

Gesture-Based Input for Drawing Schematics on a Mobile Device

Daniel Chivers, Peter Rodgers
Department of Computer Science, University of Kent, Canterbury

dc355@kent.ac.uk, P.J.Rodgers@kent.ac.uk

Abstract

We present a system for drawing metro map style
schematics using a gesture-based interface. This work
brings together techniques in gesture recognition on
touch-sensitive devices with research in schematic layout
of networks. The software allows users to create and edit
schematic networks, and provides an automated layout
method for improving the appearance of the schematic. A
case study using the metro map metaphor to visualize
social networks and web site structure is described.

Keywords--- Gesture-Based Input, Sketching

Input, Metro Maps, Schematics, Mobile Device.

1. Introduction

Visualizing complex, interconnected information
using a metro map is a common metaphor. Data from
many application areas has the potential to be visualized
in this way, for example metro map diagrams for
astronomical data and web trends, are shown in [15].
Other types of data drawn as a metro map, such as thesis
structure and a business plans can be found at [8].
Typically, these examples have been drawn by hand
using vector graphics applications, requiring a great deal
of time and effort. An alternative approach is to use an
existing metro map and change the labels to make the
new data fit the existing structure, as can be seen in [14],
which is based on the London Underground. However,
this method is restricted to data sets that can fit into an
existing layout. These examples are evidence that users
want to visualize data using a metro map metaphor but
the difficulty in creating this style of diagram by hand
means that it has not been explored to its full potential.

Mobile touch based devices have a great potential
for creating schematics as they allow users to
conveniently and effectively capture complex ideas in a
clear, easy to read schematic at any time. With this in
mind our aim was to develop a piece of software to meet
these needs.

The application we have developed, SchemaSketch
(see Figure 1), facilitates the fast drawing of metro map
style schematics and allows the user to create them in

such a way that the schematic contains information about
the underlying connections. This makes it much easier
for the user to reposition stations, as all lines remain
connected when nodes move. The software can be
downloaded from:
http://cs.kent.ac.uk/projects/schemasketch/iv2011.

As the diagram contains structural data, it is also
possible to perform automatic layout techniques to
attempt to improve the schematic. An example of this
automatic layout has been implemented into
SchemaSketch. Inspired by the methods developed in
[7], the application attempts to position nodes to satisfy a
series of criteria based upon aesthetic quality of the
diagram.

We have developed SchemaSketch to run on
portable Android devices, which allows the user to draw
their ideas whilst away from a computer. For example,
whilst on public transport or for workers out in the field
where a larger computer may be impractical. In addition,
touch screen devices, such as mobile phones, are
commonly used which makes the system widely
accessible.

There are few current applications that support
schematic drawing of metro maps. Example applications
which claim to, such as [2] and [5], are general purpose
vector based graphic applications and do not allow easy
modification of drawn schematics, as they do not
preserve connectivity information.

We have examined previous work in gesture based
input [1], sketch recognition and beautification of hand

Figure 1: SchemaSketch running on an Archos 7 HT device

using Android v1.5

drawn sketches [6][9][12] in order to decide on an
efficient and intuitive input mechanism for drawing
schematics. Although full sketch recognition can provide
more advanced functionality by supporting a variety of
symbols, it comes with a performance overhead in
recognition, as well as a mechanism to determine when
the user has finished one symbol and moves onto the
next. Mechanisms to circumvent this include a waiting
time between pen strokes [12], but this hinders the input
flow of the user. Simpler gesture recognition, where each
gesture corresponds to a symbol, can provide the
functionality we require and will ensure the user is not
disturbed by workflow pauses.

Previous work on automatic metro map includes
work that applies a force directed approach [13]. Other
research uses a series of criteria to measure aesthetic
elements of the schematic, such as line straightness,
octilinearity and line length between nodes [7][10]. User
tests, such as those carried out in [4], have shown that
diagrams that conform strongly to combinations of these
criteria have increased readability. Although these papers
use different methods for optimisation, we have chosen
to implement a method inspired by that in [7] due to its
flexibility, as aesthetic criteria can be modified relatively
easily.

In the remainder of this paper, Section 2 describes in
detail the user interface of SchemaSketch, as well as
implementation details of gestures, connections, and
labels. Section 3 describes the layout and optimisation
techniques including implementation of layout criteria
used by SchemaSketch to optimise drawn schematics.
Section 4 describes our results and provides some
examples of the software in use, as well as discussing
current problems. Section 5 outlines potential future
work. Finally, Section 6 gives our conclusions.

2. Interface and Implementation

We have developed a software tool that allows a
user to hand draw schematics on a touch based mobile
device. The application, SchemaSketch, has been written
to run on mobile devices running Google's Android
operating system. It has been developed on v1.5 but is
compatible with newer releases and will accommodate a
variety of screen sizes. It provides two operating modes
for creation of schematics, draw (input) and move
(modification), which can be toggled in the main menu.
These two modes of operation are described in Sections
2.1 and 2.2 respectively.

2.1. Draw Mode

This mode allows schematics to be created by using
sequences of gestures to input objects (see Section 2.3
for details on gesture recognition). The following list
describes the objects that can be drawn in the schematic.

• Station – SchemaSketch provides two different types
of station object, a circular station and a line station.
These two stations are visually different and are
input using different gestures, however they are
treated the same from a connectivity perspective.
Circular stations are intended to be used for
representing junction stations, whereas line stations
are intended for use in situations where the station
has two or less incident edges. Stations are used to
connect together multiple edges, of the same or
different colour. A label can be added to either type
of station object.

• Edge - Provides a connection between two stations.
SchemaSketch provides support for different
coloured edges to be drawn. Parallel edges (of a
different colour) can be drawn between two stations.
Edges allow the formation of metro lines. Metro
map lines are considered to be several connecting
edges of the same colour.

Whilst in this mode, the menu provides the

following options:

• Eraser – Changes the pen to an eraser pen that will
remove everything drawn over.

• Undo – Undo the last action.
• Colour – Change the colour of the Edge.
• Clear All – Clears all objects from the screen

(requires confirmation).
• Mode: Move – Switch to the move mode (see

Section 2.2).

The draw mode also allows the user to add labelling
to the schematic, see Section 2.5 for details.

2.2. Move Mode

This mode allows the manual modification of a
drawn schematic, by enabling drag and drop
functionality for stations and labels.

Whilst in this mode, the menu provides the
following options:

• Eraser – Changes the pen to an eraser pen that will

remove everything drawn over.
• Undo – Undo the last action.
• Optimise – Uses a hill climbing multicriteria

optimiser method to produce a more optimised
schematic (see Section 3).

• Load/Save – allows the loading and saving of drawn
schematics to a file.

• Mode: Draw – Switch to the draw mode (see
Section 2.1).

The draw mode also allows the user to manually

move labels on the schematic, see Section 2.5 for details.

2.3. Gestures

Multiple gestures are used to input the various
objects defined in Section 2.1. Gestures are recorded as a
sequence of time-stamped points. When the user makes a
gesture, SchemaSketch will attempt to recognise the
gesture based on a series of rules.

• Minimum direct length to be classified as an

edge.
Direct length refers to the distance between the start
and end points of the gesture. For a gesture to be an
Edge object, this distance must be greater than 45
pixels.

• Minimum straightness to be classified as an edge.
The straightness of a gesture, G, is calculated using
Equation 1.

Equation 1

actualLength(G) is calculated using Equation 2. The
straightness calculation will produce a value
between 0 and 1. A value of 1 is a perfectly straight
line. For a gesture to be classed as an edge,
straightness(G) must be greater than 0.9.

If a gesture passes the minimum direct length test and
minimum straightness test, it can be classified as an
edge, otherwise it is potentially a station. Differentiating
between the two types of station is performed by the
three following rules.

• Minimum actual length to be classified as a

station.
Actual length refers to the length of the gesture if it
was straightened out, and is calculated using
Equation 2, where n is the number of points in the
gesture and pi is the ith point along the gesture.

Equation 2

actualLength(G) must be greater than 10 pixels for the
gesture to be a station. This means any gesture shorter
than 10 pixels will not be recognised and nothing will be
added to the diagram. This is useful for discarding
unintentional screen touches.

• Minimum straightness to be classified as a line

station.
The straightness is once again checked using
Equation 1 and if straightness(G) is greater than 0.5
then it will be classified as a line station. Although
stations and edges are both straight lines, edges
require a higher straightness(G) value because the

longer a gesture, the easier it is to get a high
straightness(G) value.

• Minimum average radius to be classified as a
circular station.
If straightness(G) is less than (or equal to) 0.5 this
last check is performed to identify a circular station
gesture. We calculate the average radius of the shape
(we know the shape is curved, as straightness(G) is
low). First we calculate the centre point of the
gesture, by averaging x and y co-ordinates of all
points. Using this, we can calculate the average
radius using Equation 3, where n is the number of
points in the gesture and pi is the ith point along the
gesture.

Equation 3

If radius(G) is greater than 10 pixels, this gesture
can now be classified as a circular station, otherwise
the gesture will not be recognised and nothing will
be added to the diagram.

These rules result in stations being drawn either by a
short, straight gesture or a circular shape with start and
end points close together. Edges are drawn by a long,
straight gesture.

2.4. Connections

SchemaSketch connects edges to stations based
upon location of the gesture. Starting an edge in the
vicinity of a station will connect that edge to the station;
conversely, drawing a circular station around an
unconnected end of an edge (or multiple edge ends) will
connect the edges to the newly drawn station. Line
stations will also connect to multiple edges provided they
are close enough. When the user is drawing, any object
that an edge can connect to will display a highlighted
“hotspot” which is the object's connection radius.

Drawing a line station that intersects an edge will
insert it at that point along the edge, or if the station is
close enough to a free end, it will attach to that.

2.5. Labelling

Labels can be added to stations whilst in draw mode.
Touching on a station will open a text input dialog
allowing the user to enter a label name.

Figure 2: Possible positions for labels relative to their
parent node. The values indicate the priority of each

position

Figure 3: Distance nodes are moved during first and last

optimisation iterations

Whilst in move mode, labels can be moved
manually by dragging them around their parent. There
are eight positions in which a label can be placed, these
positions relative to the parent node are North, North-
East, East, South-East, South, South-West, West and
North-West, as shown in Figure 2. A label will initially
be placed in position 4 (South).

3. Layout and Optimisation

SchemaSketch includes a multicriteria optimiser to
produce more easily read schematics. This optimiser is
inspired by work performed in [7]. SchemaSketch's
specifics are outlined in Section 3.1. We have chosen to
use a subset of the criteria used in this prior work for
optimising node and label positioning, as many of these
criteria are not appropriate for our case.

3.1. Optimiser

SchemaSketch's optimisation process uses a number
of iterations of station movements, currently set to 10.
During each iteration, each station is examined in turn
and placed in available grid positions around it. As well
as moving stations, clustering methods (based on those
that group lines in [7]) are applied to move groups of
stations.

The optimiser uses a cooling method to attempt to
reduce the number of position checks the algorithm
performs. Figure 3 shows the distance nodes are moved;
during the first iteration, each node is tested in all
positions up to six squares away (168 positions), this
distance decreases linearly down to three squares (48
positions) during the last iteration. Fractional values are
rounded up to the nearest integer. Stations are not
permitted to go beyond the limits of the screen.

At each station or cluster movement, a series of
criteria are calculated and summed to produce a value
representing a measurement of the aesthetic quality of
the schematic; the lower this value the better - a value of
zero indicates all criteria have been satisfied. The criteria
used for this value are explained in Section 3.2. This
value is recorded for each position the station or cluster
is moved to, and once all positions have been tested it is
moved to the position that yielded the lowest criteria
value (indicating the best aesthetic quality).

After optimisation of the stations, the labels are
examined in turn to determine their best position. They
are tested in a single step. Figure 2 shows the order in
which label positions are considered (from 1 to 8). At
each position, the label criteria are calculated and labels
are moved to the position with the lowest summed
criteria value. The criteria used in the label positioning
stage are explained in Section 3.3. Testing the labels in
order of position preference ensures that if multiple
positions have the same summed criteria value, it will be
placed at the first found.

3.2. Station Criteria

This section explains the station positioning criteria
used to determine the quality of the layout.

The criteria values often have a squared component,
this is to ensure that the worst criteria are penalized more
strongly. For criteria such as line straightness, this also
provides the desirable behaviour that fewer sharper
bends are penalised more than multiple smaller bends.

The calculations produce values which vary greatly
by criterion (up to many orders of magnitude different),
this is because the criteria are measured naturally on
different scales. Using these unweighted values would
put more emphasis on the criteria that were naturally
larger, it is therefore necessary to weight the values so
that they can be comparable.

Basic weighting involves multiplying the
unweighted value by 1 over the maximum possible
value; this constrains the value to between 0 and 1.
However, it would be incorrect/not possible to scale all
criteria in this way as they may never reach the
maximum in practice, or alternatively they may not have
a maximum. Therefore, to calculate weightings, we
created a series of example graphs and recorded the
unweighted criteria values. We averaged the values and
used the inverse of the result as the weighting.

The first stage of optimisation is to snap all stations
onto a grid. This is accomplished by examining all
stations and moving them to the nearest grid position. If
multiple stations contest a grid position, the original
position of contested stations will be checked, and the
closest one moved. This grid has multiple advantages to
simplify the optimisation process. 1) By using a grid we
can minimise the number of possible station positions
that we are required to check, greatly speeding up the
process 2) By moving stations to fit to a grid, we get the
benefit of helping the octilinearity of edges between
stations 3) Station/station occlusion checks are not

necessary providing the grid spacing is greater than the
station’s bounding box diameter.

The five station criteria that we use are:
1. Octilinear Layout. This criterion is to keep the

graph as octilinear as possible; this means keeping
all angles at multiples of 45°. The octilinear layout
criterion sums the measure for each edge. The
measurement for an edge is a square of the
difference in angle from the nearest multiple of 45°.

2. Minimise Edge Crossings. Edge crossings should
be kept to a minimum. The edge crossings criterion
is measured by checking all pairs of edges for an
intersection, and then summing the number of
intersections and squaring it.

3. Line Straightness. Lines, a group of connected
edges that share the same colour, should be as
straight as possible and when bends are required
they should be as small an angle as is attainable. The
line straightness criterion sums a calculation for
each line bend. The line bend calculation is the
square of the angle the bend makes, penalising a line
more if it contains sharper bends.

4. Equal Edge Lengths. Edges between stations
should be of equal length, and they should also try to
achieve a desirable target length, t. This length has
been defined as three grid squares. The criterion
sums a calculation for each edge. The edge
calculation squares the difference between the edge
length and the desirable length. As we are using an
octilinear layout for the graph, we must account for
diagonal edges. Because of this, we adjust the value
of t to be three times the diagonal distance across a
grid square when necessary.

5. Occlusions. Stations and edges should be positioned
in a way that they do not obscure any other part of
the schematic. Possible occlusions include
station/station, station/edge, and edge/edge. Because
the optimiser is based on a grid positioning system,
it cannot place one station on top of another and
therefore station/station occlusions cannot happen.
Also, the Minimise Edge Crossings criterion
includes edge/edge occlusions and so this need not
be dealt with here. This means that this criterion
only needs to check for station/edge occlusions. The
number of indirectly connected station/edge
occlusions is counted by checking each possible
pairing for an intersection, and this result is squared
to create the occlusion criterion.

3.3. Label Criteria

This section explains the criteria used for label
positioning. As label criteria are not included in the main
layout of the schematic, they do not require weighting. In
terms of priority, labels will only be placed in a
consistent position when it is possible to do so without
introducing occlusions. The two label criteria are defined
as following:
1. Occlusions. Labels should not overlap edges or

other labels. This criterion is measured by

calculating the label bounding box and checking
against each edge and other label for an intersection.
The number of intersections is counted to create the
value.

2. Position Consistency. It is desirable for adjacent
labels to be similarly positioned. This is achieved by
penalising labels that are not in the same position as
their neighbours. All labels with exactly one or two
neighbouring stations are checked and given a
scoring based upon their position consistency (one
point per difference in label positioning to both other
stations). The value is the sum of the consistency
values for all such stations.

The work described in [7] uses additional criteria,

but these have been omitted because they are application
area specific or ineffective in our model. In particular,
some criteria are designed for use with data that has a
spatial component such as metro maps that contain
geographic relationships between the stations. These
criteria include those that prevent large distortions and
changes in topology, so retaining some geographical
accuracy. Another criterion used by this previous work,
angular resolution, which maximizes the angle between
incident edges at a station has not been used. However,
its effect is also performed by the octilinear criterion, so
there is no need for a separate calculation.

4. Results and Examples

The following sections provide examples of data
sets that can be displayed in a metro map style using the
application. The examples shown also illustrate the
optimisation method.

As illustrated in [15], there is clearly a use for
software that allows the drawing and optimisation of
metro map style schematics using abstract data, as the
examples that can be found there have been time-
consumingly drawn by hand.

SchemaSketch is still at the proof-of-concept stage,
hence it cannot currently replace a vector graphics
program for complete creation of metro map style
schematics because of the aesthetic appearance of the
final diagrams. However, we believe the software
illustrates the potential for saving users considerable time
by allowing fast and easy drawing of schematics. In
addition, the built in optimiser can further aid users by
helping them optimise their graphs according to a set of
criteria. In Section 5 we discuss the export of drawn
schematics to multiple file formats, which would allow
the user to switch to a vector graphics software package
for further editing.

4.1. Social Networks as a Metro Map

Here we demonstrate how the metro map metaphor
can be used for the visualization of social networks.
Stations are used to represent individuals, and different
coloured lines correspond to the type of relationship
between them. Figures 4 and 5 show an example of a

social network drawn as a metro map, before and after
optimisation. Here we show the family and friendship
relationships centred on one individual.

Another example of where this type of visualization
may be desired is for the display of personnel structure
within a company or department, for example academic
staff in a research institute can belong to multiple
research groups. These can be represented as the
coloured lines as shown in Figure 6. This schematic was
conceived using SchemaSketch to draw the initial
structure and plan an effective layout of the stations (as
can be seen in Figure 9); it was then re-created using a

vector graphics drawing application.

4.2. Website planning as a Metro Map

As well as social networks, the structure of a website
(from either an end user or a developers perspective) can
be effectively visualized using the metro map metaphor.
Figures 7 and 8 illustrate how a website can be
visualized from a developers perspective by representing
the individual pages and database tables as stations, and

Figure 6: Metro map style schematic showing staff research areas in the University of Kent, Canterbury

Figure 4: Social network before optimisation

Figure 5: Social network after optimisation

Figure 7: Website before optimisation

Figure 8: Website after optimisation

the lines as aspects of the system, for example pages that
require user authentication.

A designer may wish to plan the pages or services of
a website for personal use or to show to a customer. The
metro map at [3] illustrates an example of this use in
practice. There, the designer of this diagram explains
how he struggled to understand how aspects of the
system were related when designing a course plan.
Designing the system as a metro map allowed him to see
the related aspects that could be combined into topics for
the course.

In addition to this, a metro map based site diagram
could be made into an interactive diagram to allow users
to click on the stations to take them to that page, as well
as providing a more interesting overview than the
commonly used hierarchical text structure.

4.3. Issues with the System

Currently the canvas size is restricted to the size of
the screen. This can be problematic as it limits the size of
the schematic that can be drawn. A larger, scrollable
canvas, and/or a zoom function would be beneficial to
users by allowing them to draw schematics that are not
limited in size. This would of course increase
computational time for optimisation, but we believe this
to be a reasonable trade-off. This size limitation problem
sometimes manifests when the optimisation method is
run. The optimiser will attempt to spread out schematics
that are very dense, because it will attempt to normalise
edge lengths, and if there is not enough room for the
expansion, schematics will remain squashed into the
available space. Figures 9 and 10 show an example of
where a dense graph has been squashed onto a canvas
that is too small for the optimiser to function correctly.
The optimiser does not have enough canvas space to be
able to move the stations to more desirable positions.

Besides canvas space, it is possible that the
optimiser will remain in a state of local minima. A
method in which the optimiser is allowed to make
changes for the worse (such as Simulated Annealing)
may be able to alleviate these local minima problems,
but would increase the search space of the optimiser and
increase optimisation time.

Figure 9: Dense graph before optimisation

Figure 10: Dense graph after optimisation

5. Future Work

The multicriteria optimiser implemented in
SchemaSketch allows the easy addition of new criteria.
We plan to introduce new experimental criteria for use in
user tests in an attempt to find out how much these affect
the readability of metro style schematics. Examples of
these additional criteria include symmetry, station
balancing, parallel lines and station alignment.

The current version of SchemaSketch supports
loading and saving of schematics, but this is limited to a
bespoke file type. Future work would allow
implementation of a mechanism to allow the user to
export the schematic for use in other applications. It
would be particularly beneficial to allow export to a
vector format, for example .svg, so that users could
import the diagram into other applications and make
further edits.

SchemaSketch is not at the stage at which it could
replace a vector graphics program for illustration of
metro map style schematics in terms of aesthetic quality.
However, with implementation effort, this may be an
achievable goal and future projects could involve
improving the visual quality of the schematics produced.

We have found that a metro map can be an
interesting and practical visualization for any data set
that contains multiple items which share relationships.
There are many data sets like this around on the Internet,
where many items are given “tags” (metadata describing
a theme or concept) to relate them to the other items. For
example, a metro map schematic could be produced from
a set of photographs that have been tagged with metadata
(for example, Flickr encourages this form of tagging). It
would be possible to create a schematic by using line
colours to represent tags and so produce a visualization
of how all the items are linked together. Unlike simple
tagging, it would be easy to see past the first order
relations, which may reveal interesting results.

The application area for SchemaSketch is also
currently limited due to it supporting only a small
number of symbols. The gesture based input system can
be modified to allow addition of new symbols which
would allow SchemaSketch to be used for specialist
applications. For example, electrical symbols could be
introduced to allow the design of electrical schematics.
This is a viable example of the particular benefits of a
mobile device – an electrician may want to plan out
electrical circuits whilst out on call, and it would be

much more practical to use a small mobile device than a
laptop.

Mobile devices use much slower processors than
desktop computers, and therefore the optimisation
process can take a long time to run. Optimisation time
also increases rapidly as more stations and edges are
added to the schematic. To make it suitable for mobile
devices, optimisation techniques can be introduced to
minimise processing time, for example when a station is
moved all criteria are currently recalculated. It would be
possible to optimise this process so that only the required
criteria are calculated on the stations that have changed.
Stations with degree 2 could also be combined into a
single edge with a weighting indicating the number of
stations along them, this would greatly reduce the
number of criteria calculations.

6. Conclusions

There are no applications which successfully support
schematic drawing of metro maps in the style of Henry
Beck’s classic London Underground design.
Nevertheless, data from a variety of areas is suitable for
visualization in this manner.

In answer to this problem we have created
SchemaSketch, an application that facilitates the drawing
of metro map style schematics on Android devices using
a gesture based touch interface. SchemaSketch contains
information about the underlying graph structure and this
allows easy use of automatic layout techniques to
optimise the schematic. SchemaSketch includes a
multicriteria optimiser which repositions nodes to satisfy
a series of criteria based upon aesthetic quality.

Using SchemaSketch, we have investigated the use
of the metro map metaphor for diagramming abstract
data collections, such as social networks and websites.
During these investigations we have found that metro
maps can be an interesting and practical visualization for
data sets that consist of multiple items which share
relationships.

We have demonstrated that there are practical
applications for software such as SchemaSketch, and that
even at this early stage of the project’s life it can greatly
aid users who wish to visualize information in this style.

References

[1] Dean Rubine, “Specifying Gestures by Example”, in
Proceedings of the 18th annual conference on Computer

Graphics and interactive techniques, vol. 25, 1991, pp.
329-337.

[2] Edraw Soft, http://www.edrawsoft.com/, accessed
23/02/2011.

[3] The Moodle 2.0 Administration Map,
http://www.synergy-learning.com/blog/moodle/the-
moodle-2-0-administration-map/, accessed 24/02/2011.

[4] Helen C. Purchase, Robert F. Cohen and Murray James,
“Validating Graph Drawing Aesthetics”, in proceedings
Graph Drawing 1995. Lecture Notes in Computer Science,
vol. 1027, 1996, pp. 435-446.

[5] iMapBuilder, http://www.imapbuilder.com/, accessed
23/02/2011.

[6] Isaac Freeman and Beryl Plimmer “Connector semantics
for sketched diagram recognition”. AUIC '07 Proc. 8th
Australasian conference on User interface 64. ACM, 2007.

[7] Jonathan Stott, Peter Rodgers, Juan Carlos Martínez-
Ovando, and Stephen G. Walker. “Automatic Metro Map
Layout Using Multicriteria Optimization.” Transactions
on Visualization and Computer Graphics, 16(1):101-114,
January 2011.

[8] Keith V. Nesbitt, “Getting to more Abstract Places using
the Metro Map Metaphor”, in Proceedings of the
Information Visualisation, Eighth International
Conference, 2004, pp. 488-493.

[9] Levent Burak Kara and Thomas F. Stahovich,
“Hierarchical Parsing and Recognition of Hand-Sketched
Diagrams”, in Proceedings of the 17th annual ACM
symposium on user interface software and technology,
2004, pp. 13-22.

[10] Martin Nöllenburg and Alexander Wolff, “A Mixed-
Integer Program for Drawing High-Quality Metro Maps”,
in proceedings Graph Drawing 2006. Lecture Notes in
Computer Science, vol. 3843, 2006, pp. 321-333.

[11] Maxwell J. Roberts, “Underground Maps After Beck”,
Capital Transport Publishing, 2005.

[12] Milda Gusaite, E. Kazanavičius and T. Barkowsky,
“Dynamic Scene Analysis and Beautification for Hand-
draw Sketches”, Masters thesis, Kaunas University of
Technology, 2006.

[13] Seok-He Hong, Damian Merrick and Hugo A.D. do
Nascimento, “The Metro Map Layout Problem”, in APVis
'04: Proceedings of the 2004 Australasian Symposium on
Information Visualization, vol. 35, 2004, pp. 91-100.

[14] Simon Patterson, The Great Bear,
http://www.olivercloke.com/simon-patterson-the-great-
bear, accessed 23/02/2011.

[15] Ten examples of the Metro Map Metaphor,
http://blog.visualmotive.com/2009/ten-examples-of-the-
subway-map-metaphor/, accessed 23/02/2011.

