
A Semantics for Lazy Assertions

Olaf Chitil
University of Kent, UK
O.Chitil@kent.ac.uk

Abstract
Lazy functional programming languages need lazy assertions to en-
sure that assertions preserve the meaning of programs. Examples
in this paper demonstrate that previously proposed lazy assertions
nonetheless break basic semantic equivalences, because they in-
clude a non-deterministic disjunction combinator. The objective of
this paper is to determine ”correct” definitions for lazy assertions.
The starting point is our formalisation of basic properties such as
laziness, taking them as axioms of our design space. We develop
the first denotational semantics for lazy assertions; assertions de-
note subdomains. We define a weak disjunction combinator and to-
gether with a conjunction combinator assertions form a bounded
distributive lattice. From the established laws we derive an effi-
cient prototype implementation of lazy assertions for Haskell as
a library.

Categories and Subject Descriptors D.1.1 [Programming Tech-
niques]: Applicative (Functional) Programming; F.3.2 [Semantics
of Programming Languages]: Denotational semantics

General Terms Languages, Reliability, Theory

1. Introduction
Assertions have been used by programmers for a long time to ex-
press within their programming language properties of parts of their
programs [20]. Assertions document expected properties. They are
usually checked at runtime; if a fault occurs, the assertion raises an
exception and thus helps locating the cause of the fault [21].

Assertions look like the perfect match for lazy functional pro-
gramming languages: Because assertions are side-effect free func-
tions, inserting or removing an assertion should not change the
meaning of a program, except when the violation of an assertion
is reported by an exception. Let us consider a simple example of an
assertion in Haskell:

assert nats [4,2]

Here nats shall be an assertion expressing that a given list is a list
of natural numbers. The function assert applies the assertion1 to

1 We follow common practise of separating the assertion and the asser-
tion application function assert. In practise assert also takes additional
arguments to name the error location in case the assertion is violated.
Some assertion systems [9] fuse assert with the assertion though re-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
PEPM’11, January 24–25, 2011, Austin, Texas, USA.
Copyright c© 2011 ACM 978-1-4503-0485-6/11/01. . . $10.00

the list [4,2]. The expression evaluates to [4,2]. In contrast, the
expression

assert nats [4,-2]

raises an exception, because the assertion is violated. The function
assert nats is a partial identity on integer lists.

A lazy functional language allows the definition of infinite data
structures. We should be allowed to insert our assertion directly into
the recursive definition of the infinite list of Fibonacci numbers:

fibs :: [Integer]
fibs = assert nats

(0 : 1 : zipWith (+) fibs (tail fibs))

Here zipWith combines the Fibonacci list and the Fibonacci list
without its first element via element-wise addition.

For this definition to work, just as it does without the applica-
tion of assert nats, the assertion must be lazy. An assertion is
lazy, if the argument of assertion application is evaluated always
only as far as it is demanded by the context of the assertion appli-
cation. In denotational terms this means that the assertion has to
accept not just total lists of natural numbers, but also any partial
approximation of such a list:

assert nats (0:1:⊥) 0:1:⊥
assert nats (0:1:1:⊥) 0:1:1:⊥
assert nats (0:1:1:2:⊥) 0:1:1:2:⊥

In general, any approximation of an acceptable value has to be
accepted by an assertion to ensure that the programmer can insert
assertions anywhere without changing the meaning of the program.
Lazy languages need lazy assertions.

Several lazy assertion systems have been proposed [5–7], but
they turn out to be unacceptable, because they break basic semantic
equivalences that are used by any optimising compiler. Consider an
assertion equal for tuples of Booleans which asserts that the two
values of the tuple are equal. This assertion can easily be defined in
all previously proposed systems. As expected, the program snippet

let x = assert equal (True,False)
in (fst x, snd x)

raises an exception when evaluated. However, let us apply the basic
program transformation of let-inlining and we get

(fst (assert equal (True,False)),
snd (assert equal (True,False)))

Evaluating this snippet yields (True,False). No assertion excep-
tion is raised! The simple reason is that each of the two assertions
only sees a partial value and both (True,⊥) and (⊥,False) have
to be accepted by a lazy assertion as they are approximations of the

functionalisation, which can improve performance. However, considering
assertions as data that is interpreted by assert makes the implementation
design easier, because definitions of interpreters are generally easier to un-
derstand than higher-order functions.

evidently acceptable values (True,True) and (False,False)
respectively.

The nub of the problem is that assert equal is not a function,
it is non-deterministic. The value of assert equal (True,False)
is either (True, error "assertion violated") or (error
"assertion violated", False), depending on which part of
the tuple is demanded first. Previously proposed assertion systems
use non-pure extensions such as unsafePerformIO to step out-
side the pure functional language to enable the implementation
of assert equal. Allowing such “non-deterministic functions”
whose results depend on the context requires a complex, non-
standard language semantics. As we have just seen, it also breaks
standard equivalences.

We do not want to repeat the experience of first implementing
a new assertion system and later finding that it does not meet basic
semantic requirements. Instead we start with defining a simple
denotational semantics, ensuring that lazy assertions will have the
expected semantics. We formalise requirements such as laziness
and take them as axioms that determine our design space. From
the axioms we derive many further properties of lazy assertions. In
particular we establish that lazy assertions with a conjunctive and a
disjunctive combinator form a bounded distributive lattice. We see
that disjunction has to be weaker than we might expect and that
assertions do not allow for a general negation operator. Only after
establishing these general properties we finally consider assertions
for specific type structures, mainly algebraic data types. We use the
previously proved properties to derive an efficient implementation
in Haskell.

The example of Boolean tuples demonstrated that proper lazy
assertions by their very nature cannot express properties that relate
different parts of a data structure. Hence we start in Section 2 with
a number of examples showing that despite this limitation many
useful applications of the lazy assertions, which we derive in this
paper, exist. Then Section 3 sets out our denotational semantics and
motivates and formalises axioms. Subsequently Section 4 derives
central properties of lazy assertions and develops a less intuitive,
but smaller set of axioms for future use. Section 5 is the core of
the paper, defining general assertion combinators and proving their
properties. In Section 6 we then instantiate the general semantics
for specific data types, prove type-specific laws and derive the
implementation. Section 7 discusses related work and Section 8
concludes.

2. Examples for Assertions
Which kind of properties can we express with lazy assertions?
For primitive built-in types such as Integer and Char we have a
combinator that allows any Boolean predicate to check the desired
property:

pred :: Prim t => (t -> Bool) -> Assert t

For algebraic data types lazy assertions are mainly patterns. For the
list data type with its two constructors

(:) :: t -> [t] -> [t]
[] :: [t]

we have two corresponding assertion combinators

pCons :: Assert t -> Assert [t] -> Assert [t]
pNil :: Assert [t]

Furthermore, the assertion combinator

(<|>) :: Assert t -> Assert t -> Assert t

combines two assertions disjunctively, a value may fulfil the first
or the second assertion. With these combinators we can define the
assertion of the introduction:

nats :: Assert [Integer]
nats = pNil <|> pCons (pred (>=0)) nats

So a list of natural numbers is either an empty list or a non-empty
list with a natural number as first element and a list of natural
numbers as the tail. The definition reads similar to an algebraic
data type definition in Haskell.

Many language features are useful for better defining assertions.
For example, we may want to separate the reusable idea of asserting
a property for all elements of a list:

nats :: Assert [Integer]
nats = pList (pred (>=0))

pList :: Assert t -> Assert [t]
pList a = pNil <|> pCons a (pList a)

We also have a lazy assertion combinator

pAny :: Assert t

that accepts any value of any type a.
We can easily define an assertion that accepts only infinite lists:

infinite :: Assert [t]
infinite = pCons pAny infinite

The assertion accepts also all partial approximations, such as 7:⊥,
but not any list ending with the constructor [].

We can also define assertion combinators with parameters that
are not assertions. For example, we can define assertions that only
accept lists of a given minimal length:

lengthAtLeast :: Int -> Assert [t]
lengthAtLeast 0 = pAny
lengthAtLeast (n+1) = pCons pAny (lengthAtLeast n)

If the given length is 0, any list is accepted. If it is greater, then the
list must be non-empty and the tail must be of a length 1 shorter.
This assertion might be used in a definition such as

initAv :: [Int] -> Int
initAv = assert (lengthAtLeast 5 |-> pAny) initAv’

initAv’ xs = sum (take 5 xs) ’div’ 5

Here

(|->) :: Assert s -> Assert t -> Assert (s->t)

wraps assertions for a pre- and a post-condition around a function.
The assertion lengthAtLeast guarantees that initAv always de-
termines the average of the first 5 list elements; it raises an excep-
tion if the list is too short.

The assertion lengthAtLeast is strict in its numeric argument.
Using it with a constant argument is safe, but otherwise it could turn
a terminating into a non-terminating program.

Let us consider a bigger example. Assume we have a program
manipulating propositional formulae with functions computing var-
ious normal forms. The data type for representing a propositional
formula is

data Form = Imp Form Form | And Form Form |
Or Form Form | Not Form | Atom Char

Now we want to assert that some function produces a conjunctive
normal form. The assertion conjNF defined below accepts the set
of conjunctive normal forms:

conjNF, disj, lit, atom :: Assert Form

conjNF = pAnd conjNF conjNF <|> disj
disj = pOr disj disj <|> lit

lit = pNot atom <|> atom
atom = pAtom pAny

Again these definitions look similar to several algebraic data type
definitions or a context-free grammar.

Another function may transform a formula such that all binary
operations are left-associated. The assertion left can check for
this property:

left, noImp, noAnd, noOr, nonBind :: Assert Form

left = noImp <|> noAnd <|> noOr
noImp = pAnd left noAnd <|> pOr left noOr <|> nonBin
noAnd = pImp left noImp <|> pOr left noOr <|> nonBin
noOr = pImp left noImp <|> pAnd left noAnd <|> nonBin
nonBin = pNot left <|> pAtom pAny

These definitions contain repeated code. Easier to read is an equiv-
alent definition that uses the combinator <\> that subtracts a given
constructor from the set of accepted values, that is, any term with
the given constructor at the top is not accepted.

left = pImp left (left <\> cImp) <|>
pAnd left (left <\> cAnd) <|>
pOr left (left <\> cOr) <|>
pNot left <|> pAtom pAny

If we want to ensure that a formula is both in conjunctive
normal form and all binary operators left-associated, we just use
the conjunction combinator <&>:

leftConjNF :: Assert Form
leftConjNF = conjNF <&> left

3. Semantics and Axioms
Every assertion asserts a property for values of a given domain,
such as the values of type Form. For our denotational semantics
of lazy assertions we make the standard assumption that a domain
D is a directed complete partial order with least element ⊥ [1] .
So every directed subset has a least upper bound. For simplicity
we also assume that the exception raised by assertion violation is
represented by the least element ⊥ of the domain; it is not distinct.

What exactly is an assertion? An assertion a divides the domain
D into a set of accepted values [[a]] and the remaining non-accepted
values. The function assert turns any assertion a into a function
that maps from the domain into the domain. From now on we write
〈a〉 : D → D for the semantics of the expression assert a. From
〈a〉 we obtain the acceptance set [[a]]:

DEFINITION 1 (Acceptance set of an assertion).
Let a be an assertion. Then

[[a]] := {v ∈ D | 〈a〉 v = v}
is the acceptance set of a.

Our axioms for lazy assertions are the following:

DEFINITION 2 (Axioms for lazy assertions).
a is a lazy assertion, if it meets the following axioms:

1. 〈a〉 : D → D is a continuous function.
2. a is trustworthy, that is, 〈a〉 v ∈ [[a]] for any value v.
3. 〈a〉 is a partial identity, that is, 〈a〉 v v v for any value v.
4. [[a]] is a lower set.

A lower set is a set that contains all approximations of its elements,
that is, S is lower if and only if v ∈ S and v′ v v imply v′ ∈ S.

We require the four axioms for the following reasons:

1. We want to ensure that the addition of assertions does not
change the semantics of the lazy language in any way. Hence

we require 〈a〉 to be a function. To be sure and for ease of im-
plementation we also aim to define lazy assertions as a library
within the lazy language itself. Consequently 〈a〉 has to be a
continuous function.

2. A purpose of an assertion is to protect the context of the
assertion-wrapped expression, and thus the remainder of the
programme, from ever seeing a value that is unacceptable for
the assertion. Trustworthiness captures this property.

3. To preserve the semantics of a program when introducing as-
sertions, an assertion has to be the identity on all values of the
acceptance set. Even for values outside the acceptance set an
assertion should not return an arbitrary value, but some approx-
imation of the original value.

4. We already argued in the introduction, that any approximation
v′ of a value v that is evidently acceptable must be accepted
as well. When the context of the assertion application forces
evaluation only up to v′, the demanded parts of v′ have to be
returned. Raising an exception would be wrong, because v′

may later be evaluated further to v. When only v′ is demanded
the assertion may not evaluate further to check whether v′ is
actually v, because that would be eager evaluation and could
cause non-termination.

Any acceptance set of a lazy assertion is a domain. Trivially,
any subset A of a domain D is a partial order and the least upper
bound of any directed subset in D is also a least upper bound in A.
However, we have to prove that these least upper bounds are in A.
We also need ⊥ ∈ A.

THEOREM 1 (Acceptance sets are domains).
If a is a lazy assertion, then [[a]] is a domain.

Proof: Let X ⊆ [[a]] be directed. With the definition of [[a]] follows
〈a〉X = X; hence

F
(〈a〉X) =

F
X . Because 〈a〉 is continuous,

〈a〉 (
F
X) =

F
(〈a〉X). Both together give 〈a〉 (

F
X) =

F
X .

Hence
F
X ∈ [[a]].

There is at least one element to which all assertion arguments
are mapped. Partial identity tells us that⊥must be mapped to⊥ (in
that sense our lazy assertions are strict), and hence any acceptance
set must contain ⊥. �

So assertions really describe subtypes; their acceptance sets are
subdomains.

Trustworthiness is clearly desirable, but it is just a different way
of stating that the assertion function should be idempotent:

LEMMA 2 (Trustworthiness and idempotency).
∀v ∈ D. 〈a〉 v ∈ [[a]] if and only if ∀v ∈ D. 〈a〉 (〈a〉 v) = 〈a〉 v.

Proof: Because [[a]] = {w | 〈a〉w = w}. �

Findler and Blume [9] previously proposed projections as a
semantics for contracts.

DEFINITION 3. A function p : D → D on a domain D is a
projection if

• it is continuous,
• it is idempotent, and
• it is a partial identity.

LEMMA 3 (The image of a projection is an acceptance set).
If p is a projection, then {p v | v ∈ D} = {v ∈ D | p v = v}.

Proof: Let v′ ∈ {p v | v ∈ D}. Hence exists v̂ ∈ D with v′ = p v̂.
Idempotency gives p (p v̂) = p v̂. Hence v′ = p v̂ ∈ {v ∈ D |
p v = v}.

Let v′ ∈ {v ∈ D | p v = v}. So p v′ = v′. Hence
v′ ∈ {p v | v ∈ D}. �

So if 〈a〉 is a projection, then its image is [[a]]. Together with
Lemma 2 we conclude:

THEOREM 4 (Assertions are lower projections).
a is a lazy assertion if and only if 〈a〉 is a projection and its image
is a lower set.

Our axioms do not explicitly demand that assertion application
raises an exception for unacceptable values. However, it is a con-
sequence of the axioms that the result is a partial value and thus
“contains” ⊥, which represents our exception.

LEMMA 5 (Assertions are prompt). 〈a〉 v @ v, for all v /∈ [[a]].

Proof: Let v /∈ [[a]]. Because 〈a〉 is a partial identity, 〈a〉 v v v.
Because v /∈ [[a]], but according to trustworthiness 〈a〉 v ∈ [[a]], we
get 〈a〉 v @ v. �

4. Revised Axioms
We already have two characterisations of lazy assertions: Through
the well-motivated axioms of Definition 2 and as lower projections
(Theorem 4). Now we aim to determine an alternative set of axioms
which require us to check fewer properties and that will make it
easier to find concrete assertions.

We cannot simply drop any of our axioms. None is implied by
the others, for each axiom we can easily construct some pseudo-
assertion that does not meet this axiom but all others. Instead we
note that we defined the acceptance set [[a]] of an assertion through
assertion application 〈a〉. We consider doing the opposite: Given a
suitable acceptance set [[a]], its assertion application 〈a〉 is uniquely
determined.

First we define the lower set for a given value v and a setA ⊆ D
with respect to a given value:

↓{v} := {v′ | v′ v v}
Av :=↓{v} ∩A

With these we define assertion application:

THEOREM 6. Let a be a lazy assertion. For any value v ∈ D

〈a〉 v ∈ [[a]]v and 〈a〉 v =
G

[[a]]v

Proof: Partial identity yields 〈a〉 v v v and trustworthiness 〈a〉 v ∈
[[a]]. Together we have 〈a〉 v ∈↓{v} ∩ [[a]] = [[a]]v .

Let w ∈ [[a]]v . So w v v and with monotonicity follows
〈a〉w v 〈a〉 v. Also w ∈ [[a]] and thus 〈a〉w = w. Together we
get w v 〈a〉 v and hence 〈a〉 v is an upper bound for [[a]]v . Because
〈a〉 v ∈ [[a]]v , it is the least upper bound of [[a]]v . �

We now have a complete definition for assertion application.
Our axioms did not leave us any freedom of choice. But we do not
have yet a complete definition of assertions, because there is an
infinite number of sets we might choose as acceptance set, and for
each of these we need to check our axioms.

So let us examine acceptance sets more closely.

COROLLARY 7. [[a]]v is an ideal for any value v.

Proof: As the intersection of two lower sets, [[a]]v is a lower set.
Because [[a]]v contains an upper bound for all elements according
to Theorem 6, it is directed. �

So [[a]]v has to be an ideal, but [[a]] does not have to be an ideal!
For an example of an acceptance set that is not an ideal, consider
an assertion that accepts all values of a domain. It trivially meets all
our axioms. Domains are generally not directed. For instance, the
domain of Boolean values contains both True and False which
have no common upper bound.

Do we really need to check all our axioms for any assertion we
come up with? Indeed, we only have to ensure that our acceptance
set meets certain properties:

DEFINITION 4 (Lazy domain). A set A ⊆ D is a lazy domain if

• A is lower,
• A contains the least upper bound of any directed subset, and
• Av is directed for all values v ∈ D.

For any lazy assertion a its acceptance set [[a]] is a lazy domain,
but also the reverse is true:

THEOREM 8 (A lazy domain determines an assertion). Let A ⊆
D be a lazy domain. Let assertion application be defined as

〈a〉 v :=
G
Av

Then a is a lazy assertion with acceptance set [[a]] := A.

Proof: First we show A = [[a]].
Let v ∈ A. Then ↓{v} ∩ A =↓{v}. Hence 〈a〉 v =

F
Av =F

↓{v} = v. So v ∈ [[a]].
Let v ∈ [[a]]. So 〈a〉 v = v. Thus

F
Av = v. Because Av

is directed and A contains the least upper bound of any directed
subset, v ∈ A.

Next we check the assertion axioms:

1. Because 〈a〉 is defined through the continuous operations lower
set, intersection with a fixed set and least upper bound, it is
continuous itself.

2. Trustworthiness: Because Av is directed and A contains the
least upper bound of any directed subset, 〈a〉 v =

F
Av ∈ A.

3. Partial identity: Let v ∈ D be any value. v is an upper bound of
↓{v}. Thus it is an upper bound of ↓{v} ∩ A. Hence the least
upper bound 〈a〉 v is less or equal the upper bound v.

�

So in this section we have shown that our old, intuitive axioms
are equivalent to fewer, less intuitive axioms, which however are
easier to check. In the future we just make sure that we chose
acceptance sets that are lazy domains.

5. Assertion Combinators
For any value v we can easily define an assertion called v that
accepts v and all its approximations:

[[v]] := {w | w v v}
This acceptance set is a lazy domain and thus gives us a lazy
assertion. However, what we really are looking for is a set of
combinators for building interesting assertions from very simple
ones. These combinators should have a useful algebra.

5.1 Minimal and maximal assertions
The canonical partial ordering of assertions is the subset relation-
ship of their acceptance set.

All acceptance sets are domains. Hence the minimal acceptance
set contains just the least element ⊥. The assertion that accepts any
value of the domain is trivially the maximal assertion.

[[pNone]] = {⊥}
[[pAny]] = D

These two acceptance sets are lazy domains. Implementing as-
sertion application for either assertion is straightforward:

〈pNone〉 v=
F

[[pNone]]v =
F
{⊥} =⊥

〈pAny〉 v=
F

[[pAny]]v =
F
↓{v}= v

For pNone the assertion function constantly returns ⊥, for pAny it
is the identity.

5.2 Conjunction
The definition for conjunction of two assertions is straightforward:

DEFINITION 5 (Conjunction of assertions).

[[a <&> b]] := [[a]] ∩ [[b]]

Conjunction is well-defined, because the intersection of two
lower sets [[a]] and [[b]] is a lower set, intersection preserves least
upper bounds, and the intersection of two directed sets is a directed
set, so

[[a <&> b]]v =↓{v} ∩ ([[a]] ∩ [[b]])

= (↓{v} ∩ [[a]]) ∩ (↓{v} ∩ [[b]])

= [[a]]v ∩ [[b]]v

is directed.

LEMMA 9. Conjunction of assertions is commutative and associa-
tive and has the assertion pAny as neutral element.

Proof: The defining intersection operator is commutative and asso-
ciative with the full set (domain) as neutral element. �

LEMMA 10. Conjunction equals two assertions
〈a <&> b〉 v = 〈a〉 (〈b〉 v) for any value v.

Proof:
〈a〉 (〈b〉 v)

=(definition)

〈a〉 (
G

(↓{v} ∩ [[b]]))

=(〈a〉 continuous)G
{〈a〉w | w ∈ (↓{v} ∩ [[b]])}

=(definition)G
{

G
(↓{w} ∩ [[a]]) | w ∈ (↓{v} ∩ [[b]])}

=(↓{v} ∩ [[b]] is already lower)G
(↓{v} ∩ [[b]] ∩ [[a]])

=(definition)
〈a <&> b〉 v

�

5.3 Disjunction
The cause of the semantic problems of previous lazy assertion
contract systems is the presence of standard disjunction in these
systems. Disjunction in these systems cannot be given a simple
denotational semantics, because it is non-deterministic. Here we
see that defining

[[a ∨ b]] := [[a]] ∪ [[b]]

does not work, because in general

[[a ∨ b]]v =↓{v} ∩ ([[a]] ∪ [[b]])

= (↓{v} ∩ [[a]]) ∪ (↓{v} ∩ [[b]])

is not directed, because ideals are not closed under unions, and this
union hence generally does not have a least upper bound.

Defining a disjoint disjunction is an option. If [[a]] and [[b]] are
disjoint, except for the element ⊥, then (↓{v}∩ [[a]])∪(↓{v}∩ [[b]])

is directed and thus an ideal. For most of our examples in Section 2
disjoint union would be sufficient. The main problem is that there
is no easy way to statically (e.g. in the type system) ensure that the
acceptance sets of two assertions are disjoint and partially defined
operations complicate any algebra.

Instead we take inspiration from ideal completion. The least
ideal containing a given set X is given by intersecting all ideals
that contain the set X:

T
{Y |X ⊆ Y, Y is ideal}. Similarly we

define a new disjunction operator <|>:

DEFINITION 6 (Disjunction of assertions).

[[a <|> b]] :=
\
{Y | [[a]] ∪ [[b]] ⊆ Y, Y lazy domain}

There always exists at least one Y fulfilling the required prop-
erties, namely the domain itself. In the extreme case the disjoint
union returns pAny.

Our disjunction combinator is well-defined: [[a <|> b]] is a lazy
domain, because it is the intersection of lazy domains Y . In partic-
ular, [[a <|> b]]v is directed for any v ∈ D by definition.

Let us consider a few simple examples. Let fstTrue and
sndTrue be assertions on Boolean tuples that determine that the
first, respectively the second component of a tuple is True. The
assertion fstTrue <|> sndTrue accepts any tuple! That may be
surprising, but if we expected it to reject (False,False), what
result should it return for (False,False)? Both (⊥,False) and
(False,⊥) are suitable candidates in the acceptance set. Neither
of them is better than the other, we need a common upper bound
and hence (False,False) was added to the acceptance set.

Note that fstTrue <&> sndTrue is the assertion that requires
both components of a tuple to be True. Similarly we can de-
fine a fstFalse <&> sndFalse. Combining these disjunctively,
(fstTrue <&> sndTrue) <|> (fstFalse <&> sndFalse),
again yields the assertion that accepts every tuple. We cannot ex-
press that the two components of the tuple should be equal. Rela-
tionships between components are not expressible.

LEMMA 11. Disjunction of assertions is commutative and associa-
tive and has the assertion pNone as neutral element.

Proof: The union operator in the definition of disjunction is com-
mutative and associative with the set {⊥} (included in any accep-
tance set) as neutral element. �

5.4 Conjunction & Disjunction
LEMMA 12 (Absorption laws).

a <&> (a <|> b) = a

a <|> (a <&> b) = a

Proof:
First law:

[[a <&> (a <|> b)]]

=[[a]] ∩
\
{Y | [[a]] ∪ [[b]] ⊆ Y, Y lazy domain}

=
\
{[[a]] ∩ Y | [[a]] ∪ [[b]] ⊆ Y, Y lazy domain}

=
\
{Y | [[a]] ∩ ([[a]] ∪ [[b]]) ⊆ Y, Y lazy domain}

=
\
{Y | [[a]] ⊆ Y, Y lazy domain}

=[[a]]

Second law:

[[a <|> (a <&> b)]]

=
\
{Y | [[a]] ∪ ([[a]] ∩ [[b]]) ⊆ Y, Y lazy domain}

=
\
{Y | [[a]] ⊆ Y, Y lazy domain}

=[[a]]

�

The two binary combinators are related via distributive laws:

LEMMA 13 (Distributive laws).

a <|> (b <&> c) = (a <|> b) <&> (a <|> c)

a <&> (b <|> c) = (a <&> b) <|> (a <&> c)

Proof:
First law:

[[a <|> (b <&> c)]]

=
\
{Y | [[a]] ∪ ([[b]] ∩ [[c]]) ⊆ Y, Y lazy domain}

=
\
{Y | ([[a]] ∪ [[b]]) ∩ ([[a]] ∪ [[c]]) ⊆ Y, Y lazy domain}

=
\
{Y | [[a]] ∪ [[b]] ⊆ Y, [[a]] ∪ [[c]] ⊆ Y, Y lazy domain}

=
\
{Y | [[a]] ∪ [[b]] ⊆ Y, Y lazy domain}

∩
\
{Y | [[a]] ∪ [[c]] ⊆ Y, Y lazy domain}

=[[(a <|> b) <&> (a <|> c)]]

The second distributive law is known to be equivalent to the first.
�

COROLLARY 14. Lazy assertions form a bounded distributive lat-
tice with meet <&>, join <|>, least element pNone and greatest el-
ement pAny. The ordering is the subset-relationship on acceptance
sets.

Thus all laws of bounded distributive lattices hold for lazy
assertions, for example the idempotency laws:

a <&> a = a

a <|> a = a

5.5 Negation
We cannot define any negation for lazy assertions that would turn
them into a Boolean algebra. Let a be an assertion with [[a]] =
{⊥, (⊥,⊥)}. From the first complement law of Boolean alge-
bra, a <&>¬a = pNone, follows that [[a]] ∩ [[¬a]] = {⊥}. Lazi-
ness requires that [[¬a]] is a lower set. So [[¬a]] = {⊥}. Hence
[[a <|>¬a]] = [[a]]. This contradicts the second complement law of
Boolean algebra a <|>¬a = pAny.

We will see that we can still define a useful, weaker variation of
negation for constructor terms.

6. Implementing Assertions
In the previous section we developed a general semantics for lazy
assertions for any domain. We have not yet said much about any
concrete acceptance sets [[a]]. For that we have to consider the con-
crete domains of specific types. We currently only have pNone,
pAny and the combinators <&> and <|>, which on their own make
for a rather boring set of assertions. Every domain needs its spe-
cific set of additional assertions and that is where we have design
choices. Also, our semantic definitions are non-constructive. They
just define acceptance sets, not algorithms for evaluating assertions.

In particular our definition of <|> in terms of an intersection of a
usually infinite set is hardly a good basis for an implementation.

6.1 Primitive Data Types
Every programming language includes some primitive data types
such as number and characters that are flat domains, that is, v @
w implies v = ⊥. If a value of such a primitive data type is
demanded in the computation, the whole atomic value is demanded.
Hence like for strict assertions we can use predicates, Boolean-
valued functions φ of our programming language, as assertions.
This choice gives us maximal expressibility. We can for example
define an assertion requiring a number to be prime.

We define the acceptance set of a predicate assertion for flat
domains as

[[φ]] := {⊥} ∪ {v | φ v}

We have to explicitly include ⊥ to ensure that the acceptance
set is lower, as we may have φ ⊥ = ⊥ or φ ⊥ = False.
Predicate assertions meet our revised axioms: [[φ]] is lower and
[[φ]]v is directed for any v, because the domain is flat and these
sets include ⊥.

From the definition of the predicate acceptance set and our gen-
eral assertion application definition we can derive an implementa-
tion of predicate assertion application:

〈φ〉 v =
G

↓{v} ∩ [[φ]]

=
G
{⊥, v} ∩ ({⊥} ∪ {w | φw})

=
G
{⊥} ∪ (if φ v then {v} else {⊥})

= if φ v then v else ⊥

The implementation works also for v = ⊥, and no matter whether
φ⊥ = ⊥ or not.

Choosing [[φ]] := {⊥} ∪ {v | φ v 6= False} looks like a good
alternative definition for predicate assertions; it would also include
all values v with φ v = ⊥. However, if we try to derive the assertion
application, then we find it un-implementable.

The least and greatest predicate assertions are

pNone := λx.False

pAny := λx.True

and the canonical definitions for conjunction and disjunction

φ <&>ψ = λx.φ x ∧ ψ x
φ <|>ψ = λx.φ x ∨ ψ x

do indeed meet our previous definitions:

[[φ <&>ψ]] = [[φ]] ∩ [[ψ]]

= {v | φ v ∧ ψ v}

[[φ <|>ψ]] =
\
{X | [[φ]] ∪ [[ψ]] ⊆ X,X lazy domain}

=
\
{X | [[φ]] ∪ [[ψ]] ⊆ X}

= [[φ]] ∪ [[ψ]]

= {v | φ v ∨ ψ v}

The latter proof works, because in flat domains any setX including
⊥ is lower, least upper bounds are trivial, and ↓{v} ∩X is always
directed.

Although negation is not generally available for lazy assertions,
we could define it for flat domains:

¬φ := λx.¬(φ x)

Its semantics meets our revised axioms, but it is unclear whether
this combinator is useful in practise, as the programmer can ma-
nipulate the predicate directly.

6.2 Algebraic Data Types
Our main focus are data types whose values are constructor terms,
such as the type Form for representing propositional formulae. Data
constructors are symbols with an arity, including arity 0, and terms
are built from full applications of a finite number of different data
constructors to terms, and the value⊥. The domain is not flat. Often
it even allows for infinite values (least upper bounds of a countable
directed set of finite, partial approximations). The domain is usually
not directed.

Like in our introductory example, we use constructors as pat-
terns to describe assertions. A pattern assertion is built by applying
a constructor to as many assertions as the arity of the constructor
specifies. Thus constructor terms are a subset of constructor asser-
tions, but together with other assertion combinators the assertion
language becomes richer. Let C be a data constructor of the pro-
gramming language and a1, . . . , an lazy assertions for its argument
domains.

[[C a1 . . . an]] := {⊥} ∪ {C v1 . . . vn | v1 ∈ [[a1]] . . . vn ∈ [[an]]}
This definition meets our revised axioms of lazy assertions: Be-
cause a1, . . . , an are lazy assertions, [[a1]], . . . , [[an]] are lower and
[[a1]]v1 , . . . , [[an]]vn are directed for any v1, . . . vn of the respec-
tive domains. Hence [[C a1 . . . an]] is lower and [[C a1 . . . an]]v is
directed for all v.

Now we look for constructive definitions of our two combina-
tors <&> and <|>. For <&> we easily find the following two laws:

LEMMA 15 (Conjunction of constructor assertions).

(C a1 . . . an) <&> (C b1 . . . bn) = C(a1 <&> b1) . . . (an <&> bn)

(C a1 . . . an) <&> (C′ b1 . . . bn) = pNone if C 6= C′

Proof:
First law:

[[(C a1 . . . an) <&> (C b1 . . . bn)]]

=[[C a1 . . . an)]] ∩ [[C b1 . . . bn]]

=({⊥} ∪ {C v1 . . . vn | v1 ∈ [[a1]], . . . , vn ∈ [[an]]})∩
({⊥} ∪ {C v1 . . . vn | v1 ∈ [[b1]], . . . , vn ∈ [[bn]]})

=({⊥} ∪ {C v1 . . . vn | v1 ∈ [[a1]]∩[[b1]], . . . , vn ∈ [[an]]∩[[bn]]})
=[[C(a1 <&> b1) . . . (an <&> bn)]]

Second law:

[[(C a1 . . . an) <&> (C′ b1 . . . bn)]]

=({⊥} ∪ {C v1 . . . vn | v1 ∈ [[a1]], . . . , vn ∈ [[an]]})∩
({⊥} ∪ {C′ v1 . . . vn | v1 ∈ [[b1]], . . . , vn ∈ [[bn]]})

={⊥}
=[[pNone]]

�

Our general definition of <|> is more complicated than our
definition of <&>. So let us look at some of its details to see what
happens for constructor terms. Consider the set

S := {⊥} ∪ {C v1 v2 |(v1 ∈ [[a1]] ∧ v2 ∈ [[a2]])∨
(v1 ∈ [[b1]] ∧ v2 ∈ [[b2]])}

In general ↓{v} ∩ S is not directed for all values v. Consider for
example the elements C v1 ⊥ and C ⊥ v2 of S, with v1 ∈ [[a1]] and
v2 ∈ [[b2]]. Their least upper bound is C v1 v2, which is not in S by

definition. So any (lower) Y with S ⊆ Y and ↓{v} ∩ Y directed
must include these least upper bounds. In other words, any such Y
must be a superset of

{⊥} ∪ {C v1 v2 |(v1 ∈ [[a1]] ∨ v1 ∈ [[b1]])∧
(v2 ∈ [[a2]] ∨ v2 ∈ [[b2]])}

Hence the following holds:

[[(C a1 . . . an) <|> (C b1 . . . bn)]]

=
\
{Y | {⊥} ∪ {C v | (v1 ∈ [[a1]] ∧ . . . ∧ vn ∈ [[an]])∨

(v1 ∈ [[b1]] ∧ . . . ∧ vn ∈ [[bn]])} ⊆ Y,

Y lazy domain}

=
\
{Y | {⊥} ∪ {C v | (v1 ∈ [[a1]] ∨ v1 ∈ [[b1]]) ∧ . . .∧

(vn ∈ [[an]] ∨ vn ∈ [[bn]])} ⊆ Y,

Y lazy domain}

={⊥} ∪ {C v | v1 ∈
\
{Y1 | [[a1]] ∪ [[b1]] ⊆ Y1,

Y1 lazy domain}, . . . ,

vn ∈
\
{Yn | [[an]] ∪ [[bn]] ⊆ Yn,

Yn lazy domain}}
={⊥} ∪ {C v | v1 ∈ [[a1 <|> b1]], . . . , vn ∈ [[an <|> bn]]}
=[[C (a1 <|> b1) . . . (an <|> bn)]]

So we find that for constructor terms the first law for <|> is
surprisingly similar to that for <&>:

LEMMA 16 (Disjunction of constructor assertions).

(C a1 . . . an) <|> (C b1 . . . bn) = C (a1 <|> b1) . . . (an <|> bn)

For different constructors no simple law exists, but we note that
if C 6= C′, then Y := [[C a1 . . . an]] ∪ [[C′ b1 . . . bn]] is lower.
Least upper bounds are preserved and ↓{v} ∩ Y is directed for any
value v, because [[C a1 . . . an]] ∩ [[C′ b1 . . . bn]] = {⊥}. Hence

[[(C a1 . . . an) <|> (C′ b1 . . . bn)]]

=
\
{Y | [[C a1 . . . an]] ∪ [[C′ b1 . . . bn]] ⊆ Y,

Y lazy domain}
=[[C a1 . . . an]] ∪ [[C′ b1 . . . bn]]

Altogether we see that although the general definition of <|>
in terms of an infinite intersection is not simple, its incarnation
for constructors is easy to use. In our introductory examples and
most applications the two assertions combined by <|> have either
disjoint acceptance sets, in which case we get a simple union of
acceptance sets, or they have the same acceptance sets, in which
case idempotency gives us as expected a <|> a = a. For the general
case of a partial overlap we have Lemma 16.

Lazy assertions form a bounded distributive lattice, there is no
general negation. However, in our initial example we noted that
it is very useful to be able to express that an assertion does not
accept certain top-level constructors. Hence we introduce a specific
subtraction combinator on assertions that removes a constructor.
Let a be a lazy assertion and c be a constructor of its domain.

[[a<\>C]] := [[a]]\{C v1 . . . vn | v1, . . . , vn any domain values}

This definition meets our revised axioms, [[a<\>C]] is lower and
[[a<\>C]]v directed for any v if a meets the axioms.

The combinator meets distribution laws:

(a <&> b) <\> C = (a<\>C) <&> (b<\>C)

(a <|> b) <\> C = (a<\>C) <|> (b<\>C)

More important for an implementation is that the following laws
trivially hold:

LEMMA 17 (Subtraction for constructor assertions).

C a <\> C = pNone

C a <\> C′ = C a if C 6= C′

6.3 Implementation
We have not yet actually given a complete implementation of the
assertion combinators for constructor terms. However, the laws of
our lemmas and the general distributive lattice laws are sufficient
to derive an efficient implementation.

The laws allow us to represent any constructor assertion of any
algebraic data type as a finite disjunction

C1 a1 <|> C2 a2 <|> . . . <|> Cm am

where {C1, . . . , Cm} is a subset of the constructors of the algebraic
data type.

Clearly any simple constructor assertion C a is already in that
form. The least assertion pNone is represented as the empty dis-
junction and

pAny = C1 pAny <|> . . . <|> Cn pAny

The definition of assertion application for our representation is
straightforward:

〈C1 a1 <|> . . . <|>Cm am〉 (C v) =

C (〈aj〉 v) if C = Cj

⊥ otherwise

〈C1a1 <|> . . . <|>Cm am〉 ⊥ = ⊥

Here 〈aj〉 v is an abbreviation for component-wise assertion appli-
cation.

Using our laws for constructor assertions we can define con-
junction and disjunction on our representation:

(Ci1 ai1<|> . . . <|>Cim aim) <&> (Cj1 bj1<|> . . . <|>Cjl bjl)

=Ck1 (ak1<&>bk1) <|> . . . <|>Cko (ako<&>bko)

where

{k1, . . . , ko} = {i1, . . . , im} ∩ {j1, . . . , jl}

and

(Ci1 ai1<|> . . . <|>Cim aim) <|> (Cj1 bj1<|> . . . <|>Cjl bjl)

=Ck1 zk1 <|> . . . <|>Cko zko

where

{k1, . . . ,ko} = {i1, . . . , im} ∪ {j1, . . . , jl}

zks =

8<: aks <|> bks if ks ∈ {i1, . . . , im} ∩ {j1, . . . , jl}
aks if ks ∈ {i1, . . . , im}\{j1, . . . , jl}
bks if ks ∈ {j1, . . . , jl}\{i1, . . . , im}

In these equations a <|> b and a <&> b are abbreviations for the
component-wise combinations.

The definition of <\> for this representation is simple: it just
removes one of the elements of the disjunction.

This implementation is efficient, because the disjunctive repre-
sentation of an assertion is computed only once, afterwards asser-
tion application for constructor terms requires linear time in the size
of the checked data structure. By introducing an additional repre-
sentation of pAny we can also avoid doing any checking work on a

data structure that is accepted anyway. The efficiency of the func-
tion assertions for primitive types fully depends on the efficiency
of the predicates that the programmer chooses.

A prototype implementation using this representation, including
predicate assertions for primitive types, exists in Haskell and has
been used in several examples, including the propositional formu-
lae of Section 2. Associated types [3, 4] enable providing a single
class with functions assert, <|>, etc. with different implementa-
tions for each type.

6.4 What about Function Types?
The domain of functions over a domain D and codomain D′ is
the set of continuous functions [D → D′] from the domain to the
codomain.

We follow previous work on assertions for strict functional
languages [10] and define a function assertion as a tuple a 7→ b of
an assertion a for the domain, the pre-condition, and an assertion
b for the codomain, the post-condition. We can define the standard
function assertion application [10] simply by composing existing
assertion applications:

〈a 7→ b〉 δ = λx.〈b〉 (δ (〈a〉x))

Thus the assertion correctly checks both the pre- and the post-
condition. Function arguments and results are checked lazily, only
as far as they are demanded by the context. We can compose
function assertions to build assertions for higher-order functions.

However, our definition of the acceptance set yields

[[a 7→ b]] = {δ ∈ [D → D′] | 〈b〉 ◦ δ ◦ 〈a〉 = δ}

which is not a lazy domain! It is not even a lower set.
Instead, comparison with the eager quotient model [2] suggests

[[a 7→ b]] = {δ ∈ [D → D′] | ∀v ∈ [[a]]. δ v ∈ [[b]]}

and comparison with the eager projection model [9] suggests

[[a 7→ b]] = {δ ∈ [D → D′] | ∀v ∈ D. δ v ∈ [[b]]}

Both these sets are lazy domains. However, both acceptance sets
describe only half of the assertion application. Neither of them ex-
presses that if the function argument is not within the acceptance set
[[a]], then an exception should be raised, because the pre-condition
is violated.

Function assertions are different from first-order assertions in
that they describe properties of both the assertion argument, the
function, and the context of the assertion application (which pro-
vides the argument for the function).

Findler and Blume solved this problem in their projection model
[9] by interpreting an eager function assertion as a pair of projec-
tions. One projection restricts the assertion argument, the other re-
stricts the context. For first-order assertions the context projection
is just the identity function. Similarly we could use either pairs of
lazy projections (cf. Theorem 4) or introduce a second acceptance
set restricting the context. We believe that the definitions and lem-
mas of previous sections can be transferred.

There is still more potential for lazy function assertions: For ea-
ger functional languages there exist dependent function assertions,
where the assertion of the function result depends on the argument
passed to the function. For algebraic data types lazy assertions can-
not relate different subterms of constructor terms, because the sub-
terms can be demanded in any order. Relating argument and result
of a function is different, because only after the result of a func-
tion has been demanded, the argument may be demanded. Hence
it should be possible to express non-strictness properties such that
only when a certain part of the result of a function is demanded, the
function demands a certain part of its argument.

7. Discussion of Related Work
There is an extensive literature on assertions and contracts for non-
functional programming languages. A contract combines several
assertions. A contract consists of a pre-condition that a function
caller or client has to meet and a post-condition that the function or
server promises in return [19]. When the contract is violated, one
of the parties is blamed. In this paper we discussed only assertions.
Contracts with blaming can be built on top of them.

Assertion-based contracts became popular in eager functional
programming languages with Findler and Felleisen’s seminal paper
on contracts for higher-order functions [10]. All interesting proper-
ties of functional values, which are passed around by higher-order
functions, are undecidable; it is impossible to check a function con-
tract for all argument-result-pairs. However, Findler and Felleisen
realised that it is sufficient to check both the pre- and the post-
condition of a functional value only when this function is applied.
The resulting contract system is sound.

This “lazy” checking of contracts for functional values in eager
languages provides another argument for using lazy assertions in
lazy languages: A lazy data type T is isomorphic to the function
type Unit -> T in an eager language. Demanding a value of the
lazy type T corresponds to applying the function of the eager type
Unit -> T. Hence because an assertion for a function is checked
only when the function is applied to an argument, an assertion for
a lazy value should only be checked when the value is demanded.

Other contributions of Findler and Felleisen’s paper, a system
for correctly attributing blame in case of contract violation and an
implementation as an extension of a Scheme runtime system are not
relevant for this paper, as the implementation approach is different.
The work also provides dependent function contracts, where the
assertion for the codomain can use the actual argument value.

Hinze et al. [17] transferred contracts for higher-order functions
to Haskell, implementing it as a library instead of modifying the
runtime system. Thus it will provide a good model for building
contracts and blame assignment on top of our assertions. However,
their semantics is a seemingly random mixture of eager and lazy
assertion evaluation.

Lazy assertions were first discussed and several implementa-
tions presented in 2004 [7]. That paper makes the point that while
eager assertions must be True, lazy assertions must not be False,
which lead us here to require that acceptance sets are lower. The
paper uses predicates on values of all types and hence, despite
some technical tricks using concurrency, the assertions are lazy
but neither trustworthy nor prompt. The paper itself gives exam-
ples of where assertion violations are noticed too late. This problem
was later rectified [5, 6]. Both these papers implement lazy asser-
tions as libraries that require only the commonly provided non-pure
function unsafePerformIO, which performs side effects within
a purely functional context. The first lazy and trustworthy imple-
mentation [6] uses patterns similar to those in this paper to express
assertions over algebraic data types. However, a non-deterministic
implementation of disjunction leads to the semantic problems de-
scribed in the introduction. Later [5] provided a more user-friendly
language for expressing assertions and improved the internal struc-
ture of the implementation, but the implementation principles were
identical and hence the non-deterministic disjunction remained.
The axioms of our Definition 2 are inspired by this previous work,
but there was no formal semantics and the implementation derived
here is completely different.

Degen et al. [8] classify all existing assertion systems for
Haskell as eager (straight translation of [10]), semi-eager [17]
and lazy [5–7]. They check whether the systems meet their four
desirable properties of meaning reflection, meaning preservation,
faithfulness and idempotency. Sadly, none of the assertion systems
meets all four properties. In particular, they note that lazy assertions

are not faithful. Hence, although eager assertions are not meaning
preserving for lazy languages, they prefer them and conclude with
the slogan ”Faithfulness is better than laziness”. The lazy assertions
presented in this paper are idempotent and also meaning reflecting
and meaning preserving, as far as the informal definitions of the
latter properties allow such a statement. To demonstrate that lazy
assertions are not faithful, Degen et al. consider the expression

assert (pred (==0) |-> pAny) (\x -> 42) 5

Evaluating it yields 42 in all lazy assertion systems, including the
one presented in this paper. However, faithfulness would require
evaluation to yield an exception, complaining that 5 is unequal 0.
Faithfulness is similar to trustworthiness, but stricter for function
assertions. In this paper, the semantic value passed as argument to
the function (\x -> 42) is the exception ⊥. So the function gets
an argument within the acceptance set and hence the assertion is
trustworthy. The expression above is equivalent to

(\x -> 42) (assert (pred (==0)) 5)

It is important to know what an assertion guarantees and what not.
The semantics defined in this paper provides an answer. Faithful-
ness seems to be unnecessarily too strong a requirement. Faith-
fulness conflicts with laziness, because acceptance sets are lower.
Trustworthiness suffices.

Blume et al. proposed and studied several semantic models of
Findler and Felleisen’s higher-order contracts [2, 9, 11]. These se-
mantic models are based on operational semantics. The quotient
model [2] equates a contract with the set of terms satisfying the
contract. The property of safety, that is, whether a term contains
a blame exception that can be raised by a context, plays a major
role. The projection model [9, 11] interprets a contract as a pair of
projections and defines a suitable ordering on these pairs of pro-
jections. The papers do not discuss algebraic data types, because in
strict languages these domains are flat and hence contracts for al-
gebraic data types are predicates like for other primitive types. In-
stead the papers focus on higher-order functions and correct blame
assignment. They are more complex than our simple semantics of
lazy assertions. To define a semantics for lazy assertions incorpo-
rating higher-order functions we probably have to combine ideas
from both worlds.

For lazy functional logic languages Hanus [16] proposed to al-
low the user to choose for each assertion whether it should be eager
or lazy, depending on whether meaning preservation or faithful-
ness are essential. Assertion checking can even be delayed until a
point in the program execution, e.g. just before an important out-
put action. The prototypical implementation combines ideas from
eager [10] and early lazy assertions [7], taking advantage of some
logical language features. The semantics is not studied, but as func-
tional logic languages permit non-deterministic functions, older —
more expressive — lazy assertions may still fit within the semantics
of the language [18]. It would be interesting to determine whether
that is the case, or the fact that the non-determinism of an assertion
depends on its context would still break the language semantics.

The original idea of assertions is that they are checked at run-
time. However, there exist several proposals for doing at least part
of the checking statically, like type checking [12, 22]. The main
challenge is to handle the intrinsic undecidability of assertions. The
proposal for Haskell [22] is not lazy in the sense of this paper; ac-
ceptance sets are not lower. That is fine; we require our laziness
only because our assertions are checked at runtime.

Work on improving the implementation of eager higher-order
contracts for Scheme are ongoing [13]. These ideas are closely
linked to the eager semantics of Scheme.

Our semantics uses basic domain theory. Acceptance sets are
inclusive subsets as they are often used to interpret types [14]. As-

sertions are finitary projections, widely used for defining domains
[14, 15]. Our assertion sets with respect to a given value, [[a]]v , are
normal in [[a]] [15]. The definition of [[a]]v also reminds of bases
of domains [1]. Still, the specific combination of axioms for lazy
assertions made it hard to reuse many standard theorems of domain
theory.

8. Conclusions
We have defined a semantics for lazy assertions. Our semantics
is simple; it is based on the acceptance set [[a]] of an assertion a
as the subset of the domain that contains all accepted values. Our
axioms are few and clarify what lazy assertions are. The axioms
yield a beautiful algebra of assertions, a bounded distributive lat-
tice. It turns out that for primitive and algebraic data types the
axioms leave little freedom in choosing suitable assertion combi-
nators. From the semantics we derived an efficient prototype im-
plementation of lazy assertions for Haskell. The implementation is
just a library, thus requiring no specific runtime system support and
guaranteeing to preserve the language semantics.

Associated type classes provide a simple interface to lazy asser-
tions, but in the future we have to find a suitable generic program-
ming framework to enable us to define lazy assertions once for all
types, without any tedious repetition for pattern combinators and
even combinators such as conjunction for every type.

Previous lazy assertions, which break standard semantic equiv-
alences, can express properties such as a list being ordered. How-
ever, checking such an assertion can take time that is exponential
in the length of the list. Hence there is an advantage in that the lazy
assertions presented here are limited to properties of algebraic data
types that can be checked in linear time. It is a limitation that sim-
ple equality checks like for the Boolean tuple in the introduction
cannot be expressed. However, such assertions can only be vio-
lated when data structures are fully evaluated, which may happen
less frequently in programs that work with many partial data struc-
tures (cf. the Pasta interpreter application in [7]) and thus may be
less useful. Lazy assertions for algebraic data types are, however,
quite different from those for eager functional languages. Existing
functions and predicates cannot be reused but instead the pattern
matching assertion combinators have to be used; the definition of
lazy assertions is similar to the definition of algebraic data types.
Thus lazy assertions for algebraic data types are less like eager
assertions but more like subtypes expressing context-free proper-
ties, underlined by the fact that acceptance sets are subdomains. In
principle, variants of the original algebraic data type could be used
instead. For example, each intermediate abstract syntax tree in a
multi-pass compiler could be specified as a separate algebraic data
type, but subtypes are far more convenient to write and read.

The aim of this paper was to study lazy assertions. Laziness
mainly influences the semantics of algebraic data types, hence these
were the focus of our studies. It is reassuring that predicate-based
assertions for primitive types seamlessly fit into this framework.
Lazy assertions for functions still require further work. We are con-
fident that the established implementation of non-dependent func-
tion assertions for eager functional languages can also be fitted
within our lazy semantic framework. More exciting but yet unan-
swered is the prospect of developing a form of dependent function
assertions. These function assertions will go far beyond standard
subtypes.

Acknowledgments
I thank Colin Runciman and Frank Huch for many earlier discus-
sions about lazy assertions.

References
[1] S. Abramsky and A. Jung. Domain theory. In S. Abramsky, D. M.

Gabbay, and T. S. E. Maibaum, editors, Handbook of Logic in Com-
puter Science, volume 3, pages 1–168. Clarendon Press, 1994.

[2] M. Blume and D. McAllester. Sound and complete models of con-
tracts. J. Funct. Program., 16(4-5):375–414, 2006.

[3] M. M. T. Chakravarty, G. Keller, and S. P. Jones. Associated type
synonyms. In ICFP ’05: Proceedings of the tenth ACM SIGPLAN
international conference on Functional programming, pages 241–253.
ACM, 2005.

[4] M. M. T. Chakravarty, G. Keller, S. P. Jones, and S. Marlow. Asso-
ciated types with class. In POPL ’05: Symposium on Principles of
programming languages, pages 1–13. ACM, 2005.

[5] O. Chitil and F. Huch. Monadic, prompt lazy assertions in Haskell. In
APLAS 2007, LNCS 4807, pages 38–53, 2007.

[6] O. Chitil and F. Huch. A pattern logic for prompt lazy assertions in
Haskell. In Implementation and Application of Functional Languages:
18th International Workshop, IFL 2006, LNCS 4449, 2007.

[7] O. Chitil, D. McNeill, and C. Runciman. Lazy assertions. In Im-
plementation of Functional Languages: 15th International Workshop,
IFL 2003, LNCS 3145, pages 1–19. Springer, November 2004.

[8] M. Degen, P. Thiemann, and S. Wehr. True lies: Lazy contracts for lazy
languages (faithfulness is better than laziness). In 4. Arbeitstagung
Programmiersprachen (ATPS’09), Lübeck, Germany, October 2009.

[9] R. B. Findler and M. Blume. Contracts as pairs of projections. In Inter-
national Symposium on Functional and Logic Programming (FLOPS),
LNCS 3945, pages 226–241, 2006.

[10] R. B. Findler and M. Felleisen. Contracts for higher-order functions.
In ICFP ’02: Proceedings of the seventh ACM SIGPLAN international
conference on Functional programming, pages 48–59, 2002.

[11] R. B. Findler, M. Blume, and M. Felleisen. An investigation of
contracts as projections. Technical report, University of Chicago
Computer Science Department, 2004. TR-2004-02.

[12] C. Flanagan. Hybrid type checking. In POPL ’06: Symposium on
Principles of programming languages, pages 245–256. ACM, 2006.

[13] M. Greenberg, B. C. Pierce, and S. Weirich. Contracts made manifest.
In POPL ’10: Symposium on Principles of programming languages,
pages 353–364. ACM, 2010.

[14] C. A. Gunter. Semantics of programming languages: structures and
techniques. MIT Press, 1992.

[15] C. A. Gunter and D. S. Scott. Semantic domains. In Handbook of
Theoretical Computer Science, Volume B: Formal Models and Semat-
ics (B), pages 633–674. MIT Press, 1990.

[16] M. Hanus. Lazy and faithful assertions for functional logic programs.
In Proc. of the 19th International Workshop on Functional and (Con-
straint) Logic Programming (WFLP 2010), pages 50–64. Universidad
Politécnica de Madrid, 2010.

[17] R. Hinze, J. Jeuring, and A. Löh. Typed contracts for functional
programming. In Proceedings of the 8th International Symposium on
Functional and Logic Programming, FLOPS 2006, LNCS 3945, pages
208–225, 2006.

[18] F. J. López-Fraguas, J. Rodrı́guez-Hortalá, and J. Sánchez-Hernández.
A simple rewrite notion for call-time choice semantics. In PPDP ’07,
pages 197–208, 2007.

[19] B. Meyer. Applying ”design by contract”. Computer, 25(10):40–51,
1992.

[20] D. L. Parnas. A technique for software module specification with
examples. Commun. ACM, 15(5):330–336, 1972.

[21] D. S. Rosenblum. A practical approach to programming with asser-
tions. IEEE Trans. Softw. Eng., 21(1):19–31, 1995.

[22] D. N. Xu, S. Peyton Jones, and K. Claessen. Static contract checking
for Haskell. In POPL ’09: Symposium on Principles of programming
languages, pages 41–52. ACM, 2009.

