
A Study of Loop Style and Abstraction in Pedagogic Practice

David J. Barnes
School of Computing, The University of Kent,

Canterbury, Kent. CT2 7NF, UK
d.j.barnes@kent.ac.uk

Dermot Shinners-Kennedy
Department of Computer Science and Information

Systems, University of Limerick, Limerick, Ireland.
dermot.shinners-kennedy@ul.ie

Abstract
This paper describes the results of a study into the use of
structure and abstraction in the programming styles of
lecturers and teaching assistants involved in teaching
programming to students attending university and other
third-level institutions. The study was motivated by the
hypothesis that the trend towards object-orientation is
being matched by pedagogic materials that consistently
foster the deployment of abstraction and structure in the
solution of programming problems. Unfortunately the
evidence does not support the hypothesis. We conclude
that the persistent use of abstraction at all levels of
implementation is necessary to perfect expertise in its
application and secure the benefits of the object-oriented
paradigm.
Keywords: Abstraction, exit-in-the-middle problems,
iteration, object orientation, pedagogy, structured
programming.

1 Introduction
We have been using programming languages for well
over half a century. It has been a period of persistent
change during which the evolution of programming
practice has had at least three identifiable 'ages': the
programming-in-the-absence-of-discipline age; the
importance-of-structure-and-abstraction age; and, the
adoption-of-object-orientation age. The relative brevity of
these ages emphasizes the speed with which we have
experienced the transition from one to the next. During
this period, the programming community has succeeded
in creating artefacts of great variety and immense
complexity, albeit not always with the preferred levels of
reliability and utility. The history of these ages maps the
maturation of the discipline and the emergence and
recognition of abstraction as the “key to computing”
(Kramer, 2007).

Ostensibly the history of programming pedagogy has
proceeded hand-in-glove with developments in
programming research and practice. For example, the
widespread adoption of object-oriented programming as
the paradigm for introductory programming courses in
the late 1990s is one indication that the academic
community is often anxious to support the changing

Copyright © 2011, Australian Computer Society, Inc.
This paper appeared at the 13th Australasian Computer
Education Conference (ACE 2011), Perth, Australia.
Conferences in Research and Practice in Information
Technology (CRPIT), Vol. 114. J. Hamer and M. de
Raadt, Eds. Reproduction for academic, not-for profit
purposes permitted provided this text is included.

industrial landscape, parallel the tool deployment of
practitioners and embrace curriculum development to
offer students the greatest exposure possible to pivotal
concepts like abstraction.

Honouring the research tradition that our role is to
question and not to worship we sought to investigate the
deployment of abstraction in the pedagogic materials and
exemplars of programming teachers. Our motivation
derived from the incidence of sample solutions in
textbooks and other materials which were either
equivocal in the use of abstraction or completely devoid
of it. This appeared to lend credence to David Gries’
recent summary of programming instruction which he
described as a “muddled situation” and noted, “For 50
years, we have been teaching programming … And yet,
teaching programming still seems to be a black art … In
some sense, we are still floundering, just as we were 50
years ago.” (Gries 2008)

In the following sections we provide some historical
background to characterize three ‘ages’ of programming
which led to the emergence of the centrality of
abstraction; present the problem we set for participants in
the study; describe the results we observed; and provide
some discussion and conclusions.

2 Structure and abstraction
It seems reasonable to characterize the era of early
machine-level programming, through to the earliest
higher-level programming languages, as the absence-of-
discipline age. Of greatest concern were the goals of
squeezing code into tiny amounts of memory and saving
machine cycles. It is customary to see an evolution from
this primordial age to an age of the importance-of-
structure-and-abstraction as having its origins in the
publication of Dijkstra's famous letter (Dijkstra 1968) on
the harmfulness of go to statements. One of Dijkstra's
main concerns about their use was the resulting increased
difficulty in bridging the intellectual gap between the
static, textual representation of a program and its dynamic
behaviour. In a subsequent work (Dahl, Dijkstra, and
Hoare 1972) he observed, “The art of programming is the
art of organizing complexity, of mastering multitude and
avoiding its bastard chaos as effectively as possible.” He
identified abstraction as the key mental technique for
dealing with complexity and “usefully structured”
programs as the resultant objects of its application. In
addition to facilitating the comprehension and control of
complexity, abstraction and useful structure provide the
framework for developing programs that are not just
solutions to a specific problem but are members of a
“family of related programs” that we can think of “as
alternative programs for the same task or as similar
programs for similar tasks.” The fact that these insights

are nearly forty years old does not diminish their
significance.

Dijkstra's views sparked an intense debate, which was
dominated by arguments regarding the benefits, or
otherwise, of writing programs with and without go to
statements but which was, in essence, about structure and
the application of abstraction. Sequential search of a list
of values to locate the first instance of a given value was
the canonical example used by virtually every contributor
to the debate.

In terms of structure, all search algorithms have two
identifiable components. The first is the repetitive
component which performs the actual search, and the
second is the reporting of the outcome. Abstracting the
essential features of the search component yields two
possible termination scenarios (1) when the search space
is exhausted (i.e., the end of the list is reached) or (2)
when the search requirements are satisfied (i.e., the value
is located).

With respect to the chosen example (i.e., sequential
search) much of the debate centred on how a successful
search should be handled. One side argued that successful
search should be treated as an exception implemented as
an early or ‘premature’ exit from within the repetition
using, for example, a goto or break or their equivalents.
Thus Knuth (1974) noted, “in the general case it is a
nuisance to avoid the goto statements”. The counter-
argument treated successful search as one possible reason
for a ‘normal’ termination of the repetition using a
compound condition in the iteration construct. For
example, Wirth (1974) argued, “Often the need for an
exit in the middle construct is based on a preconceived
notion rather than on a real necessity, and that sometimes
an even better solution is found when sticking to the
fundamental constructs.”

Because of these characteristics, search algorithms are
commonly referred to as ‘n-and-a-half’, ‘loop-and-a-
half’ or ‘exit-in-the-middle’ problems and might be
programmed in Java, for instance, in the two alternative
ways shown in Figure 1. (The use of while is a matter of
taste; a for construct could be used with the same effect.)
It is worth noting that the goto-less version preserves the
separation of concerns associated with the search and
reporting components. In contrast, the goto version offers
the option of conflating the detection and reporting of a
successful search into a single operation (i.e., return i
shown as an alternative inside the while loop).

From a pedagogic perspective the most influential
contribution to the debate on the appropriateness or
otherwise of exit-in-the-middle strategies was published
by Soloway, Bonar, and Ehrlich (1983). They reported on
an empirical study on the cognitive fit between
programming language constructs and novice
programmers' preferred strategy. Among other things,
they concluded that, “Students write programs correctly
more often using a construct that permits them to exit
from the middle of the loop.” This study is frequently
cited in discussions concerning pedagogic approaches to
looping constructs and their application (for example, see
Roberts (1995) and the novice language GRAIL (McIver
and Conway 1999) whose only repetition structure is a
Soloway-style loop) despite Wirth’s (2006) warning that

“[It] defies any regular structure, and makes structured
reasoning about programs difficult if not impossible.”

Figure 1: Typical structure of 'loop-and-a-half '
problem solutions

 // goto-less form of loop-and-a-half

 public int seqSearch(int[] values, int x)

 {

 int i = 0;

 while(i < values.length &&

 values[i] != x) {

 i++;

 }

 return i < values.length ? i : -1;

 }

 // goto (break) form of loop-and-a-half

 public int seqSearch(int[] values, int x)

 {

 int i = 0;

 while(i < values.length) {

 if(values[i] == x) {

 break;

 // Alternatively, return i;

 }

 i++;

 }

 return i < values.length ? i : -1;

 // Alternatively, return -1;

 }

The transition to the adoption-of-object-orientation
age places abstraction and structure at the centre of
everything. Partitioning state space into objects and
identifying the abstract behavioural aspects of those
objects are the central tenets of the object-orientated
paradigm. They support encapsulation, inheritance and
ultimately generic programming and, thereby, provide the
infrastructure to realise programming solutions that are,
as Dijkstra urged, not solutions to a specific problem but
members of a “family of related programs” that we can
think of “as alternative programs for the same task or as
similar programs for similar tasks.”

3 An informal study of personal practice
In an effort to see how influential the earlier ages of the
development of programming expertise have been, and to
explore the application of structure and abstraction in the
programming styles of those involved in teaching
programming, we ran a small informal exercise with ten
academics from several Universities. With no time limit
we asked them to code solutions to a problem specified
by Yuen (1994), details of which can be found in the
appendix. The solutions, written in a language of their
choice, were submitted electronically.

The problem involves a slight extension to the
standard loop-and-a-half example of determining whether
or not a particular value exists in an array. The extension
involves finding whether a value occurs up to two times
in the array, and reporting the number of occurrences. In
addition, if the value occurs twice, it is necessary to
report whether the gap between the occurrences is even or
odd. The problem has the attraction of being simple
enough to use in a short exercise.

In a series of papers, Yuen (1983, 1984, 1994)
documented solutions to various problems based on an
exit-in-the-middle strategy using go to statements, and
provided an extensive rationale for his preference for that
strategy over a more ‘abstract’ or ‘structured’ approach.

The temporal aspects of our problem choice are
important. Yuen was writing during the period of
transition from the ‘programming-in-the-absence-of-
discipline’ age to the ‘importance-of-structure-and-
abstraction’ age. Since then we have transitioned to the
‘adoption-of-object-orientation’ age. We hypothesized
that the evolution of programming expertise would
impact on the type of solutions we would receive. We
anticipated solutions exhibiting judicious application of
the principles of useful structure and abstraction. In short,
we expected solutions with a markedly different style to
those published originally by Yuen.

3.1 The “Anticipated” Solution Style
Figure 2 is illustrative of the type of solution we expected
(omitting the output details, which are not germane to the
following discussion). It is a modified version of the ‘go-
to-less’ sequential search solution shown in Figure 1. The
modifications represent a refinement of the abstraction
levels required in the original problem. Termination of
the while loop is still dependent on an ‘and’ condition.
The first part remains a test for the end of the array while
the second part has been altered to determine if the search
value count has reached two. The loop body has been
altered to give effect to the new circumstances. In
addition to incrementing the array index it tests for
occurrences of the required value and increments a value
count accordingly.

 public void findZeroes(int[] values)

 {

 int count = 0;

 int[] pos = new int[2];

 int i = 0;

 while(i < values.length && count < 2) {

 if(values[i] == 0) {

 pos[count] = i;

 count++;

 }

 i++;

 }

 switch(count) {

 case 0 : // report no occurrences

 break;

 case 1 : // report one occurrence

 break;

 case 2 : // report two occurrences

 int gap = pos[1] – pos[0];

 // perform odd/even calc's ...

 break;

 }

 }

Figure 2: The anticipated style of solution

To report the parity of the gap between two
occurrences of the search value it is necessary to record
their positions. It is possible to achieve this using two

simple variables. However, applying the principles of
abstraction to the problem specification we are conscious
that the current problem is an instance of a family of
problems intended to locate N occurrences of the search
value. This explains the introduction of an array for the
search value positions.

3.2 The Participants' Solutions
Participants were given a free choice over the language
they used, and the solutions we received were all coded in
either Java or C++. There turned out to be little
consistency in any elements of the solutions: the type of
control structures; the number of loops; or the variables
used to collect the data for reporting purposes. The
solution shown in Figure 3 is illustrative of the solutions
submitted. Table 1 summarizes the various search
methods among these solutions. We have excluded one
solution as it coded a separate method for each case
(including two almost identical methods for the odd and
even gap cases) and employed a different approach for
each of the no-, one- and two-zeros cases. In essence, this
was an example completely devoid of any structure or
abstraction, and we categorize it as an outlier.

 public void findZeros(int[] values)

 {

 int pos1 = -1;

 int pos2 = -1;

 for(int i = 0; i < values.length; i++) {

 if(values[i] == 0) {

 if(pos1 < 0) {

 pos1 = i;

 }

 else {

 pos2 = i;

 break;

 }

 }

 }

 if(pos2 >= 0) {

 // Two zeros ...

 }

 else if(pos1 >= 0) {

 // One zero ...

 }

 else {

 // No zeros ...

 }

 }

Figure 3: A typical solution from the informal study

Search methods #
Single for-loop, with break in the middle 3/9
for-loop, scanning the whole array but recording only
first two zeros

1/9

for-loop, with loop condition testing number of zeros
found

2/9

Two while-loops with loop condition testing for a zero 1/9
Two for-loops with break in the middle 1/9
Library search method to find a zero 1/9

Table 1: Loop structure in the informal study

Seven solutions used for-loops, one used a pair of
while-loops, and one avoided coding the search explicitly
by using a library search method. Of the for loop
solutions only two used a compound condition testing for
the end of the array and whether the zeros had been found
yet. The other five either used a break from the middle of
the loop or continued to the end of the array even if two
zeros had been found (the additional zeros were ignored).
Both of the non-for loop solutions used a pair of loops to
search for the first and then the second zero.

The use of variables also provides insights into
stylistic preferences. Table 2 describes how variables
were used, both to manage the flow of control and collect
data for the output requirements. Typically, solutions
either recorded the positions of the two zeros (p1p2; see
Figure 3) or a combination of the number of zeros found
(nz) along with either the position of the first (p1) or the
distance (gap) between them. One of the solutions
employing two loops simply toggled a Boolean variable
(even) for the gap while looking for the second zero.

Id Purpose #

nz number of zeros found 4/9
gap running count of non-zeros following a zero 2/9
p1 position of first zero 1/9
p1p2 two variables recording positions of the

zeros
6/9

even whether the gap is even or odd 1/9

Table 2: Use of variables in the informal study

On the basis of this informal study we made two
observations:

• If we ignore the solution that used a library call,
half of the solutions were coded using a break
from the middle of the loop. The associated break
was often 'buried' some way down in the body of
the loop (as can be seen in Figure 3).

• All of the solutions solved the specific problem
that had been set. For instance, all were written to
deal with a maximum of two zeros – none sought
to use a data structure to record the positions of
the zeros or parameterized their methods on the
number of zeros to be located. This lack of
generalization is particularly noticeable in the
solutions that coded separate loops or used two
library calls to search for the first and second
zeros.

Both observations, and the disparity between the
anticipated solution and the actual solutions, caused us a
degree of concern. We began to wonder whether these
personal practices might also be typical of pedagogic
practice, so we conducted a second study in order to test
the waters in this respect.

4 A study of pedagogic practice
We set the same problem of searching for up to two zeros
to groups of academics and postgraduate students at a
University that has been teaching object-orientation at
introductory level for over ten years. Postgraduates were
included in the study because it is common for them to
provide support with programming classes, and these
students also tend to be recent graduates, reflecting

current academic practice. Staff and postgraduate mailing
lists were used to invite voluntary, anonymous
participation in the study. All submissions and questions
about the exercise were handled anonymously without at
any point identifying the participants, other than whether
they were a member of staff or a student.

Because we were concerned that the informality of the
first study might simply have lead to solutions being
offered that actually had no bearing on pedagogic
practice, we made an addition to the problem
specification. We asked the participants to:

“Bear in mind that [your solution] should be the sort of
thing you would be willing to show to introductory
programming students as an example of a 'good'
solution.”

The idea was to avoid any suggestion that this exercise
was just about creating a program that works. It was
intended to emphasize that the solution should display
some degree of pedagogic value. We indicated that this
was part of a research study and that solutions might be
used in publications, but did not otherwise give any
further motivation. Solutions were received electronically
and no time limit was imposed on their production. This
allowed subjects to compile and test their solutions before
submission, should they wish to do so.

Sixteen submissions were received that were amenable
to analysis, written in C++, Java and Python. Eight were
from postgraduate students and eight from members of
staff. We will not distinguish further between these
groups because there was actually little difference to be
observed in the styles of their solutions. Table 3
summarises the preferred loop structures in these
submissions.

Loop structure #

for-loop, with break or return in the middle 10/16
for-loop, scanning the whole array but recording only
first two zeros

4/16

for-loop, with loop condition testing number of zeros
found

1/16

for-loop, recording the positions of all zeros 1/16
Table 3: Preferred loop structure in the second study

The preference for using a for-loop over the full range

of the array is complete – in contrast to the first study, no
solution used an explicit while-loop. In some respects this
strong feature of both sets of solutions is not particularly
remarkable. While it was common in Pascal to see a clear
distinction between the use of a for-loop for a definite
(pre-determined) number of iterations and a while-loop
for an indefinite number, the C family of languages
actually blurs the distinction, and the regular for-loop (as
opposed to for-each) is often taught as simply being a
syntactic variant of the while-loop. Nevertheless, there is
still often quite a strong association in the mind of readers
of code between a for-loop and definite iteration.

Of more significance in the second study is the almost
complete avoidance of an augmented loop condition to
finish the search once two zeros had been identified – just
one solution. Ten solutions (60%) used an embedded
break, as had four (44%) in the previous study. The four
solutions in the second study that used neither an
augmented condition nor a break continued scanning after

finding two zeros, which meant that they had to code
around losing the position or gap information they had
recorded; thus making the loop body more complicated
than other solutions. Notable is that one solution used a
list to record the positions of all zeros and not just the
first two. In C++, Java and Python this solution is
particularly easy to code using a dynamic data structure,
such as Java’s ArrayList, which has the useful additional
benefit of keeping track of the number of occurrences
found.

Table 4 documents the ways in which variables were
used. There is more variety here than in the first study.
Two solutions used a list (a 2-element array, in one case)
rather than separate variables for the positions. In
addition, there were four examples of the style we have
labelled p1-flag (see Figure 4). This can be seen as a
minimalist approach to variable usage: a negative value
of the position variable indicates that no zero has been
found yet; a non-zero value indicates that a single zero
has been found, and this value is then used, along with
the current loop variable, to compute the gap when the
second zero is found.

Id Purpose #

nz number of zeros found 7/16
seen whether a zero has been found yet 3/16
gap running count of non-zeros following a

zero
6/16

p1 position of first zero 2/16
p1-flag position of first zero, with out-of-bounds

semantics
4/16

p1p2 two variables recording positions of the
zeros

3/16

collection positions of the zeros 2/16

Table 4: Use of variables in the second study

 public String findZeros(int[] values)

 {

 int pos = -1; // position of first zero.

 for(int i = 0; i < values.length; i++) {

 if(values[i] == 0) {

 if(pos < 0) {

 pos = i;

 }

 else {

 if(((i - pos) & 1) == 0) {

 return ... // Two - odd gap.

 }

 else {

 return ... // Two - even gap

 }

 }

 }

 }

 if(pos < 0) {

 return ... // No zeros

 }

 return .. // One zero

 }

Figure 4: A solution from the second study (p1-flag)

It has to be admitted that the results of this repeat of
the original experiment were a considerable surprise to
us. We had assumed that the characteristics we had
observed in the submissions to the first study were, in
effect, 'quick and dirty' solutions to a relatively simple
problem. We anticipated that the addition of the 'good
solution' rider would result in our seeing quite different
solutions – akin to exemplars that would achieve full
marks in a student assignment. On the contrary, there was
little material difference between the two sets of
solutions. We saw just one solution out of sixteen that we
felt came close to genuinely being 'a good solution', i.e.,
using a loop with a single exit point and a collection to
store the positions of zeros. While it could be argued that
we had not made it clear enough what we were expecting,
the risk of being too specific is that the results will not
accurately illustrate the participant’s normal practice in a
teaching situation. In other words, we were not interested
in whether they could write a good solution but whether
they would.

5 Discussion
Despite the limited nature of this study, it appears to us
that several themes emerged strongly and that may well
be evidence of widespread pedagogic practice:

• While the problems have an indefinite character,
there was an overwhelming preference for
definite solutions based on using a for-loop that
appeared to operate over the full array.

• There was a strong preference for exit-in-the
middle solutions.

• Where an exit-in-the-middle condition was used,
it was always a physically separate and distinct
test from the test for reaching the end of the data
structure.

• The solutions we saw were often closely tied to
the fact that only two zeros had to be identified;
for instance, using either one or two variables to
record the zeros' positions, rather than a
collection.

• The temptation to conflate aspects of the
solution was irresistible for some participants.
For example, in the first study one participant
toggled a boolean variable to record the parity of
the gap whilst searching the list. In the second
study, as Figure 4 illustrates, embedding details
of the reporting requirements in the search phase
was not unusual.

Our view is that these themes are, in fact, part and
parcel of a single issue – an approach to program design
that focuses on the immediate details of the task at hand
rather than on the properties of a more general version of
the task. In this study the specific task was to locate the
positions of up to two zeros in an array. However, the
search aspects are clearly instances of the more general
problem of finding the positions of up to N occurrences of
a value in a collection. What we believe we are seeing
here is a failure to use abstraction and useful structure in
program design at the method level.

Our preferred solution to the problem presented is
shown in Figure 5. Employing abstraction, the problem is
partitioned into two components or methods. The first is a

customisable search mechanism, with the search value
and the required number of occurrences provided as
parameters of the search invocation. The features of
Java's dynamic List structures are used to store the
positions of whatever number of values must or can be
recorded. The list is returned as the result of the search
(the list could, of course, be converted to an array of int if
that would be more convenient.) The second method
localises the specific reporting obligations and extracts
whatever reporting information is required from the list
received as its parameter.

Figure 5: A solution to all the search-for-n variations

This is a solution to the “family” of problems defined
by the Yuen specification. Its strength is in its simplicity;
its power in its malleability; its attraction in its treatment
of specifics. The solution could equally well have been
coded in any one of several programming languages,
including those not categorised as object-oriented.
However, this particular solution clearly illustrates a mix
of fundamental procedural and object-oriented elements
that are appropriate even at a relatively early stage of an
introductory programming course. For instance, see the
introductory textbook by Barnes and Kölling (2008)
where basic iteration and dynamic collections are
introduced together.

One important feature of the solutions submitted in the
studies is that they all worked – they were correct
solutions. This is an important outcome and it should not
be overlooked or undervalued. An essential property of
any programming solution is that it achieves the desired
result. However, as a maturing discipline, software
engineering has established and substantially documented
the importance of qualities such as, maintainability,
portability, adaptability, reusability, flexibility. These are
all premised on the application of abstraction. Yet, as the
foregoing analysis highlights, the commitment to

abstraction evident in the solutions submitted was
equivocal.

For example, the abstract characteristics of all search
algorithms centre on the iterative deployment of a search
strategy until the search space is exhausted or the
required item is found – whichever occurs first. These
characteristics were realized in a potpourri of styles but
the dominant one separated the detection of the
conditions using an exit-in-the-middle mechanism. Only
one solution, submitted in response to the second
exercise, implemented the iteration in a manner consistent
with the abstracted characteristics of a search.

 /**

 * Find up to max occurrences of x in values.

 * Return the positions of the occurrences.

 */

 List<Integer> findValues(int[] values,

 int x, int max)

 {

 List<Integer> pos =
 new ArrayList<Integer>();
 int i = 0;

 while(i < values.length &&
 pos.size() < max) {

 if(values[i] == x) {

 pos.add(i);

 }

 i++;

 }

 return pos;

 }

 void reportResults(List<Integer> pos)

 {

 switch(pos.size()) {

 // Cases for each reporting option.
 ...

 }

 }

Similarly, recording the positions of the located search
values was typically handled using simple variables. Only
two participants in the second exercise adopted a
collection approach to the recording of the positions.

Significantly, none of the solutions parameterized the
search to facilitate variation of the search value or the
number of occurrences required. Neither did any of the
solutions partition the problem by separating the
searching process from the reporting process. In fact,
many of the solutions conflated the two processes and
implemented them as a single embedded block.

Of course, it is always easy to offer criticism of others’
programs and that is not our purpose. Our purpose is to
highlight the application of abstraction. Our conclusion is
that, despite all of our aspirations and justifications for
the adoption of programming tools that provide extensive
support for the exploitation of abstraction, we have not,
as a community, developed a premeditated disposition for
its application. In fact, what we have developed is an
approach founded on the principle that when we really
need it we will be able to recognize that need and apply it
appropriately. We are operating on “just in time
abstraction.” That is a precarious perch to position
ourselves on.

We suspect that this is (in part, at least) a result of an
‘incomplete birthing’ of the age of object-orientation. A
noticeable, and potentially unhelpful side-effect of the
arguments into the relative merits of procedural and
object-oriented approaches has been that they are
sometimes treated as completely distinct animals. This
effect is observable, for instance, in a relatively recent
catalogue of novice OO misconceptions (Sanders and
Thomas 2007) where procedural elements are almost
entirely omitted. Yet novices must also grapple with the
basic ‘procedural’ elements of methods, such as
managing flow of control, where misconceptions are just
as likely. Indeed, as Garner, Haden, and Robins (2005)
found, it was such procedural elements that often caused
more problems than the object-oriented ones. It may well
be that in our desire to teach good and genuine object-
orientation there has been an unintended neglect of the
need for good practice in those ‘procedural’ elements that
are an almost inevitable part of any OO program.

6 Conclusion
Dijkstra (1989) once observed that, “Breaking out of bad
habits, rather than acquiring new ones, is the toughest
part of learning.” If we are in the habit of neglecting the
deployment of abstraction techniques at the lower levels
of design then our ability to deploy them at the higher
levels may be compromised. The acquisition of an

habitual tendency for the application of abstraction is a
formative process that demands persistent nurturing and
pervasive instantiation. We cannot turn it on and off.

The importance of practice is an established mantra of
programming teachers. Lack of practice can hinder the
development of experience and competence. Indeed, just
as an athlete or an artist develops reliable technique
through repetition, the act of consistently applying
abstraction – whatever the problem – is what ultimately
enables a programmer to employ it with greater facility.
Gladwell (2008) cites the “10,000 hour rule” which
asserts that “ten thousand hours of practice is required to
achieve the level of mastery associated with being a
world-class expert – in anything.” He also notes that,
“Practice isn’t the thing you do once you’re good. It’s the
thing you do that makes you good.”

Lamenting a general lack of application of discipline
in the field of software engineering, recently, David
Parnas laid the blame firmly in the court of teachers,
saying that, “We need to: teach [students] what to do and
how to do it – even in the first course [and] use those
methods ourselves in every example we present.” (Parnas
2010)

A particular motivation for striving for understanding
in problem solving is the need to manage the increasing
complexity of software systems that we are now able to
build. As computer science graduates leave university and
go on to work on real projects with potentially massive
impacts on society, those of us who teach have a
responsibility to ensure that the mindset they take with
them will lead to the creation of comprehensible software
artefacts. In fact, this argument is really no different from
those made nearly fifty years ago over how to deal with
the 'software crisis' (Randall 1996) – a phrase we don't
hear so often now, but which is surely just as pertinent
now as all that time ago?

We believe that it is essential for teachers of
introductory programming to revisit the ideas of useful
structure and abstraction in order to ensure that students
are taught to apply it from the ground up in designing
solutions to software problems.

We conclude with the observation that practice in the
current age of object-orientation may have forgotten
something of the conclusions of the preceding ages and
needs to revisit them in order to adequately equip
students with a full set of programming skills. This is not
to say that the preceding ages always lived up to the
conclusions that were reached – there was no ‘golden
age’ – but that OO practitioners need to pay just as much
attention to them.

7 Acknowledgements
We would like to express our sincere appreciation to the
participants in our studies, who allowed us to analyze
their solutions.

8 Appendix
Yuen's zeroes problem (Yuen 1994) as we set it in both
the informal and the second study:

Inspect an array of N elements to find which one of
the following is true and output a message identifying the

case. Arrays indexed 1..N or 0..(N-1) are equally
acceptable:

a. It contains no zeros.
b. It contains only one zero.
c. It has two zeros separated by an even number of

non-zeros.
d. It has two zeros separated by an odd number of

non-zeros.
Clarification questions asked by the subjects in the

second study included what should be returned if there
were more than three zeros. The response was that the
gap between the first two was the only item of interest in
this case.

9 References
Barnes, David J. and Kölling, Michael (2008): Objects

first with Java - a practical introduction using BlueJ.
Pearson Education Ltd.

Dahl, O. J., Dijkstra, E. W., and Hoare, C. A., Eds.
(1972): Structured Programming. Academic Press Ltd.

Dijkstra, E. W. (1968): Letters to the editor: go to
statement considered harmful. Communication of the
ACM 11(3):147-148.

Dijkstra, E. (1989): On the Cruelty of Really Teaching
Computer Science. Communications of the ACM
32(12):1398-1404.

Garner, S., Haden, P., and Robins, A. (2005): My
program is correct but it doesn't run: a preliminary
investigation of novice programmers' problems.
Proceedings of the 7th Australasian Conference on
Computing Education, Newcastle, New South Wales,
Australia, 106:173-180, Australian Computer Society.

Gladwell, M. (2008): Outliers – The Story of Success.
Little, Brown and Company: New York.

Gries, David (2008): Foreword. In Reflections on the
Teaching of Programming. Bennedsen, J., Caspersen,
M.E., and Kölling, M. (eds). Springer, 978-3-540-
77933-9.

Knuth, D. E. (1974): Structured Programming with goto
Statements. ACM Computing Surveys 6(4):261-301.

Kramer, J. (2007): Is abstraction the key to computing?
Communications of the ACM 50(4): 36-42.

McIver, L. and Conway, D. (1999) GRAIL: A Zeroth
programming language. Proceedings of the
International Conference on Computing in Education
(ICCE99), 43-50.

Parnas, D. L. (2010): Risks of undisciplined
development. Communications of the ACM 53(10):25-
27

Randall, B. (1996): The 1968/69 NATO Software
Engineering Reports. Dagstuhl-Seminar 9635: History
of Software Engineering, Schloss Dagstuhl, Germany,
August 26 - 30, 1996.

Roberts, E. S. (1995): Loop exits and structured
programming: reopening the debate. In Proceedings of
the Twenty-Sixth SIGCSE Technical Symposium on
Computer Science Education, Nashville, Tennessee,
USA, 26:268-272.

Sanders, K. and Thomas, L. (2007): Checklists for
grading object-oriented CS1 programs: concepts and
misconceptions. SIGCSE Bulletin 39(3):166-170.

Soloway, E., Bonar, J., and Ehrlich, K. (1983): Cognitive
strategies and looping constructs: an empirical study.
Communications of the ACM 26(11):853-860.

Wirth, N. (1974): On the Composition of Well-Structured
Programs. ACM Computing Surveys 6(4):247-259.

Wirth, N. (2006): Good Ideas, through the Looking Glass.
Computer 39(1):28-39.

Yuen, C. K. (1983): The programmer as navigator: a
discourse on program structure. ACM SIGPLAN
Notices 18(9):70-78.

Yuen, C. K. (1984): Further comments on the premature
loop exit problem. ACM SIGPLAN Notices 19(1):93-
94.

Yuen, C. K. (1994): Programming the premature loop
exit: from functional to navigational. ACM SIGPLAN
Notices 29(3):23-27.

	Introduction
	Structure and abstraction
	An informal study of personal practice
	The “Anticipated” Solution Style
	The Participants' Solutions

	A study of pedagogic practice
	Discussion
	Conclusion
	Acknowledgements
	Appendix
	References

