
Developing Safety Critical Java applications with oSCJ/L0

Ales Plsek, Lei Zhao, Veysel H. Sahin, Daniel Tang, Tomas Kalibera†, Jan Vitek
Purdue University †Charles University

ABSTRACT
We present oSCJ, an implementation of the draft of Safety
Critical Java (SCJ) specification. SCJ is designed to make
Java amenable to writing mission- and safety-critical soft-
ware. It does this by defining a subset of the Real-time
Specification for Java that trades expressiveness for verifia-
bility. This paper gives a high-level description of our im-
plementation of the first compliance level of the SCJ speci-
fication, a library called oSCJ, and reports on performance
evaluation on the Ovm real-time Java virtual machine. We
compare SCJ to C on both a real-time operating system
on the LEON3 platform and Linux on a x86. Our results
suggest that a high-degree of predictability and competitive
performance can indeed be achieved.

Categories and Subject Descriptors
D.3.4 [Programming Languages]: Processors—run-time
environments; D.3.3 [Programming Languages]: Lan-
guage Constructs and Features—classes and objects; D.4.7
[Operating Systems]: Organization and Design—real-time
systems and embedded systems.

General Terms
Languages, Experimentation.

Keywords
Safety Critical Systems, Java virtual machine, Memory man-
agement.

1. INTRODUCTION
Software reliability is a central concern for mission- and
safety-critical systems such as avionics control systems, med-
ical instrumentation or space applications. A failure or mal-
function may result in damage to equipment, serious injury
or even death. Thus, safety-critical applications are required
to follow an exceedingly rigorous development, validation,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
JTRES’10 August 19-21, 2010 Prague, Czech Republic
Copyright 2010 ACM 978-1-4503-0122-0/10/08 ...$10.00.

and certification process. Safety critical software is writ-
ten to be verifiable, often in a restricted subset of a general
purpose programming language such as C or Ada. How-
ever, with growing size of code bases – million line systems
are not unusual – increasing software productivity is becom-
ing a driving force behind the move to adopt technologies
such as Java. The Java programming language and platform
bring a number of features that facilitate the cost-effective
development of large software systems.

To support safety-critical development in Java, the JSR-
302 expert group was tasked with defining a new standard
– the Safety Critical Java (SCJ) specification [5]. The SCJ
specification is based on a subset of Real-Time Specification
for Java (RTSJ) [2] and is designed to enable the creation of
applications, infrastructures, and libraries that are amenable
to certification under safety critical standards (such as DO-
178B, Level A). The SCJ presents embedded developers
with a simplified programming model centered around in-
dependent tasks called missions which have access to a re-
stricted version of scoped memory. Other features of the
Java platform, such as threading, reflection, and class load-
ing, are restricted to reduce the code base and simplify cer-
tification. As mission- and safety-critical applications can
have very different requirements, the SCJ specification offers
three compliance levels with increasingly richer program-
ming models allowing developers to tailor the platform to
the needs of their application.

This paper introduces oSCJ, an open-source implementa-
tion of the first compliance level of the draft SCJ specifica-
tion. We implemented SCJ as an independent Java library
with a well defined interface to the underlying virtual ma-
chine. To run it efficiently we modified the Ovm [1] real-
time JVM by removing features that were not required and
adapting data structures and algorithms to the simpler SCJ
model. A set of tools comes with oSCJ. In particular, a
static checker for proving certain properties of SCJ applica-
tions [10] and a Technology Compatibility Kit [11]. For eval-
uation, we refactored the CDx benchmark [6] and ran it on
the LEON3 architecture, a platform that is used by NASA
and ESA, and the RTEMS real-time operating system. The
performance evaluations shows that SCJ has performance
competitive with C. The library, VM, and the benchmark
are freely available under an open-source license1.

The SCJ specification is still under development, the API
and examples presented in this paper are subject to change.

1The oSCJ is available from www.ovmj.net/oscj.

95

2. THE SAFETY CRITICAL JAVA SPECI-
FICATION

The complexity of safety critical software varies between ap-
plication; the SCJ specification lets developers tailor the ca-
pabilities of the platform to the needs of application through
compliance levels. The first level, Level 0, provides a simple,
frame-based cyclic executive model which is single threaded
with a single mission. Level 1 extends this model with multi-
threading via aperiodic event handlers, multiple missions,
and a fixed-priority preemptive scheduler. Level 2 lifts re-
strictions on threads and supports nested missions. In the
remainder we will focus on Level 0.

2.1 Missions
SCJ programs are organized as missions, which are inde-
pendent computational units with respect to lifetime and
resources needed. Each mission is composed of a bounded
number of schedulable objects. Missions are launched accord-
ing to a pre-defined order. Figure 1 shows the three phases
of a mission: initialization, execution, and cleanup. After a
mission terminates, the next mission is released if there is
one.

setup teardowninitialization execution cleanup

next mission

current mission

Figure 1: Mission Life Cycle.

The concept of schedulable object is inherited from RTSJ.
A schedulable object contains both computation logic and
some scheduling constraints, such as release time, deadline,
priority, and so on. In the SCJ specification, schedulable ob-
jects have a dedicated thread and are restricted to periodic
event handlers (PEH), aperiodic event handlers (AEH), and
managed threads (MT) to simplify feasibility analysis.

At Level 0, the cyclic executive model defines a mission as
a set of computations, each of which is executed periodically
in a precise, clock-driven timeline, and processed repetitively
throughout the mission. The only schedulable objects per-
mitted at Level 0 are Periodic Event Handlers. All PEHs
execute under control of a single underlying thread, so the
implementation can safely ignore synchronization in the ap-
plication. In this scenario, an operation which blocks will
block the entire application. A Level 0 application runs on
a single CPU.

Different parts of the SCJ APIs are available during the
various phases of a mission. For instance, during the ini-
tialization phase, a private memory area is made available
to the application for allocating temporary objects which
will be reclaimed before any of the schedulable objects of
the mission get to run. Other features of the platform are
similarly restricted.

Figure 2 illustrates some of the core classes of the SCJ
specification. At the beginning of program execution, the
primordial thread – the first thread created by the system
starts in immortal memory and creates a mission sequencer
after executing the setup procedure. The mission sequencer
holds references to all of the missions and repeatedly selects
the next mission to launch. The mission sequencer and all
mission instances live in immortal memory. Upon launching
a mission, the mission memory is allocated with the desired

size. A mission manager is then created, in mission mem-
ory, to control the mission’s schedulable objects. The three
phases of the mission are all executed in mission memory.
All schedulable objects are created in the initialization phase
of the mission; they are then started upon entering execu-
tion phase. A mission runs forever unless a termination
request is sent explicitly by one of its schedulable objects. If
a termination request is sent, the mission enters the cleanup
phase. The cleanup phase includes storing or reporting the
outcomes of a mission, as well as releasing all acquired re-
sources. Once the mission is completed, all mission-specific
objects are deallocated as the mission memory is reclaimed.

MissionSequencer

M1 Mi Mn

ImmortalMemory

......

MissionManager

SO1 SOn... ...

MissionMemory

PrivateMemory

- getNextMission()

- creates MissionMemory

- runs in

PrivateMemory

- runs in

- startAll()

- waitAll()

current

setup missions teardown

initialization execution cleanup

Figure 2: SCJ Mission classes.

2.2 Scoped Memory
The scope-based memory model introduced by RTSJ is re-
tained in the SCJ specification. The main differences with
the RTSJ are that the heap has been completely abandoned
and that scoped memory has been further restricted to make
certification easier. The SCJ specification has three types
of memory areas: immortal memory, mission memory, and
private memory. Immortal memory spans the lifetime of the
virtual machine; therefore, only objects that should survive
the entire program execution should be allocated there. The
lifetime of the latter two memory areas is bounded. Each
mission has a mission memory which is shared by the mis-
sion’s schedulable objects and used to allocate data that
must persist throughout the mission. Each schedulable has
its own private memory area for the data that is needed
for only a single activation of the schedulable. The enter-

PrivateMemory(s, logic) method creates a nested private

Immortal

Mission

P1

P2

P3

P1

P2

PEH PEH

Figure 3: Memory structure of a SCJ program.

96

memory of size s, enters it, and execute the logic within it.
A scope stack is a logical data structure that represent the
scoped memory areas that a given schedulable object has
entered implicitly (each schedulable object implicitly enters
mission memory and its private memory), or by calling en-

terPrivateMemory() or executeInArea(). Figure 3 illus-
trates this with the stacks of schedulable objects — two
periodic event handlers. The stacks grow logically from im-
mortal memory up to private memories. Unlike the RTSJ
where cactus stacks are allowed, the SCJ specification re-
stricts navigation to linear sequences of scopes. This is
achieved by removing the RTSJ’s enter() method and re-
placing it with the more restricted enterPrivateMemory()

which which only creates a subscope if there isn’t one active
already.

Another simplification in the SCJ is that private memo-
ries are always accessed by a single schedulable object, and
thus do not require synchronization on entry or exit. At
Level 1 and 2, mission memory and immortal memory can
be accessed concurrently by multiple threads.

For memory safety, every write to a field holding an object
reference must be checked to prevent dangling references.
An optional set of annotations can be used to prove that
at compile-time that all stores are safe. When these anno-
tations are used, an implementation is permitted to omit
scope checks.

3. IMPLEMENTING SCJ
Development of a SCJ infrastructure is a non-trivial task.
Figure 4 illustrates such an infrastructure with SCJ applica-
tions running on top of a SCJ library which, itself, commu-
nicates with a dedicated virtual machine. Most of the oSCJ
functionality has been implemented in the library with a
clear interface to the underlying virtual machine to ease the
task of porting it across VMs. For the virtual machine, we
have modified Ovm [1] to provide only the features required
to be compliant with SCJ. The runtime support for our VM
is lightweight. It contains two components: the memory
manager and an OS abstraction layer for thread manage-
ment. The runtime currently runs on POSIX-like platforms
such as Linux, NetBSD, and on top of the RTEMS classic
API.

HARDWARE

RTEMS

oSCJ VM

oSCJ

oSCJ VM - running on top of
OS or directly on bare hardware

Level 0

Level 1

Level 2 L2 - No Heap RealtimeThreads

L1 - Aperiodic Event Handlers

L0 - Periodic Event Handlers

RTEMS OS

Xilinx FPGA board with
LEON 3 architecture

Figure 4: oSCJ Infrastructure.

Since we focus on Level 0, we reduced the number of VM
threads to a single thread. This thread performs both the
boot and initialization sequences of the VM and then starts
executing the SCJ application. This required changing the
type of Ovm’s primordial thread to be instance of the Re-

altimeThread class. Furthermore, since there is only one
thread, we have turned off synchronization.

3.1 Virtual Machine Interface
Our SCJ library is designed to be independent from the
underlying VM. Therefore, we have designed an interface
that serves as a unique connection point between the library
and the VM. Figure 5 lists the methods in the VM interface.
The methods

The main tasks delegated to the VM are responsible for
creation and deletion of memory areas, switching of alloca-
tion context as well as other memory-related services. The
delayCurrentThreadAbsolute() method is used by the Cy-

clicExecutive class to wait for the start time of the next
execution frame. The getCurrentTime() and getClockRes-

olution() methods are dedicated to time related services.

interface VM_Interface {
 Opaque makeExplicitArea(long size);
 void destroyArea(Opaque area);
 Opaque makeArea(MemoryArea ma, long size);
 Opaque setCurrentArea(Opaque scope);
 Opaque getCurrentArea();
 MemoryArea getAreaMirror(Opaque area);
 Opaque getImmortalArea();
 Opaque areaOf(Object ref);
 long getScopeSize(Opaque scope);
 long memoryConsumed(Opaque scope);
 long memoryRemaining(Opaque scope);
 void resetArea(Opaque area);
 long sizeOf(Class clazz);
 long sizeOfReferenceArray(int length);
 long sizeOfPrimitiveArray(int length,
 Class clazz);
 void storeInOpaqueArray(Opaque[] arr,
 int index, Opaque val);
 int delayCurrentThreadAbsolute(long nanos);
 long getCurrentTime();
 long getClockResolution();
}

Figure 5: oSCJ VM Interface.

We have optimized the in-memory representation of objects
such that each Java object has a two-word header. The first
word is a pointer to type information for the object and the
second is unused (we intend to store a scope descriptor in
this field to speed up scope checks). Lock and GC fields are
not needed, and, as object never move in SCJ, hash codes
can be computed based on the objects’ addresses.

3.2 Memory Model
In our implementation, physical memory is organized in
three levels as illustrated in Figure 6. The top level con-
sist of immortal memory and all active missions. Each mis-
sion has a mission memory and what we call a backing store
level. This level is made up of a stack of private memory
areas. Finally, the scope level, describes the organization
of the memory within a scope where objects are allocated
contiguously.

At the top level, memory management is simple. Im-
mortal memory is pre-allocated and is never de-allocated,
and missions are added under the control of the mission se-

97

Im M1 P1 P2 P3 P1

BS level (PEH) BS level (PEH)

P2

top level

scope level

Figure 6: Physical memory is organized as three
levels of stacks: the top level, backing-store level,
and scope level.

quencer. At Level 0, there is at most a single mission active
at any given time. The size of a mission is given by a stor-
age configuration parameter that is attached to the mission.
At the backing store level, schedulable objects are created at
mission startup and space is reserved for each of them. Their
private memories are managed using a stack discipline and
are laid out contiguously in the space assigned their schedu-
lable. Private memory areas are allocated when they are
entered and reclaimed when their are exited. At scope level,
objects are allocated in bump pointer fashion. Deallocation
is implicit when the private memory is reclaimed.

This implementation has low-overhead. Allocation is con-
stant time, as it boils down to bumping a pointer. Deal-
location is linear in the size of the scope (due to the time
spent zeroing memory on exit). The bookkeeping overhead
for scope stacks is just two pointers (base and top). More-
over, there is no fragmentation due to scopes. SCJ requires
the programmer to specify maximum memory requirements
in advance, and our memory layout can fulfill any sequence
of allocation requests that fits in the scopes. However, the
raw size of memory allocated for each scope memory area
is slightly bigger than the requested memory size as it is
aligned by a memory page size, which depends on the archi-
tecture of the system. Lastly, none of the allocation oper-
ations requires synchronization in Level 0. (For other com-
pliance levels, private memory are thread local and thus do
not require synchronization).

The scope-stack that keeps track of entered memory areas
is implemented as an array. A pointer into the array is
referencing the currently active scope. As the list of entered
memory areas grows, the array size is being dynamically
adjusted.

3.3 Scope Checks
The VM implements scope checks to verify each memory ac-
cess. Consider the assignment x.f=y. It is safe if the scope
in which y is allocated is longer lived than the scope of x.
Since our VM memory areas are continuously starting with
immortal memory, continuing with mission memory, and the
backing stores of schedulable objects, nested private mem-
ory areas are allocated with longer lived areas first. Memory
areas allocated on lower addresses are longer lived than ar-
eas allocated on higher addresses. The code of the scope
check is given in Figure 7. On the fast path, we check if
the x and y are allocated in the same block of memory or if
the block of memory where x resides is in a higher address
space. In case this holds, the check succeeds since the re-
gion where x is allocated will be reclaimed earlier or at the

same time as y. In case this does not hold, we enter the
storeCheckSlow. In the slow path, we first check if y is in
the immortal memory, which would cause the check to suc-
ceed. Then we check if x is in the immortal memory, since
y is not in immortal, this would cause the check to fail. We
special case the checking for the immortal memory, since its
boundaries are not included in the boundaries of the scope
memory backing store due to engineering reasons. Finally,
we are safe to retrieve scope information of x and y from
the array that keeps track of the living scope memories. If
the variables are in the same scope, the assignment is legal,
otherwise the scope check fails since x resides in a scope that
lives longer than the scope of y.

void storeChecks(Oop x, Oop y) {
 int rx = x.asInt() >>> blockShift;
 int ry = y.asInt() >>> blockShift;
 if (rx >= ry) OK;
 else storeChecksSlow(rx, ry);
}

void storeChecksSlow(int rx, int ry) {
 if (ry < immortalEndIndex) OK;
 else if (rx < immortalEndIndex) FAIL;
 else {
 Area x_scope = scopeOwner[rx - scopeBase];
 Area y_scope = scopeOwner[ry - scopeBase];
 if (x_scope == y_scope) OK;
 else FAIL;
 }
}

Figure 7: Scope check implementation.

4. EVALUATION
We now set out to demonstrate that oSCJ can be com-
petitive with hand-written C code in performance and pre-
dictability. To this end, we set up a representative workload
on a realistic platform. For our workload, we selected the
CDx [6] benchmark that we refactored to use the SCJ API.
The refactored version is called miniCDj. We used a set of
SCJ annotations to prove that the benchmark is allocation
safe [10], this allowed us to disable scope checks in the VM
during the benchmarking.

We compare miniCDj to CDc, a C implementation of the
same [7] that matches closely the Java version, with one
source file per Java class. Our experiments were run on
a GR-XC3S-1500 LEON development board. The board’s
Xilinx Spartan3-1500 field programmable gate array was
flashed with a LEON3 configuration, without a floating-
point unit, running at 40MHz, with an 8MB flash PROM
and 64MB of PC133 SDRAM split into two 32MB banks.
The version of RTEMS is 4.9.3. Our second platform is an
Intel Pentium 4 3.80GHz single core machine with 3GB of
RAM, running Ubuntu Linux 9.04 with the 2.6.28-15-generic
32-bit SMP kernel.

4.1 Benchmark overview
The CDx benchmark suite [6] is an open-source family of
benchmarks that can be used to measure performance of var-

98

20 40 60 80 100 120

1
5

10
50

50
0

20 40 60 80 100 120

1
5

10
50

50
0

CDc: Duration of Iteration Execution on LEON3 in
Milliseconds

miniCDj: Duration of Iteration Execution on LEON3 in
Milliseconds

N
um

be
r

of
 S

am
pl

es
(lo

ga
ri

th
m

ic
 s

ca
le

)

Figure 8: Histograms of execution times on LEON3. The observed worst-case for C is 34% faster Java.

400 450 500 550 600

40
50

60
70

80
90

Iteration

M
illi
se
co
nd
s

Iteration Number

Ite
ra

tio
n

Ex
ec

ut
io

n
Ti

m
e

in
 M

ill
is

ec
on

ds

CDc

miniCDj miniCDj worst case

CDc worst case

Figure 9: A detailed runtime comparison of for 200 iterations on LEON3.

0.2 0.3 0.4 0.5 0.6

1
5

1
0

5
0

5
0

0

0.2 0.3 0.4 0.5 0.6

1
5

1
0

5
0

5
0
0

CDc: Duration of Iteration Execution on x86 in
Milliseconds

miniCDj: Duration of Iteration Execution on x86 in
Milliseconds

N
u

m
b

er
 o

f
Sa

m
p

le
s

(l
o

ga
ri

th
m

ic
 s

ca
le

)

Figure 10: Histograms of execution times on X86. The observed worst case for C is 4% faster than Java.

2000 2050 2100 2150 2200

0.
20

0.
25

0.
30

0.
35

0.
40

0.
45

0.
50

Iteration

M
ill
is
ec
on
ds

Iteration Number

Ite
ra

tio
n

Ex
ec

ut
io

n
Ti

m
e

in
 M

ill
is

ec
on

ds

CDc

miniCDj

miniCDj worst caseCDc worst case

Figure 11: A detailed runtime comparison of CDc and miniCDj for 200 iterations on x86.

99

@SCJAllowed(value=LEVEL_0, members=true)
@Scope("immortal")
public class Level0Safelet extends CyclicExecutive {
 public Level0Safelet() { super(null); }

 public void setUp() {
 new ImmortalEntry().initialize();
 new Simulator().generate();
 }

 @RunsIn("cdx.Level0Safelet")
 protected void initialize() {
 new CollisionDetectorHandler();
 }

 public void tearDown() { dumpResults(); }

 public CyclicSchedule getSchedule(
 PeriodicEventHandler[] handlers) {
 CyclicSchedule.Frame[] frames = new CyclicSchedule.Frame[1];
 frames[0] = new CyclicSchedule.Frame(
 new RelativeTime(PERIOD, 0), handlers);
 return new CyclicSchedule(frames);
 }

 public long missionMemorySize() { return DETECTOR_SIZE; }
}

@SCJAllowed(value=LEVEL_0, members=true)
@Scope("cdx.Level0Safelet")
@RunsIn("cdx.CollisionDetectorHandler")
public class CollisionDetectorHandler
 extends PeriodicEventHandler {

 private final TransientScopeEntry cd = new
 TransientScopeEntry(new StateTable(), VOXEL_SIZE);
 public boolean stop;

 public CollisionDetectorHandler() {
 super(null, null, null, TRANSIENT_SIZE);
 }

 public void handleEvent() {
 if (stop)
 Mission.getCurrentMission().requestSequenceTermination();
 else
 runDetectorInScope(cd);
 }

 public void runDetectorInScope(TransientScopeEntry cd) {
 RawFrame f = ImmortalEntry.frameBuffer.getFrame();
 cd.setFrame(f);
 cd.processFrame();
 ImmortalEntry.frames++;
 stop = (ImmortalEntry.frames == MAX_FRAMES);
 }
}

Figure 12: miniCDj code example showing Level0Safelet and CollisionDetectorHandler classes.

ious hard and soft real-time platforms2. A CDx benchmark
consists of a periodic task that takes air traffic radar frames
as input and predicts potential collisions. The benchmark it-
self measures the time between releases of the periodic task,
as well as the time taken to compute potential collisions. For
our evaluation, we used a pre-simulated formula to generate
the radar frames to achieve a consistent workload across ex-
ecutions. The benchmark is floating-point intensive.

The benchmark is well-suited to the cyclic executive model,
creating miniCDj was fairly straightforward. Data is recorded
in immortal memory and is used for report generation after
the mission terminates. The main computation is done in a
periodic event handler, as the primary computation in CDx
is periodic. However, since the algorithm relies on positions
in the current and previous frame for each iteration, it is
not enough to simply have a periodic event handler, whose
memory is wiped after each iteration. A state table keeps
track of the previous positions of each airplane. Since the
state table is only relevant during the lifetime of the mission,
placing it inside the mission memory is the ideal solution.
miniCDj is approximately 3300 lines of code.

4.2 SCJ vs. C on LEON3
In our first experiment, we compared CDc with miniCDj on
the LEON3 platform. The periodic task runs every 120 mil-
liseconds with 6 airplanes and 10,000 iterations. Figure 8
gives the runtime performance of CDc and miniCDj. No
deadlines were missed in any executions. On average, the
execution time of one iteration in CDc is around 53 millisec-
onds, while for miniCDj it is around 69 milliseconds. The
median execution times for CDc are only 28% smaller than
the median for miniCDj. For real-time developers, the key
metric of performance is the worst case. C is 34% faster
than SCJ in the worst-case. Figure 11 shows a more de-
tailed view of a subset of the iterations. There is a strong

2See www.ovmj.net/cdx tags “miniCDj v1.1”, “CDc v1.1”.

correlation of execution times between CDc and miniCDj.
In this benchmark, Java is as predictable as C.

4.3 SCJ vs. C on x86
In this second experiment, we compared miniCDj to CDc on
x86. We configured the benchmark to run with a more inten-
sive workload, using 60 planes with a 60 millisecond period
for 10,000 iterations. The increased number of planes brings
more detected collisions, which consequently poses higher
demands on data structures, arithmetics, and memory al-
location. The histogram in Figure 10 shows the frequency
of execution times for SCJ and C. The data demonstrates
that on average miniCDj is by 12% faster than CDc. Look-
ing at the worst-case performance times, miniCDj has a 4%
overhead over CDc. We can observe again that the results
are highly correlated. In fact, for the most of the time,
miniCDj performance times stay below those of CDc. It is
unclear why Java would be faster than C. We believe that
Ovm facilitates inlining by generating a single C file and
removing most of the polymorphism around methods calls,
but this should have the same effect on both platform. The
x86 workload performs more allocation and CDc uses mal-

loc/free which is more expensive than the bump-pointer
allocation used for scoped memory in SCJ. Lastly, the SCJ
performance on LEON3 may have been skewed by the fact
that the Java code performs more floating point operations
(the C code was optimized by hand) and the LEON3 does
not have a hardware fp unit.

5. EXAMPLE
To illustrate the use of SCJ API we provide a code snip-
pet of the miniCDj benchmark. Figure 12 shows two key
classes of the benchmark : Level0Safelet and Collision-

DetectorHandler. The Level0Safelet class extends the
CyclicExecutive class and represents an instance of a Level
0 mission. It defines the specific actions that will be exe-
cuted during the initialization (the setUp() method) and the

100

cleanup of the mission (the cleanUp() method). First, the
oSCJ infrastructure asks for required mission space by call-
ing missionMemorySize() method and creates a correspond-
ing mission area. Furthermore, the initialize() method is
executed to instantiate all the periodic event handlers that
will be periodically executed during the mission. Therefore,
the infrastructure instantiates the CollisionDetectorHan-

dler class and creates a corresponding private memory - the
size of the private memory is given in the constructor of the
handler. Finally, the getSchedule() represents a Level 0
scheduler and defines the frequency of the handler execu-
tion.

The CollisionDetectorHandler class represents a Peri-

odicEventHandler dedicated to the mission and defines the
code that will be executed each time the handler is sched-
uled to run. The handler is executed by the infrastructure
code calling the handleEvent() method. Inside the han-

dleEvent() method we delegate the functionality to the
runDetectorInScope() method that first receives a data
frame holding the current positions of the aircraft3 and pro-
cess these data by calling cd.processFrame().

As the SCJ specification defines, a termination of the mis-
sion is explicitly under the control of the handler. In this
case, once the number of processed frames reaches the Con-

stants.MAX_FRAMES limit, the stop variable is set to true.
This will cause the handler to call Mission.getCurrentMi-
ssion().requestSequenceTermination() during the next
execution of the handleEvent() and the mission will be ter-
minated.

Finally, note that both the classes contain the SCJ anno-
tations specifying their level and runtime allocation context,
these annotations are used during the static analysis to prove
allocation safety of the application.

6. RELATED WORK
The only other implementation of the SCJ specification is
the reference implementation developed by the JSR-302 ex-
pert group. It is built on top of RTSJ and meant for pro-
totyping purposes. SCJ itself has roots in previous safety-
critical profiles for Java and Ada. Ravenscar Ada [3] in-
spired a restriction of the RTSJ proposed in [8]. That works
was similar to SCJ Level 1. Another profile was proposed
within the HIJA project [4]. Yet, another profile [9] argues
against reusing RTSJ-based classes to avoid inheriting un-
safe RTSJ features. Similar to SCJ, the authors propose a
mission mode that permits recycling CPU time budgets for
different phases of the application.

Fiji VM [7] is a new Java virtual machine dedicated to em-
bedded, hard real-time devices that, similarly to the oSCJ
VM, compiles Java code to C and supports a wide set of
platforms, including x86 and the LEON3 architecture run-
ning the RTEMS operating system. The Aonix PERC Pico
VM introduces stack-allocated scopes, an annotation sys-
tem, and an integrated static analysis system to verify scope
safety and analyze memory requirements.

7. CONCLUSION
This paper presented an implementation of the Safety Crit-
ical Java specification. The oSCJ library is isolated from

3Do not mistake with the execution frames from the
getSchedule() method.

the underlying virtual machine by a clearly defined inter-
face and can thus be easily ported to different virtual ma-
chines. In order to perform some performance experiments
we have modified the Ovm real-time Java virtual machine
to implement the oSCJ interface. We have successfully de-
ployed oSCJ on LEON3 and x86 and shown that it is capable
of running a representative, safety critical workload on an
embedded operating system and hardware platform, deliv-
ering predictability and throughput that is comparable to C
code.

Acknowledgments. This work was partially supported by
NSF grants CNS-0938256, CCF-0938255, CCF-0916310 and
CCF-0916350. The authors thank Petr Maj, Filip Pizlo, and
Ghaith Haddad and Gaisler Inc.

8. REFERENCES
[1] Austin Armbuster, Jason Baker, Antonio Cunei,

David Holmes, Chapman Flack, Filip Pizlo, Edward
Pla, Marek Prochazka, and Jan Vitek. A Real-time
Java virtual machine with applications in avionics.
ACM Transactions in Embedded Computing Systems
(TECS), 7(1), 2007.

[2] Greg Bollella, James Gosling, Benjamin Brosgol, Peter
Dibble, Steve Furr, and Mark Turnbull. The
Real-Time Specification for Java. Addison-Wesley,
June 2000.

[3] Alan Burns. The Ravenscar Profile. ACM SIGADA
Ada Letters, 19(4), 1999.

[4] HIJA. European High Integrity Java Project.
www.hija.info, 2006.

[5] JSR 302. Safety critical Java technology, 2007.

[6] Tomas Kalibera, Jeff Hagelberg, Filip Pizlo, Ales
Plsek, and Jan Vitek Ben Titzer and. CDx: A Family
of Real-time Java Benchmarks. In International
Workshop on Java Technologies for Real-time and
Embedded Systems (JTRES), 2009.

[7] Filip Pizlo, Lukasz Ziarek, Ethan Blanton, Petr Maj,
and Jan Vitek. High-level programming of embedded
hard real-time devices. In EuroSys Conference, 2010.

[8] Peter Puschner and Andy Wellings. A profile for high
integrity real-time java programs. In Proceedings of the
4th IEEE International Symposium on Object-oriented
Real-time distributed Computing (ISORC), 2001.

[9] Martin Schoeberl, Hans Sondergaard, Bent Thomsen,
and Anders P. Ravn. A Profile for Safety Critical
Java. In Int. Sym. on Object and Component-Oriented
Real-Time Distributed Computing (ISORC), 2007.

[10] Daniel Tang, Ales Plsek, and Jan Vitek. Static
Checking of Safety-Critical Java Annotations. In
International Workshop on Java Technologies for
Real-time and Embedded Systems (JTRES), 2010.

[11] Lei Zhao, Daniel Tang, and Jan Vitek. A Technology
Compatibility Kit for Safety Critical Java. In
International Workshop on Java Technologies for
Real-time and Embedded Systems (JTRES), 2009.

101

