
Recognising Sketches of Euler Diagrams Augmented with Graphs

Gem Stapleton Aidan Delaney Peter Rodgers Beryl Plimmer
University of Brighton University of Kent University of Auckland

{g.e.stapleton,a.j.delaney}@brighton.ac.uk p.j.rodgers@kent.ac.uk bpli001@ec.auckland.ac.nz

Abstract

Euler diagrams form the basis of many visual languages.
Such languages are formed by augmenting Euler diagrams
with graphs or shading. However, tool support for creating
augmented Euler diagrams is generally limited to generic
diagram editing software using mouse and keyboard inter-
action. A more natural and convenient mode of entry is via a
sketching interface which facilitates greater cognitive focus
on the task of diagram creation. Previous work has devel-
oped sketching interfaces for Euler diagrams. This paper
presents the first sketch tool for Euler diagrams augmented
with graphs and shading. The tool allows the creation of
sketches of these diagrams via pen-based interaction. To
effect the recognition process, we define heuristics for clas-
sifying strokes as either curve, node, edge, or shading. To
evaluate our recognition engine, we asked 10 participants
to each sketch six augmented Euler diagrams. Using the re-
sults of the study, we fine-tuned the recognizer, achieving a
statistically significant improvement.

1. Introduction

The effective use of visual languages often relies on soft-
ware support. For example, in software engineering, class
diagrams can be automatically generated from source code,
allowing the programmer to visualize the structure of their
implementation. From a different perspective, other soft-
ware that supports the use of visual languages facilitates the
creation of diagrams by users. For instance, standard dia-
gram editors, such as Visio, allow users to draw diagrams
using traditional point, click and drag mouse interaction.

Recently, we have seen the development of software that
allows users to create diagrams using a stylus, or pen, on a
touchscreen device. Sketching diagrams is advantageous in
that it allows the user to focus on the actual diagram creation
rather than the interface of the editing tools, and it is a useful
problem solving and communications technique [4]. Sketch
recognition software developed to date has focused on user
interface design and graph oriented diagrams [7]. With re-

spect to user interface design tools, the sketched items are
largely independent of each other. In graph oriented dia-
grams, the spatial positioning of nodes and edges is not of
semantic significance.

We have devised sketch recognition software for Euler
diagrams [2, 15] where the spatial relationships between
sketched items is fundamental to their semantics. This lays
the foundations for the development of sketch recognition
software for visual languages that extend them such as the
Euler diagram augmented with a graph in figure 1; this is
a variation on a diagram seen in [11] and represents in-
formation from a semantic network. Example notations
that extend Euler diagrams include the monadic family of
diagrammatic logics such as Swoboda and Allwein’s Eu-
ler/Venn system [14], Shin’s Venn-II system [13], spider
diagrams by Howse et al. [5] and Gil et al. [6] and Mi-
noshima et al.’s extended Euler diagram logic [9]. These
diagrams typically augment Euler diagrams with graphs or
shading, usually both. Furthermore, diagrammatic logics
with greater expressive power add even more syntax, such
as arrows, to make semantically rich statements. Examples
include Kent’s constraint diagrams [8] and Oliver et al.’s
ontology diagrams [10].

We report on the development of sketch recognition soft-
ware for Euler diagrams augmented with graphs and shad-
ing, which provides a basis for more sophisticated sketch-
ing software for the diagram types just given. Section 2
overviews our sketching software. The recognition compo-
nent of our tool is detailed in section 3. Section 4 presents a
user study used to evaluate and improve the recogniser. The
software can be downloaded from [12].

2. SpiderSketch

The tool, called SpiderSketch, that we have developed al-
lows users to sketch Euler diagrams augmented with graphs
and shading and then recognises each pen stroke. Formally,
augmented Euler diagrams comprise a finite set of closed
curves drawn in the plane, a finite set of nodes, a finite set of
edges whose end points are incident with nodes, and a set of
minimal regions (formed by the curves) that are shaded. A

Ava

Abigail

Alexander

Chloe

Grace

Brianna

AidenLily

Joshua

Sophia

Ashley

Hailey

Anthony
Maddison

Gabriel

Figure 1. Visualizing semantic networks.

Figure 2. A screen-shot of SpiderSketch.

sketched diagram is a hand-drawn image that approximates
an augmented Euler diagram.

In the sketching interface, users create sketches by draw-
ing as on a piece of paper; figure 2 shows a screenshot. A
stylus stroke is immediately rendered on the canvas. On
completion of the stroke (stylus up event) it is passed to a
recognizer that we describe in section 3. The recognizer re-
sult may be one of four classes: curve, node, edge, or shad-
ing. Each piece of syntax is immediately coloured to show
the result of the recognizer. Curves are dark blue, nodes
are red, edges are light blue, and shading is black. Online
colouring allows one to readily check the association made
by the software and, thus, have an opportunity to change the
sketch if necessary. The sketch can also be saved.

3. The Recognizer

We have devised a number of heuristics that classify each
stroke as one of the four types of syntax. The recogniser
works online, classifying each stroke as it is created by the

user. To design the heuristics, we identified features of each
syntax type that distinguish it from the other syntax types.

1. Nodes are generally small and round, unlike the other
pieces of syntax.

2. Shading is entered into the interface by a ‘scribble’
type action. This can be described as a stroke that is
relatively long compared to the size of its bounding
box and has many sharp turns. Potentially, this is simi-
lar to a node but we assume that shading takes up more
space. Edges do not generally have sharp turns. Fi-
nally, curves are not particularly long compared to the
size of their bounding box.

3. Edges are line segments that do not self-intersect. In
addition, the end points are often far apart from one
another, given the length of the line segment. By con-
trast, end points are generally close to each other for
nodes or shading, which are ‘densely packed’ in to a
space on the screen. In addition, curves should self-
intersect since they are closed although users may not
enter them that carefully; either way, the end points of
a curve should be relatively close together.

The heuristics are described in full below and they are
applied in a particular order. First, the recogniser decides
whether the entered stroke, s, is a node. If s is not a node
then the recongiser determines whether it is shading. Again,
if s is not shading then it determines whether it is an edge.
Finally, if s is not an edge then it is deemed to be a curve.
Our heuristics are each reliant on a threshold value particu-
lar to it. For instance, we consider a stroke to be very small,
and therefore a node, if the longest side of its bounding box
is at most Tn,vs pixels (n for node, vs for very small). Ini-
tially, we chose Tn,vs to be 10 pixels. The threshold values
can be adjusted to improve the recognition success rate. In
full, the heuristics are as follows:

1. Any stroke that either (a) has a very small bound-
ing box, or (b) is approximately square and has small
bounding box is a node. By very small, we mean

BBlongestSide < Tn,vs (1)

for some threshold value Tn,vs, where BBlongestSide
is the length of the longest side of the bounding box.
By approximately square, we mean

BBshortestSide

BBlongestSide
> Tn,sq (2)

for some threshold value Tn,sq , where
BBshortestSide is the length of the shortest side
of the bounding box. By small we mean

BBlongestSide < Tn,s (3)

So, for a stroke, s, to be a node either (1) is true or
both (2) and (3) are true.

2. Any stroke whose density is above a certain thresh-
old, Ts,d, and contains at least Ts,t sharp turns, typi-
cally called corners, is shading. We measure density
by comparing the length of the stroke with the perime-
ter of its bounding box: the stroke must be significantly
longer than the perimeter. In particular, we must have

stroke length
bounding box perimeter

> Ts,d. (4)

A corner is a single point, p, in the sketched line, l,
where the angle, θ(p), formed by the two line segments
on l whose end points are p satisfies

θ(p) > Ts,a (5)

for some threshold angle Ts,a. We count the number of
corners and compare the number of them to a threshold
value, Ts,t:

|{p ∈ setP (l) : θ(p) > Ts,a}| > Ts,t (6)

where setP (l) is the set of non-end points on l. So,
for a stroke, s, to be shading it must not be a node and
both (4) and (6) must be true.

3. Any stroke whose end-points are far apart, given its
length, and does not self-intersect is an edge. By far
apart, we mean

distance between end points
length

> Te. (7)

So, for a stroke, s, to be an edge it must not be a node
or shading and (7) must be true.

Threshold Value
Tn,vs 10 pixels
Tn,sq 0.55
Tn,s 15 pixels
Ts,d 0.5
Ts,a 60 degrees
Ts,t 1
Te 0.2

Table 1. Initial threshold values.

Threshold Value
Tn,vs 15pixels
Tn,sq 0.55
Tn,s 18 pixels
Ts,d 0.5
Ts,a 90 degrees
Ts,t 1
Te 0.2

Table 2. Final threshold values.

4. Any other stroke is a curve.

The initial values we picked for these thresholds are in
table 1. In section 4 we describe a study used to evalu-
ate our recognition engine using these initial values. The
results of the study were used to fine-tune the threshold val-
ues and the final values are shown in table 2. The process
by which these final values were obtained is also described
in section 4. To provide some insight into the recognition
process, figures 3, 4, and 5 show a series of strokes, entered
using the final threshold values, that show how the classifi-
cation changes as properties of the strokes are altered.

4. Evaluating the Recogniser

We have conducted a study to evaluate the effectiveness
of the recogniser component of our sketching tool. At the
beginning of the study, each participant was given a short tu-
torial in how to use SpiderSketch. The researcher gave them
a demonstration of the tool after which they were asked to
draw some sketches, ensuring they were happy with how to

Figure 3. Recognising nodes.

Figure 4. Recognising shading.

Figure 5. Recognising edges.

enter each type of syntax. In addition, they were told that
it was a single stroke recogniser. In particular, they were
informed that they had to remove the pen from the screen
before drawing the next item. They were also told that if
syntax was miscoloured then this was not their fault and
they should not attempt to correct the stroke, because the
study was about determining the correctness of the recog-
nition engine. Each participant began the study when they
were happy with using the tool.

Figure 6. Diagrams used in the study.

For the study, each participant was asked to sketch six
diagrams. The first five diagrams were given for them to
copy and are shown in figure 6; each of these sketches was
drawn by one of the 10 participants. For the sixth diagram,
they were asked to draw any sketch with 3 curves, 3 nodes,
3 edges between the nodes, and 3 pieces of shading. An
example diagram drawn by another participant can be seen

Figure 7. A sketch by a participant.

Syntax Correct Incorrect
Node 169 41

Not a node 587 4

Table 3. The node heuristics: initial classifi-
cation.

in figure 7. Of note is that sometimes participants failed
to copy the entire sketch and sometimes drew extra items
in their sketches. Overall, there were roughly 200 strokes
for each syntax type. Each sketch was saved for analysis
purposes and was examined to determine whether it was
correctly recognised. In particular, each stroke was assigned
its correct syntax type by the researcher as well as the syntax
type assigned by the recogniser.

Out of 801 sketched items, 747 were correctly classified,
giving a success rate of 93.26% using the initial threshold
values. Our task is now to determine whether the thresh-
old values used in the heuristics can be adjusted to improve
the recognition rate. Since the recogniser works hierarchi-
cally, we first examined the classification of nodes. Table 3
shows the number of strokes classified either as a node or
not as a node using the initial values of the recogniser, bro-
ken down by whether that classification is correct. We can
see that many of the 801 − 747 = 54 original errors oc-
curred in this part of the recognition process, with a total of
41 + 4 = 45 errors. We extracted, from the saved sketches,
all strokes incorrectly classified either as not being a node
when it was a node (false negatives) or as being a node when
it was not a node (false positives); these strokes can be seen
in figures 8 and 9 respectively. In figure 8, some of the
incorrectly recognised nodes are large and they break the
condition that their bounding box is small. In figure 9, the
strokes incorrectly recognised as nodes are generally small
and it is perhaps unsurprising that errors occurred here. To
improve the recogniser, we modified the values of Tn,vs to

Syntax Correct Incorrect
Node 199 11

Not a node 576 15

Table 4. The node heuristics: final classifica-
tion.

Figure 8. Strokes which should be nodes.

Figure 9. Strokes which should not be nodes.

15 and Tn,s to 18, which were the best values we found after
some exploratory data analysis. Altering the value of Tn,sq

did not seem to positively impact the recognition accuracy.
Table 4 shows the numbers of correctly and incorrectly clas-
sifies strokes using these new threshold values for the nodes
heuristics. There are now more false positives (increasing
from 4 to 15) but many fewer false negatives (decreasing
from 41 to 11).

Having changed the values of the thresholds associated
with the node heuristics, we investigated classification er-
rors associated with shading. At this point, we cannot over-
come recognition errors due to the node heuristics. Thus,
we now restrict our analysis to the only strokes that are cor-
rectly not recognised as nodes; this leaves 801−199−11−
15 = 576 strokes in the data set. At this point, there are
no strokes which should have been recognised as shading,
but were not recognised as such and only seven strokes that
are shading but not recognised as such; see table 5 and fig-
ure 10 which shows the seven incorrectly classified strokes.
Thus, we only attempt to improve the number of false neg-
atives. Observing figure 10, we can see that some of these
strokes do not have at least two sharp turns. Thus, we mod-
ified the shading threshold Ts,a which is the angle used to
determine whether a turn is sharp. The best value we found
for this was 90 degrees. Table 5 shows the result of making

Syntax Correct Incorrect
Shading 176 7

Not shading 393 0

Table 5. The shading heuristics: initial classi-
fication.

Figure 10. Strokes which should be shading.

Syntax Correct Incorrect
Shading 181 2

Not shading 393 0

Table 6. The shading heuristics: final classi-
fication.

this change, where no false positives were introduced and
only 2 false negatives remain. These two incorrectly classi-
fied strokes can be seen in figure 11; since they are close to
lines, it would be hard to distinguish them from edges.

Considering now the remaining data, i.e. the 393 strokes
that are correctly identified as not being nodes or shading,
the recogniser must determine whether each stroke is an
edge. In fact, the recogniser has a 100% success rate here,
correctly recognising 191 strokes as lines and the remaining
202 strokes are, by default, recognised as curves.

Using the final threshold values (table 2), of the 801 data
points, 773 were correctly classified (totalling 11+15+2=28
errors), giving a final success rate of 96.5%. In order to de-
termine whether the improvement is statistically significant,
we carried out a McNemar χ2 test (similar to a χ2 test, but
for paired data) using the data in table 7. Computing

(b− c)2

b+ c
=

(9− 35)2

9 + 35
= 15.36

and comparing with a χ2 table with one degree of freedom,
we get a p-value of 0.0000886687. Therefore, the improve-
ment is highly significant.

Figure 11. Strokes which should be shading
after improving the recogniser.

Final
Correct Incorrect

Correct a = 738 b = 9
Initial

Incorrect c = 35 d = 19

Table 7. Data for the McNemar test.

5. Conclusion

This paper presents the first tool, SpiderSketch, that sup-
ports users in the creation of augmented Euler diagrams. It
uses a set of heuristics that determine whether each sketched
item is a node, shading, an edge, or a curve. The recogniser
was evaluated and improved using a sample of sketches pro-
duced by 10 participants. The improvements have been
shown to be highly statistically significant. An accuracy
rate of 96.5% is very high for a rules-based recogniser. Pre-
vious work [3] devised a recogniser, called CALI, for geo-
metric shapes, possibly drawn using multiple strokes, such
as lines, circles, rectangles and triangles. Whilst similar
to our work here, it is our understanding that CALI would
recognise each shape as some geometric shape, whereas for
Euler diagrams it is important that some curves are recon-
gised as just that, and not some particular shape.

Future work includes conducting another study, to re-
evaluate the recongiser against new data, with the sketches
drawn by different participants. This will provide insight
into how accurately the recogniser works after the changes
we have made. We acknowledge that there is a danger of
over-fitting the recogniser to the data set considered in this
paper. In addition, we plan to improve the recognition by
taking into account context. We want to explore a blend
of online recognition with contextual re-recognition. In our
case, even after the improvements we made, there were still
misclassifications occurring between nodes and shading in
particular. Since each edge should end next to a node, we
can use this contextual information to reclassify items as
more of the sketch is drawn. In addition, we also plan to
extend the recogniser to more complex diagrams that in-
clude arrows and mathematical symbols. We expect con-
text to play a bigger role in fixing classification errors in
these more complex diagrammatic notations. Further, if we
wanted to include text recognition then we would expect to
use a more sophisticated recogniser such as RATA [1].

A further avenue of work is to extend the functionality
of the tool so that is supports users given it’s understand-
ing of the sketch. In particular, we plan to include a fea-
ture that automatically produces a ‘formal’ version of the
sketched diagram; by this, we mean a beautified sketch that
looks as though it was drawn using an editing tool. More-
over, we want to incorporate syntax matching, so that any

semantic differences introduced when converting sketch to
formal can be automatically identified and rectified, as we
have done for Euler diagrams in [15].
Acknowledgement This research is supported by EPSRC
grant EP/H048480/1 and a Royal Society of New Zealand
Marsden Grant.

References

[1] S. Chang, B. Plimmer, R. Blagojevic. Rata.ssr: Data
mining for pertinent stroke recognizers. In Sketch
Based Interface Modeling. ACM, 2010.

[2] A. Delaney, B. Plimmer, G. Stapleton, P. Rodgers.
Recognising sketches of Euler diagrams drawn with
ellipses. In Visual Languages and Computing, pp 305–
310. Knowledge Systems Institute, 2010.

[3] M. Fonseca, C. Pitmentel, J. Jorge. CALI: An Online
Scribble Recongiser for Calligraphic interfaces. AAAI
Spring Symposium, 2002.

[4] G. Goldschmidt. Visual and Spatial Reasoning
in Design, chapter The Backtalk of Self-Generated
Sketches, pp 163–184. University of Sydney, 1999.

[5] J. Howse, G. Stapleton, and J. Taylor. Spider dia-
grams LMS Journal of Computation and Mathematics,
12(3):299–324, 2005.

[6] J. Gil, J. Howse, S. Kent. Formalizing spider dia-
grams IEEE Symposium on Visual Languages, pages
130-137, 1999.

[7] G. Johnson, M. Gross, J. Hong. Computational Sup-
port for Sketching in Design. Now Pub. Inc., 2009.

[8] S. Kent. Constraint diagrams: Visualizing invariants
in object oriented modelling. In Proceedings of OOP-
SLA97, pp 327–341. ACM, 1997.

[9] K. Mineshima, M. Okada, Y. Sato, R. Taake-
mura, iagrammatic Reasoning System with Euler Cir-
cles: Theory and Experiment Design. In Diagrams,
Springer, pp 188-205, 2008.

[10] I. Oliver, J. Howse, G. Stapleton, E. Nuutilal S.
Torma, Visualising and Specifying Ontologies using
Diagrammatic Logics. In 5th Australasian Ontologies
Workshop, CRPIT, pp 87-104, 2009.

[11] N. Riche, T. Dwyer Untangling Euler diagrams. IEEE
Transactions on Visualization and Computer Graph-
ics, 16(6):1090-1099, 2010.

[12] www.cem.brighton.ac.uk/users/ges9/SketchingEuler
Diagrams/SketchingEulerDiagrams.html . 2011.

[13] S.-J. Shin. The Logical Status of Diagrams. 1994.
[14] N. Swoboda, G. Allwein. Heterogeneous reason-

ing with Euler/Venn diagrams containing named con-
stants and FOL. Euler Diagrams 2004, ENTCS, 2005.

[15] M. Wang, B. Plimmer, P. Schmieder, G. Stapleton,
P. Rodgers, A. Delaney. SketchSet: Creating Euler
diagrams using pen or mouse Accepted for VL/HCC,
2011.

