step the protein synthe-

sis process (regulation, transcription and translation). Nevertheless, despite its

simplicity, our model still captures essential aspects of biological processes within

a bacterial cell, such as: sigmoid regulation function, maximum expression rate,

leaky expression and the rate at which proteins decay. The very simplicity of the

model makes it particularly suitable for analytical analysis but also for extensive

stochastic simulations.

Previous research, with few recent exceptions, investigated the three compu-

tational properties (speed, accuracy and cost) in an independent fashion. As we

showed in this thesis, it is essential to consider the three properties in an inte-

grated fashion, because there is a functional relationship between them, which

limits their optimization.

Usually, we want to perform computations as fast and as accurately as possible,

without increasing the cost. However, there is often an inherent trade-off between

these properties, in the sense that enhancing one property can be achieved only

by impairing another one [104]. In the case of binary genes, we observed that

there is a three way trade-off between speed, accuracy and cost. In particular, for

a fixed metabolic cost, there is a trade-off between speed and accuracy, i.e., the

speed can be increased only by decreasing accuracy and, conversely, the accuracy

can be enhanced only by reducing the speed.

For a stand-alone binary gene, this trade-off is controlled by the decay rate

of the output protein, in the sense that higher decay rates lead to faster and

noisier systems, while lower ones to slower but more accurate systems. This

result indicates that the cell has the ability to control the accuracy and speed

of individual genes. For example, if a protein is decayed only by dilution, then

the dynamics of the protein will be slow (the half-life time of proteins affected by

dilution is approximately equal to the division time of the cell, e.g., 50 min) while

CHAPTER 8. CONCLUSIONS 202

the accuracy will be high. Conversely, if a protein is actively broken down, then

the dynamics will be fast and, consequently, the noise will be higher.

In addition, we found that increasing the cost leads to better trade-off curves

between speed and accuracy. This underlines the importance of comparing sys-

tems with equal metabolic cost. In chapter 2, we enumerated a few examples from

the literature that identified speed-accuracy trade-offs. Mehta et al. [108] deter-

mined that the trade-off between switching time and noise in a bi-stable genetic

system (an auto-activator gene) was controlled by the burst size of translation.

Although they considered a constant number of molecules for the output protein, a

higher number of transcripts (resulting from a smaller burst size and equal protein

concentration) suggests that the metabolic cost is increased [106, 167]. Similarly,

Stojanovic and Stefanovic found that the speed-accuracy trade-off in their DNA

based logic gates was controlled by the length of DNA strands [160]. However,

higher length in the DNA strand means higher cost in their scenario and, thus,

the trade-off is achieved again by changing the cost.

The results of our analysis show that the speed and accuracy can be increased

as much as we want by increasing the cost, but this would be biologically unre-

alistic (cells have a limited amount of energy resources available). This indicates

that an analysis on speed and accuracy needs to consider the metabolic cost. In

this context, it is worthwhile mentioning Tan et al. [163], who demonstrated that

there is a speed-cost trade-off in a genetic system where signals were encoded by

oscillatory protein abundances. Their analysis revealed that the speed can be

increased arbitrarily by increasing the cost.

Furthermore, we proved that this three way trade-off between speed, accuracy

and cost is optimal for genes without leak expression. This can be explained by

the fact that, for equal metabolic costs, leaky expression leads to higher noise.

However, the reduction of the leak rate, usually, comes at a very high and un-

justifiable metabolic cost. Thus, in many cases, the system can afford to have a

certain amount of leak rate given that this results in worse speed and accuracy

performance, but reasonable metabolic cost.

CHAPTER 8. CONCLUSIONS 203

When genes are not stand-alone elements, but rather components in a genetic

network, the input cannot change instantaneously any more, i.e., the input in

a downstream gene is the output of an upstream one and needs to either build

up or be decayed. In this case, we observed another trade-off between speed and

accuracy, but this time the trade-off is controlled by the regulatory threshold. The

regulatory threshold is the input required for half activation of a gene and it can

be approximated by the ratio between the unbinding and the binding rate of the

regulatory transcription factors to the cis-regulatory area of the gene. Thus, the

affinity of the TF for the cis-regulatory area controls the speed and the accuracy of

the binary gene. We found that there are two threshold values, one that optimises

the system in speed and another one which optimises the system in accuracy.

Note that Murphy et al. [115] showed the existence of the optimal threshold

for noise experimentally and, thus, provided biological support for our results.

Furthermore, the threshold values bounded by these two optimal values produce

an optimal trade-off curve between speed and accuracy, while everything outside

this curve is sub-optimal.

We expect that real cells display both optimal and sub-optimal configurations.

This could be explained by the inherent heterogeneity of the population, which is

a useful survival strategy for changes in the environment of the cells [135, 1], i.e.,

when the environment changes, previous sub-optimal cells can be optimal in the

new environment and have higher chances of survival.

The genetic regulatory network of bacterial cells displays various network mo-

tifs, which are sub-networks that occur more often than in a random network.

One important network motif in bacterial cells is the negatively auto-regulated

gene [5]. This specific motif was indicated in the literature as being able to re-

duce both turn-on times and noise. We investigated the optimality of negative

auto-regulation by comparing auto-repressed genes to simple ones under the as-

sumption of equal metabolic cost. Our results confirmed the results of Rosenfeld

et al. [137] and showed that, for leak-free systems, negative auto-regulation can

enhance only turn-on speed. However, we found that, for leaky systems, negative

CHAPTER 8. CONCLUSIONS 204

auto-regulation can enhance both turn-on and turn-off speeds. This suggests that,

despite being harmful for genes (it increases the noise for certain sets of parame-

ters), leaky expression can also bring benefits to the system (it enhances the speed

in the case of negative feedback). By increasing the leak rate, the auto-repressed

gene becomes worse than the simple gene in terms of noise. Thus, there is another

speed-accuracy trade-off but this time the trade-off is controlled by the leak rate

of the gene.

Furthermore, we found that there are certain leak rate values for which the

negative auto-regulation enhances both speed and accuracy. Our results indicate,

that for low (but non zero) leak rates, negative auto-regulation enhances both

speed and accuracy. Nevertheless, for higher leak rates, the negatively auto-

regulated gene becomes noisier, but is still able to display a faster speed than

the simple gene. In this latter case, the gene has to choose again between being

faster or more accurate. This superiority of negative auto-regulation for certain

(biologically plausible) sets of parameters can explain the high occurrence of this

motif in bacterial genomes (for example, 40% of the genes in E.coli are negatively

auto-regulated [12]). Nevertheless, the fact that there are biologically plausible

sets of parameters for which the simple gene is better in one property (accuracy)

than the negatively auto-regulated one can explain the reason for not all genes

being negatively auto-regulated.

In this thesis, we identified various mechanisms within the cell which control

this speed-accuracy trade-off under the assumption of fixed metabolic cost. The

current configurations of real cells are the result of a long time evolution, in

which a system adapted to and was optimised to respond to various environmental

conditions. The various trade-offs identified in this thesis suggest that the cell

adapts and changes its behaviour (and, consequently, its performance properties)

by changing the parameters of the genes. For example, a single point mutation

in the promoter area of a gene can change the configuration of a system from the

most accurate one to the fastest one; see Figure 46 from chapter 6.

CHAPTER 8. CONCLUSIONS 205

To exemplify our optimality analysis we considered, as a case study, a full-

adder constructed from genes. We determined that the design process of a genetic

logic system is a three step process. The first step consisted of selecting a logical

diagram and modelling the logic gates. We did this by assuming that genes are

able to integrate inputs in the cis-regulatory area and the activation state of the

gene mimics a logic function where the inputs are represented by the regulatory

transcription factors. Furthermore, we computed the synthesis rates of the genes

which allow the interconnection of the gates. This interconnectivity was ensured

by imposing that changes in the output of an upstream gate are reflected in

the output of a downstream one, but also by allowing the system to contain an

arbitrary number of gates without worsening the binary behaviour of the output

(we call this the scalability of the system). Finally, we performed our optimality

analysis and identified the two optimal configurations, the fastest and the most

accurate one.

Our modelling approach was based on selecting sets of parameters for the

genes. Current laboratory techniques (high errors in the measurements and poor

control of parameters) make our approach impractical for synthetic biologists.

Nevertheless, we can speculate that future improvements in these techniques can

make our analysis a useful tool for fine tuning the performance properties of a

synthetic system.

8.2 Further Work

Based on our model and results, but also on the alternative solutions proposed in

the literature review, we identified several potential routes for future research.

In this thesis, we built a model where we assumed that the transcription fac-

tors are bound to their binding sites or otherwise suspended in perfectly mixed

cytoplasm. It is unlikely that this model is correct for real cells. Instead, the

concentration of a specific molecular species will be highly non-uniform within

the cytoplasm [26, 177]. It would be interesting to investigate how these spatial

CHAPTER 8. CONCLUSIONS 206

aspects influence the speed at which genes are regulated and the noise charac-

teristics of the product protein. In particular, we would like to investigate how

various scenarios (such as crowding of transcription factors and colocalization of

genes) influence the fluctuations in the activity state of a gene and the time it

takes for transcription factors to find their target sites.

In this thesis we disregarded protein-protein interactions (enzymatic gates) and

these types of interactions have a very important role within the functioning of

cells. The main advantage that these types of interactions have compared with the

transcriptional gates consists of the high speed at which they are able to process

information. A similar optimality analysis as in the case of transcriptional gates

can also be performed on protein gates. We expect to observe similar trade-offs

between speed, accuracy and cost. Nevertheless, the range of parameters which are

controllable in this type of gate is smaller compared with the one of transcriptional

gates, and this is likely to bring some differences in the relationships which we

identified between the parameter space and the properties that characterise the

system.

A solution which combines both protein-protein interactions and transcrip-

tional gates could offer an alternative design to the gates modelled in this thesis.

In our analysis, high steepness leads to faster and more accurate systems and

is usually difficult to achieve. If we consider weak protein-protein interactions,

such as dimerisation, then this usually leads to an increase in the Hill coeffi-

cient. Alternatively, if we assume a system with two input signals integrated in

a multi-enzyme gate, then the gate could display zero order sensitivity (step-like

behaviour) [162]. These types of systems can lead to a better trade-off between

speed, accuracy and cost. It would be interesting to observe how protein-protein

interaction can enhance our design.

Depending on the state of the cis-regulatory area, genes can have different

steady states and, consequently, the gene expression function can display more

than two plateaus [52]. This type of behaviour can lead to computations being

performed in bases higher than two, which could result in more computations

CHAPTER 8. CONCLUSIONS 207

being performed in the same amount of time. We would like to investigate under

which conditions multi steady state behaviour arises and how we can optimise a

synthetic n-state gene.

There are significant differences between prokaryotic and eukaryotic organisms

[133]. Eukaryotic genes are usually regulated by more transcription factors than

prokaryotic ones and the cis-regulatory regions of eukaryotic genes can be far

away from the promoters of genes, allowing distal regulation [85]. Additionally,

the eukaryotic DNA is organised into chromatin which has a significant influence

on the transcriptional regulation. We would like to investigate under which condi-

tions the differences that eukaryotic cells display compared with prokaryotic ones

influence or change our main findings.

A final possible extension of the work presented in this thesis would be to

implement in live cells a synthetic full-adder using transcriptional logic gates.

This would require the identification of a design in accordance with available genes

that mimic logic gates and then selection and interconnection of these genes. Once

constructed, we could then tune the system to display the fastest and the most

accurate configurations.

Bibliography

[1] Murat Acar, Jerome T Mettetal, and Alexander van Oudenaarden. Stochas-

tic switching as a survival strategy in fluctuating environments. Nature

Genetics, 40(4):471–475, 2008.

[2] Gary K. Ackers, Alexander D. Johnson, and Madeline A. Shea. Quantitative

model for gene regulation by lambda phage repressor. PNAS, 79:1129–1133,

1982.

[3] Leonard M. Adleman. Molecular computation of solutions to combinatorial

problems. Science, 266:1021–1024, 1994.

[4] Hiroshi Akashi and Takashi Gojobori. Metabolic efficiency and amino acid

composition in the proteomes of escherichia coli and bacillus subtilis. PNAS,

99(6):3695–3700, 2002.

[5] Uri Alon. An Introduction To System Biology. Design Principles of Bio-

logical Circuits. Chapman & Hall/CRC Mathematical and Computational

Biology Series, 2007.

[6] Martyn Amos. Encyclopedia of Complexity and System Science, chapter

DNA Computing. Springer, 2008.

[7] J Christopher Anderson, Elizabeth J. Clarke, Adam P. Arkin, and Christo-

pher A. Voigt. Environmentally controlled invasion of cancer cells by engi-

neered bacteria. Journal of Molecular Biology, 355(4):619–627, 2006.

208

BIBLIOGRAPHY 209

[8] J Christopher Anderson, Christopher A Voigt, and Adam P Arkin. En-

vironmental signal integration by a modular and gate. Molecular Systems

Biology, 3, 2007.

[9] Ernesto Andrianantoandro, Subhayu Basu, David K Karig, and Ron Weiss.

Synthetic biology: new engineering rules for an emerging discipline. Molec-

ular Systems Biology, 4100073:E1–E14, 2006.

[10] Adam Arkin and John Ross. Computational functions in biochemical reac-

tion networks. Biophysical Journal, 67(2):560–578, 1994.

[11] Adam Arkin, John Ross, and Harley H. McAdams. Stochastic kinetic analy-

sis of developmental pathway bifurcation in phage l-infected escherichia coli

cells. Genetics, 149:1633–1648, 1998.

[12] D. W. Austin, M. S. Allen, J. M. McCollum, R. D. Dar, J. R. Wilgus, G. S.

Sayler, N. F. Samatova, C. D. Cox, and M. L. Simpson. Gene network

shaping of inherent noise spectra. Nature, 439(2):608–611, 2006.

[13] Arren Bar-Even, Johan Paulsson, Narendra Maheshri, Miri Carmi, Erin

O’Shea, Yitzhak Pilpel, and Naama Barkai. Noise in protein expression

scales with natural protein abundance. Nature Genetics, 38(6):636–643,

2006.

[14] Ronan Baron, Oleg Lioubashevski, Eugenii Katz, Tamara Niazov, and Ita-

mar Willner. Elementary arithmetic operations by enzymes: A model for

metabolic pathway based computing. Angewandte Chemie, 45:1572–1576,

2006.

[15] Ronan Baron, Oleg Lioubashevski, Eugenii Katz, Tamara Niazov, and Ita-

mar Willner. Logic gates and elementary computing by enzymes. J. Phys.

Chem. A, 110(27):8548–8553, 2006.

BIBLIOGRAPHY 210

[16] Subhayu Basu, Yoram Gerchman, Cynthia H. Collins, Frances H. Arnold,

and Ron Weiss. A synthetic multicellular system for programmed pattern

formation. Nature, 434:1130 –1134, 2005.

[17] Subhayu Basu, Rishabh Mehreja, Stephan Thiberge, Ming-Tang Chen, and

Ron Weiss. Spatiotemporal control of gene expression with pulse-generating

networks. PNAS, 101(17):6355–6360, 2004.

[18] Jordan Baumgardner, Karen Acker, Oyinade Adefuye, Samuel Thomas

Crowley, Will DeLoache, James O Dickson, Lane Heard, Andrew T

Martens, Nickolaus Morton, Michelle Ritter, Amber Shoecraft, Jessica

Treece, Matthew Unzicker, Amanda Valencia, Mike Waters, A Malcolm

Campbell, Laurie J Heyer, Jeffrey L Poet, and Todd T Eckdahl. Solving a

hamiltonian path problem with a bacterial computer. Journal of Biological

Engineering, 3(11), 2009.

[19] Attila Becskei, Benjamin B Kaufmann, and Alexander van Oudenaarden.

Contributions of low molecule number and chromosomal positioning to

stochastic gene expression. Nature Genetics, 37(9):937–944, 2005.

[20] Attila Becskei and Luis Serrano. Engineering stability in gene networks by

autoregulation. Nature, 405:590–593, 2000.

[21] Arieh Ben-Naim. Cooperativity in binding of proteins to dna. Journal of

Chemical Physics, 107(23):10242–10252, 1997.

[22] Arieh Ben-Naim. Cooperativity in binding of proteins to dna. ii. binding of

bacteriophage l repressor to the left and right operators. Journal of Chemical

Physics, 108(16):6937–6946, 1998.

[23] Yaakov Benenson, Binyamin Gil, Uri Ben-Dor, Rivka Adar, and Ehud

Shapiro. An autonomous molecular computer for logical control of gene

expression. Nature, 429:423–429, 2004.

BIBLIOGRAPHY 211

[24] Charles H. Bennett. Logical reversibility of computation. IBM Journal of

Research and Development, 17(6):525–532, 1973.

[25] Charles H. Bennett. The thermodynamics of computation – a review. In-

ternational Journal of Theoretical Physics, 21(12):905–940, 1982.

[26] Otto G. Berg, Robert B. Winter, and Peter H. von Hippel. Diffusion-driven

mechanisms of protein translocation on nucleic acids. 1. models and theory.

Biochemistry, 20(24):6929–6948, 1981.

[27] Lacramioara Bintu, Nicolas E. Buchler, Hernan G. Garcia, Ulrich Gerland,

Terence Hwa, Jane Kondev, and Rob Phillips. Transcriptional regulation

by the numbers: models. Current Opinion in Genetics and Development,

15:116–124, 2005.

[28] Ravinderjit S. Braich, Nickolas Chelyapov, Cliff Johnson, Paul W. K. Rothe-

mund, and Leonard Adleman. Solution of a 20-variable 3-sat problem on a

dna computer. Science, 296:499–502, 2002.

[29] Dennis Bray. Protein molecules as computational elements in living cells.

Nature, 376:307–312, 1995.

[30] Jonathan E. Bronson, William W. Mazur, and Virginia W. Cornish. Tran-

scription factor logic using chemical complementation. Molecular BioSys-

tems, 4:56–58, 2008.

[31] Frank J. Bruggeman, Nils Blthgen, and Hans V. Westerhoff. Noise manage-

ment by molecular networks. PLoS Computational Biology, 5(9):e1000506,

2009.

[32] Nicolas E. Buchler, Ulrich Gerland, and Terence Hwa. On schemes of com-

binatorial transcription logic. PNAS, 100(9):5136–5141, 2003.

[33] Nicolas E. Buchler, Ulrich Gerland, and Terence Hwa. Nonlinear protein

degradation and the function of genetic circuits. PNAS, 102(27):9559–9564,

2005.

BIBLIOGRAPHY 212

[34] Irwin K. Cheah, Steven J. Langford, and Melissa J. Latter. Concept transfer-

from genetic instruction to molecular logic. Supramolecular Chemistry,

17:121–128, 2005.

[35] Joshua L. Cherry and Frederick R. Adler. How to make a biological switch.

Journal of Theoretical Biology, 203(2):117–133, March 2000.

[36] Dominique Chu, Nicolae Radu Zabet, and Boris Mitavskiy. Models of tran-

scription factor binding: Sensitivity of activation functions to model as-

sumptions. Journal of Theoretical Biology, 257(3):419–429, 2009.

[37] Dominique F. Chu, Nicolae Radu Zabet, and Andrew N. W. Hone. Optimal

parameter settings for information processing in gene regulatory networks.

BioSystems, 2011.

[38] Sean M. Cory and Theodore J. Perkins. Implementing arithmetic and other

analytic operations by transcriptional regulation. PLoS Computational Bi-

ology, 4(5):e1000064, May 2008.

[39] Robert Sidney Cox III, Michael G Surette, and Michael B Elowitz. Pro-

gramming gene expression with combinatorial promoters. Molecular Sys-

tems Biology, 3, 2007.

[40] Gheorghe Craciun, Yangzhong Tang, and Martin Feinberg. Understand-

ing bistability in complex enzyme-driven reaction networks. PNAS,

103(23):8697–8702, 2006.

[41] A Prasanna de Silva and Seiichi Uchiyama. Molecular logic and computing.

Nature Nanotechnology, 2:399–410, 2007.

[42] Erez Dekel and Uri Alon. Optimality and evolutionary tuning of the expres-

sion level of a protein. Nature, 436:588–592, 2005.

[43] Andrew S. Deonarine, Sonya M. Clark, and Lars Konermann. Implementa-

tion of a multifunctional logic gate based on folding/unfolding transitions

of a protein. Future Generation Computer Systems, 19(1):87–97, 2003.

BIBLIOGRAPHY 213

[44] Mary J Dunlop, Robert Sidney Cox III, Joseph H Levine, Richard MMurray,

and Michael B Elowitz. Regulatory activity revealed by dynamic correlations

in gene expression noise. Nature Genetics, 40(12):1493–1498, 2008.

[45] Johan Elf and Mans Ehrenberg. Fast evaluation of fluctuations in bio-

chemical networks with the linear noise approximation. Genome Research,

13:2475–2484, 2003.

[46] Johan Elf, Johan Paulsson, Otto G. Berg, and Mans Ehrenberg. Near-

critical phenomena in intracellular metabolite pools. Biophysical Journal,

84:154–170, 2003.

[47] Michael B. Elowitz and Stanislas Leibler. A synthetic oscillatory network

of transcriptional regulators. Nature, 403:335–338, 2000.

[48] Michael B. Elowitz, Arnold J. Levine, Eric D. Siggia, and Peter S. Swain.

Stochastic gene expression in a single cell. Science, 297(5584):1183–1186,

2002.

[49] Dirk Faulhammer, Anthony R. Cukras, Richard J. Lipton, and Laura F.

Landweber. Molecular computation: Rna solutions to chess problems.

PNAS, 97(4):1385–1389, 2000.

[50] Chrisantha T Fernando, Anthony M.L Liekens, Lewis E.H Bingle, Christian

Beck, Thorsten Lenser, Dov J Stekel, and Jonathan E Rowe. Molecular cir-

cuits for associative learning in single-celled organisms. J. R. Soc. Interface,

6(34):463–469, 2009.

[51] James E Ferrell. Self-perpetuating states in signal transduction: positive

feedback, double-negative feedback and bistability. Current Opinion in

Chemical Biology, 6:140–148, 2002.

[52] Ari E. Friedland, Timothy K. Lu, Xiao Wang, David Shi, George Church,

and James J. Collin. Synthetic gene networks that count. Science,

324(5931):1199–1202, 2009.

BIBLIOGRAPHY 214

[53] Nir Friedman, Long Cai, and X. Sunney Xie. Linking stochastic dynamics

to population distribution: An analytical framework of gene expression.

Physical Review Letters, 97:168392, 2006.

[54] Pierluigi Frisco, Peter Cook, and Paul A. Hoskisson. Solving the hamiltonian

path problem using viral dna and bacteria. Technical report, Heriot-Watt

University, 2010.

[55] Nikhil Gandhi, Gonen Ashkenasy, and Emmanuel Tannenbaum. Associative

learning in biochemical networks. Journal of Theoretical Biology, 249:58–66,

2007.

[56] Crispin W. Gardiner. Handbook of Stochastic Methods: For Physics, Chem-

istry and the Natural Sciences. Springer-Verlag, 1982.

[57] Timothy S. Gardner, Charles R. Cantor, and James J. Collins. Construction

of a genetic toggle switch in escherichia coli. Nature, 403:339–342, January

2000.

[58] Moritz Gerstung, Jens Timmer, and Christian Fleck. Noisy signaling

through promoter logic gates. Physical Review E, 79:011923, 2009.

[59] Nathan C. Gianneschi and M. Reza Ghadiri. Design of molecular logic de-

vices based on a programmable dna-regulated semisynthetic enzyme. Ange-

wandte Chemie, 119:4029–4032, 2007.

[60] Michael A. Gibson and Jehoshua Bruck. Efficient exact stochastic simulation

of chemical systems with many species and many channels. The Journal of

Physical Chemistry A, 104:1876–1889, 2000.

[61] Daniel T. Gillespie. A general method for numerically simulating the

stochastic time evolution of coupled chemical reactions. Journal of Compu-

tational Physics, 22(4):403–434, 1976.

BIBLIOGRAPHY 215

[62] Daniel T. Gillespie. Exact stochastic simulation of coupled chemical reac-

tions. The Journal of Physical Chemistry, 81:2340–2361, 1977.

[63] Daniel T. Gillespie. A rigorous derivation of the chemical master equa-

tion. Physica A: Statistical Mechanics and its Applications, 188(1-3):404–

425, 1992.

[64] Daniel T. Gillespie. The chemical langevin equation. Journal of Chemical

Physics, 113(1):297–306, 2000.

[65] Daniel T. Gillespie. Stochastic simulation of chemical kinetics. Annual

Review of Physical Chemistry, 58:35–55, 2007.

[66] Daniel T. Gillespie and Linda R. Petzold. Improved leap-size selection for ac-

celerated stochastic simulation. Journal of Chemical Physics, 119(16):8229–

82234, 2003.

[67] Daniel T. Gillespie and Linda R. Petzold. System Modeling in Cell Biol-

ogy: From Concepts to Nuts and Bolts, chapter Numerical Simulation for

Biochemical Kinetics, pages 331–353. MIT Press, 2006.

[68] Albert Goldbeter and Daniel E. Koshland Jr. An amplified sensitivity arising

from covalent modification in biological systems. PNAS, 78(11):6840–6844,

November 1981.

[69] Ido Golding, Johan Paulsson, Scott M. Zawilski, and Edward C. Cox. Real-

time kinetics of gene activity in individual bacteria. Cell, 123(6):1025–1036,

2005.

[70] Carlos Gomez-Uribe, George C. Verghese, and Leonid A. Mirny. Operating

regimes of signaling cycles: Statics, dynamics, and noise filtering. PLoS

Computational Biology, 3(12):e246, 2007.

[71] Calin C. Guet, Michael B. Elowitz, Weihong Hsing, and Stanislas Leibler.

Combinatorial synthesis of genetic networks. Science, 296:1466–1470, 2002.

BIBLIOGRAPHY 216

[72] Stephen E. Halford and John F. Marko. How do site-specific dna-binding

proteins find their targets? Nucleic Acids Research, 32(10):3040–3052, 2004.

[73] Juris Hartmanis. On the weight of computations. Bulletin of the European

Association for Theoretical Computer Science, 55:136–138, 1995.

[74] Sikander Hayat and Thomas Hinze. Toward integration of in vivo molecular

computing devices: successes and challenges. HFSP Journal, 2(5):239–243,

2008.

[75] Donald T. Haynie. Biological Thermodynamics. Cambridge University

Press, 2001.

[76] Fernand Hayot and Ciriyam Jayaprakash. The linear noise approximation

for molecular fluctuations within cells. Physical Biology, 1:205–210, 2004.

[77] John Heath, Marta Kwiatkowska, Gethin Norman, David Parker, and Ok-

sana Tymchyshyn. Probabilistic model checking of complex biological path-

ways. Theoretical Computer Science, 391:239–257, 2008.

[78] Rutger Hermsen, Sander Tans, and Pieter Rein ten Wolde. Transcriptional

regulation by competing transcription factor modules. PLoS Computational

Biology, 2:1552–1560, 2006.

[79] Allen Hjelmfelt and John Ross. Chemical implementation and thermody-

namics of collective neural networks. PNAS, 89:388–391, 1992.

[80] Allen Hjelmfelt, Edward D. Weinberger, and John Ross. Chemical imple-

mentation of neural networks and turing machines. PNAS, 88:10983–10987,

1991.

[81] Allen Hjelmfelt, Edward D. Weinberger, and John Ross. Chemical imple-

mentation of finite-state machines. PNAS, 89:383–387, 1992.

BIBLIOGRAPHY 217

[82] Sara Hooshangi, Stephan Thiberge, and Ron Weiss. Ultrasensitivity

and noise propagation in a synthetic transcriptional cascade. PNAS,

102(10):3581–3586, 2005.

[83] Sara Hooshangi and Ron Weiss. The effect of negative feedback on noise

propagation in transcriptional gene networks. Chaos, 16:026108, 2006.

[84] Gil Hornung and Naama Barkai. Noise propagation and signaling sensitivity

in biological networks: A role for positive feedback. PLoS Computational

Biology, 4(1):0055–0061, 2008.

[85] Meredith L. Howard and Eric H. Davidson. cis-regulatory control circuits

in development. Developmental Biology, 271(1):109–118, 2004.

[86] Farren J. Isaacs, William J. Blake, and James J. Collins. Signal processing

in single cells. Science, 307(5717):1886–1888, 2005.

[87] Mads Kaern, Timothy C. Elston, William J. Blake, and James J. Collins.

Stochasticity in gene expression: from theories to phenotypes. Nature Re-

views Genetics, 6:451–464, 2005.

[88] Tomer Kalisky, Erez Dekel, and Uri Alon. Costbenefit theory and optimal

design of gene regulation functions. Physical Biology, 4:229–245, 2007.

[89] Benjamin B Kaufmann and Alexander van Oudenaarden. Stochastic gene

expression: from single molecules to the proteome. Current Opinion in

Genetics & Development, 17:107–112, 2007.

[90] Thomas B. Kepler and Timothy C. Elston. Stochasticity in transcriptional

regulation: Origins, consequences, and mathematical representations. Bio-

physical Journal, 81:3116–3136, 2001.

[91] Hideki Kobayashi, Mads Kaern, Michihiro Araki, Kristy Chung, Timothy S.

Gardner, Charles R. Cantor, and James J. Collins. Programmable cells:

BIBLIOGRAPHY 218

Interfacing natural and engineered gene networks. PNAS, 101(22):8414–

8419, 2004.

[92] Grigory Kolesov, Zeba Wunderlich, Olga N. Laikova, Mikhail S. Gelfand,

and Leonid A. Mirny. How gene order is influenced by the biophysics of

transcription regulation. PNAS, 104(35):13948–13953, 2007.

[93] Beat P. Kramer, Cornelius Fischer, and Martin Fussenegger. Biologic gates

enable logical transcription control in mammalian cells. Biotechnology and

Bioengineering, 87(4):478–484, 2004.

[94] Marta Kwiatkowska, Gethin Norman, and David Parker. Prism 2.0: a tool

for probabilistic model checking. Quantitative Evaluation of Systems, 2004.

QEST 2004. Proceedings. First International Conference on the, pages 322–

323, Sept. 2004.

[95] Marta Kwiatkowska, Gethin Norman, and David Parker. Probabilistic

model checking in practice: case studies with prism. ACM SIGMETRICS

Performance Evaluation Review, 32:16 – 21, 2005.

[96] Harvey Lederman, Joanne Macdonald, Darko Stefanovic, and Milan N. Sto-

janovic. Deoxyribozyme-based three-input logic gates and construction of a

molecular full adder. Biochemistry, 45(4):1194–1199, 2006.

[97] Jinzhi Lei. Stochasticity in single gene expression with both intrinsic

noise and fluctuation in kinetic parameters. Journal of Theoretical Biol-

ogy, 256:485 – 492, 2009.

[98] Heon Man Lim, Kelly Hughes, and Melvin I. Simon. The effects of sym-

metrical recombinationsite hixc on hin recombinase function. Journal of

Biological Chemistry, 267(5):11183–11190, 1992.

[99] Richard J. Lipton. Dna solution of hard computational problems. Science,

268(5210):542–545, 1995.

BIBLIOGRAPHY 219

[100] Dongsheng Liu and Shankar Balasubramanian. A proton-fuelled dna

nanomachine. Angewandte Chemie, 42(46):5734–5736, 2003.

[101] Qinghua Liu, Liman Wang, Anthony G. Frutos, Anne E. Condon, Robert M.

Corn, and Lloyd M. Smith. Dna computing on surfaces. Nature, 403:175–

179, 2000.

[102] Seth Lloyd. Ultimate physical limits to computation. Nature, 406:1047–

1054, 2000.

[103] Marcelo O. Magnasco. Chemical kinetics is turing universal. Physical Review

Letters, 78(6):1190–1193, 1997.

[104] James A.R. Marshall, Anna Dornhaus, Nigel R. Franks, and Tim Kovacs.

Noise, cost and speed-accuracy trade-offs: decision-making in a decentral-

ized system. Journal of Royal Society Interface, 3(7):243–254, 2006.

[105] Avraham E. Mayo, Yaakov Setty, Seagull Shavit, Alon Zaslaver, and Uri

Alon. Plasticity of the cis-regulatory input function of a gene. PLOS Biology,

4(4):e45, 2006.

[106] Harley H. McAdams and Adam Arkin. Stochastic mechanisms in gene ex-

pression. PNAS, 94:814–819, 1997.

[107] Javier I. Medina-Bellver, Patricia Marin, Antonio Delgado, Alicia

Rodriguez-Sanchez, Emilio Reyes, Juan L. Ramos, and Silvia Marques.

Evidence for in situ crude oil biodegradation after the Prestige oil spill.

Environmental Microbiology, 7(6):773–779, 2005.

[108] Pankaj Mehta, Ranjan Mukhopadhyay, and Ned S Wingreen. Exponential

sensitivity of noise-driven switching in genetic networks. Physical Biology,

5, 2008.

[109] Dmitriy Melnikov, Guinevere Strack, Marcos Pita, Vladimir Privman, and

Evgeny Katz. Analog noise reduction in enzymatic logic gates. J. Phys.

Chem. B, 113(30):10472–10479, 2009.

BIBLIOGRAPHY 220

[110] Leonor Michaelis and Maud L. Menten. Kinetics of invertase action.

Biochem, 49:333, 1913.

[111] Jacques Monod, Jean-Paul Changeux, and Francois Jacob. Allosteric pro-

teins and cellular control systems. Journal of Molecular Biology, 6:306–329,

1963.

[112] Jacques Monod, Jeffries Wyman, and Jean-Paul Changeux. On the nature

of allosteric transitions: A plausible model. Journal of Molecular Biology,

12:88–118, 1965.

[113] Marco J. Morelli, Rosalind J. Allen, Sorin Tanase-Nicola, and Pieter Rein

ten Wolde. Eliminating fast reactions in stochastic simulations of biochem-

ical networks: a bistable genetic switch. The Journal of Chemical Physics,

128:169901, 2008.

[114] Mikhail Motornov, Jian Zhou, Marcos Pita, Venkateshwarlu Gopishetty,

Ihor Tokarev, Evgeny Katz, and Sergiy Minko. Chemical transformers from

nanoparticle ensembles operated with logic. Nano Lett., 8(9):2993–2997,

2008.

[115] Kevin F. Murphy, Rhys M. Adams, Xiao Wang, Gabor Balazsi, and James J.

Collins. Tuning and controlling gene expression noise in synthetic gene

networks. Nucleic Acids Research, 38(8):2712–2726, 2010.

[116] James D. Murray. Mathematical Biology I. An Introduction. Springer, 2002.

[117] Dmitry Nevozhay, Rhys M. Adams, Kevin F. Murphy, Kresimir Josic, and

Gabor Balazsia. Negative autoregulation linearizes the doseresponse and

suppresses the heterogeneity of gene expression. PNAS, 106(13):5123–5128,

2009.

[118] John R. S. Newman, Sina Ghaemmaghami, Jan Ihmels, David K. Breslow,

Matthew Noble, Joseph L. DeRisi, and Jonathan S. Weissman. Single-cell

BIBLIOGRAPHY 221

proteomic analysis of s. cerevisiae reveals the architecture of biological noise.

Nature, 441:840–846, 2006.

[119] Nam-Phuong D. Nguyen, Hiroyuki Kuwahara, Chris J. Myers, and James P.

Keener. The design of a genetic muller c-element. Asynchronous Circuits

and Systems, International Symposium on, 0:95–104, 2007.

[120] Tamara Niazov, Ronan Baron, Eugenii Katz, Oleg Lioubashevski, and Ita-

mar Willner. Concatenated logic gates using four coupled biocatalysts op-

erating in series. PNAS, 103(46):17160–17163, 2006.

[121] Akimitsu Okamoto, Kazuo Tanaka, and Isao Saito. Dna logic gates. J. Am.

Chem. Soc., 126(30):9458–9463, 2004.

[122] Ertugrul M. Ozbudak, Mukund Thattai, Iren Kurtser, Alan D. Grossman,

and Alexander van Oudenaarden. Regulation of noise in the expression of

a single gene. Nature Genetics, 31:69–73, 2002.

[123] Johan Paulsson. Summing up the noise in gene networks. Nature, 427:415–

418, 2004.

[124] Johan Paulsson. Models of stochastic gene expression. Physics of Life

Reviews, 2:157–175, 2005.

[125] Johan Paulsson, Otto G. Berg, and Mans Ehrenberg. Stochastic focus-

ing: Fluctuation-enhanced sensitivity of intracellular regulation. PNAS,

97(13):7148–7153, 2000.

[126] Johan Paulsson and Mans Ehrenberg. Random signal fluctuations can re-

duce random fluctuations in regulated components of chemical regulatory

networks. Physical Review Letters, 84(23):5447–5450, 2000.

[127] Johan Paulsson and Johan Elf. System Modeling in Cell Biology: From

Concepts to Nuts and Bolts, chapter Stochastic modeling of intracellular

kinetics, pages 149–176. MIT Press, 2006.

BIBLIOGRAPHY 222

[128] Juan M. Pedraza and Johan Paulsson. Effects of molecular memory and

bursting on fluctuations in gene expression. Science, 319(5861):339–343,

2008.

[129] Juan M. Pedraza and Alexander van Oudenaarden. Noise propagation in

gene networks. Science, 307:1965–1969, 2005.

[130] Jason R. Pirone and Timothy C. Elston. Fluctuations in transcription factor

binding can explain the graded and binary responses observed in inducible

gene expression. Journal of Theoretical Biology, 226:111–121, 2004.

[131] Kenneth E. Prehoda, Jessica A. Scott, R. Dyche Mullins, and Wendell A.

Lim. Integration of multiple signals through cooperative regulation of the

n-wasp-arp2/3 complex. Science, 290(27):801–806, 2000.

[132] Vladimir Privman, Guinevere Strack, Dmitry Solenov, Marcos Pita, and

Evgeny Katz. Optimization of enzymatic biochemical logic for noise reduc-

tion and scalability: How many biocomputing gates can be interconnected

in a circuit? J. Phys. Chem. B, 112(37):11777–11784, 2008.

[133] Arjun Raj and Alexander van Oudenaarden. Nature, nurture, or chance:

Stochastic gene expression and its consequences. Cell, 135:216–226, 2008.

[134] Stephen Ramsey, David Orrell, and Hamid Bolouri. Dizzy: Stochastic simu-

lation of large-scale genetic regulatory networks. Journal of Bioinformatics

and Computational Biology, 3(2):415–436, 2005.

[135] Jonathan M. Raser and Erin K. O’Shea. Noise in gene expression: Origins,

consequences, and control. Science, 309(5743):2010–2013, 2005.

[136] Keller Rinaudo, Leonidas Bleris, Rohan Maddamsetti, Ron Weiss Sairam

Subramanian and, and Yaakov Benenson. A universal rnai-based logic eval-

uator that operates in mammalian cells. Nature Biotechnology, 25:795–801,

2007.

BIBLIOGRAPHY 223

[137] Nitzan Rosenfeld, Michael B. Elowitz, and Uri Alon. Negative autoreg-

ulation speeds the response times of transcription networks. Journal of

Molecular Biology, 323:785–793, 2002.

[138] Nitzan Rosenfeld, Jonathan W. Young, Uri Alon, Peter S. Swain, and

Michael B. Elowitz. Gene regulation at the single-cell level. Science,

307(5717):1962–1965, 2005.

[139] Marc R. Roussel and Rui Zhu. Stochastic kinetics description of a simple

transcription model. Bulletin of Mathematical Biology, 68:1681–1713, 2006.

[140] Mohsen Sabouri-Ghomi, Andrea Cilibertoc, Sandip Kara, Bela Novak, and

John J. Tyson. Antagonism and bistability in protein interaction networks.

Journal of Theoretical Biology, 250(1), 2008.

[141] Alan Saghatelian, Nicolas H. Volcker, Kevin M. Guckian, Victor S.-Y. Lin,

and M. Reza Ghadiri. Dna-based photonic logic gates: And, nand, and

inhibit. J. Am. Chem. Soc., 125(2):346–347, 2003.

[142] Kensaku Sakamoto, Hidetaka Gouzu, Ken Komiya, Daisuke Kiga, Shigeyuki

Yokoyama, Takashi Yokomori, and Masami Hagiya. Molecular computation

by dna hairpin formation. Science, 288:1223–1226, 2000.

[143] H Salis and Y N Kaznessis. Computer-aided design of modular protein

devices: Boolean and gene activation. Physical Biology, 3:295–310, 2006.

[144] Moises Santillan and Michael C. Mackey. Influence of catabolite repression

and inducer exclusion on the bistable behavior of the lac operon. Biophysical

Journal, 86:1282–1292, 2004.

[145] Daniel J. Sayut, Yan Niu, and Lianhong Sun. Construction and enhance-

ment of a minimal genetic and logic gate. Applied and Environmental Mi-

crobiology, 75(3):637–642, 2009.

BIBLIOGRAPHY 224

[146] Maria J. Schilstra and Chrystopher L. Nehaniv. Bio-logic: Gene expression

and the laws of combinatorial logic. Artificial Life, 14:121–133, 2008.

[147] Georg Seelig, David Soloveichik, David Yu Zhang, and Erik Winfree.

Enzyme-free nucleic acid logic circuits. Science, 314(5805):1585–1588, 2006.

[148] Yaakov Setty, Avraham E. Mayo, Michael G. Surette, and Uri Alon. Detailed

map of a cis-regulatory input function. PNAS, 100(13):7702–7707, 2003.

[149] Vahid Shahrezaei, Julien F Ollivier, and Peter S Swain. Colored extrinsic

fluctuations and stochastic gene expression. Molecular Systems Biology,

4(196), 2008.

[150] Ehud Shapiro and Binyamin Gil. Biotechnology: Logic goes in vitro. Nature

Nanotechnology, 2:84–85, 2007.

[151] Tatsuo Shibata and Koichi Fujimoto. Noisy signal amplification in ultra-

sensitive signal transduction. PNAS, 102(2):331–336, 2005.

[152] Tatsuo Shibata and Masahiro Ueda. Noise generation, amplification and

propagation in chemotactic signaling systems of living cells. BioSystems,

93:126–132, 2008.

[153] Rafael Silva-Rocha and Victor deLorenzo. Mining logic gates in prokaryotic

transcriptional regulation networks. FEBS Letters, 582:1237–1244, 2008.

[154] Michael L. Simpson, Chris D. Cox, and Gary S. Sayler. Frequency domain

analysis of noise in autoregulated gene circuits. PNAS, 100(8):4551–4556,

2003.

[155] John L. Spudich and D. E. Koshland Jr. Non-genetic individuality: chance

in the single cell. Nature, 262:467–471, 1976.

[156] Dov J Stekel and Dafyd J Jenkins. Strong negative self regulation of prokary-

otic transcription factors increases the intrinsic noise of protein expression.

BMC Systems Biology, 2(6), 2008.

BIBLIOGRAPHY 225

[157] William J. Stewart. Introduction to the Numerical Solution of Markov

Chains. Princeton University Press, Princeton, New Jersey, 1994.

[158] Milan N. Stojanovic, Tiffany Elizabeth Mitchell, and Darko Stefanovic.

Deoxyribozyme-based logic gates. J. Am. Chem. Soc., 124(14):3555–3561,

2002.

[159] Milan N. Stojanovic and Darko Stefanovic. Deoxyribozyme-based half-

adder. J. Am. Chem. Soc., 125(22):6673–6676, 2003.

[160] Milan N Stojanovic and Darko Stefanovic. A deoxyribozyme-based molec-

ular automaton. Nature Biotechnology, 21(9):1069–1074, 2003.

[161] Peter S. Swain, Michael B. Elowitz, and Eric D. Siggia. Intrinsic and extrin-

sic contributions to stochasticity in gene expression. PNAS, 99(20):12795–

12800, 2002.

[162] Stephane Swillens and Isabelle Pirson. Highly sensitive control of tran-

scriptional activity by factor heterodimerization. The Biochemical Journal,

301:9–12, 1994.

[163] Cheemeng Tan, Faisal Reza, and Lingchong You. Noise-limited frequency

signal transmission in gene circuits. Biophysical Journal, 93:3753–3761,

2007.

[164] Cheemeng Tan, Hao Song, Jarad Niemi, and Lingchong You. A synthetic

biology challenge: making cells compute. Molecular BioSystems, 3:343–353,

2007.

[165] Sorin Tanase-Nicola, Patrick B. Warren, and Pieter Rein ten Wolde. Signal

detection, modularity, and the correlation between extrinsic and intrinsic

noise in biochemical networks. Physical Review Letters, 97:068102, 2006.

BIBLIOGRAPHY 226

[166] Yuichi Taniguchi, Paul J. Choi, Gene-Wei Li, Huiyi Chen, Mohan Babu,

Jeremy Hearn, Andrew Emili, and X. Sunney Xie. Quantifying E.coli pro-

teome and transcriptome with single-molecule sensitivity in single cells. Sci-

ence, 329(5991):533–538, 2010.

[167] Mukund Thattai and Alexander van Oudenaarden. Intrinsic noise in gene

regulatory networks. PNAS, 98(15):8614–8619, 2001.

[168] Mukund Thattai and Alexander van Oudenaarden. Attenuation of noise in

ultrasensitive signaling cascades. Biophysical Journal, 82:2943–2950, 2002.

[169] Henk C. Tijms. A First Course in Stochastic Models. Wiley Blackwell, 2003.

[170] John J Tyson, Katherine C Chen, and Bela Novak. Sniffers, buzzers, toggles

and blinkers: dynamics of regulatory and signaling pathways in the cell.

Current Opinion in Cell Biology, 15:221–231, 2003.

[171] Nico G. van Kampen. Stochastic processes in physics and chemistry, Third

Edition (North-Holland Personal Library). North Holland, 3rd edition, 2007.

[172] Christopher A Voigt. Genetic parts to program bacteria. Current Opinion

in Biotechnology, 17:548–557, 2006.

[173] Liming Wang, Jack Xin, and Qing Nie. A critical quantity for noise atten-

uation in feedback systems. PLoS Computational Biology, 6(4):e1000764,

2010.

[174] Ron Weiss and Subhayu Basu. The device physics of cellular logic gates.

First Workshop on Non-Silicon Computation, pages 54–61, 2002.

[175] RonWeiss, Subhayu Basu, Sara Hooshangi, Abigail Kalmbach, David Karig,

Rishabh Mehreja, and Ilka Netravali. Genetic circuit building blocks for cel-

lular computation, communications, and signal processing. Natural Com-

puting, 2:47–84, 2003.

BIBLIOGRAPHY 227

[176] Robert J. White. Gene Transcription Mechanism and Control. Blackwell

Science LTD, 2001.

[177] Robert B. Winter, Otto G. Berg, and Peter H. von Hippel. Diffusion-driven

mechanisms of protein translocation on nucleic acids. 3. the escherichia coli

lac repressor–operator interaction: kinetic measurements and conclusions.

Biochemistry, 20(24):6961–6977, 1981.

[178] Zeba Wunderlich and Leonid A. Mirny. Spatial effects on the speed and

reliability of protein-dna search. Nucleic Acids Research, 36(11):3570–3578,

2008.

[179] Zeba Wunderlich and Leonid A. Mirny. Different gene regulation strategies

revealed by analysis of binding motifs. Trends in Genetics, 25(10):434–440,

2009.

[180] Florian M Wurm. Production of recombinant protein therapeutics in culti-

vated mammalian cells. Nature Biotechnology, 22(11):1393–1398, 2004.

[181] Jianhua Xing and Jing Chen. The goldbeter-koshland switch in the first-

order region and its response to dynamic disorder. PLoS ONE, 3(5):e2140,

2008.

[182] Yohei Yokobayashi, Ron Weiss, and Frances H. Arnold. Directed evolution

of a genetic circuit. PNAS, 99(26):16587–16591, 2002.

[183] Lingchong You, Robert Sidney Cox III, Ron Weiss, and Frances H. Arnold.

Programmed population control by cell-cell communication and regulated

killing. Nature, 428:868–871, 2004.

[184] Nicolae Radu Zabet and Dominique F. Chu. Computational limits to binary

genes. Journal of the Royal Society Interface, 7:945–954, 2010.

[185] Nicolae Radu Zabet and Dominique F. Chu. Stochasticity and robustness in

bi-stable systems. In Bioinformatics and Biomedical Engineering (iCBBE),

BIBLIOGRAPHY 228

2010 4th International Conference on, pages 1–4, Chengdu, China, 18-20

June 2010. IEEE Xplore.

[186] Nicolae Radu Zabet, Andrew N. W. Hone, and Dominique F. Chu. Design

principles of transcriptional logic circuits. In Artificial Life XII: Proceedings

of the 12th International Conference on the Synthesis and Simulation of

Living Systems, Odense, Denmark, 19-23 August 2010. MIT Press.

[187] Jiajun Zhang, Zhanjiang Yuan, and Tianshou Zhou. Physical limits of feed-

back noise-suppression in biological networks. Physical Biology, 6(4):046009,

2009.

[188] Jiajun Zhang, Zhanjiang Yuan, and Tianshou Zhou. Synchronization and

clustering of synthetic genetic networks: A role for cis-regulatory modules.

Physical Review E, 79:041903, 2009.

[189] Jian Zhou, Mary A. Arugula, Jan Halamek, Marcos Pita, and Evgeny Katz.

Enzyme-based nand and nor logic gates with modular design. J. Phys.

Chem. B, 113(49):16065–16070, 2009.

[190] Rui Zhu, Andre S. Ribeiro, Dennis Salahub, and Stuart A. Kauffman. Study-

ing genetic regulatory networks at the molecular level: Delayed reaction

stochastic models. Journal of Theoretical Biology, 246:725–745, 2007.

