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Abstract

Area-proportional Euler diagrams have many applications, for example they
are often used for visualizing data in medical and biological domains. There
have been a number of recent research efforts to automatically draw Euler
diagrams when the areas of the regions are not considered, leading to a range
of different drawing techniques. By contrast, substantially less progress has
been made on the problem of automatically drawing area-proportional Euler
diagrams, although some partial results have been derived. In this paper,
we considerably advance the state-of-the-art in area-proportional Euler dia-
gram drawing by presenting the first method that is capable of generating
such a diagram given any area-proportional specification. Moreover, our
drawing method is sufficiently flexible that it allows one to specify which of
the typically enforced wellformedness conditions should be possessed by the
to-be-drawn Euler diagram.

Key words: Area-Proportional, Euler diagrams, Information Visualization,
Non-hierarchical data visualization, Venn diagrams

1. Introduction

There are many situations where data is more easily interpreted using
visualizations. For instance, in statistical data analysis bar charts or pie
charts are frequently used, and graphs can be used for network visualization.
These diagrams are often automatically produced, allowing the user to readily
make interpretations that are not immediately apparent from the raw data
set. Sometimes, the raw data are classified into sets and one may be interested
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in the relationships between the sets, such as whether one set is a subset of
another or whether one set contains more elements than another. Euler
diagrams are an effective means for visualizing this type of data.

For example, the authors of [9] have data concerning health registry en-
rollees at the world trade center. Each person in the health registry is clas-
sified as being in one or more of three sets: rescue/recovery workers and vol-
unteers ; building occupants, passers by and people in transit ; and residents.
In order to visualize the distribution of people amongst these three sets, the
authors of [9] chose to use an Euler diagram which can be seen in figure 1.
Here, the areas of the regions in the diagram are taken to be in proportion
to the cardinalities of the represented sets. Since the areas of the regions
convey cardinality information, the diagram is said to be area-proportional.
Area-proportional Euler diagrams are also used for information visualization
in areas including crime control [10], computer file organization [6], classifi-
cation systems [26], education [16], genetics [18], and medicine [22].

Figure 1: Major enrollment groups in the World Trade Center Health Registry.

As with other diagram types, the ability to automatically create area-
proportional Euler diagrams from the data would be advantageous. Indeed,
one could argue that their automated construction is necessary if we are
to be able to widely apply the use of these diagrams in information visual-
ization. To date, few methods for automatically drawing area-proportional
Euler diagrams have been developed and those which exist are all limited to
some extent; these methods will be discussed below. As a consequence of
these severe limitations, area-proportional Euler diagrams typically need to
be manually drawn, using only estimates of area.
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In general, Euler diagrams [8] are collections of closed curves and are typ-
ically used to visualize relationships between sets. They are a generalization
of Venn diagrams [27]; in a Venn diagram, all possible intersections between
the sets must be represented, unlike an Euler diagram where all the inter-
sections do not have to be represented. Euler diagrams exploit topological
properties to convey information. For instance, a curve completely enclosed
by another curve asserts a containment (subset) relationship. In figure 2,
the diagram asserts that all executive members are also members, since the
curve representing the former set is completely inside the curve representing
the latter set. This diagram also asserts that the set’s members and staff
are disjoint since the respective two circles have no common points inside
them. The regions formed by the curves represent the intersections of the
corresponding sets. So, in figure 2, the region inside the curve Members but
outside both the Exec Members and Staff curves represents the set

Members ∩ Exec Members ∩ Staff.

In the area-proportional case, the relative areas of the regions are taken to
be in proportion to the represented data, as illustrated in figure 1.

Members

Exec_Members

Staff

Figure 2: Exploiting topological properties.

This paper extends the existing state-of-the-art, presenting the first a
method capable of drawing any area-proportional specification. Section 2
provides an overview of Euler diagram drawing methods and gives some ex-
amples of their use in information visualization. We give a sketch of our
area-proportional Euler diagram drawing method in section 3. We provide
definitions of Euler diagrams and related concepts in section 4. Section 5
defines area-proportional abstract descriptions, together with abstract-level
concepts that correspond to diagram-level concepts given in section 4. Sec-
tion 6 identifies how to decompose area-proportional abstract descriptions
into a sequence of such descriptions in order to allow diagrams to be drawn

3



inductively. Our drawing method uses graph-theoretic concepts, with sec-
tion 7 defining the graphs that we require. In section 8, we describe how to
use cycles in these graphs to add curves to a diagram. The theory is drawn
together in section 9, where we present our inductive drawing method and
discuss choices of area-proportional abstract description decomposition with
respect to their impact on the final, drawn diagram. Finally, in section 10,
we establish how properties of the cycles we use to add curves impacts the
well-formedness properties possessed by the drawn diagram.

2. Related Work and Motivation

We cover two main themes: existing drawing methods for Euler dia-
grams (area-proportional or otherwise), and application areas where area-
proportional Euler diagrams are helpful. Existing drawing methods start
with an abstract description of the to-be-drawn diagram (possibly with an
area specification) and proceed to seek a diagram; some of these methods
guarantee the production of a diagram. Prior to this paper, there has only
been limited success in the area-proportional case, with all methods often
failing to draw any appropriate area-proportional Euler diagram.

2.1. Existing Drawing Methods

The vast majority of the research on automated Euler diagram drawing
has focused on the non-area-proportional case. An abstract description of
the to-be-generated diagram consists of a set of labels, which represent the
sets to be visualized, and a set of ‘zone descriptions’, which represent the
intersections of the sets that are to be visualized. For example, the diagram
in figure 3 was automatically drawn using the methods of Rodgers et al. [20]
and has zone descriptions ∅, {A}, {B}, {A,B}, {B,C}; for the sake of
clarity, we will frequently omit ∅ from the list, and write the description as
A, B, AB, BC. In essence, the abstract description describes the regions
(called zones) formed by the curves. For example, AB describes the zone
inside both of the curves labelled A and B, but not inside any other curves.
We will simply call zone descriptions, such as AB, zones.

To specify an area-proportional Euler diagram, abstract descriptions are
augmented with an area specification, assigning a required area to each
zone. For example, abstract description A, B, AC, BC can be augmented
with area specification area(A) = 15, area(B) = 5, area(AC) = 7 and
area(BC) = 10.
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Figure 3: An automatically drawn Euler diagram.

2.1.1. Drawing Methods for Area-Proportional Euler Diagrams

There have been recent efforts towards solving the area-proportional Eu-
ler diagram drawing problem, that is: given an abstract description with an
area specification, draw an area-proportional Euler diagram with that ab-
stract description and the specified zone areas. Early work, by Chow and
Ruskey [4], on the automatic drawing of area-proportional diagrams concen-
trated on rectilinear diagrams with three curves and diagrams drawn with
two circles, further studied in [2]. Both methods are severely restricted, due
to being able to represent only three or two sets respectively. Moreover, rec-
tilinear layouts are not always effective from a usability perspective, having
curves with 90 degree bends that can be difficult to follow, particularly at
curve intersections. Later, their ‘two circles’ method was extended to the
(still restrictive) three circle case by Chow and Rodgers [3]; in this case,
however, only approximate areas can be drawn. Figure 1 shows three inter-
secting sets, taken from [9] where the authors state that it was drawn with
the software developed by Chow and Rodgers.

In addition, the Google Chart API [1] includes facilities for drawing area-
proportional Euler diagrams with at most three circles, using methods which
approximate the areas. Figure 4 shows the output for an Euler diagram with
abstract description A, B, AC, BC with areas area(A) = 10, area(B) = 10,
area(AC) = 10 and area(BC) = 10; this area specification is impossible
to draw using circles. Notice that (a) A and B overlap slightly, giving an
extra zone (ABC), (b) there is also an extra zone, C, which consists of two
minimal regions and (c) the area of A is larger than the area of AC, for
instance. Recent work by Rodgers et al. also focuses on visualizing three
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Figure 4: Google Charts Euler diagram.

sets, providing constructive (exact) drawing methods for symmetric Venn-3
diagrams using three convex curves [19].

Alternative work by Kestler et al. [17] developed drawing methods that
produce diagrams with approximate areas, whose curves are restricted to
being regular polygons. An implementation of their method was provided,
called the VennMaster tool; figure 5 was automatically generated by Venn-
Master. Kestler et al.’s method does not guarantee that the drawn diagram
has the correct abstract description or area specification. Typically the di-
agrams produced by VennMaster contain some zones that are represented
by more than one minimal region1, zones that are not required, zones which
are required are not present, and the zone areas are inaccurate compared
to the input data. These latter three (erroneous) features give rise to mis-
leading judgements about the data being visualized. The problems here are
partly because representing area specifications exactly with regular polygons
is not always possible. Indeed, not all abstract descriptions (without area
specifications) can be represented using regular polygons.

A drawing method by Chow draws monotone Euler diagrams, the defi-
nition of which implies that the intersection between all curves present [5].
Again, this means that most abstract descriptions and, therefore, most area
specifications, cannot be drawn. However, when this method can draw the
required diagram it does guarantee to produce the correct areas.

2.1.2. Drawing Methods for Non-Area-Proportional Euler Diagrams

Early automatic Euler diagram layout methods did not consider areas at
all and simply concentrated on deriving diagrams with the correct zones. The
first Euler diagram drawing algorithm, which was developed by Flower and

1Such zones are said to be disconnected.
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Figure 5: Euler diagram of results from a genetic microarray experiment.

Howse [13], guarantees the production of Euler diagrams restricted to those
that were considered ‘well-formed’ which ensured that the diagrams do not
have certain undesirable properties, including: no concurrent curves, no non-
simple curves, and no points where more than two curves meet; various well-
formedness properties will be described in more detail below (section 10). A
software implementation of this first method was provided, but it was limited
to diagrams containing at most four curves which could be drawn under the
imposed well-formedness properties.

Extending this work, Chow [2] provided a drawing method that relaxed
these well-formedness properties to a certain extent, although no software was
provided. Both methods use a dual graph approach and Chow established
that the Euler diagram drawing problem is NP-Complete in this case. Ver-
roust and Viaud [28] chose an alternative relaxation of the well-formedness
properties, which allowed curve labels to be used more than once. Under this
relaxation, any abstract description representing at most eight sets can be
drawn. As with Chow’s method, no implementation of Verroust and Viaud’s
drawing method has been provided.

Recently, Rodgers et al. [20], have solved the general embedding problem
by providing a method that, given any abstract description, draws an appro-
priate Euler diagram. Here, an implementation has been provided, available
from www.eulerdiagrams.com, with figure 3 showing an example of the soft-
ware’s output. The diagrams drawn by the method are guaranteed to have
connected zones and no non-simple curves, but may have concurrency, points
where more than two curves meet, and multiple curve label use. Following a
similar approach, Simonetto et al. [21] have devised a drawing method, with
implementation, that produces Euler diagrams containing concurrency.
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Figure 6: Inductive Euler diagram drawing.

All of the non-area-proportional Euler diagram drawing methods de-
scribed so far use a dual graph approach. A general framework has been
devised by Stapleton et al. [23] for this class of drawing methods. The frame-
work allows one to identify the well-formedness properties that the Euler di-
agram, d, will possess, prior to drawing it, from the dual graph. Moreover,
it was shown that the number of times d will violate the properties can also
be counted from the dual graph.

An alternative drawing method was recently devised by Stapleton et
al. [25] which takes an inductive approach, extending methods for Venn di-
agrams [7, 27]. Here, one curve is drawn at a time, identifying a route for
the curve to take given the abstract description of the required diagram. It
has advantages over the class of techniques described above in that it readily
incorporates user preference for imposed well-formedness conditions (such as
the curves must be simple), where this can be achieved. A partial implemen-
tation has been provided for this method, therefore giving some automated
drawing support. Using this inductive method, an automatically drawn dia-
gram with abstract description A, B, AB, C, AC can be seen in figure 6.
It is this method that we extend to the area-proportional case.

2.2. Application Areas

There are numerous places in which area-proportional Euler diagrams
can be used. For example, figure 1, obtained from [9], shows an automat-
ically drawn three set Euler diagram (which is also a Venn diagram) with
the areas of the regions intended to be proportional to the values in them.
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Figure 7: Statistics education.

Figure 8: Medical example. Figure 9: Extended medical example.

It was drawn using the software presented in [3]. This diagram illustrates
some of the difficulties with current automated drawing methods: a fourth
curve representing ‘Students and School Staff (N=2646)’ could not be drawn
because the applied drawing method is limited to three circles.

Figure 5, from [17] and drawn using VennMaster, shows an automatically
drawn diagram which is difficult to understand (and, as stated above, the
drawing method used by VennMaster can yield diagrams with erroneous
features). The diagram here represents data concerning genetic set relations.

An example from the education domain is in figure 7, obtained from [16].
The diagram illustrates predictive variables relating to annual salaries. This
paper presented an empirical study that demonstrated Euler diagrams are an
effective visualization of statistical information in some circumstances. The
author of [16] acknowledges the current difficulty in automatically visualizing
more than three sets using area-proportional Euler diagrams.

An example from the medical domain is shown in figure 8, obtained
from [22]. It shows the intersections of physician-diagnosed asthma, chronic
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Figure 10: An inductive generation of an area-proportional Euler diagram.

bronchitis, and emphysema within patients with obstructive lung disease. An
extension of this diagram, representing five sets and also obtained from [22],
is shown in figure 9. The ‘Airflow Obstruction Ext.’ set is disjoint from the
other four. Notice that the ‘Airflow Obstruction Int.’ set intersects with the
first three sets but is represented using multiple curves.

3. An Overview of Our Area-Proportional Drawing Method

As previously indicated, our method for drawing a diagram, given an area-
proportional abstract description, extends the inductive drawing method
of [25]. To illustrate the technique, suppose we wish to draw the abstract
description P,Q, PQ,QR, PQR with area specification:

area(P ) = 8

area(Q) = 5

area(PQ) = 3

area(QR) = 3

area(PQR) = 2.

From this area specification, we can calculate the area inside curve P , for
instance: the area is 8 + 3 + 2 = 13. This sum is the total area of the zones
(P , PQ, and PQR) that are inside curve P . We can then draw such a curve
with the correct area, as shown in d1 of figure 10. Next, we can add the
curve Q, observing that the area inside this curve must be 5+3+3+2 = 13
(from the four zones inside Q), with the overlap between curves P and Q

having area 2 + 3 = 5 (from the two zones inside both curves P and Q); the
resulting diagram is d2. Finally, we must add the curve R, which is to have
a total area of 3 + 2 = 5. The area inside both Q and R is specified to be
3, with the remaining 2 units to be inside P , Q and R. The final diagram
containing all three curves is d3.

What we have not described here is the manner in which we identify
routes for the to-be-added curves to follow at each stage. Later, we provide

10



Figure 11: The hybrid graph. Figure 12: An alternative cycle.

a general method for routing the curves that can be fully automated. The
technique uses graph theoretic concepts to identify routes for the curves. In
particular, we construct a so-called hybrid graph (defined later), in which we
identify cycles that form the basis of routes for the curves. We then modify
the route so that we obtain the required areas.

To illustrate, the hybrid graph of d2 given in figure 10 can be seen in
figure 11. A cycle that identifies a region through which curve R may be
routed is highlighted; it was this cycle that gave rise to d3. Alternative
cycles could have been chosen which would impact on the well-formedness
properties possessed by the drawn diagram. For instance, a different choice
of cycle is shown in figure 12 which would have given rise to the curve R

being partially concurrent with the curve Q.
There are often many cycles that can be chosen as permissable curve

routes and properties of the chosen cycles directly correspond to the well-
formedness conditions that the drawn diagram will possess. Thus, placing re-
strictions on the permissable cycles corresponds to enforcing well-formedness
properties. The remainder of the paper sets up the necessary framework for
drawing area-proportional Euler diagrams, details the drawing method, and
discusses ways in which we can add curves so that the resulting diagram
respects specified well-formedness conditions.

The method we present builds on a substantial body of existing work,
so here we outline the most significant novel aspects; note that the com-
ments below make use of terminology that will be defined later in the paper.
First, we provide generalizations of theoretical results on nested diagrams,
given in [14], to the area-proportional case. The theory on decompositions in
section 6 extends previous work to area-proportional abstract descriptions.
The method we describe for adding contours in section 8 generalizes the
method given in [25] in two significant ways: (a) the method describes how
to add a contour consisting of multiple curves, whereas previously this was
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restricted to single-curve contours; (b) the curve routing method must en-
sure the correct areas are realized, as well as the correct zone set. Section 9
presents the inductive drawing method which contains additional steps to
allow nested diagrams to be drawn, overcoming difficulties (which we discuss
below) that arise due to area-proportionality. Moreover, in previous work,
the order in which the contours were drawn was not given consideration.
Section 9 discusses the impact of the contour ordering on the quality of the
drawn diagram. This section further generalizes results about how the choice
of cycles to add curves impacts on the well-formedness properties possessed
by the drawn diagram; these generalizations are necessary since, unlike this
paper, [25] did not allow contours to consist of multiple curves.

4. Euler Diagrams

An Euler diagram is a set of closed curves drawn in the plane2. We
assume that each curve has a label chosen from some fixed set of labels, L.
The definitions given here are consistent with, or generalizations of, those
found in the literature, such as in [2, 13, 24, 28].

Definition 4.1. An Euler diagram is a pair, d = (Curve, l), where

1. Curve is a finite collection of closed curves each with codomain R
2,

and

2. l:Curve → L is a function is that returns the label of each curve.

Definition 4.2. A minimal region of an Euler diagram d = (Curve, l) is
a connected component of

R
2 −

⋃

c∈Curve

image(c).

It is important to be able to identify the interior of closed curves, since
it is by containment and overlap that Euler diagrams convey information. A
point, p ∈ R

2 − image(c), is interior to a closed curve, c, if and only if the
winding number of c around p is odd; see [24] for more details.

2Recall, a closed curve in the plane is a continuous function, c: [a, b] → R
2, where

c(a) = c(b). Moreover, image(c) is taken to denote the set of points to which c maps
elements of the domain. The image notation is used more generally, to denote the set of
elements to which some function maps elements of the domain.
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Figure 13: Two nested Euler diagrams.

Curve labels can occur more than once in an Euler diagram and curves
with the same label are taken to denote the same set of objects. Thus, we
need to identify all curves with the same label in order to have full access
to the information provided about that set. We define the set of curves in a
diagram with some specified label, λ, to be a contour with label λ. A point,
p, is inside a contour precisely when the number of the contour’s curves that
p is is inside is odd. Another important concept is that of zones :

Definition 4.3. A zone in an Euler diagram d = (Curve, l) is a non-empty
set of minimal regions that can be described as being interior to certain con-
tours (possibly no contours) and exterior to the remaining contours. Given
a zone, z, we denote the area of z by area(z).

Thus a zone represents a set intersection. For instance, in figure 10, d2
contains four zones: three zones are inside the curves (described by P,Q, PQ)
and one zone is outside all of the curves (described by ∅). The zone inside P
only represents the set P ∩Q whereas the zone PQ represents P ∩Q.

Definition 4.4. An Euler diagram, d, is atomic if the (images of) its
curves form a connected component of the plane, otherwise d is nested [14].
The connected components formed by (the images of) the curves are called
the atomic components of d.

Both diagrams in figure 13 are nested and each has three atomic components.

This previous nesting work only considered diagrams where curve labels
could not be used more than once. For our purposes, we extend the notion of
nested to contour-nested, reflecting the potential multiple use of curve labels:

Definition 4.5. A nested Euler diagram, d, is contour-nested if each con-
tour appears in exactly one atomic component of d.
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The concept of contour-nestedness corresponds to being able to split the
diagram up into components where each set is represented in exactly one
component. Clearly, when curve labels are not duplicated, the concept of
being contour-nested exactly coincides with that of being nested. In figure 13,
the lefthand diagram is contour-nested, whereas the righthand diagram is not
(the contour Q has curves in two atomic components).

5. Diagram Descriptions and Area Specifications

In order to generate an Euler diagram, d, we start with an abstract de-
scription of d together with an area specification, as illustrated informally
above (section 3). Note that there is always a zone outside all of the contours,
which includes the unbounded minimal region and its guaranteed presence
is reflected in abstract descriptions. Since this region is unbounded, it has
infinite area and, thus, its area is not specified when we assign areas to zones
below. As with drawn diagrams, the labels used in the abstract descriptions
are all chosen from L and the abstract zones are, therefore, chosen from PL.

Definition 5.1. An area-proportional abstract description, D, is a
triple, (L,Z, area) where

1. L is a finite subset of L (i.e. all of the labels in D are chosen from the
set L) and we define L(D) = L,

2. Z ⊆ PL such that ∅ ∈ Z and we define Z(D) = Z.

3. area:Z(d)−{∅} → R
+ is a function that assigns desired areas to zones.

We define areaD = area, enabling us to distinguish area functions when
dealing with more than one abstraction. The area of D, denoted area(D),
is the sum of the areas of its zones:

area(D) =
∑

z∈Z−{∅}

area(z).

We have clearly overloaded the area notation, since we have also used it
to denote a function that returned the area of a zone in a drawn diagram.

As an example of an area-proportional abstract description, D, the dia-
gram, d, in figure 14 has label set {P,Q,R}, zone set {∅, {P}, {P,Q}, {P,Q,R}}
and the areas are area(P ) = 2, area(PQ) = 2, and area(PQR) = 1. We say
that d is a drawing of D.
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Figure 14: An area-proportional nested Euler diagram.

Definition 5.2. Given an Euler diagram d = (Curve, l), we map d to an
area-proportional abstract description,

abstract(d) = (image(l), Z, area),

called the abstraction of d where

1. Z contains precisely one abstract zone for each zone in d; in particular,
given a zone, z, in d, the set Z contains the abstract zone

abstract(z) = {l(c) : c ∈ C(z)}

where C(z) is the set of contours in d that contain z and l(c) returns
the label of c, and

2. for each zone, z, in d, that is inside at least one contour,

area(z) = area(abstract(z)).

If D is an abstraction of d then we say d is a drawing of D.

The Euler diagram properties of atomicness and contour-nestedness can
be detected at the abstract level. That is, if an area-proportional abstract
description has a contour-nested drawing then it is always possible to identify
this from an abstract description3. We extend the corresponding definitions
of atomic and (contour-)nested given in [14] to the area-proportional case.
However, we do not only need to identify whether a description is contour-
nested, we also need to identify its parts that correspond to atomic com-
ponents in drawings of it. Thus, we first define a new (non-commutative)

3Note that [14] defines nestedness at the abstract level, but considers a restricted class
of Euler diagrams where contours comprise single curves. Our concept of contour-nested
is equivalent to nested in this case.
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operation, sum, on descriptions that simplifies both the presentation of the
definition of contour-nested at the abstract level and facilitates the definition
of the atomic components of descriptions. The sum operation allows us to
‘slot’ one abstract description inside a specified zone, ẑ, of another.

Definition 5.3. Let D1 = (L1, Z1, area1) and D2 = (L2, Z2, area2) be area-
proportional abstract descriptions. Let ẑ be a zone in Z1. If L1 ∩L2 = ∅ and
either area(D2) < area1(ẑ) or ẑ = ∅ then we define the sum of D1 and D2

given ẑ, denoted D1 +ẑ D2, to be an area-proportional abstract description,
(L,Z, area), where

1. L = L1 ∪ L2,

2. Z = Z1 ∪ {z2 ∪ ẑ : z2 ∈ Z2},

3. for each z ∈ Z − {∅},

area(z) =







area1(z), if z ∈ Z1 − {ẑ}
area1(z)− area(D2) if z = ẑ

area2(z − ẑ) if z ∈ {z2 ∪ ẑ : z2 ∈ Z2} − {ẑ}.

For example, the area-proportional abstract description, D, of d in fig-
ure 14, can be written as D1 +PQ D2 where D1 comprises

1. labels {P,Q},

2. zones {∅, {P}, {P,Q}}, and

3. the area function is defined by area({P}) = 2, area({P,Q}) = 3,

and D2 comprises

1. labels {R},

2. zones {∅, {R}}, and

3. the area function is defined by area({R}) = 1.

By splitting D up into D1 and D2 in this manner, we can see that D is an
abstraction of a contour-nested diagram.

Definition 5.4. Let D = (L,Z, area) be an area-proportional abstract de-
scription. Then D is contour-nested if there exist descriptions, D1 =
(L1, Z1, area1) and D2 = (L2, Z2, area2), and a zone ẑ ∈ Z1 such that

1. L1 6= ∅ and L2 6= ∅,

2. L1 ∩ L2 = ∅,
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3. area(D2) < area(ẑ) or ẑ = ∅, and
4. D = D1 +ẑ D2.

If D is not contour-nested then D is atomic, adapted and extended from [14].

The sum of any two descriptions, each containing at least one curve label,
is contour-nested. The next theorem tells us that the contour-nestedness at
the abstract and drawn diagram levels coincide to some extent; our draw-
ing method will demonstrate that they coincide as intended and, therefore,
acts as a proof of theorem 5.1. An alternative proof of theorem 5.1 readily
generalizes comparable results in [14] for the non-area-proportional case.

Theorem 5.1. For each contour-nested area-proportional description, D there
exists a contour-nested Euler diagram which is a drawing of D.

By splitting up a nested area-proportional abstract description, D, into
the sum of two parts, D1 andD2, we can identify whether it is contour nested.
However, D1 and D2 need not be atomic parts. More importantly, there are
atomic parts of D that cannot be realized as such a D1 or D2. For instance,
the diagram, d, in figure 14 can be written as D1 and D2, given {P,Q} as
described above; here D2 is atomic (the single curve R in the drawn diagram)
whereas D1 is not. It can also be written as D3 +{P} D4 where D3 has label
set {P} and D4 has label set {Q,R} (the rest of these abstract descriptions
are not important for the purpose if this example). Here, D3 is atomic (the
single curve P ) whereas D4 is not. Now, d comprises three atomic parts,
but it is not possible for the part consisting of just the curve Q to be in a
sum that gives rise to D. We need access to all atomic parts for our drawing
method. However, we can still use the sum operation to access this third
part, noting that D = D3 +{P} (D5 +{Q} D2) where D5 comprises

1. labels {Q},
2. zones {∅, {Q}}, and
3. the area function is defined by area({Q}) = 3.

Definition 5.5. Let D = (L,Z, area) be an area-proportional abstract de-
scription. The atomic components of D are defined as follows:

1. If D is atomic then D is an atomic component of D.

2. If D is not atomic and D = D1 +ẑ D2 for some descriptions D1 and
D2 and zone ẑ then the atomic components of D1 together with those
of D2 are atomic components of D.
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Figure 15: Containment of components.

The first stage in our drawing process takes D and identifies its atomic
components. In the non-area-proportional case, the atomic components can
be drawn independently, then scaled an merged to produce the final diagram.
The motivation behind breaking the problem down in this manner is to due
to its computational complexity; drawing the nested parts separately results
in the diagram being drawn more quickly. In the area-proportional case, the
atomic components cannot be drawn independently: scaling a component so
that it can be drawn inside a zone changes the area proportions. However,
we would still like to take advantage of the efficiency benefits brought about
by the theory of nesting. To effect this, we must specify an order in which to
draw the atomic components, so that we no longer draw them independently,
but draw them inside the zones in which they are to be placed.

In figure 15, the diagram has 4 atomic components. The representation
of these components on the right depicts a partial ordering. Our drawing
method will start by drawing the leftmost component. We can then draw
one of the next two components (that containing just the curve S or that
containing the curves S and Q) inside the appropriate zones. Any component
is drawn after any predecessor. We can compute an order in which to draw
the atomic components in a manner that reflects their containment: we draw
D1 before D2 if D1 ‘contains’ D2. When drawing D2 we are, thus, able to
draw it in the zone that contains it and avoid scaling. In practice, the ‘shape’
of the zone will impact the choices of curve routings available. The routing
techniques we provide handle being confined to remaining within a particular
shape and are, therefore, immediately applicable to the contour-nested case.

6. Decomposing Abstract Descriptions

The area-proportional Euler diagram generation problem can be summa-
rized as ‘given an area-proportional abstract description, D, find an Euler
diagram, d, that is a drawing of D. Our inductive approach will add curves
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successively until the generated Euler diagram has the required abstraction
and zone areas. The routing of the curves will reflect the required areas,
directly extending the methods of [25]. We need to know:

1. how to decompose D into a sequence of atomic descriptions

2. how to decompose D into a sequence (D0, D1, ..., Dn) whereD0 contains
no curve labels, Di−1 is obtained from Di by removing a label, and
Dn = D,

reflecting the next two subsections. We could restrict the second case, which
identifies an order in which to draw the contours, to considering only atomic
diagrams (because of case 1). However, we set up this decomposition pro-
cesses more generally, since it can equally well be applied to non-atomic
descriptions. Indeed, case 1 can easily be omitted from our drawing method,
but the drawings we produce will not, then, reflect any nestedness present.

6.1. Component Decomposition

We want to produce a sequence of atomic descriptions that allows us to
draw D by drawing one atomic component at a time.

Definition 6.1. Given an area-proportional abstract descriptionD = (L,Z, area)
a component decomposition is a sequence of area-proportional abstract
descriptions, decC(D) = (D0, ..., Dn), which generates a sequence of atomic
area-proportional abstract descriptions decA(D) = (D′

0, ..., D
′
n−1) where

1. D0 contains no curve labels,

2. Dn = D, and
3. for each i, where 0 ≤ i < n, Di = Di−1 +zi D

′
i−1 for some zone zi.

So, given such a decC(D) = (D0, ..., Dn) and decA(D) = (D′
0, ..., D

′
n−1),

our drawing method, after drawing Di, will draw D′
i inside the zone z′i of

Di. To produce a component decomposition, one simply identifies an atomic
component of D, removes it, identifies an atomic component of the result,
an so forth, until there are no non-trivial components remaining.

6.2. Contour Decomposition

Given an atomic description, D, our generation problem will find an em-
bedding of D1 by adding a curve to D0 (which contains no curves), then
D2 (which contains 2 curves) and so forth, ending up with an embedding of
Dn = D. As noted above, this process works for non-atomic descriptions,
too, so the framework is set up for the general case.
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Definition 6.2. Given an area-proportional abstract description, D = (L,Z, area),
and λ ∈ L, we define D − λ to be

D − λ = (L− {λ}, {z − {λ} : z ∈ Z}, area′)

where for each z ∈ Z(D − λ)− {∅}

area′(z) = area(z) + area(z ∪ {λ})

where we have extended the domain of area to include all zones, taking
area(z′) to be 0 if z′ is not in D.

Definition 6.3. Given an area-proportional abstract description, D = (L,Z, area),
a decomposition of D is a sequence, dec(D) = (D0, D1, ..., Dn) where each
Di−1 (0 < i ≤ n) is obtained from Di by the removal of some label, λi, from
Di (so, Di−1 = Di − λi) and Dn = D. If D0 contains no labels then dec(D)
is a total decomposition.

The notion of a decomposition is similar to an alternative abstraction of
Euler diagrams in [11], although there the authors do not consider areas.

Given a decomposition, dec(D) = (D0, D1, ..., Dn), we need to be able
to describe how to add a new curve label, λi, to Di to obtain Di+1 (so,
Di+1 − λi = Di). In particular, we need to be able to identify the zones to
be completely contained by λi, those to be completely outside λi, and those
to be ‘split’ (i.e. partly inside and partly outside) by λi. We can deduce this
information from the decomposition: considering Di and Di+1, we need to
identify two sets of zones, that we call in and out, where

1. in − out contains abstract zones whose drawn counterpart is to be
completely inside the contour with label λi,

2. out − in contains abstract zones whose drawn counterpart is to be
completely outside the contour with label λi, and

3. in∩ out contains abstract zones whose drawn counterpart is to be split
by the contour with label λi.

It can easily be shown that

1. in = {z ∈ Z(Di) : z ∪ {λi} ∈ Z(Di+1)}, and

2. out = {z ∈ Z(Di) : z ∈ Z(Di+1)}.
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For notational convenience, we define in(Di, Di+1) = in and out(Di, Di+1) =
out.

We further need to describe how to subdivide the areas of the split
zones when describing how to add λi to Di. We define, for each zone, z,
in in(Di, Di+1) ∩ out(Di, Di+1), a pair of areas reflecting how z is to be sub-
divided at the drawn level:

splitArea(z) = (areaDi+1
(z), areaDi+1

(z ∪ {λi}))

with splitArea(Di, Di+1) denoting the set of all such pairs. There is one
exception to the above: if the zone ∅ is in in (it is necessarily in out since
it is present in every abstract description) then the zone ∅ ∪ {λi} can take
any non-zero area. Finally, the addition of λi to Di in order to obtain Di+1

is specified by

Di+1 = Di + (λi, in(Di, Di+1), in(Di, Di+1), splitArea(Di, Di+1)).

Of course, it would be a trivial matter to set up this framework for curve
label addition in a more general manner, allowing the specification of the ad-
dition of a label without reference to a target area-proportional abstract de-
scription. However, our chosen presentation of the definitions reflects the pri-
mary aim of the paper: to provide a method that will facilitate the automated
drawing of an area-proportional Euler diagram given any area-proportional
abstract description.

7. Graphs for Contour Addition

Euler diagrams are associated with various graphs, some of which play an
instrumental role in their automated layout; see [2, 13, 25] for more details.
In this paper, we are interested in four of these associated graphs: the Euler
graph, the Euler graph dual, the modified Euler dual, and the hybrid graph.
Since these graphs were previously defined, we refer the reader to [25] for
illustrative examples and associated discussion.

We can take an Euler diagram and construct its Euler graph which,
roughly speaking, has a vertex at each point where two curves meet and
the edges are the curve segments that connect the vertices. As a special
case, any simple curve that does not intersect with any other curve has ex-
actly one vertex placed on it. The Euler graph was originally defined in [2],
but the definition relies on certain wellformedness conditions holding. We
require a definition that applies in the general case:
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Definition 7.1. An Euler graph of Euler diagram d = (Curve, l) is a
plane graph, denoted EG(d), whose embedded edges and vertices have image
⋃

c∈Curve

image(c) and EG(d) has a minimal number of vertices out of all the

graphs to which it is homeomorphic (i.e. EG(d) has no unnecessary vertices
of degree two).

Given a vertex, v, in an Euler graph dual, we write z(v) to mean the
zone of d in which v is embedded. We will talk about the images of the
edges and vertices of these embedded graphs as simply the edges and vertices
respectively. Later, we will define further graphs, which are also embedded
in R

2, associated with Euler diagrams and again blur the distinction between
the edges (vertices) and the embedding of those edges (vertices).

Our generation method will add curves, respecting area constraints, by
finding appropriate cycles in graphs. We could choose to use the dual graph
to achieve this, but there would then be curves that we wish to add that
could not necessarily follow a cycle in the dual. The issue arises, in atomic
diagrams, because a dual graph does not allow us to route a curve in an
arbitrary direction through the zone outside all of the curves. Following [25],
we use the modified Euler dual as a basis for the graph that we will use to
add contours. However, this graph will be extended, giving a so-called hybrid
graph (see figure 11), in order to allow contours to be added in more ways.

Definition 7.2. Let d = (Curve, l) be an atomic Euler diagram. A modi-

fied Euler dual of d, denoted MED(d), is a plane graph obtained from the
Euler graph dual of d by carrying out the following sequence of transforma-
tions:

1. for each edge, e, incident with the vertex, v, placed in the unbounded
face, f , of EG(d) insert a new vertex of degree two onto e placed in f ;
the new vertex splits e into two edges in the obvious manner,

2. delete v along with all its incident edges; if this leaves any isolated
vertices then delete those also,

3. add edges, embedded in f , connecting the newly inserted vertices (which
have degree 1 after deleting v) so that the newly inserted vertices to-
gether with these new edges form a simple plane cycle4 that properly
encloses the Euler graph [25].

4A simple cycle is one which does not pass through any vertex more than once (except
the start and end vertex).
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Definition 7.3. Let d = (Curve, l) be an atomic Euler diagram. A hybrid

graph for d, denoted HG(d) = (V,E), is a plane graph obtained from EG(d)
and MED(d) by carrying out the following sequence of transformations:

1. take the embeddings of EG(d) and MED(d) as one embedded graph,
G1, (i.e. union the vertex sets and union the edge sets),

2. for each edge, e, in G1 that is in MED(d) and completely embedded in
the unbounded face, f , of EG(d) insert a new vertex onto e; the new
vertex splits e into two edges in the obvious manner and we call the
created graph G2,

3. for each pair of edges, e1 and e2, in G2, if e1 and e2 cross then insert a
new vertex at the point where they cross; the new vertex splits each of e1
and e2 into two edges in the obvious manner, and we call the resulting
graph G3,

4. add edges to G3 which are incident with a vertex in MED(d) and a
vertex in EG(d) to create a graph, G4, so that

(a) all the new edges in G4 are in the subgraph, SG4, of G4 generated
by deleting the vertices of G4 that are embedded in the unbounded
face of EG(d), and

(b) SG4 is triangulated except for its unbounded face,

5. add edges, e, to G4, so that

(a) e is incident with a vertex in EG(d),
(b) e is incident with a vertex in G2 that is not in MED(d) or in

EG(d), and
(c) every vertex in G2 that is not in MED(d) or in EG(d) is incident

with exactly one new edge.

The resulting graph is HG(d) [25].

Given a hybrid graph for d, we partition the set of edges as follows.
Any edge in the hybrid graph that arose from the Euler graph is in the
set EulerEdges(HG(d)). Any edge in the hybrid graph that arose from
the modified Euler dual is in the set DualEdges(HG(d)). The remaining
edges in the hybrid graph are in the set NewEdges(HG(d)). We call edges
in the set EulerEdges(HG(d)) Euler edges and use similar terminology for
elements of the other sets defined here. Moreover, the vertices are similarly
partitioned into the sets EulerV ertices(HG(d)),DualV ertices(HG(d)), and
NewV ertices(HG(d)).
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8. Adding Contours

Using a decomposition of an area-proportional abstract description, D,
we can solve the drawing problem by identifying how to add a contour to
a diagram in order to obtain some specified description. We demonstrate
(a) how to identify a region of the diagram that can contain the required
contour, and (b) that it is possible to draw the contour in a manner that
guarantees the correct areas. To identify how we can draw the to-be-added
contour, we use cycles in the hybrid graph. Recall, a cycle, C, in a graph
G = (V,E) is a non-empty sequence of edges, C = (e0, ..., en) in E, where no
edge in E occurs more than once in C together with a sequence of vertices,
(v0, ..., vn, vn+1) such that v0 = vn+1 and each edge, ei, in C is incident with
vi and vi+1; such a sequence of vertices is associated with C. The set of
edges in C is denoted E(C) and the set of vertices in the vertex sequence
associated with C is denoted V (C).

Given a cycle in a hybrid graph, HG(d), of some Euler diagram d, we
can identify whether zones are inside, outside, or ‘split’ by the cycle. The
concept of being inside a cycle will be defined by appealing to face-colouring.
We observe that any cycle in a graph gives rise to an Eulerian subgraph (i.e.
by deleting all edges not in the cycle and any isolated vertices). It was shown
in [25] that any Eulerian, plane graph has a face-colouring that uses most
two colours. Therefore, we can use such a colouring to identify the points
inside (and outside) a cycle. Adding a curve to a diagram corresponds to
traversing a cycle in the hybrid graph. In general, we want to describe how to
add a contour to a diagram, d which can be done, in part, using a multi-set
(sometimes called a bag) of cycles, C, with each cycle giving rise to one of the
contour’s curves. Recall that a zone is inside a contour precisely when it is
inside an odd number of its curves. Thus, the zones inside the new contour,
the zones outside the new contour and the zones split by the contour can
be immediately identified from the cycles and face colourings. We assume,
without loss of generality, that given any pair of cycles in C, each of their
infinite faces has the same colour. This means that the minimal region, m,
outside all curves in d, is coloured the same in each cycle. Taking d and such
a two face colouring of each cycle in C we construct a marking of the points,
p, of which the zones in d comprise:

1. p is marked in(C) if the number of cycles in which p is coloured the
same as m is odd, and
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2. p is marked out(C) if the number of cycles in which p is coloured the
same as m is even.

We then define:

1. the abstract description of a zone z in d is defined to be inside C if any
one of its points is in in(C), the set of which is denoted inZones(C),
and

2. the abstract description of a zone z in d is defined to be outside C if any
one of its points is in in(C), the set of which is denoted outZones(C).

The zones which are split are those whose abstract descriptions occur in both
inZones(C) and outZones(C).

We want to be able to add a contour in order to obtain some specified
abstraction augmented with an area specification, D. Consider, then, a de-
composition, dec(D) = (D0, ..., Dn), ofD where we have found an embedding
of Di, say di. We demonstrated above that we could compute appropriate
sets, in(Di, Di+1) and out(Di, Di+1). Thus, to add an appropriate contour
to di in order to obtain a drawing of Di+1, we first seek a multi-set of cycles,
C, in HG(di) such that

1. in(Di, Di+1) = inZones(C), and

2. out(Di, Di+1) = outZones(C).

To ensure the resulting diagram is atomic, each cycle must pass through an
Euler vertex (a vertex in the Euler graph). It is relatively straightforward to
justify the existence of an appropriate C given in and out. Intuitively:

1. For each abstract zone, z, in in− out, and for each minimal region, m,
of di of which the drawn zone, ẑ, with abstraction z comprises, add a
minimal set of cycles to C formed by traversing the edges of HG(di)
that bound m, such that each edge is included in exactly one cycle.

2. For each abstract zone, z, in in∩ out, and for each minimal region, m,
of di of which the drawn zone, ẑ, with abstraction z comprises, add
a simple cycle formed by traversing some of the edges of HG(di) that
bound m together with two new edges that are incident with the dual
vertex inside m.

The contour added consists of curves that are formed by traversing each
of the cycles in C, ignoring the area constraints. This naive way to choose a
multi-set of cycles can yield unattractive diagrams and, typically, much better
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choices can be made. For instance, one heuristic is to minimize the number
of cycles in C, but other heuristics may be more appropriate depending on
the circumstances. Nonetheless, we can now state the following theorem:

Theorem 8.1. Let Di+1 = (L,Z, area) be an area-proportional abstract de-
scription and let λi ∈ L and suppose Di = Di+1 − λi has drawing di. There
exists a multi-set of cycles, C in HG(di) such that

1. inZones(C) = in(Di, Di+1),

2. outZones(C) = out(Di, Di+1), and

3. each cycle in C passes through an Euler vertex.

To summarize, we can now identify how to add a contour to a diagram in
order to obtain the correct abstraction, ignoring area specifications.

Given Di+1 = Di+(λi, in, out, splitArea) we must consider how to obtain
the correct areas. To demonstrate that this is always possible, suppose that
C is a multi-set of cycles such that if we traverse each of the cycles to give
rise to a curve then we obtain a diagram, di+1, with the correct zone set
(although the areas may well be incorrect).

Consider a zone, zi+1, in di+1 with the wrong area. Then zi+1 must be
a split zone, since the areas of the non-split zones will be unaltered and, by
assumption, the areas are correct in di. The minimal regions of which zi+1

comprises will be either inside C, outside C or passed through (i.e. split)
by at least one cycle in C. Figure 16 illustrates the three possibilities for
six minimal regions of zi+1, here depicted as circles; note that the figure
assumes zi+1’s minimal regions are simply connected, which is necessary in
atomic diagrams unless zi+1 is outside all of the curves. The diagram depicts
the part of the hybrid graph that includes edges in two of the cycles in C,
(partially) shown as C1 and C2. The shaded parts of the six minimal regions
that form zi+1 are assumed to be inside C.

Suppose that if our to-be-added contour traversed C1 and C2 then the
area of zi+1 is too large; this is the shaded area. This implies that, in di+1,
the area of the zone, z′, with abstraction abstract(zi+1)−{λi} has too small
an area, since the sum of the two areas must be areadi(z), where z is the
zone that was split to give zi+1 and z′i+1, that is

areadi(z) = areadi+1
(zi+1) + areadi+1

(z′i+1).

Thus, we need to adjust the path taken by the new contour so that the areas
are as required, reducing areadi+1

(zi+1) and increasing areadi+1
(z′i+1).
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Figure 16: Adding a contour by traversing cycles

C2

C1

C2

C1

Figure 17: Re-routing the contour and adding new curves to achieve the correct areas.

This can be achieved by (a) re-routing the new or dual edges of the hybrid
graph through the minimal regions that the cycle(s) passes through – these
are the minimal regions of z that contain some vertex associated with at least
one of the cycles in C, or (b) adding further cycles to C that pass around or
through the other minimal regions of which z comprises. In our example,
suppose then that we cannot obtain the correct areas by process (a) alone,
although we might still make use of process (a), as shown in the lefthand
side of figure 17. To further decrease the area of zi+1, we can add a further
curve around one of its minimal regions and possibly, as shown in the figure,
passing through that minimal region. Such curves can again be found by
identifying particular cycles in the hybrid graph and adjusting the routing
as in process (a). If the area of zi+1 is too small in di then the process for
enlarging the areas is similar.

In this section, we have, therefore, described how to add a contour to
obtain a drawing of Di+1 from a drawing of Di, ensuring that the required
areas are achieved.

27



9. Inductive Drawing Method

Given D = (L,Z, area), follow the process below to draw D:

1. Atomic Components Identify the atomic components of D, by pro-
ducing a component decomposition decC(D) = (D0, ..., Dn) and its
associated sequence of atomic components, decA(D) = (D′

0, ..., D
′
n−1)

2. Decompose Atomic Components For each D′
i, find a total decom-

position, say dec(D′
i) = (Di,0, Di,1, ..., Di,mi

). Recall that Di,0 has no
curve labels and we denote the Euler diagram with abstraction Di,0 by
di,0. Here we can choose to use heuristics, when producing a decompo-
sition, that may yield better drawn diagrams.

3. Draw Atomic Parts Draw each of the atomic components of D in
order, starting with D′

1. Set i = 1.
(a) Draw a Contour for the Atomic Part, Di,1, in dec(D′

i) The de-
scription Di,1 has a single curve label, λi,1. Draw a closed curve,
that has label λi,1, with the correct area inside it. Ensure that
this curve is drawn inside the zone, z, that identifies Di,1 as an
atomic component. This can trivially be achieved. Call this drawn
diagram di,1. Set j = 1.

(b) Hybrid Graph Construct the hybrid graph of di,j, ensuring that
the routing of the edges remains inside the zone that contains di,j.

(c) Find Cycles Identify a multi-set of cycles, C, in HG(di,j) where

inZones(C) = in(Di,j , Di,j+1),

outZones(C) = out(Di,j, Di,j+1),

and each cycle in C passes through an Euler vertex. Here, we
can also choose to use heuristics, such as minimize the number of
cycles in C, when identifying an appropriate multi-set of cycles.
Moreover, we can choose to place some constraints on the cycles in
C, as will be discussed below, but these constraints might render
the description undrawable, if strictly enforced.

(d) Draw Contour Using the cycles in C and the area adjustment
method described above, add a contour to di,j to give a drawing
of Di,j+1, say di,j+1.

(e) Iteration and Termination Increment j by 1. If j < mi then return
to the beginning of step 3(b). If j = mi and i < n then increment
i by 1 and return to the beginning of step 3(a). Otherwise, i = n

and we have drawn D.
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Some of the steps in the above drawing method are not necessary. In
particular, step 1 can be omitted, but this would result in contour-nested
descriptions being drawn in an atomic manner. If step 1 is omitted, step
2 would find a decomposition of D, the original abstract description, with
similar knock on effects to the rest of the drawing processes. In any case,
to conclude this section we present our main theorem, the proof of which
readily follows from the arguments presented throughout the paper:

Theorem 9.1. Let D = (L,Z, area) be an area-proportional abstract de-
scription. Applying the inductive drawing method produces a diagram d that
is a drawing of D, provided no constraints are placed on the cycles in C.

9.1. Choosing a Decomposition

When obtaining a decomposition, there are choices about the order in
which the curve labels are removed from an area-proportional abstract de-
scription, D. The order in which the labels are removed will impact the
appearance of the final drawn diagram. As noted above, we can use heuris-
tics when choosing a decomposition of an abstraction in order to achieve
better drawings. Here we outline one such heuristic.

Our method for adding a contour will always result in an atomic diagram,
but when we remove a label from area-proportional abstract description D

we may create a contour-nested description, even if D is atomic. The removal
of a contour from a drawn diagram that results in an increase in the number
of nested components is disconnecting, the theory of which, when contours
consist only of single curves, is developed by Fish and Flower in [12]. At the
abstract level, it is trivial to identify whether a curve label is disconnecting:

Definition 9.1. Let D = (L,Z, area) be an area-proportional abstract de-
scription and let λ ∈ L. If D − λ has more atomic components than D then
λ is called a disconnecting curve label for D.

We suggest prioritizing the removal of non-disconnecting curve labels
when constructing a decomposition because we can then draw diagrams that
better reflect nestedness, as we now explain. Suppose that D has a discon-
necting curve label, λ, and, moreover, suppose that we have a drawing, d−λ,
of D − λ produced using our inductive method. Then d− λ is atomic, since
our drawing method only produces atomic drawings. Thus, when we add
a curve, c, labelled λ to d − λ to give a drawing, d, of D, c will not be a
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Figure 18: Prioritizing the removal of non-disconnecting curves.

disconnecting curve in d. However, choosing a different decomposition of D
could have resulted in c being a disconnecting curve and, hence, the drawing
would better reflect the ‘lower level’ nestedness present in the diagram.

To illustrate, consider the two diagram sequences in figure 18. The final
diagrams in each sequence have the same abstract description. However, the
order in which the curves were drawn was different. In the top sequence,
the curves are added in the order P → Q → R → S, meaning that the
decomposition was created by removing them in the opposite order, S →
R → Q → P . At each stage, the curve removed was not disconnecting.
For the bottom diagram, the curves are removed in the order R → Q →
S → P . The curve Q is disconnecting: the abstract diagram description
of the second diagram in the bottom sequence is nested. Since the drawing
method produces only atomic diagrams, this nestedness is not reflected in
the drawing: P and S touch. By contrast, P properly contains S in the final
diagram of the top sequence.

A claim in [12] is that if one removes a disconnecting curve, draws the
resulting atomic parts, and then draws the disconnecting curve, c, then it
might decrease the time taken to draw diagrams; as stated above, in [12]
curve labels cannot be used more than once, so every contour is a curve.
However, this motivation for developing the theory of disconnecting curves
has yet to be justified. In particular, the choice of embeddings of the atomic
parts will have to be given careful consideration (that is, the parts cannot be
drawn without considering the fact that c has to be added) if one wishes to
enforce particular well-formedness conditions or obtain the ‘best’ drawing of
the diagram. Whether drawing efficiency is indeed improved will almost cer-
tainly depend on the drawing method employed and the abstract description
in question; the impact on efficiency remains the subject of future work.
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10. Choosing Cycles for Contour Addition

Sometimes we wish to add contours under certain constraints to achieve
better drawings. The constraints we consider correspond to properties, often
called wellformedness conditions, that the drawn diagrams posses.

Definition 10.1. Given an Euler diagram d = (Curve, l), the following are
properties that d may posses.

1. If the labelling function, l, is injective then d possesses the unique

labels property.
2. If all of the curves in Curve are simple then d possesses the curve

simplicity property.
3. If no pair of curves in Curve run concurrently then d possesses the no

concurrency property.
4. If there are no points in R

2 that are passed through more than twice by
the curves in Curve then d possesses the no triple points property5.

5. If whenever two curves in Curve intersect, they cross then d possesses
the crossings property.

6. If each zone in d is connected (i.e consists of exactly one minimal re-
gion) then d possesses the connected zones property.

Formalizations of these properties can be found in [24]. To the best of our
knowledge, no area-proportional Euler diagram drawing method allows the
to-be-possessed properties to be specified in advance of attempting to find a
drawing of an area-proportional abstract description: each method produces
diagrams with some fixed set of properties or cannot guarantee that particular
properties hold. Our drawing method can be used in such a manner as to
ensure that any specified set of the above properties hold. However, a chosen
collection of properties may result in a set of constraints for which there is
no satisfying multi-set of cycles in the hybrid graph. Here, we present the
constraints, with the formal details extending those in [25], except for the
unique labels property which is entirely new (since that drawing method did
not allow contours to consist of multiple curves).

We now consider each of the properties in turn, providing conditions on
the cycles in C that correspond to the diagram that results from using C to
add a contour possessing those properties. In the following subsections, we
assume C contains cycles that permit the correct areas to be achieved.

5A triple point is one that is passed through (at least) three times by the curves.
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10.1. Unique labels

Ensuring that a diagram possesses unique labels we simply ensure that we
use exactly one cycle to add a contour. This is because having unique labels
is directly equivalent to having only contours that consist of single curves.

Definition 10.2. Let d = (Curve, l) be an atomic Euler diagram with hybrid
graph HG(d). Let C be a multi-set of cycles in HG(d). Then C possesses
the unique labels property whenever C contains only one cycle, that is
|C| = 1.

Theorem 10.1. Let d = (Curve, l) be an atomic Euler diagram with hybrid
graph HG(d). Let C be a multi-set of cycles in HG(d) and let λ be a label
that is not in d, λ 6∈ image(l). Then the contour added to d using C consists
of only one curve if and only if C possesses the unique labels property.

Proof Trivially, if C possesses the unique labels property then a unique curve
is obtained by traversing the edges in the single cycle in C. For the converse,
each cycle in C gives rise to a curve labelled λ, Since there is only one such
curve, C possess the unique labels property. �

If the required diagram is to have the unique labels property then every
diagram we create in the inductive construction must have the unique labels
property. A similar observation applies to all of the other properties except
the connected zones property; we discuss this issue for that property in more
detail below.

10.2. Curve Simplicity

The simplicity condition is very easy to enforce when adding a curve using
a cycle: the cycle must not pass through any vertex more than once. Such a
cycle is called simple.

Definition 10.3. Let d = (Curve, l) be an atomic Euler diagram with hybrid
graph HG(d). Let C be a multi-set of cycles in HG(d). Then C possesses the
curve simplicity property whenever each cycle, C, in C is simple.

The contour added to d using C consists only of simple curves if and only if
C possesses the curve simplicity property.

In addition, we could decide that we want all contours to be simple; a
simple contour is a contour that consists of only simple curves and no pair
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of these curves intersect with each other. Extending the curve simplicity
property for a multi-set of cycles to a contour simplicity property is straight-
forward: we add the constraint that no pair of cycles in C have a common
vertex in their associated vertex sequences.

10.3. No Concurrency

The no concurrency condition requires the added contour does not run
concurrently with any other contour or itself. To avoid concurrency with
existing curves, we do not use any Euler edges in the cycles in C. To avoid
self-concurrency, we ensure that no pair of cycles in C traverse a common
edge. From this it follows that C is a set, rather than a multi-set.

Definition 10.4. Let d = (Curve, l) be an atomic Euler diagram with hybrid
graph HG(d). Let C be a multi-set of cycles in HG(d). Then C possesses the
no concurrency property whenever

1. each cycle, C, in C does not contain any edges in EulerEdges(HG(d)),
and

2. for each pair of cycles, C1 and C2, there is no edge that occurs in them
both.

The contour added to d using C does not run concurrently with any contour
in d or itself if and only if C possess the no concurrency property.

10.4. No Triple Points

In order to enforce the no triple points condition, we must ensure that
the added contour does not increase the multiplicity of any points. The
multiplicity of a point, p, in a diagram, d, is the number of times to which
p is mapped by the curves in d and if p has multiplicity 3 or greater then p is a
triple point. We need access to the multiplicity of any points of intersection
in order to identify whether the to-be-added contour creates a triple point.
For each vertex, v, in EulerV ertices(HG(d)) ∪ NewV ertices(HG(d)), we
label that vertex by the multiplicity of that point in d, denoted mul(v, d). We
note that for any diagram, d, constructed using our inductive method which
possesses the no concurrency property, any Euler vertex, v, has mul(v, d) =
deg(v)

2
and for any new vertex, v, mul(v, d) = 1. For dual vertices, we set

mul(v, d) = 0, since no curves in d pass through them.
When identifying triple point creation, we assume that the diagram to

which the contour is to be added was drawn using the inductive method.
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This is because, using our method, the multiplicity of a point on any Euler
edge, e, in the hybrid graph is at most that of any vertex incident to e. Thus,
we can identify the creation of a triple point by considering the vertices alone.

Definition 10.5. Let d = (Curve, l) be an atomic Euler diagram with hybrid
graph HG(d). Let C be a multi-set of cycles in HG(d). Then C possesses the
no triple points property whenever, for any vertex, v, in HG(d), if it is
the case that mul(v, d) plus half the number of edges in cycles in C that are
incident with v is at most two.

The contour added to d using C does not introduce any triple points if and
only if C has the no triple points property, provided d was drawn using the
inductive method.

10.5. Crossings

There are various properties that our cycle must posses if it is to yield
a curve that ensures the crossings property holds in the embedded diagram.
First, we observe that any diagram that contains concurrency does not pos-
sess the crossings property. Second, suppose that the cycle contains an edge,
ei, that is incident with an Euler vertex, vi+1, (ei must be a new edge, since
it cannot be an Euler edge or we would have concurrency). Then the next
edge in the cycle (which must also be a new edge) must ensure that the
cycle crosses all of the curves that give rise to Euler edges incident with
vi+1. The notion of a crossing arising from a cycle can be captured relatively
straightforwardly: the cycle, when passing through an Euler vertex, vi+1,
must have exactly half of the Euler edges incident with vi+1 on one side of
it, as illustrated in figure 19.

Figure 19: Detecting crossings.

A pair of consecutive edges, ei and ei+1, in a cycle, therefore, gives rise
to a two way partition of the edges, excluding ei and ei+1, incident with the
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vertex vi+1 that joins ei and ei+1. We denote the two sets in this partition
by E1(ei, ei+1, vi+1) and E2(ei, ei+1, vv+1). Thus, for crossings we require

|E1(ei, ei+1, vi+1)∩EulerEdges(HG(d))| = |E2(ei, ei+1, vi+1)∩EulerEdges(HG(d))|

for every pair of consecutive edges ei and ei+1 in C that are incident with an
Euler vertex vi+1. We must also ensure that each cycle in C does not create
a non-crossing point with itself and, moreover, that any pair of cycles do not
create non-crossing points with each other.

Definition 10.6. Let d = (Curve, l) be an atomic Euler diagram with hybrid
graph HG(d). Let C be a multi-set of cycles in HG(d). Then C possess the
crossings property whenever the following all hold.

1. The multi-set C possesses the no concurrency property.

2. For each cycle, C = (e0, ..., en), in C, with associated vertex sequence
(v0, ..., vn, v0), for any pair of consecutive edges, ei and ei+1 in C

|E1(ei, ei+1, vi+1)∩EulerEdges(HG(d))| = |E2(ei, ei+1, vi+1)∩EulerEdges(HG(d))|

and
|E1(ei, ei+1, vi+1) ∩ E(C)| = |E2(ei, ei+1, vi+1) ∩ E(C)|

where we take en+1 = e0.

3. For each pair of distinct cycles, C = (e0, ..., en) and C ′ = (e′0, ..., e
′
m), in

C, with associated vertex sequences (v0, ..., vn, v0) and (v′0, ..., v
′
m, v

′
m+1)

respectively, given any pair of consecutive edges, ei and ei+1, in C if
there exists an edge, e′j in C ′ such that vi+1 = v′j+1 then

e′j ∈ E1(ei, ei+1, vi+1) and e′j+1 ∈ E2(ei, ei+1, vi+1).

The diagram obtained by adding a contour to d using C possesses the cross-
ings property if and only if C and d possess their respective crossings property.

10.6. Connected Zones

Our final wellformedness condition is that of connected zones and it is
linked to when we split a zone. This wellformedness condition is different
from all of the others: it may be broken by a diagram in the inductive
construction, but the final (required) diagram may still have connected zones.
For each of the other conditions, once they are broken in the construction
they remain broken. We describe how to add a contour in such a manner
that the resulting diagram has connected zones.
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Definition 10.7. Let d = (Curve, l) be an atomic Euler diagram all of
whose zones comprise at most two minimal regions. Let C be a multi-set of
cycles in the hybrid graph, HG(d). Then C possesses the connected zones

property whenever:

1. for each zone, z, in d that comprises a single minimal region, m,

(a) there is at most one cycle, C, in C that contains an edge incident
with a (dual) vertex of HG(d) embedded inside m, and

(b) if there is a cycle, C, that passes through m then exactly one
subsequence of edges in C pass through m, and

2. for each zone, z, in d that comprises two minimal regions, m1 and m2,

(a) no cycle in C passes through any vertex of HG(d) embedded in z,
and

(b) exactly one of m1 and m2 is inside C.

In part 1(b) of the above definition, if C = (e0, ..., en) then (ei, ei+1, ..., ei+m)
is a subsequence of C of length m+1 whereas, for example, (e1, e3). The only
minimal region that contains such a sequence of edges of length more than
2 is the unbounded one outside all of the curves. To conclude, the diagram
obtained from d by adding a contour using C possesses the connected zones
property if and only if C possesses the connected zones property, provided
each zone in d comprises at most two minimal regions.

11. Conclusion

In this paper we have provided a novel area-proportional Euler diagram
drawing method. It advances the existing state-of-the-art, in that it can
draw every area-proportional abstract description. Moreover, our method
can readily incorporate user preferences as to which well-formedness proper-
ties are to be possessed by the drawn diagram. Previously developed area-
proportional drawing methods could not draw the majority of abstract de-
scriptions and were very limited.

There are various avenues for future work. In particular, we seek fur-
ther heuristics to help identify cycles for contour addition so that we can (a)
improve the efficiency of the drawing method, and (b) produce better dia-
grams. Along the same lines, we plan to give a more detailed consideration
as to how to choose a decomposition that results in better drawn diagrams
being produced. In addition, there are likely to be efficiency savings if we
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only produce a subgraph of the hybrid graph (step 4(b) in the drawing algo-
rithm), including only vertices and edges that may be included in part of a
cycle for the new contour.

We plan to provide an implementation of the drawing method, which will
allow more users to access the power of area-proportional Euler diagrams
as a visualization technique. The feasibility of this plan is demonstrated by
the (partial) implementation of the non-area-proportional inductive method.
That implementation allows the addition of contours that consist of a single,
simple closed curve [25]. A further significant avenue of research includes
devising layout improvement methods, following [15]. Such methods will be
an important addition to the drawing method, since the aesthetic quality of
the diagrams is likely to impact their ability to convey information effectively.
The existing layout improvement methods move the curves of the diagram,
measuring the quality of the diagram at each stage to ensure that improved
layouts result. However, moving curves changes the areas of the diagram’s
regions and, thus, extending to the area-proportional case will be challenging.
We envisage that techniques which improve the diagram layout after each
curve addition, altering only the most recently added curve, are most likely
to be practically implementable.
Acknowledgements The authors are supported by the EPSRC for theVisu-
alization with Euler diagrams project (EP/E011160/1 and EP/E010393/1).
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