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ABSTRACT

Performance non-determinism in computer systems complicates
evaluation, use, and even development of these systems. In
performance evaluation via benchmarking and simulation, non-
determinism requires long executions and more complex experi-
ment design. Real-time systems are hard to dimension and tune
with non-determinism. The slower benchmarking also slows down
system development, as it takes developers longer to see perfor-
mance implications of their modifications.

Cache-unaware physical page allocation in an operating system
is believed to be a significant cause of non-determinism, but there
is no published empirical study that would confirm it.

We provide such a study for the Linux operating system, com-
paring the default cache-unaware page allocation strategy to known
cache-aware strategies, page coloring and bin hopping. We have
implemented a framework for page allocation strategies in the
Linux kernel, employed it for these two strategies, and measured
the non-determinism on a large and diverse set of benchmarks. We
propose a statistical technique which allows to classify different
kinds of performance non-determinism and evaluate their magni-
tudes. Application of our technique reveals that the two strategies
do reduce performance non-determinism without significantly in-
creasing mean response time.

Categories and Subject Descriptors

D.4.2 [Software]: Operating Systems—virtual memory, main

memory, allocation/deallocation strategies; C.4 [Computer Sys-

tems Organization]: Performance of Systems

General Terms

Experimentation, Performance
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1. INTRODUCTION
Current computer systems are typically being designed for high-

est mean performance. Performance non-determinism is of less
concern. It is harder to measure the non-determinism, and for
many non-interactive and non-realtime applications it really does
not matter once the applications are developed. This is however
not the case for evaluation and consequently also for development
of these applications.

Performance evaluation methods become more complex and
time consuming once they have to cope with non-determinism.
Benchmarks have to be designed such that the source of non-de-
terminism is part of what is repeated. Larger non-determinism then
requires more repetitions, consuming more time. Also, different
levels of non-determinism typically require more complex analysis
techniques, such as ANOVA. A concrete instance of this problem is
non-deterministic behavior of just-in-time compiler in a Java Vir-
tual Machine. It was shown in [1] that multiple executions with
multiple compilation plans are needed, and ANOVA based evalua-
tion was proposed. Non-determinism also complicates simulation
studies [2], requiring more executions and modeling of the non-de-
terminism present in a system.

Decisions made during software development of complex sys-
tems often have to be based on performance evaluation of inter-
mediate versions. Thus, complex and long running benchmarks
also indirectly complicate software development. In regression
benchmarking, benchmarks are often run regularly and automati-
cally during development and their results are automatically sum-
marized. Many projects, including GCC, Eclipse, Linux kernel,
TAO, and Mono, have automated regression benchmarking. Ide-
ally, regression benchmarking also automatically detects regres-
sions. To have an acceptable ratio of false positives, automated
detection of regressions is then lengthier with any increase of non-
determinism and more complex with any new source of non-de-
terminism. A particular issue with performance non-determinism
that complicated software design was reported in [3]. Performance
changes due to renaming of symbols (which appear non-determin-
istic in sufficiently large software) were larger than performance
changes due to optimizations in a Java Virtual Machine. The per-
formance results were thus misleading the virtual machine design-
ers.

The magnitude of the problem of non-deterministic performance
in benchmarking can be surprisingly large and also easy to demon-
strate. Figure 1 shows response times measured with the popular
FFT Scimark2 benchmark [4] on the C#/Mono platform. The same
benchmark is executed 5 times on the same system with no back-
ground noise, in each execution measuring the response time of the
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Figure 1: Results from 5 consecutive executions of FFT Sci-

Mark2 benchmark in C#/Mono; 10 measurements per execu-

tion. Differences between executions reach 30%.

same operation 10 times. Performance within executions is stable,
but performance between executions differs by as much as 30%.

With the advent of user-space real-time applications running in
modified versions of Linux [5, 6], the ability to evaluate worst-case
performance is becoming increasingly important even for correct
functionality of applications. Even sacrifying mean performance
for easier or more reliable evaluation of worst-case execution time
thus becomes a viable option. A concrete example of how non-
determinism in execution makes real-time systems tuning harder
is the tuning of a real-time garbage collector’s rate, for example
when using the Metronome collector [7]. The optimal rate that
provides reasonable speed, but does not lead to running out of
memory (and thus crashing), is usually found experimentally by re-
starting an application for different rate values and heap size lim-
its. Non-determinism thus both complicates the tuning and leads
to parameters that use resources less efficiently, due to necessary
over-dimensioning (high collector rate, large heap).

A significant source of non-determinism in response time is
non-deterministic cache-unfriendly physical page allocation [8, 9],
which is performed by the operating system out of control of appli-
cations. Cache unfriendly physical page allocation may also lead to
unnecessarily large number of cache misses, and thus harm mean
response time. Earlier cache-aware allocation strategies [10], out
of which page-coloring and bin-hopping made it to mainstream op-
erating systems, were primarily aimed at reducing these unneces-
sary cache misses. The two strategies however also optimize the
page allocation for deterministic numbers of cache misses. Page
coloring, used by Solaris [11], Windows [12], and Free BSD [13],
works on the assumption that memory accesses are spatially-local,
and thus makes close virtual memory pages not to collide in the
cache. Bin hopping, used by Digital Unix [14], assumes that mem-
ory locations are accessed mostly in a fixed order, and thus makes
pages allocated soon after each other not to collide.

Despite earlier results showing 10-20% improvements in mean
performance thanks to these strategies [10], the gains are expected
to be smaller with current highly-associative caches. In Linux, the
gains were feared to be in general applications smaller than the
overhead of supporting the strategies [15]. Thus, earlier attempts to
incorporate page coloring to Linux were rejected (Linux 2.2 [16],
Linux 2.4 [17]), though no thorough performance evaluation was
carried out. Moreover, mean performance was ultimately favored
over predictability at that time.

Our contributions are:

• Linux kernel framework for cache aware page allocation with
page coloring and bin hopping strategies as modules.

• Statistical evaluation methodology for classification and
evaluation of non-determinism that scales to many bench-
marks and provides results which are easy to interpret. It
builds on our earlier methodology that lacked this scalabil-
ity.

• Experimental evaluation run on two platforms using a large
amount of benchmarks, both in non-realtime and real-time
kernel, which evaluates non-determinism and mean perfor-
mance with different allocation strategies.

The source code of our kernel modification can be downloaded
from [18]. The rest of the paper is structured as follows. In the
introduction of Section 2 we briefly classify sources of performance
non-determinism. In the rest of Section 2, we explain the technical
OS-level and hardware-level reasons for page allocation being an
important source of the non-determinism. In Section 3 we outline
the architecture and algorithm of the Linux kernel extension in the
context of the Linux kernel. In Section 4 we present our statistical
methodology for classification and evaluation of the non-determin-
ism. In Sections 5 and 6 we present and analyze the empirical
results.

There are two mostly disjoint blocks of our presentation: (a) the
hardware and operating system level description of the page allo-
cation problem and the kernel modifications and (b) statistics and
benchmarking content, describing the evaluation methodology and
the actually measured results. The analysis of the causes of slow-
down observed with page coloring and bin hopping, as well as the
conclusion, build on material presented in both of these blocks.

2. SOURCE OF NON-DETERMINISM
Current hardware and software systems include numerous

sources of non-determinism or randomness: some randomness
originates from the hardware (such as chip temperature, disk ro-
tation time, or hardware interrupts resulting from network traffic),
some randomness is intentional (randomized algorithms for com-
plex problems, randomized system behavior as an obstacle for at-
tackers), and some unpredictability results from very complex de-
terministic processes that may be even unknown to observers (ker-
nel page allocator, system scheduler, or simply a pseudo-random
number generator).

All of these types of non-determinism exist in current systems
and impact their performance. If all these sources acted indepen-
dently of each other and of the system state, performance evalua-
tion would still be quite easy – some repetitions and basic statistical
evaluation would suffice. Unfortunately, this is not the case. Al-
though some sources of non-determinism, such as context switches
or hardware interrupts, impact performance of executed code quite
independently of system or application state, there are at least two
exceptions:

• Some sources of non-determinism only impact application
performance at compile time (non-determinism in compila-

tion), and thus a performance tester has to re-compile the
tested application and re-run all tests several times to get rep-
resentative. results [19]

• Some sources of non-determinism only impact whole execu-
tions of an application (non-determinism in execution), and
thus a performance tester has to re-run all tests several times
to get representative results [9].



In this paper, we focus on the second type of these two, on
non-determinism in execution, and particularly on one of its main
causes: page allocation.

2.1 Non-determinism due to Page Allocation
Current processors typically implement virtual memory. They

provide applications with a linear (virtual) address space, which
is internally divided into blocks (pages) of a fixed size, i.e. 4KB.
When a virtual page is accessed by the application, the processor
with the guidance of the operating system finds out the correspond-
ing block of physical memory (physical page) that should handle
the memory access.

A virtual page is usually identified by several most significant
bits of the virtual memory address (page index). The remaining
bits then form the page offset. The virtual page index translates
to a physical page index, where the same page offset is used. As
an example, 32-bit Intel architectures have 32-bit virtual addresses,
where 20 most significant bits form the page index and the remain-
ing 12 least significant bits form the page offset. When the pro-
cessor, with the aid of the operating system’s physical page alloca-
tor, finds out a physical address for a memory access, it proceeds
through a hierarchy of caches potentially to the main memory.

The types of caches and their structure depend on a processor
type, but the following assumptions commonly hold:

• The largest difference in access time is between the last level
cache and the main memory.

• The caches are real-indexed.
• The caches are set-associative.

Real indexingmeans that the data stored in the cache is identified
by physical (real) memory addresses. Set-associativity is a com-
promise between cache utilization and internal cache complexity,
as well as power consumption. In order to explain set associativity,
we first explain the two extremes: full associativity and direct map-
ping. In a full-associative cache, data from any memory location
can be stored in any location (cache line) in the cache. Therefore,
only capacity misses can occur – accesses to data that is not in the
cache when the cache is full. Last level caches are usually not fully
associative for technological limitations – they would be too ex-
pensive and take too much power [20]. In a direct-mapped cache,
data from each memory location has only one location in the cache
(cache line) where it can be stored. Consequently, a cache con-
flict – and then a cache miss – may occur even if the cache is not
full. These misses are known as conflict misses. In a set-associative
cache, data from each memory location has a set of several cache
lines in the cache where it can be stored. The sets of cache lines are
disjoint. The cache thus conceptually behaves like a combination
of a single direct-mapped cache and multiple small full-associative
caches: the direct mapping is used to select one set for each mem-
ory location, and the set then behaves like a full associative cache.

Cache misses have a profound impact on performance – a miss
requires that the access is directed to main memory, which is at

least one order of magnitude more expensive than accessing even
the last level of the cache. Capacity misses happen due to limited
cache size relative to the working set size — that is, the amount
of memory an application actively uses. The working set size de-
pends on the algorithm of the application and its implementation
and can be controlled by the programmer. Conflict misses however
happen due to limited cache associativity and sub-optimal place-
ment of data in physical memory. The data placement is partially
set by the programmer and compiler (page offset) and partially by
physical page allocator (page index). In current commonly used
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Figure 2: Physical addressing and L2 cache addressing in Dell

Precision 340 (Intel 32-bit, 512K 8-way set associative L2 cache,

line size 64B).

operating systems, including Linux, the programmer has no chance
to influence the selection of the page index.

The magnitude by which the page allocator influences the num-
ber of conflict misses, and thus performance, depends on cache
parameters and on the page size. In Figure 2 we show a concrete
example – the Dell Precision 340. The page size is 4KB, with two
levels of cache; the last being 8-way set associative, with a capac-
ity of 512K and a cache line size of 64B. The cache therefore has
512K/(8 ∗ 64B) = 1024 sets. The least significant 6 bits of the
physical address select the 64B of a cache line. The following 10
least significant bits of the physical address select one of the 1024
sets, and the remaining bits of the physical address do not impact
the location in cache.

At the same time, the 12 least significant bits of the physical
address are the page offset (page size is 4KB), and the remaining 20
bits are the page index. It follows that of the 20 bit page index, the
4 least significant bits are the most important. The page allocator
therefore has the power to determine to which of the 16 bins of 64
sets data from a virtual memory page would fall in the cache. These
indexes of bins that the page allocator would select are sometimes
called cache colors.

The page coloring allocation strategy can be quite easily imple-
mented by re-using the cache color of the virtual page index for the
physical page index. The cache color are the bits where the cache
offset and page index overlap – in our example, that would consist
of the four least significant bits of the page index. As a result, data
from several (16 in the example) consecutive virtual pages would
fall into different sets in the cache, and thus would not cause con-
flict misses with each other. To prevent conflict misses between
different processes, the page colors can be hashed by process iden-
tification number [10].

The bin hopping allocation strategy then simply defines an or-
dering of bins and remembers the bin of the last page allocation.
Each page is allocated from the bin following the last used bin in
the defined ordering.

Both page coloring and bin hopping are however only heuris-
tics that rely on a given memory access pattern. When applica-
tions use a different pattern, they still might suffer from conflict
cache misses, and thus from sub-optimal performance. The result-
ing non-determinism in performance comes from the unpredictable
state of the page allocator at application start-up and, in a typical
case when the system is running multiple applications or services
at a time, also from unpredictable changes of the allocator state
during application run-time.



3. LINUX KERNEL EXTENSION
The kernel extension we have implemented was intended to be-

come a basis for further research on tuning performance through
virtual-to-physical mapping, rather than only a quick implementa-
tion of page coloring and bin hopping. The main design goals for
the extension and required user-land libraries were: completeness,
extensibility and non-intrusiveness.

By completeness we refer to wide support for tuning virtual-to-
physical memory mapping: support for process (local) allocation
strategies, support for even multiple allocation strategies for a sin-
gle running process, support for user-space control over existing
virtual-to-physical mapping, and control over allocation strategies
for newly created mappings.

By extensibility we refer to the option to implement allocation
strategies as kernel modules, without the need for further modifica-
tion of the physical page allocator.

Our extension is designed to be non-intrusive for system perfor-
mance, potential bugs, as well as code maintenance. To achieve
this goal, we have implemented a clone of the existing Linux page
allocator. Our clone re-uses the existing data structures and differs
in functionality to a minimum extent possible. Therefore, there
should be no performance overhead for applications that do not
“activate” the extension. Even if there was a bug in the extension,
it would not appear in a running system before the extension would
actually be used (i.e. a page allocation strategy would be set for a
particular process). Also, thanks to the code separation from the
original page allocator, further maintenance of the original alloca-
tor is not made harder by the extension.

In the rest of this section, we provide additional technical details
about the algorithm and architecture of the kernel extension.

Linux uses the buddy algorithm for page allocation [21]. The
basic idea is simple. Only aligned blocks of 2n pages are allocated.
The allocator maintains a list of free blocks for each n (order) and
serves each allocation request by a smallest-order block. If there
is no free block of such order, a block of higher order is halved:
one block is used for the allocation request and the other is stored
among free blocks of lower order. The two blocks are called “bud-
dies”, hence the name for the allocator. A block can only be merged
with its buddy.

The allocator we have created differs from the original allocator
in the selection of free blocks. The original allocator always takes
the first free block of correct order, and if a block of larger order
has to be divided, it always uses the beginning of that block for the
allocation.

Our allocator selects free blocks based on hints. A hint contains
information on required allocation strategy and some parameters
for the strategy. An allocation strategy, typically implemented as
a kernel module, is represented by callback functions. One of the
callback functions implements the core of the allocation algorithm:
given a free block of physical pages, it decides which part of the
block can be used for the allocation, if any.

On allocation request, the allocator sequentially checks all free
blocks using the strategy’s callback function. If no free block of
a given size is accepted by the strategy, the allocator follows by
scanning larger blocks, dividing them if accepted by the strategy. If
no free block of any order is accepted by the strategy, the allocator
uses any free block.

Hints for page allocation are indexed by virtual addresses and are
stored in each process’s memory descriptor. Hints can be specified
for individual virtual addresses and as a default for the whole virtual
address space of a process; the default hint is used if no hint is
specifically set for a particular virtual address.

Application

User-space library

User space

Kernel space

/proc file interface

Process’s virtual-to-physical 

mapping manipulation

On-demand page 

virtual-to-physical mapping

Physical memory allocator

Figure 3: Components of implemented kernel extension.

With the strategies we have implemented, these options allow,
for example, the specification of exact physical addresses or exact
page colors of pages, the selection of page coloring strategy on a
per-data-structure level, as well as using any of the available strate-
gies globally in a process’ virtual address space.

Hints can be set from user space via a specialized API, imple-
mented by IOCTL calls on special files in /proc filesystem. To
simplify usage of the API, we have created a user-space library.

Optionally, hints can be inherited on fork, and thus set for newly
executed processes. It is therefore possible to run binaries of exist-
ing applications without a need for modification or dynamic loader
tricks. Inheritance of the default hint for fork and/or exec can be
enabled or disabled during kernel compilation time, and thus the
setting holds for the whole running system.

In addition to page coloring and bin hopping, we have imple-
mented two extra strategies: exact strategy and modulo strategy.
The exact strategy can be used for specifying exact mappings of
virtual to physical pages, which can help in creating a repeatable
environment between successive executions of a process.

However, as certain physical pages may become occupied by the
kernel or another process, it might be more useful to only re-create
the coloring of physical pages. This can be achieved by the modulo
strategy, which allows for the specification of the physical page
colors for virtual pages. For simplicity, the page coloring strategy
is implemented as a special case of the modulo strategy, where the
colors of virtual pages are used as physical page colors.

Via the provided API, applications not only can specify hints
for their virtual-to-physical memory mapping, but can also modify
already existing mappings. Our kernel extension can even re-map
certain virtual pages that occupy the demanded physical pages, em-
ploying the page migration capabilities of the current kernel. Fur-
ther, applications can read their virtual-to-physical mapping from a
special file in the /proc filesystem.

A complete view on the components of the implemented exten-
sion is given in Figure 3. More information on the extension can be
found in [22, 18]. The extension can be downloaded from [18].



4. EVALUATIONMETHODOLOGY
We base our evaluation on benchmark experiments and their sta-

tistical processing. The main objective is the comparison of mean
response time and non-determinism in response time of applica-
tions running in the original Linux kernel vs. modified Linux kernel
with page coloring and bin hopping.

In addition, we want to fraction the non-determinism into non-
determinism in execution, which is only observable between differ-
ent executions of a benchmark experiment, and non-determinism
in measurement, which is also observable between measurements
of repeated operations within a single execution. As mentioned,
non-determinism in execution is of much higher concern for per-
formance evaluation, thus the fractioning.

4.1 Measurement Techniques
In order to get results representative of a widest possible range

of applications, we have selected a diverse set of benchmarks. A
detailed description of individual benchmarks is provided in Ap-
pendix A.

The dimensions of diversity of the benchmarks include: native
(C) vs. virtualized (C#) environments, different problem types (nu-
merical, remote communication, compilation, cryptography, mul-
timedia compression, lossless compression, and other), varying
problem size of numerical benchmarks (cache size, double and half
of the cache size), varying measurement granularity (whole process
execution, execution of one operation), different just-in-time opti-
mization options of the C# runtime (all optimizations supported, a
default optimizations set), memory allocation in benchmarks mea-
suring a single method call (within each repetition of the measure-
ment, once for all measurements), and authorship (benchmarks that
we wrote or modified, unaltered well-known benchmarks).

We have run the benchmarks on two platforms: Dell Precision
340 (Intel Pentium 4 2GHz, 512M RAM, 512K 8-way set associa-
tive L2 cache) and Dell Optiplex 745 (Intel Core 2 Duo 2.1 GHz,
2G RAM, 2M 8-way set associative L2 cache), both with Debian
GNU/Linux 4.0 (Etch) with the 2.6.22.6 Linux kernel.

We used two kernel configurations. For the benchmarks of the
original Linux kernel, we compiled the vanilla kernel with Debian
4.0 configuration and the Perfmon2 [23, 24] patch for hardware
performance monitoring. For the benchmarks of our extension, we
only added our extension to the previous kernel configuration. We
have compiled page coloring and bin hopping as modules, load-
ing only one of the modules for individual experiments. The Perf-
mon2 patch allowed us to access hardware performance counters of
the processors, so that we could measure the number of L2 cache
misses and number of CPU ticks (time).

The experiments were fully automated, including repeated exe-
cutions of the same benchmarks, reboots for each new benchmark
experiment (multiple executions of a benchmark with specific con-
figuration on specific kernel) and reboots with a different kernel.

All benchmarks were run in a special run-level with no interfer-
ing system services. In particular, the network interface has been
shut down while running the experiments. In order to avoid distor-
tion of the results, the benchmarks collected only raw data. All the
evaluation was carried out off-line.

We have additionally re-run the experiments for a subset of the
benchmarks in a real-time Linux kernel. We used Linux 2.6.22.9
with RT patches shipped with Ubuntu 7.10. We run the experi-
ments on Dell Precision 380 (Intel Pentium 4 3.8GHz, 3G RAM,
2M 8-way set associative L2 cache). To simulate conditions similar
to a realistic real-time system, we run the benchmarks with FIFO
scheduling and highest available (real-time) priority.

4.2 Metrics for Statistical Evaluation
Our statistical evaluation follows two basic requirements: easy

interpretation and reliability of results. For reliability we estimate
precision of all results and make sure that results whose differences
are below the precision are not considered different. We estimate
the precision using confidence intervals. For several statistics de-
scribed below, we calculate a 95% two-sided equi-tailed confidence
interval and regard its half-width as the measurement error. For
different statistics we use different methods to construct this con-
fidence interval. We base our comparisons on overlapping of con-
fidence intervals. If the intervals do not overlap, we conclude that
with certain confidence the results are different. Although we do
not use this cryptic wording further in the text, if the intervals do
overlap, we only can conclude that we do not have enough evidence
to show that the results would be different. This simple compari-
son method is described in [25, 26]. We did not use two-sample
and multi-sample statistical tests, as they don’t lend themselves
well to summarizing the comparisons. Being more defensive in
the comparisons is actually a good approach in face of deviations
from the assumptions made, but not always met by real data (i.e. in-
dependence of consecutive measurements, which is often violated
by memory managers re-using memory space using systematic pat-
terns, which we have observed in Mono). Having enough measure-
ments could however still lead to unrealistically narrow confidence
intervals and incorrect conclusions. We therefore complement the
results by comparisons, where we only report difference, if confi-
dence intervals do not overlap and if the estimates differ more than
by a given percentage.

Despite the described diversity of the benchmarks, the only sig-
nificant difference that matters for the statistical evaluation meth-
ods is the measurement granularity – whether a benchmark experi-
ment’s execution produces a single measurement, or multiple mea-
surements of the same operation. From the benchmarks we use, the
Csibe benchmarks only provide one measurement, while all other
benchmarks provide multiple measurements. We follow by a de-
tailed description of evaluation methods for different statistics and
these two benchmark types.

Mean response time.

In benchmarks that produce only a single number per execution
(Csibe), we estimate mean response time. In our experience, mean
response times are typically far from following normal distribu-
tion. We therefore use a non-parametric interval, particularly two-
sided equi-tailed bootstrap confidence interval, calculated by the
percentile method [27].

Results of benchmarks that produce multiple measurements of
the same operation per one execution (non-Csibe) could be in the-
ory evaluated using the same method. Intuitively, we could again
estimate the mean by the average of all measurements – we could
take a single measurement from each execution to get the input
data for the previous method. This would however be a waste of
the measured results, and thus of the time available for running the
experiments. In other words, in a given amount of time, we would
get less precise results.

We therefore use a more efficient method for calculating
the confidence interval, which is based on analysis of variance
(ANOVA) [27, 28]. In [19, 29], we describe this method and eval-
uate it on a similar scenario to the one presented here. The method
constructs the interval using variances within executions and vari-
ances in executions’ means.

We carried out all the presented statistical evaluation using the R
language scripts (about 1200 lines of code).



Non-determinism in measurement.

Non-determinism in measurement can only be estimated in bench-
marks that produce multiple measurements per execution (non-
Csibe). In these benchmarks, we report coefficient of variation
(standard deviation divided by mean) calculated from coefficients
of variation in measurements of individual executions. We calcu-
late the precision of the coefficient of variation estimate using the
percentile bootstrap confidence interval.

Unclassified non-determinism.

In benchmarks that only produce a single measurement per exe-
cution (Csibe), we cannot factor the non-determinism into non-de-
terminism in execution and non-determinism in measurement. We
thus quantify this (unclassified) non-determinism with coefficient
of variation and estimate the precision with the percentile bootstrap
confidence interval.

Non-determinism in execution.

The problem of factoring the non-determinism into non-determin-
ism in execution and non-determinism in measurement can be for-
mulated in statistics as analysis of variance (ANOVA). Classical
ANOVA methods however assume normal distribution of errors
(fluctuations in performance due to non-determinism), which is far
from the multi-modal nature of our data.

Instead of classical one-way ANOVA, we thus use a simpler non-
parametric method [9], which measures how many times greater is
the standard deviation between executions than the standard devia-
tion within executions (impact factor of non-determinism in execu-
tion). An impact factor of 1 means that there is no non-determinism
in execution, and thus all the observed non-determinism is in fact
non-determinism in measurement. The greater the impact factor,
the greater (multiplicatively) is also the non-determinism in exe-
cution than the non-determinism in measurement. Our experience
shows that the impact factor is often in tens and can also be around
one hundred.

We estimate the impact factor using a method based on statisti-
cal bootstrap [27] as follows. By random, we take groups of mea-
surements from different executions and groups of measurements
from a single execution. For each two groups we calculate ratios of
standard deviations. Out of the ratios we take the mean as the im-
pact factor estimate. We then again estimate its precision using the
percentile bootstrap confidence interval. The resulting experimen-
tal measure is thus a single value, impact factor, and its precision,
half-width of the confidence interval.

Although we used the median to estimate the impact factor
in [29], we now prefer the mean for its better robustness in case
of multi-modal data with modes of very similar size – the median
can be unstable in the presence of random fluctuations in the mode
sizes. Such type of data is typical for performance measurements,
where the modes correspond to different states of the system.

4.3 Quantitative Summary
For each benchmark, we apply the evaluation methods described

above to compare mean response time and non-determinism in re-
sponse time of the current Linux kernel vs. page coloring and bin
hopping. With thousands experiments we run, we also make thou-
sands of statistical comparisons. Based on these comparisons, we
want to draw a conclusion on general applications: does page col-
oring or bin hopping provide lower response time and/or non-de-
terminism than current Linux kernel ?

To make such a generalization realistic, we have balanced the ex-
periments so that none particular configuration (hardware platform,
problem size, problem type, software platform, just in time com-

pilation, memory allocation granularity) is represented more often
than other. This balancing required evaluating Csibe and non-Csibe
benchmarks separately.

We perform the described statistical comparisons on each triplet
of experiments that differ only in page allocation strategy (page col-
oring, bin hopping, default kernel). This means that all experiments
in a triplet agree in platform, benchmark, and other configuration
parameters except for the strategy. For each triplet, we rank each of
the three strategies as best, second best, or third best in respect to a
particular metric. Because our comparisons take precision into ac-
count, there may be indecisive results: two or three strategies may
be ranked as best, or two may be ranked as second best.

We summarize rankings of each strategy from all triplets, sum-
ming up in how many triplets the strategy was ranked first, second,
or third best. As the triplets represent different configured test ap-
plications modeled by the benchmarks, we can extrapolate in what
percentage of applications a particular strategy is better or worse
than another strategy. We have put a significant effort into covering
as many applications by the benchmarks and their configurations
as possible, as detailed in Appendix A. We provide results of the
quantitative summary in Section 5.

4.4 Qualitative Summary
Whenever in a triplet the default strategy provides statistically

significantly different results from page coloring or bin hopping,
we also quantify this difference. We calculate relative overheads
– absolute difference divided by the result for default strategy –
and report the ratio as percentage. With response time, we refer to
negative result as speedup and to positive as slowdown. With non-
determinism, we refer to negative result as reduction and positive
result as increase.

For mean response time, we also calculate mean speedup (slow-
down) over all triplets, not just the ones with statistically signif-
icant difference. We are averaging ratios of absolute times with
page coloring (bin hopping) over default strategy. Since averag-
ing ratios, we use geometric mean and convert the result to relative
slowdown/speedup.

We show selected qualitative results in Sections 5.5 and 5.6 to
illustrate the magnitude of the effect page allocation strategy can
have on response time. The results supplement to the quantita-
tive summary, which only can be generalized to other applications.
Moreover, the qualitative results are to be less trusted than the quan-
titative ones, as there are no precision estimates of the final values.
We believe that more reliable insight into how “big the problem is”
can be gotten from comparisons that only regard results differing
in a given percentage as different, which are part of the quantitative
results presented in Section 5

We also provide a graphical qualitative comparison of the non-
determinism in execution with different page allocation strategies
in 5.5. We show an empirical cumulative distribution function of
impact factor, drawn on a logarithmic scale, based on all experi-
ments executed with non-Csibe benchmarks (non-determinism in
execution can only be evaluated for non-Csibe benchmarks).

5. EVALUATION RESULTS

5.1 Mean Response Time
Strategies are compared with respect to mean response time in

Figures 4 (non-Csibe benchmarks) and 5 (Csibe benchmarks).
From Figure 4 it follows that in 77% of non-Csibe benchmarks,

neither page coloring nor bin hopping provided significantly bet-
ter mean response time than the default kernel strategy (the default
strategy is ranked best). The default kernel strategy was outper-
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Figure 4: Mean response times measured by non-Csibe bench-

marks using different page allocation strategies. In 77% of the

experiments, neither page coloring nor bin hopping provided

significantly better mean execution time than the default ker-

nel strategy (the default strategy is ranked best).

formed by one of the other strategies only in 19% of experiments,
and only in 4% of experiments by both of them.

If we only compare page coloring and bin hopping using the
same method (this cannot be seen from the figures), bin hopping
was outperformed by page coloring in 46% of experiments, but
page coloring was outperformed by bin hopping only in 4% of ex-
periments. Note that when comparing only two strategies, there is
less compared experiments, and thus the percentages are not com-
parable with percentages coming from comparisons of three strate-
gies.

Figure 5 shows that in Csibe benchmarks, the default ker-
nel strategy was not outperformed in any of the experiments (in
rounded 0% of experiments 1) neither by page coloring nor by bin
hopping. If we only compare page coloring and bin hopping using
the same method, we find out that only in 1% of the experiments,
bin hopping was outperformed by page coloring, but page coloring
was outperformed by bin hopping in as much as 83% of experi-
ments.

Figure 6 then shows the first best strategies with a minimum per-
centage difference required for means to be regarded different. If
we only care about 1% or 3% differences, page coloring performs
roughly the same as the default strategy for non-Csibe benchmarks,
but is worse for Csibe benchmarks. There is no difference between
page coloring and the default strategy if we only care about differ-
ences of 7% (non-Csibe) or 9% (Csibe).

In summary, both in non-Csibe and Csibe benchmarks, the best
choice for mean execution time would be the default kernel strat-
egy. If bin hopping or page coloring would have to be chosen, then
page coloring would be better for non-Csibe benchmarks, but bin
hopping would be better for Csibe benchmarks.

5.2 Non-determinism in Measurement
Non-determinism in measurement of non-Csibe benchmarks was

evaluated using confidence intervals for coefficient of variation in
measurements within a benchmark experiment execution. The de-

1Note that the percentages are subject to rounding error, 0% does
not necessarily mean that the situation did not happen.
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Figure 5: Mean response times measured by Csibe benchmarks

using different page allocation strategies. The default kernel

strategy was “never” outperformed by page coloring or bin

hopping.

Benchmarks Strategy % of Experiments
for % Mean Diff
0 1 3 10

Non-Csibe Page Coloring 63 71 85 88
Default 77 81 83 88
Bin Hopping 35 42 48 56

Csibe Page Coloring 1 13 62 100
Default 100 100 100 100
Bin Hopping 51 59 100 100

Figure 6: The strategies providing the best mean response time.

If we only trust differences above 3%, page coloring is the best

choice for non-Csibe benchmarks (highest percentage, 85%, of

cases when it was ranked first), but not for Csibe ones.

fault kernel strategy was outperformed in 29% of experiments. That
is, in 29% of experiments, the default kernel strategy had higher
non-determinism than some other strategy. Bin hopping was out-
performed in 31% of experiments, and page coloring only in 15%
of experiments. Thus, for 75% of experiments, page coloring lead
to either the most predictable execution out of these strategies, or
else it was no worse (in a statistical sense) than the best.

When compared only with bin hopping, page coloring was better
in 44% of experiments and worse in only 2% of experiments. When
compared only with the default kernel strategy, page coloring was
better in 35% of experiments and worse in 13% of experiments. In
summary, as far as non-determinism in measurement is concerned,
page coloring would be the best choice.

5.3 Unclassified Non-determinism
The unclassified non-determinism can be measured both in Csibe

and non-Csibe benchmarks. Again, we evaluated the results using
bootstrap based confidence intervals for the coefficient of variation.

In the case of non-Csibe benchmarks, the default kernel strat-
egy was outperformed in 19% of experiments. Bin hopping was
outperformed in 21% of experiments, and page coloring was only
outperformed in 6% of experiments. When compared only with
bin hopping, page coloring was better in 19% of experiments and
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Figure 7: Performance non-determinism in execution of differ-

ent page allocation strategies, measured by non-Csibe bench-

marks. In 54% of the experiments, the default kernel strategy

produced larger non-determinism than bin hopping or page

coloring.

worse in 4% of experiments. When compared only with the default
kernel strategy, page coloring was “never” (in rounded 0% of ex-
periments) worse, but the default kernel strategy was worse in 25%
of experiments. In the case of Csibe benchmarks, the default kernel
strategy did not have significantly worse non-determinism than any
other strategy in “any” experiment. However, the other strategies
were also good, when compared only with the default kernel strat-
egy, page coloring was “never” worse and bin hopping was only
worse in 1% of experiments.

In summary, as far as (unclassified) non-determinism is con-
cerned, page coloring seems to be the best choice: it is better than
the default kernel strategy in non-Csibe benchmarks and it is about
the same as the default kernel strategy in Csibe benchmarks.

5.4 Non-determinism in Execution
The non-determinism in execution can only be evaluated for non-

Csibe benchmarks, which provide multiple measurements per exe-
cution. Non-determinism was measured using confidence interval
for impact factor, as described in Section 4. The results are shown
in Figure 7.

The Figure shows that in 54% of experiments, the default kernel
strategy produced larger non-determinism in execution than one of
page coloring and bin hopping. If we compare only page color-
ing and bin hopping, in one third of the experiments they produce
similar non-determinism (not statistically significant differences in
impact factor), in one third of the experiments page coloring is bet-
ter than bin hopping, and in one third bin hopping is better than
page coloring.

If we compare only page coloring with the default kernel strat-
egy, page coloring is better than the default kernel strategy in 37%
experiments, in 13% experiments is worse. If we only compare bin
hopping with the default kernel strategy, bin hopping is better in
40% and worse in 25% of the experiments.

Figure 8 then shows the first best strategies with a minimum per-
centage difference required for impact factors to be regarded differ-
ent. If we only care about 100% differences, page coloring is best
in 79% of experiments, bin hopping in 88% and the default strat-

Strategy % of Experiments
for % Im.F. Diff

0 50 100 500 800
Page Coloring 63 71 79 94 96
Default 46 63 75 90 92
Bin Hopping 65 79 88 98 98

Figure 8: The strategies with least non-determinism in execu-

tion (non-Csibe). Page coloring is still better than the default

strategy even if we only care about eight-fold (800%) differ-

ences between impact factors.

egy in 75%. It is interesting that differences between strategies are
still measurable if we only care about 800% differences in impact
factors. This well emphasizes how important the strategies are for
non-determinism. If we only care about 50% differences, the pair
comparisons with default strategy change (this cannot be seen from
the table). Page coloring is better in 23% and worse in 12% of ex-
periments, while bin hopping is better in 33% and worse in 13% of
experiments.

In summary, both bin hopping and page coloring provide lower
non-determinism in execution than the default kernel strategy. Bin
hopping seems to be slightly better.

5.5 Qualitative Improvements and Degrada-
tions

Out of all executed non-Csibe benchmarks, the highest statisti-
cally significant slowdown of page coloring was 41%, the highest
speedup of page coloring was 49%. The highest slowdown of bin
hopping was as much as 275% and the highest speedup was 49%.
The Csibe benchmarks were much less influenced by page alloca-
tion strategies, for page coloring maximum speedup was 2% and
maximum slow-down 6%. For bin hopping, maximum speedup
was 4%, maximum slow-down 9%. On average, as calculated by a
geometric mean from all benchmarks, the performance change was
none (0%) for both page coloring and bin hopping on both Csibe
and non-Csibe benchmarks.

Focusing on changes in the non-determinism in execution mea-
sured by impact factor, non-Csibe benchmarks with page coloring
reported between a 54% reduction in non-determinism and a 477%
increase, while with bin hopping they reported between a 61% re-
duction and a 62% increase. These numbers suggest that strategies
should be selected on a per-application basis.

Figure 9 shows the magnitude of the reduction of non-determin-
ism in execution in non-Csibe benchmarks. The plot shows an em-
pirical cumulative distribution function of the impact factor. Es-
pecially for the range of impact factor of

√
10 to 100, both page

coloring and bin hopping provide smaller non-determinism in exe-
cution than the default kernel strategy.

5.6 Qualitative Results in Real-Time Setting
The real-time results were more stable than the non-realtime

ones. After rounding, no benchmark reported a significant mean
performance change with page coloring, and no change to 1% slow-
down with bin hopping (no change on average). Changes in non-
determinism were between a 27% reduction and a 14% increase
with page coloring, and between a 34% reduction and a 17% in-
crease with bin hopping.

Out of the benchmarks used by others (Csibe, Scimark, and
FFT), both Scimark and FFTwere in some configurations very sen-
sitive to cache effects, but the Csibe benchmarks were reasonably
stable.



0.0 0.5 1.0 1.5 2.0 2.5

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Impact Factor Empirical CDF (Non−Csibe)

Impact factor (LOG−10)

R
e
la

ti
v
e
 f
re

q
u
e
n
c
y

default kernel

page coloring

bin hopping

Figure 9: Empirical cumulative distribution function of impact factor (all non-Csibe experiments). Higher frequency is better,

because it means smaller non-determinism in execution, as more experiments have ended up with impact factor of particular upper

bound.

N
o

rm
a

liz
e

d
 v

a
lu

e
s

Default strategy Page coloring  Bin hopping

−
1

.0
−

0
.5

0
.0

0
.5

1
.0

Time

Cache misses

Figure 10: Response time vs. the number of cache misses for a

concrete benchmark (FFT Scimark) and different page alloca-

tion strategies. The plot suggests that differences of measured

time among strategies come from different numbers of cache

misses.

6. CAUSE OF THE SLOW-DOWN
The results shown in the previous section might seem counter-

intuitive at first sight. Although page coloring and bin-hopping in-
corporate some cache friendliness into the memory allocation, and
reduce the performance non-determinism, at the same time they
sometimes slow down the execution.

The reason why this can happen is that the reduction in non-de-
terminism does not come from the strategies being cache friendly.
It is simply a consequence of the strategies providing the applica-
tion with memory pages colored deterministically depending on the
application behavior.

The results therefore suggest that the default kernel strategy is
not bad at reducing cache misses, which is also in line with re-
sults published in [30]. Both page coloring and bin hopping are
not always good at reducing cache misses as they assume a con-
crete memory access pattern that is not common to all applications.
Applications not following the assumed pattern would be slowed
down, since they would suffer from more cache misses.

To verify that this explains slowdowns seen in our results, we
verify that the slowdowns are really caused by sub-optimally col-
ored pages, and not, for instance, by a run-time overhead in our
implementation of page coloring or bin hopping. The purpose is
only to check the cause of the slowdown, not to extensively evalu-
ate all overheads. The expected overhead of having the strategies
in the kernel would be in page allocation, which takes place largely
during the benchmark warm-up period, and thus is not included
into these measurements.

For this verification, we have extended the benchmarks to collect
the numbers of memory cache misses via hardware performance
counters. We further focused the evaluation on experiments that
had statistically significant differences in measured times for all
three strategies: the default kernel strategy, page coloring, and bin
hopping. In these experiments, we looked for correlation between
the response time and cache misses.

As there were only three strategies to compare, we checked the
correlation visually. For each of 20 non-Csibe experiments match-
ing the above criteria, we generated a plot with normalized time
and normalized number of cache misses, like the one shown in Fig-
ure 10. In 18 of the 20 plots, the times and cache misses almost or
completely overlapped, like in Figure 10, confirming that the slow-
down was caused by the cache misses, and thus the page allocation
strategies. For an analysis why the default Linux strategy is good at
minimizing cache misses, although it is not by design cache-aware,
we refer to [30].



7. CONCLUSION
Several operating systems use a cache-aware page allocation

strategy, mostly page coloring, to reduce conflict misses in mem-
ory caches, thus improving mean performance. The strategies
should also reduce performance non-determinism. Both benefits
have however been disputed on current 8-way associative mem-
ory caches, and thus some systems do not implement a cache
aware strategy at all (Linux), or do not support it in default ker-
nel (FreeBSD). There was no in-depth experimental evaluation that
would support the decision on mean performance grounds, and to
our knowledge no evaluation whatsoever targeted at non-determin-
ism.

We have implemented page coloring and bin hopping strategies
in the Linux kernel and based on 4500 experiments statistically
evaluated their impact on mean performance and performance non-
determinism. Although in some experiments page coloring or bin
hopping have improved mean performance, in majority of them the
default Linux allocator was not outperformed.

We however found out that both page coloring and bin hopping
are more efficient than the default Linux kernel allocator at reduc-
ing the non-determinism. Page coloring worked even better with
a real-time kernel and real-time scheduling, where predictability is
typically preferred over mean performance. Bin hopping caused
some slowdowns on general benchmarks, but sometimes reduced
the non-determinism better than page coloring. In summary, both
page coloring and bin hopping have minimal mean performance
overhead and do reduce non-determinism.

Choosing among the two might be well based on external deci-
sions: for instance, in regression benchmarking, bin hopping might
be preferred as it is bound to time aspect of application behavior
(what happens next), which programmers have better control over
than space aspect (memory layout), which is determined more by
the compiler, so that even subtle changes such as renaming vari-
ables might impact performance. On the other hand, a deployed
(real-time) system might benefit from page-coloring, which would
reduce the non-determinism with slightly lower slowdowns com-
pared to bin hopping.

We have indeed tried to characterize applications that would ben-
efit most (least) from the individual page allocation strategies in
terms of increased performance (reduced non-determinism). When
seeking such characterization, we took into account characteristics
such as application type (numerical application, compilation, re-
mote procedure call), or environment (native, managed), problem
size compared to cache size, the cache size itself, or the platform’s
number of page colors. Interestingly, our results suggest that such
high level characterization cannot be made by fair means.

If optimization of a concrete (real-time) application is sought, the
selection of the proper strategy can still be based on experiments
with a concrete application on a concrete platform. Our kernel ex-
tension [18] is designed to allow this selection to be made auto-
matically by the running application, allowing also “self-tuning” of
applications.
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APPENDIX

A. USED BENCHMARKS

FFT.

The Fast Fourier Transformation (FFT) benchmark we use is a
slightly transformed version of Don Mayer’s benchmark [31] writ-
ten in C. We have modified it to repeat the FFT transformations in
each benchmark execution and report individual measurements.

Scimark2.

From the C version of Scimark2 [4], we have extracted multiple
sub-benchmarks: Fast Fourier Transformation (FFT), Dense LU
Matrix Factorization (LU), Monte Carlo Integration, Jacobi Suc-
cessive Over-relaxation (SOR), and Sparse Matrix Multiplication.
Our sub-benchmarks repeat the respective operation multiple times
and report individual measurements.

Mono Benchmarks.

We have re-used benchmarks from the Mono Regression Bench-
marking Suite [8]. The benchmarks are written in C# and exe-
cuted in Mono [32], an open source implementation of the .NET
platform. The individual benchmarks are Fast Fourier Transform
(FFT), HTTP Ping, TCP Ping (remote communication), and Rijn-
dael (cryptography).

The FFT benchmark is based on the C# version of the Scimark2
benchmark [33]. It is provided in two versions, one that allocates
memory once for all repeated FFT calculations, and one that re-
peats the allocation in each calculation. We have created these two
versions based on our experience with FFT benchmarks – they are
very sensitive to memory management [9].

The HTTP Ping and TCP Ping benchmarks are client-server
benchmarks that measure remote method invocation of a single
method. The client and the server are run as two different pro-
cesses. For remote communication, HTTP Ping uses SOAP, while
TCP Ping benchmark uses plain TCP. Both protocols are supported
by Mono class libraries.

The Rijndael benchmark measures encryption and decryption of
a short text using the Rijndael algorithm. The algorithm itself is
implemented in Mono libraries.

Csibe.

We use Code Size Benchmark Suite (Csibe) [34], a set of C/C++
based benchmarks of the GCC compiler. The benchmarks measure
generated code size, compile time and sometimes execution time,
providing single measurement per execution.

We have modified the Csibe execution scripts to use command
line perfmon application [23], which can measure a given process
using hardware performance counters. In compilation benchmarks,
we have summarized the measured values for all processes (front-
end, back-end, etc.) that contributed to each compilation.

The suite contains about 900 compilation benchmarks, out of
which 30 produce benchmark code that can itself be executed. The
executable benchmarks include various types of JPEG compres-
sion, lossless compression (GZIP, BZIP2, PNG), lexical analysis,
binary to hexadecimal (ASCII) encoding, and an abstract machine
simulator (VAM).


