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Abstract In a non-strict functional programming language functions that yield the
same result for all total arguments can still differ for partial arguments, that is, they
differ in their strictness. Here a tool for Haskell is presented that enables the programmer
to easily check whether a given function is least-strict; if it is not least-strict, then the
tool suggests how to make it less strict.
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1 Introduction

Non-strict functional programming languages such as Haskell and Clean allow the defi-
nition of non-strict functions. Language implementations are based on lazy evaluation,
which defers computation until results are needed. John Hughes [7] showed how lazy
evaluation provides a mechanism for composing a program from small, flexible, reusable
parts. An intermediate data structure can be the glue between components. Such an
intermediate data structure does not incur significant space costs, because only small
bits of the data structure are produced on demand immediately before they are con-
sumed and then their space can be reclaimed by the garbage collector. Additionally this
programming style naturally implements online algorithms, which quickly produce part
of an output before completely having processed all inputs.

In practice, however, a program often requires far more space with lazy evaluation
than with standard eager evaluation, a phenomenon known as ”space leak”. I suspect
that space leaks often occur because functions are not non-strict enough. When strict
and non-strict functions are mixed, intermediate data structures have to be constructed
completely and then they use significant amounts of space. Similarly a single strict
function in a sequential composition of functions can destroy the desired online behaviour
of a program.

So the programmer has to identify functions that are too strict, that consume large
parts of their arguments to produce small parts of their results. Such a function should
be redefined less strictly. Here I present a tool, StrictCheck, that semi-automatically
identifies such problematic functions amongst a large number and that suggest how the
function could be less strict. StrictCheck shall support programming for non-strictness
and thus modularity.

The paper is structured as follows. In the next section we specify what it means for a
function to be too strict and introduce the notion of least-strictness. Section 3 describes
how we can test for least-strictness and outlines the implementation of StrictCheck.
Subsequently Section 4 demonstrates how StrictCheck can be used at the hand of several
examples. Practical experience uncovered a number of shortcomings of StrictCheck
which are discussed in Section 5. Section 6 gives a larger case study and Section 7
concludes.

This paper is an extended version of a draft paper presented at IFL 2006 [2].
StrictCheck can be downloaded from http://www.cs.kent.ac.uk/~oc.

2 Least-Strictness

Consider the following innocuous Haskell definition of a function which takes a list of
tuples and transforms it into the list of first components and the list of second compo-
nents:

unzip2 :: [(a,b)] -> ([a],[b])
unzip2 = foldr (\(a,b) (as,bs) -> (a:as,b:bs)) ([],[])
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Is unzip2 equal to Haskell’s predefined function unzip? No, it is not:

Prelude> unzip [(True,False),error "ups"]
([True*** Exception: ups
Prelude> unzip2 [(True,False),error "ups"]
*** Exception: ups

Haskell’s predefined function is less strict than unzip2. For example

unzip [(True,False),⊥] = (True:⊥,False:⊥) but
unzip2 [(True,False),⊥] = ⊥

For all total arguments, that is, values that do not contain ⊥, both functions yield the
same results.

I believe that programmers mostly consider only total arguments when defining their
functions. The specification only makes requirements on the function result for total
arguments. However, for nearly every function there exist many variants that yield
the same results for the total arguments but differ for partial arguments. These variants
cannot produce arbitrary results, because functions defined in a functional programming
language are always monotone and continuous. For a partial argument the function has
to return a value that is an approximation of the function result of any total completion
of the partial argument. Hence for any function f :

fv v
⊔
{fv′|v v v′, v′ is total}

A function f is least-strict iff for a partial input the function returns the greatest
lower bound of all outputs produced by total completions of the partial input:

fv=
⊔
{fv′|v v v′, v′ is total}

The function unzip2 is clearly not least-strict.

3 Implementation

How do we test whether a function is not least-strict? Well, function f is not least-strict
if there exists a partial argument v such that

fv @
⊔
{fv′|v v v′, v′ is total}

Unfortunately there usually is an infinite number of total values v′ with v v v′.
Hence we cannot compute

⊔
{fv′|v v v′, v′ is total}. Therefore StrictCheck, the tool for

testing whether a given function is least-strict, only considers a small number of v′’s and
takes the greatest lower bound of the function outputs.1 So the test data generated by

1The number of v′’s is still subject to experimentation, but only a small number such as 3 or 4 seems
to be sufficient in practice.
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StrictCheck consists of a number of partial inputs v plus a number of total completions
v′ for each v. Without loss of generality only partial values v that contain exactly one ⊥
are generated. For example, if the function input is of type [(Int,Int)] the following
test data is used:

v v′

⊥ [], [(0,0)], [(1,1)], [(0,0),(0,0)], . . .
[⊥] [(0,0)], [(1,1)], [(0,0),(0,0)], [(0,0),(1,1)], . . .

(0,0):⊥ [(0,0)], [(0,0),(0,0)], [(0,0),(1,1)], . . .
...

...
For each test data set the inequation at the start of this section is checked.
StrictCheck may still give wrong answers. It may report a false positive, because

it applies a function only to a finite number of arguments v. If the test succeeds for
all these arguments, StrictCheck claims that the function is least-strict, even though an
argument v may exist for which the least-strictness property is violated.

StrictCheck may also report a false negative, because for every argument v it can
only compare the function result with the greatest lower bound for a finite number of
total completions v′. If the test fails for these, StrictCheck says that the function is not
least-strict, although there may be a total completion v′ that makes the test succeed.
For example, the function short defined as

short :: [Bool] -> Bool
short [] = True
short [_] = True
short [_,_] = True
short [_,_,_] = True
short _ = False

is least-strict, but if too few v′ are checked, StrictCheck will suggest

short _|_ = True

which is clearly wrong.
StrictCheck is just a small Haskell library, like the testing tools QuickCheck [5] and

SmallCheck [14] and Gast [9] for the programming language Clean. Test data generation
is similar to these testing tools. Like SmallCheck and Gast and unlike QuickCheck,
test data is not generated randomly but by systematically enumerating values by size,
because if a function is not least-strict, we expect this to be exposed already by small
arguments. The scrap-your-boilerplate generics extensions [10] of the Glasgow Haskell
compiler enables a single definition of test data generation for all types that are instances
of the automatically derivable classes Typeable and Data. Test data generation proved
to be unexpectedly complex and seems to require the direct use of the mind-boggling
function

gunfold :: Data a => (forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c a
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instead of one of its more user-friendly instances. The actual check for over-strictness
is performed with the help of the ChasingBottoms library [6]. This library provides a
(non-pure) test isBottom, the meet operator t over partial values, and a function for
converting partial values into printable strings. Because of the libraries used, StrictCheck
works only with the Glasgow Haskell compiler.

4 Using StrictCheck

StrictCheck is easy to use. It provides functions test1, test2, test3, etc. for testing
functions with the stated number of arguments. For our example function unzip2 we
find:

*Main> test1 10 (unzip2 :: [(Int,Int)] -> ([Int],[Int]))
Function seems not to be least strict.
Input(s): _|_
Current output: _|_
Proposed output: (_|_, _|_)
Continue? y

Function seems not to be least strict.
Input(s): [(0, 0)_|_
Current output: _|_
Proposed output: ([0_|_, [0_|_)
Continue? y

Function seems not to be least strict.
Input(s): [(0, 0), (0, 0)_|_
Current output: _|_
Proposed output: ([0, 0_|_, [0, 0_|_)
Continue?

Note that the partial list 0:⊥ is written as [0 | and 0:0:⊥ as [0, 0 | .
The first argument (here 10) of the test function is a measure of the number of

arguments for which the function given as second argument is tested for least-strictness.
We have to annotate unzip2 with a type, because the tool can only test monomorphic
functions; for polymorphic functions it would not know how to generate test arguments.
After every proposal for a more defined output StrictCheck asks the user whether it shall
continue testing and making proposals.

StrictCheck clearly says that unzip2 is not least-strict. For input ⊥ it produces
output ⊥, but to be least-strict it should produce (⊥,⊥). However, the failure to produce
the tuple for input ⊥ is of little practical concern. Indeed, if we test the predefined
function unzip, then we find that it is not least-strict for the input ⊥ either. However,
the subsequent proposals of StrictCheck show that unzip2 does not produce any output
for a partial input list. Thus StrictCheck shows clearly that the function is spine-strict
and it proposes a less strict function like unzip.

For a function that is least-strict the tool stops after testing a number of arguments:
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*Main> test1 10 (True:)
Function is least-strict for 255 partial inputs.

Testing a large number of functions of the Haskell Prelude, StrictCheck judges only a
very small number to be least-strict. However, many proposals for making a function less
strict are actually impossible to implement. Consider the logical conjunction operation:

*Main> test2 10 (&&)
Function seems not to be least-strict.
Input(s): (_|_, False)
Current output: _|_
Proposed output: False
Continue? y

Completed 4 test(s).

StrictCheck suggests

⊥ && False = False

However, the function already has the properties

⊥ && ⊥ = ⊥
False && ⊥ = False

A function meeting all three equations is not sequential and hence not definable in
Haskell. All functions definable in Haskell or most other programming languages are
sequential. For formal definitions of sequentiality see Section 4 of [13]. Intuitively a
function is sequential when to produce a result the function inspects (parts of) its argu-
ments in a sequential order. Haskell’s predefined (&&) first inspects the first argument
and then, if necessary, the second argument.

StrictCheck often proposes outputs that would make the function non-sequential.
Here is another example:

*Main> test2 5 ((++) :: String -> String -> String)
Function seems not to be least-strict.
Input(s): (_|_, "a")
Current output: _|_
Proposed output: "_|__|_
Continue? y

Function seems not to be least-strict.
Input(s): (_|_, "aa")
Current output: _|_
Proposed output: "_|__|__|_
Continue? y

Function seems not to be least-strict.
Input(s): (_|_, "aaa")
Current output: _|_
Proposed output: "_|__|__|__|_
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StrictCheck says that the result list of (++) should be at least as long as the second
argument, even if the first argument is ⊥. However, (++) is already non-strict in its
second argument, that is, it produces a partial result even if the second argument is
⊥. A sequential list concatenation has to test one argument first and hence cannot be
non-strict in both arguments.

Some proposals by StrictCheck can be implemented but are still undesirable in prac-
tise:

*Main> test1 5 (reverse :: [Int] -> [Int])
Function seems not to be least-strict.
Input(s): [0_|_
Current output: _|_
Proposed output: [_|__|_
Continue? y

Function seems not to be least-strict.
Input(s): [0, 0_|_
Current output: _|_
Proposed output: [_|_, _|__|_
Continue? y

Function seems not to be least-strict.
Input(s): [0, 1_|_
Current output: _|_
Proposed output: [_|_, _|__|_

Reversing a list should preserve the length of a list and we can define list reversal such
that it produces the output list already while consuming the input list. However, the
definition is more complex and it does not save space during the computation because
the list elements cannot be determined until the whole input list has been traversed.

Despite frequent useless proposals StrictCheck can also provide some interesting in-
formation. For example, it finds that the standard definition of the function that pro-
duces all prefixes of a given list is unnecessarily strict. For a partial input list it could
produce one more element in the output list:

*Main> test1 10 (inits :: String -> [String])
Function seems not to be least-strict.
Input(s): _|_
Current output: _|_
Proposed output: [""_|_
Continue? y

Function seems not to be least-strict.
Input(s): "a_|_
Current output: [""_|_
Proposed output: ["", "a"_|_
Continue? y

Function seems not to be least-strict.
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Input(s): "aa_|_
Current output: ["", "a"_|_
Proposed output: ["", "a", "aa"_|_

Inspecting the definition of the function

inits :: [a] -> [[a]]
inits [] = [[]]
inits (x:xs) = [[]] ++ map (x:) (inits xs)

the source of the strictness becomes clear and it can easily be rectified:

inits xs = [[]] ++ initsNonEmpty xs

initsNonEmpty [] = []
initsNonEmpty (x:xs) = map (x:) (inits xs)

A good example for the usefulness of StrictCheck is provided by a tree-traversing
algorithm by Chris Okasaki [12]. The function bfNum takes a tree and creates a tree of
the same shape, but with the values at the nodes replaced by the numbers 1, 2, . . . in
breadth-first order.

*Main> test1 5 (bfNum :: Tree Int -> Tree Int)
Function seems not to be least-strict.
Input(s): T E 0 _|_
Current output: _|_
Proposed output: T E 1 _|_
Continue? y

Function seems not to be least-strict.
Input(s): T E 0 (T E 0 _|_)
Current output: _|_
Proposed output: T E 1 (T E 2 _|_)
Continue? y

Function seems not to be least-strict.
Input(s): T E 0 (T E 1 _|_)
Current output: _|_
Proposed output: T E 1 (T E 2 _|_)

Surprisingly the function is fully strict. Instead we would expect to get a substantial
part of the output already for a partial input. The definition of bfNum is short, but the
algorithm is not trivial and hence the cause of the strictness not obvious. The algorithm
uses two queues of trees, but all operations on queues are sufficiently non-strict. It turns
out that the algorithm twice reverses the order of intermediate trees; this double reversal
makes the function fully strict.

In an appendix Okasaki [12] gives an alternative breadth-first numbering algorithm
bfnum based on ideas of Jones and Gibbons [8]. That algorithm uses a cyclic definition
that works only in a non-strict language.
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*Main> test1 5 (bfnum :: Tree Int -> Tree Int)
Function seems not to be least strict.
Input(s): T E 0 (T (T E 0 (T E 0 E)) 0 _|_)
Current output: T E 1 (T (T E 3 _|_) 2 _|_)
Proposed output: T E 1 (T (T E 3 (T E _|_ E)) 2 _|_)
Continue? y

Function seems not to be least strict.
Input(s): T E 0 (T (T E 0 (T E 0 E)) 1 _|_)
Current output: T E 1 (T (T E 3 _|_) 2 _|_)
Proposed output: T E 1 (T (T E 3 (T E _|_ E)) 2 _|_)

Clearly this algorithm is far less strict, but not yet least strict. However, a tiny
modification, making the pattern matching on a non-empty list lazy by adding a tilde
(~(k:ks)), makes it least strict:

Main> test1 4 (bfnum’ :: Tree Int -> Tree Int)
Completed 438 test(s).
Function seems to be least strict.

So in a non-strict language this algorithm is clearly superior.

5 Features Required for Future Versions of StrictCheck

Using StrictCheck uncovered some shortcomings of the current version that have to be
addressed in the future.

The main practical problem with StrictCheck is that most proposed outputs could
only be produced by a non-sequential function. The definition of least-strictness is based
on monotonicity and continuity of functions, but it completely disregards whether a least-
strict function is sequential. Hence in the future StrictCheck needs to test whether a
proposed output could be produced by a sequential variant of the given function. Such a
test seems non-trivial but feasible. StrictCheck will still make some useless proposals as
in the reverse example, but filtering for non-sequentiality would substantially reduce
useless proposals by StrictCheck.

Generic generation of test data makes StrictCheck quick and easy to use, but in
many cases user-defined test data generation similar to QuickCheck and SmallCheck is
desirable. User defined test data generation is needed when test data for a function
has to meet certain pre-conditions. For example, when testing the parser of a compiler
we need to generate mostly valid programs as test input, but generic string generation
will produce hardly any valid programs. The same problem occurs when the test data
are elements of an abstract data type. For example, I tried to use StrictCheck to show
that the efficient pretty printing function of [1] is least-strict whereas Wadler’s [15] is
not. However, both implementations represent documents by an abstract data type and
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generic test generation generated numerous elements of the abstract data type represen-
tation that are invalid within the abstract data type. Clearly the documents should be
generated by the pretty printing combinators of the library.

StrictCheck only tests first-order functions. Functional values raise two new prob-
lems. First, functional test data has to be generated. There are many ways of generating
functions and in many applications user-defined function generation may be desirable.
Second, functions which may be embedded in output values have to be compared, which
can only be done for a finite number of arguments. The implementation would require
substantial changes, because the scrap-your-boilerplate generics extension of Haskell
used for both test data generation and comparison of outputs cannot handle functional
values. Sequentiality of higher-order functions is also known to be an undecidable prop-
erty [11]. Hence full strictness testing of higher-order functions seems unachievable, but
partial support could be useful. Note that the popular testing tool QuickCheck [5] also
provides only rather limited support for higher-order functions.

6 A Case Study

Despite the shortcomings listed in the preceding section, StrictCheck can already be
applied usefully to real programs.

A compiler is the canonical example of a program that is built as a composition of
several phases. In a non-strict language one would expect the compiler to still parse
part of the input program while already generating part of the output code. Although
dependencies between different parts of the compiled program — especially the declara-
tions and uses of variables — suggest that it is infeasible to write a compiler that works
in a small constant space, one would hope its space requirements to be less than linear
in the size of the program, possibly linear in the size of the symboltable.

About 10 years ago I wrote for teaching purposes a compiler that translates a simple
imperative programming language into code for an abstract stack machine. It consists
of 950 lines distributed over 13 modules.

With StrictCheck we test the generation of code from the abstract syntax tree. Code
generation uses the symboltable, which is created by contextual analysis of the syntax
tree.

*Main> test1 10 (\t -> generateCode t (analyse t))
Function seems not to be least-strict.
Input(s): _|_
Current output: _|_
Proposed output: [_|__|_
Continue? y

Function seems not to be least-strict.
Input(s): Program [] _|_
Current output: _|_
Proposed output: [_|__|_
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Continue? y
Function seems not to be least-strict.
Input(s): Program [] (StmtSeq _|_)
Current output: _|_
Proposed output: [_|__|_
Continue? y

Function seems not to be least-strict.
Input(s): Program [] (StmtSeq [Assignment "" (Variable "")_|_)
Current output: _|_
Proposed output: [Lod _|_, Sto _|_, _|__|_
Continue? y

Function seems not to be least-strict.
Input(s): Program [] (StmtSeq [Assignment "" (Variable ""),
Assignment "" (Variable "")_|_)
Current output: _|_
Proposed output: [Lod _|_, Sto _|_, Lod _|_, Sto _|_, _|__|_
Continue?

The first three proposals relate to the fact that the list of stack machine instructions
is always non-empty, because it always ends with the instruction Halt. Like in the
reverse example we could achieve this non-strictness, but it would be useless. The
following proposals, however, point to a serious shortcoming within the compiler. For a
part of the abstract syntax tree the compiler cannot already produce the corresponding
machine instructions, as we would expect.

The function generateCode calls the function

translateStatementSequence :: Symboltable -> Int ->
StatementSequence ->
(MachineProgram,Length)

So we test this function next. This function also requires the symboltable, but even for
an undefined symboltable it should already produce some output:

*PsaCodeGenerator> test2 10 (translateStatementSequence undefined)
Function seems not to be least-strict.
Input(s): (0, _|_)
Current output: _|_
Proposed output: (_|_, _|_)
Continue? y

Function seems not to be least-strict.
Input(s): (0, StmtSeq _|_)
Current output: _|_
Proposed output: (_|_, _|_)
Continue? y

Function seems not to be least-strict.
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Input(s): (0, StmtSeq [Assignment "" (Variable "")_|_)
Current output: _|_
Proposed output: ([Lod _|_, Sto _|__|_, _|_)
Continue? y

Function seems not to be least-strict.
Input(s): (0, StmtSeq [Assignment "" (Variable ""), Assignment ""
(Variable "")_|_)
Current output: _|_
Proposed output: ([Lod _|_, Sto _|_, Lod _|_, Sto _|__|_, _|_)

We see that function translateStatementSequence is also far too strict. The func-
tion mainly uses a function translateStatement, so we test that:

*PsaCodeGenerator> test2 10 (translateStatement undefined)
Function seems not to be least-strict.
..
Function seems not to be least-strict.
Input(s): (0, Assignment "" (Compound (Variable "") Plus _|_))
Current output: ([Lod _|__|_, _|_)
Proposed output: ([Lod _|_, _|_, _|_, _|__|_, _|_)
Continue? y

Function seems not to be least-strict.
Input(s): (0, Assignment "" (Compound (Variable "") Plus
(Compound (Variable "") Plus _|_)))
Current output: ([Lod _|_, Lod _|__|_, _|_)
Proposed output: ([Lod _|_, Lod _|_, _|_, _|_, _|_, _|__|_, _|_)

The function translateStatement is not least-strict, but the counter-examples are
of the same trivial kind as for the reverse example of the last section. Even for a
partial expression a minimal number of corresponding machine instructions is known.
Significantly, the function does return some machine instructions for a partial abstract
syntax tree. So the function cannot be the reason for translateStatementSequence
being spine-strict. Therefore we now scrutinise its definition:

translateStatementSequence symboltable start (StmtSeq stmtlist)
= foldl combineTranslate ([], 0) stmtlist
where
. . .

The definition uses foldl! The function foldl does not produce any result before
it has traversed the whole list argument. StrictCheck can be used to demonstrate this
spine-strictness:

*PsaCodeGenerator> test1 10 (foldl (&&))
. . .
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Function seems not to be least-strict.
Input(s): (False, [False, False, False, False_|_)
Current output: _|_
Proposed output: False

So we have to rewrite the definition of translateStatementSequence such that it
does not use foldl; for example as follows:

translateStatementSequence symboltable start (StmtSeq stmtlist) =
combineTranslate 0 stmtlist
where
combineTranslate :: Length -> [Statement] ->

(MachineProgram,Length)
combineTranslate offset [] = ([],offset)
combineTranslate offset (stmt:stmts)
= (stmtCode ++ code,codeLength)
where
(stmtCode, stmtCodeLength) =
translateStatement symboltable (start+offset) stmt

(code,codeLength) =
combineTranslate (offset+stmtCodeLength) stmts

With the new definition the code generator is far less strict, as StrictCheck demon-
strates:

*Main> test1 10 (\t -> generateCode t (analyse t))
. . .
Function seems not to be least-strict.
Input(s): Program [] (StmtSeq [Assignment "" (Variable ""),
Assignment "" (Variable "")_|_)
Current output: [Lod _|_, Sto _|_, Lod _|_, Sto _|__|_
Proposed output: [Lod _|_, Sto _|_, Lod _|_, Sto _|_, _|__|_

The function is not least-strict, but all the counter-examples are trivial and hence
we are happy with the function.

7 Conclusions

In this paper I claimed that the modular structure and performance of non-strict func-
tional programs can be improved by making functions less strict, more non-strict. I have
defined least-strictness and presented StrictCheck, a tool that identifies functions that
are not least-strict and that proposes a less strict variant.

A number of examples and in particular the case study demonstrate that StrictCheck
provides useful insights into the strictness behaviour of functions, uncovers unnecessary
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strictness and thus supports finding less strict alternative definitions for functions. These
alternative definitions are usually not more complex, sometimes even much simpler.

Two extensions of StrictCheck are clearly desirable, filtering non-sequential functions
and allowing user-defined test data generators. The second is mainly an implementation
issue, but the first is the topic of future research [3, 4].

Acknowledgements

I thank Frank Huch for the unzip2 example and Jan Christiansen for discussions about
the topic.

References

[1] O. Chitil. Pretty printing with lazy dequeues. Transactions on Programming Lan-
guages and Systems (TOPLAS), 27(1):163–184, January 2005.

[2] O. Chitil. Promoting non-strict programming. In Draft Proceedings of the 18th
International Symposium on Implementation and Application of Functional Lan-
guages, IFL 2006, pages 512–516, Budapest, Hungary, September 2006. Eotvos
Lorand University. Technical Report No 2006-SO1.

[3] J. Christiansen. Sloth — a tool for checking minimal-strictness. In Proceedings
of the 13th international conference on Practical aspects of declarative languages,
PADL’11, pages 160–174. Springer-Verlag, 2011.

[4] J. Christiansen and D. Seidel. Minimally strict polymorphic functions. In Proceed-
ings of the 13th international symposium on Principles and Practice of Declarative
Programming, PPDP’11. ACM, 2011.

[5] K. Claessen and J. Hughes. QuickCheck: a lightweight tool for random testing of
Haskell programs. ACM SIGPLAN Notices, 35(9):268–279, 2000.

[6] N. A. Danielsson and P. Jansson. Chasing bottoms, a case study in program verifi-
cation in the presence of partial and infinite values. In D. Kozen, editor, Proceedings
of the 7th International Conference on Mathematics of Program Construction, MPC
2004, LNCS 3125, pages 85–109. Springer-Verlag, July 2004.

[7] J. Hughes. Why Functional Programming Matters. Computer Journal, 32(2):98–
107, 1989.

[8] G. Jones and J. Gibbons. Linear-time breadth-first tree algorithms: An exercise in
the arithmetic of folds and zips. Technical Report No. 71, University of Auckland,
1993. (Also known as IFIP Working Group 2.1 working paper 705 WIN-2., 1993.

14



[9] P. Koopman, A. Alimarine, J. Tretmans, and R. Plasmeijer. Gast: Generic auto-
mated software testing. In R. Pena, editor, IFL 2002, Implementation of Functional
Programming Languages, LNCS 2670, pages 84–100, 2002.
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