
10

DATA FUSION VIA FISSION FOR
THE ANALYSIS OF BRAIN DEATH

L. Li, Y. Saito, D. Looney, T. Tanaka, J. Cao, D. Mandic

Abstract: Information fusion via signal fission is addressed in the framework of

empirical mode decomposition (EMD) to determine brain death in deep coma patients.

In this way, a general nonlinear and nonstationary brain signal is decomposed into its

oscillatory components (fission); the components of interest are then combined in an

ad-hoc or automated fashion in order to provide greater knowledge about a process in

hand (fusion). This chapter illustrates how the fusion via fissionmethodology can be used

to retain components of interest in electroencephalography (EEG), thus highlighting

the absence or presence of brain death. Additionally, it is shown how complex extensions

of the algorithm can be used to detect phase synchronization by simulations and

applications to EEG signals.

10.1 INTRODUCTION

As modern society evolves, there is an ever-growing requirement for more focused

information rather than superfluous data. The ability to take measurements and gather

data is generally well developed. But optimizing data gathering and information

production, which is vital for economic and social progress, are in their infancy. For

example, it is difficult via conventional means to characterize signals that display highly
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complex nonlinear and nonstationary behavior caused by either the measurement

equipment or the interconnection of data from different sources.

Data analysis methods, which are not limited to linear, deterministic, or stationary

signals, are needed for the analysis of real-world data. Recently, information fusion via

fission has been realized [15] by decomposing input signals into a set of their components

using empirical mode decomposition (EMD) (originally introduced in [10]) and then

fusing these components using suitable criteria. In this chapter, we apply this method-

ology to the area of analyzing electroencephalogram (EEG) data recorded from the brain.

We illustrate, through experimental results, how the characteristics of the underlying data

can be extracted via EMD.

10.2 DATA FUSION VIA FISSION

Time-domain analysis illustrates amplitude changes with time. However, by examining

data in the frequency domain, it is often possible to extract more useful information,

especially when examining signals obtained from the brain. Fourier-based analysis is the

traditional data analysis method and regarded as the best-established tool for the proces-

sing of linear and stationary data. In the real world, data are nonlinear and nonstationary,

for which Fourier analysis is not well suited, it is required to resort to time-frequency

analysis techniquessuchas theshort timefourier transform (STFT) andwavelet transform

(WT). Despite the power of these techniques, they still rely on some kind of projection on

a set of predefined bases; this makes some areas of their application, particularly when

focusing on high-frequency content, rather limited [10]. Therefore, empirical mode

decomposition [10] was first introduced as a fully data-driven technique that makes no

assumptions on the underlying data being analyzing. It decomposes the signal into a set of

zero mean components, which are called intrinsic mode functions (IMFs).

EMDhas enormous appeal for nonlinear and nonstationary signals because it makes

no prior assumptions about the data and, as such, it belongs to the class of exploratory

dataanalysis (EDA) techniques [20].Theoriginal algorithmwas successfully applied to a

number of problems that require high resolution but are separable in the time–frequency

domain, such as in ocean engineering [6], biomedical signal processing [18] and

seismics [23]. Although EMD has primarily been used for time–frequency analysis, it

is clear that the IMFs represent the oscillation modes embedded in the data and therefore

has potential within the framework of data fusion and feature extraction [12, 13].

Data and information fusion is the approach whereby data from multiple sensors or

components are combined to achieve improved accuracies and more specific inferences

that could not be achieved by the use of only a single sensor [9]. Its principles have been

employed in a number of research fields, including information theory, signal processing,

and computing [7, 9, 21, 22]. Recent work [14] demonstrates that the decomposition

nature of EMD provides a unifying framework for information fusion via fission, where

fission is the phenomenon by which observed information is decomposed into a set of its

components. More specifically, the stages of signal processing, feature extraction, and

situation assessment from thewaterfall model (a well-established fusion model given in

Figure 10.1) can all be achieved by EMD.
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A simple example of the fission and feature extraction properties of EMD is its

ability to separate original input components from a signal composed of linear sinusoids,

as shown in Figure 10.2. The signal “U” shown at the top of the figure is a linear sum of

three sinusoids, with individual frequencies of 0.1Hz, 1Hz, and 10Hz, represented

below as:

UðtÞ ¼ sinð0:2ptÞþ sinð2ptÞþ sinð20ptÞ ð10:1Þ

The above signal is decomposed into its IMFs with EMD. The IMFs are denoted

by Ci(k), i¼ 1,2, . . . ,M in the subsequent panels on Figure 10.2. Note that the IMFs

represent the original sinusoidal components used to create U. Most importantly,

though, EMD has distinct advantages over other decomposition techniques in analyzing

real-world signals as it does not make unrealistic assumptions about the data.
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Figure 10.2. Example of data fission via EMD.
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Figure 10.1. Waterfall model of information fusion.
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Principal component analysis (PCA), for example, assumes linearity and stationarity. As

a result, PCA performs poorly when processing real-world signals that display nonlinear

and nonstationary behavior such as biomedical data [18]. Similar criticisms can bemade

of independent component analysis (ICA), which requires that input components be

statistically independent. This issue is highlighted by the ability of EMD to decouple

noisy recordings in the problem of blood volume estimation [18].

10.3 BRAIN DEATH DETECTION

The investigation of the brain’s consciousness, especially the state of brain death, is

highly important. Brain death is currently used as a definition for death among the legal

and medical communities. It is for this reason that brain death needs to be determined

precisely so as not to cause patients potential risk.

The legal definition of brain death is an irreversible loss of forebrain and brainstem

functions [2]; however, it is very difficult to realize brain death diagnosis precisely due to

clinical difficulties. Specialized personnel and technology are needed to perform a series

of tests that are expensive and time consuming and can sometimes bring risk to the

patient. In this chapter, brain death means an initial diagnosis.

Some of the tests require that medical care instruments be removed. Further, some

tests require that the patient be transported out of the intensive care unit (ICU) and others

(confirmatory test) need to be performed several times at an interval of up to 10 hours and

can take as long as 30 minutes. After initial documentation of the clinical signs of brain

death, repetition of clinical testing is required by a number of countries. Although the

diagnosis criteria are different from country to country, these tests can bring the patient

a potential medical risk of lessmedical care due to the requirements of implementing test

and stress to the already compromised organ [16].

To overcome these difficulties, a preliminary EEG test has been proposed [3] to

determine whether further brain death tests, especially those requiring patients to be

disconnected from important medical care (the respirator), need to be implemented. This

is clearly of great benefit as it reduces potential complications and stress for patients. The

test is not trivial, however, as interference to the EEG signal is caused by various other

medical instruments in the ICU.As a result, these interferences can contaminate the EEG

signal we want to investigate. In the past, ICA has been used to perform the preliminary

test [3]. But, for reasons explored earlier, ICA is limited by its unrealistic assumptions.

Therefore, data fusion via fission through empirical mode decomposition is introduced

in this chapter to analyze EEG signals and extract useful information without making

assumptions of the input EEG signal.

10.4 EEG DATA

10.4.1 Introduction

Electroencephalography (EEG) is regarded as a vital clinical monitoring tool in

understanding the brain activity by recording the voltage differences between different
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parts of brain using electrodes placed on the scalp, subdurally or in the cerebral cortex.

Essentially, EEG can detect brain activities by highlighting the voltage differences

generated by neurons in the brain.

10.4.2 EEG Data Acquisition

The standardized 10–20 system for collecting EEG data was originally described by

Jasper in 1958 [11] for placement of electrodes. There are also other systems such as the

10–10 system, an extension to the original 10–20 systemwith a higher channel density of

81, suggested by [4]. But the 10–20 system has also been accepted as the standard of

the American Clinical Neurophysiology Society (formerly the American Electroen-

cephalographic Society) and the International Federation of Clinical Neurophysiology

(formerly the International Federation of Societies for Electroencephalography and

Clinical Neurophysiology). The 10–20 system was used to collect the EEG data for our

experiments.

In our analysis of brain death, the patients involved were all lying in bed facing up

with eyes closed, and the data was obtained via nine electrodes on the forehead with

channels based on the 10–20 system. That is, electrodes were placed at positions F3, F4,

F7, F8, Fp1, Fp2, as well as GND, and also two were placed on the ears (denoted by A1

and A2 respectively). The electrodes placed on the ears act as a reference for the

measurements, which can be calculated as (A1 þ A2)/2. Themeasured voltage signal is

then digitalized via a portable EEG recording instrument with a sampling frequency of

1000Hz. The position of the electrodes and its output signal can be seen in Figure 10.3.
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Figure 10.3. Electrode placement.
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10.4.3 Patients’ Data

The experimental data shown in Table 10.1 was obtained from 36 patients (16 female,

20 male) of ages ranging from 17 to 85 years old from 2004 until 2006. Nineteen of the

patients were in a state of coma, 18 of them need a further test to determine its status, and

the consciousness of one patient was clinically in a state of uncertainty. Total recordings

of EEG signals from these 36 patients with an average signal length of fiveminutes were

stored and analyzed.

To illustrate, two sets of EEG signals are shown here: Figure 10.4 is the EEG signal

of patient 1: a 64-year-old male patient in a deep coma state. The patient regained

consciousness. Figure 10.5 is the EEG signal of patient 2: a 48-year-oldmale patient who

lost consciousness on October 18, 2005.

The signal shown in Figure 10.4 is the time–amplitude plot of the EEG signal from

patient 2 in a deep coma status. In the figure, from top to bottom, the six EEG channels

are shown individually with the same time slot of 40,000 seconds. Figure 10.5 presents

the EEG signal of the same patient in a brain-death status.

10.4.4 EEG Frequency Band and Its Relative Behavior

EEG signals are typically nonlinear and nonstationary data that are composed of

frequencycomponentsof interestup to40Hz.ThebasicEEGfrequenciesare summarized

briefly in Table 10.2, with regard to their typical distribution on the scalp and subject

states [5]. The EEG signal is closely related to the level of consciousness of the person.

As the brain activity increases, the higher frequency bands of the EEG become more

dominant.

10.5 EMPIRICAL MODE DECOMPOSITION

10.5.1 The EMD Algorithm

The empirical mode decomposition and Hilbert–Huang transform (HHT) were intro-

duced specifically for analyzing data from nonlinear and nonstationary processes by

Huang et al. [10]. The EMDmethod adaptively decomposes the signals into a set of zero-

mean components. As these components, called intrinsic mode functions (IMFs), are

band-limited signals, the Hilbert transform can be applied to determine a unique

time–frequency representation of the data. The decomposition of a signal into a set of

IMFs is achieved using the sifting algorithm:

T A B L E 10.1. Experimental Data

Type of Patient Coma Quasi-Brain-Death Male Female Total

Number of Patients 19 18 20 16 36
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Figure 10.5. Brain death signal.
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Figure 10.4. Coma signal.
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Sifting Algorithm

1. Find the local maxima and connect the maxima with interpolation (max

envelope). Also extract the minima and connect them by interpolation (min

envelope).

2. Take the average of the max envelope and the min envelope to determine the

signal mean.

3. Subtract the signal mean obtained from step 2 from the original signal.

4. Repeat steps 1, 2, and 3 until the signal satisfies the IMF criteria defined by

Huang [10].

5. Subtract the IMF signal from the original signal; a new signal is then obtained.

Again, steps 1, 2, 3, 4, and 5 should be implemented to extract IMFs until the

residual is a monotonic function.

The decomposition of a signal x(t) into IMFs can be summarized by the following

equation:

xðtÞ ¼
Xn
i¼1

ðCiðtÞÞþ rðtÞ ð10:2Þ

where Ci(t) is the ith IMF, n is the total number of IMFs, and r(t) is the residue.

The criteria of an IMF are as follows. The first condition is that the number of local

extrema and the number of zero crossings must either be equal or differ at most by one.

The second condition is that at any point the mean of the signal defined by the local

maxima and the local minima is zero.

10.5.2 The Hilbert Spectrum and Instantaneous Frequency

The monocomponent nature of the IMFs facilitates a unique time–frequency represen-

tation of the original signal—the Hilbert–Huang spectrum. The Hilbert transform is

T A B L E 10.2. EEG Signal Frequency Band

Frequency

Band

Frequency

(Hz) Consciousness Level Distribution

Delta 0.5–4 Low level of arousal Generally broad, diffused

Theta 4–8 Distracted Regional, involvesmany lobes

Alpha 8–12 Relaxed, meditation Regional, involves entire lobe

Low Beta 12–15 Relaxed, yet focused By side and lobe (frontal,

occipital, etc.)

Midrange Beta 15–18 Alert, active, not agitated Localized, over various areas

High Beta > 18 Very focused, alertness Very localized, maybe very

focused

Gamma 40 High-level info processing Very localized
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given by [8]:

~xðtÞ ¼ H xðtÞ½ � ¼
ð1
�1

xðuÞ
pðt�uÞ du ð10:3Þ

wherex(t) is a time domain signal.H½ � � is the Hilbert operator. The analytic signal z(t) is
related to the Hilbert transform of x(t), represented below as:

zðtÞ ¼ xðtÞþ j~xðtÞ ð10:4Þ

Given the analytic representation, the magnitude function a(t) and phase function u(t)
can be obtained from z(t) as:

aðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2ðtÞþ ~x2ðtÞ

q
and uðtÞ ¼ arctan

~xðtÞ
xðtÞ

� �
ð10:5Þ

zðtÞ ¼ aðtÞe juðtÞ ð10:6Þ

where a(t) describes the envelope of the original signal x(t), in the other words, the

instantaneous amplitude of the signal [8]. u(t) describes the instantaneous phase of x(t).
Therefore, the instantaneous frequency of x(t) can be defined as the derivative of the

phase of the signal as:

wðtÞ ¼ d

dt
uðtÞ ð10:7Þ

Thus, the Hilbert spectrum is given by [10]:

xðtÞ ¼
Xn
i¼1

aiðtÞexp j

ð
wiðtÞ

� �
dt ð10:8Þ

Given the above representation equation, a three-dimensional plot with the amplitude,

instantaneous frequency as a function of time can be obtained in a straightforward

fashion. This is the Hilbert spectrum.

10.5.3 Importance of Complex EMD

The extension to the complex domainC is particularly important for the analysis of phase-
dependent processes [15]. This applies not only to naturally occurring complex data, but
also to multi-channel real data. In this way, it is possible to analyze mutual phase
information between real-valued signals.

The first method of employing EMD in the complex domain, complex empirical

mode decomposition, was introduced in 2007 [19]. The method is rigorously derived,

based on the inherent relationship between the positive and negative frequency compo-

nents of a complex signal and the properties of theHilbert transform. The idea behind this

approach is rather intuitive: first note that a complex signal has a two-sided, asymmetric
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spectrum. The complex signal can therefore be converted into a sum of analytic signals

by a straightforward filtering operation that extracts the opposite sides of the spectrum.

Direct analysis in C can be subsequently achieved by applying standard EMD to both the
positive and negative frequency parts of the signal. Given a complex signal x(k), real-
valued components corresponding to the positive and negative sides of the spectrum can

be extracted as

xþ ðkÞ ¼ RF�1fXðe jwÞ �Hðe jwÞg
x�ðkÞ ¼ RF�1fXðe jwÞ �Hðe�jwÞg ð10:9Þ

whereF�1 is the inverse Fourier transform,R is an operator that extracts the real part of

a signal, and Hðe jwÞ is an ideal filter with the transfer function

Hðe jwÞ ¼ 1; w > 0

0; w < 0

�

Given that xþ (k) and x�(k) are real valued, standard EMD can be applied to obtain a set

of IMFs for each analytic signal. This can be expressed as

xþ ðkÞ ¼
XMþ

i¼1

xiðkÞþ rþ ðkÞ

x�ðkÞ ¼
X�1

i¼�M�

xiðkÞþ r�ðkÞ
ð10:10Þ

where fxiðkÞgNþ
i¼1 and fxiðkÞgi¼1

i¼�N� denote sets of IMFs corresponding, respectively,

to xþ (k) and x�(k), whereas rþ (k) and r�(k) are the respective residuals. The original
complex signal can be reconstructed by

x½ðkÞ ¼ ðxþ ðkÞþ jH½xþ ðkÞ�Þþ ðx�ðkÞþ jH½x�ðkÞ�Þ* ð10:11Þ

where H is the Hilbert transform operator. To conclude the derivation, a single set of

complex IMFs corresponding to the complex signal x(k) is given by

xðkÞ ¼
XMþ

i¼M�; i „ 0
yiðkÞþ rðkÞ ð10:12Þ

where r(k) is the residual and yi(k) is defined by

yiðkÞ ¼
ðxþ ðkÞþ jH½xþ ðkÞ�Þ; i ¼ 1; . . . ;Mþ ;

ðx�ðkÞþ jH½x�ðkÞ�Þ*; i ¼ �M�; . . . ;�1

�

Although the two time series (x1(k) and x2(k)) are real valued, a complex signal,

z(k)¼ x1(k) þ jx2(k), is constructed with the signals representing the real and imag-

inary parts, respectively. To its advantage, it has a straightforward, intuitivemathematical
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derivation. As an example of its mathematical robustness, it preserves the dyadic filter

property of standard EMD. In other words, the algorithm acts as dyadic filter bank when

processing complex noise [19].

Rotation-invariant EMD, introduced in [1], proposes a way of extending EMD

theory so that it operates fully in C. This is achieved through the use of complex splines.
Unlike complex EMD, by design this method generates an equal number of IMFs for the
real and imaginary parts; these can be given physical meaning, thus retaining an important
property of real-valued EMD. A critical aspect of the derivation of EMD in C is the
definition of an extremum. Several possible approaches are suggested in [1], such as the

extrema of the modulus and the locus where the angle of the first-order derivative (with

respect to time) changes sign; this way it can be assumed that local maxima will be

followed by local minima (and vice versa). This definition is equivalent to the extrema of

the imaginary part, that is, for a complex signal Z(t) (for convenience we here use a

continuous time index t):

ff _ZðtÞ ¼ 0Y fff _xðtÞþ j � _yðtÞg ¼ 0

Y tan�1 _yðtÞ
_xðtÞ ¼ 0Y _yðtÞ ¼ 0

ð10:13Þ

Because of its aforementioned advantages over complex EMD, namely the physical

meaning of its IMFs, rotation-invariant EMD is the extension of choice to perform

analysis on complex data.

10.5.4 Experiments and Results

As stated previously, an EEG signal can reflect brain activities; therefore, it is regarded as

a powerful tool to analyze cerebral consciousness status (e.g., coma and quasi-brain-

death). We distinguish cerebral consciousness status by analyzing EEG frequency

components within the frequency range from 0Hz to 30Hz; in particular, we are

interested (See Table 10.2) in the delta range (0.5 to 4Hz), theta range (4 to 8Hz),

alphawave (8 to 12Hz), and 13Hz componentswithin the lowbeta range. This is because

the patients are in a state of coma, as noted before, and this means that the brain activity

of interest dominates lower-frequency ranges.

We consider two patients (patient 1 and patient 2) in a coma state. EEG data for each

patient has been provided by [3]. Since these recordings were collected, patient 1 has a

wakened from coma while patient 2 has died. It is proposed to apply EMD to extract the

relevant features from the EEG data and to illustrate how these features can be used to

detect inevitable brain death in patient 2. Time–amplitude plots of length one second for

each of the six EEG channels (FP1, FP2, . . . , etc.) for patient 1 and patient 2 are given in
the left columns of Figures 10.6 and 10.7, respectively. EMD was applied to each of the

channels to decompose them into their IMFs and the resulting Hilbert spectrum was

computed. The Hilbert spectrum of each channel within the range 0 to 30Hz is given in

Figures 10.6 and 10.7, respectively. The third column of each figure shows the

frequency–amplitude plots for each channel obtained by averaging the corresponding

Hilbert spectrum plots.
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Figure 10.7. Coma to Brain Death.
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Figure 10.6. Coma to awake.
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There are several important points to note regarding the features obtained using

EMD. First, it is clear that by comparing the frequency–amplitude plots for patient 1 and

patient 2, the brain activity within the range of 0 to 13Hz is significantly weaker for

patient 2. As mentioned earlier, activity within this range is related to the low level and

meditative brain activity. It can therefore be suggested that there is little or no activity

within this crucial range and that it can be used as an indication of inevitable brain death.

Also note that the same observations can be made from the data given in Figure 10.8,

patient 2 at a later date. The second point to note is that there exists strong similarity

between the spectra obtained from EEG channels of patient 1. For example, compare the

frequency–amplitude plots of FP1 and FP2 in Figure 10.6. However, it is clear that this is

not the case for patient 2. It can be thus concluded that strong similarities in the range 0 to

13Hz (particularly in channel FP1 and FP2) indicate that the patient will not succumb to

brain death.

10.5.4.1 EEG Phase Analysis using EMD. It is clear that if similarities exist

between specific frequency ranges (8 to 13Hz) among different EEG channels (FP1 and

FP2), then this is an indication that the patient will not succumb to brain death. For this

reason, it is proposed to extract relevant channel features using EMD and to compare

these features using complex extensions of the algorithm.

The EEG data from channel FP1 and FP2 for each patient were decomposed into

their IMFs and their instantaneous amplitude and frequencies were calculated. Features

within the desired frequency range were retained by [17], fusing instantaneous ampli-

tudes that corresponded to instantaneous frequencies within 8 to 13Hz. All other
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Figure 10.8. Brain Death.
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instantaneous amplitudes were omitted from the fusion process. The data was subse-

quently denoised [17] by zeroing the underlying signal if in a certain period, unless the

signal continuously has non-zero value in this period. The results of this fusion process

for FP1 andFP2 are given in the bottom panel of Figure 10.9 for patient 1. Similarly,

the fusion result for FP1 and FP2 for patient 2 is given in the bottom panel of Figure 10.10
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Figure 10.9. Filtered EEG deep coma patient 1 to awake.
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Figure 10.10. Filtered EEG deep coma patient 2 to death.
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as FP10 and FP20, respectively. Note that among the features extracted for patient 1, there

is much synchronization between the extrema. This is not the case for patient 2.

Complex extensions of EMDwere then applied to the features so as to highlight any

synchronizations that were present. By decomposing the complex signal (FP10 þ jFP20)
using rotation-invariant EMD, it was possible to monitor the phase relationship

accurately between the two channels. Taking the first complex IMF, it can be assumed

extracting the high-frequency information, which can suggest the spikes of the original

signal. By design, if the variations of two signals are similar, the phase of the complex

signal is approximately p/4. AS is shown in Figure 10.11, the panel represents the

absolutely value of the first complex IMF. The amplitude peaks when FP10 and FP20

both have a peak. The third plot in Figure 10.11 is a digitalized phase information. If the

phase of the first complex IMF is near top/4, thevaluewas set to one; otherwise, the value
was set to zero. Then the extracted phase and amplitude information was combined

together by multiplying the absolute value of the first IMF with the digitalized phase

information. The combined amplitude–phase information can be seen from the plot at the

bottom of Figure 10.11. This is regarded as an index for detecting the amplitude–phase

similarity of the two signals. The result of the samemethod applied to the filtered signals

FP10 and FP20 is shown at the bottom of Figure 10.12.

By comparing the index derived from the coma signals of patient 1 and patient 2,

it can be seen that patient 1 is likely to recover. Note that the interval in the digitalized

phase information of patient 1 is longer than the interval in the digitalized phase

information of patient 2. This can suggest a quicker phase change in patient 2. Therefore,

the patient should be treated bymedical care rather than having further diagnosis tests for

braindeath.
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Figure 10.11. Complex EEG analysis deep coma patient 1 leading to awake.
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10.6 CONCLUSION

The data fusion via fission concept is introduced in this chapter. Using EMD as the

methodology of data fission, then fusing the information of interest, provides a powerful

tool for analyzing data. By extending EMD fusion via fission to the complex domain,

it can be seen that the methodology is not limited to complex signals, but is also useful

when the phase information between two signals is important. It has been illustrated in

the area of quasi-brain-death preliminary diagnosis.
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