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Abstract—The use of Euler diagrams as a basis for visual
languages is commonplace and they are often used for visualizing
information. The ability to automatically draw these diagrams
is, therefore, likely to be of widespread practical use. The Euler
diagram drawing problem is recognized as challenging, but the
potential pay-off from the derivation of a comprehensive solution,
that produces usable and effective diagrams, is significant.
Previous research on automated Euler diagram drawing has
used various different approaches, each of which had their own
problems, including: (a) failure to draw a diagram in all cases,
(b) poor diagram layout, and (c) inability to ensure that certain
wellformedness properties of the drawn diagrams hold. In this
paper, we present a novel approach to Euler diagram drawing
that draws diagrams with circles, ellipses and curves in general.
This new approach will draw a diagram in all cases, avoiding
bad layout where possible (by the use of ‘nice’ geometric shapes)
and can enforce wellformedness properties as chosen by the user.

I. INTRODUCTION

Euler diagrams are syntactic components of a number of
visual languages [1], [2], [3]. However, until recently, it has not
been possible to automatically generate all required diagrams.
The first work in automatic Euler diagram generation [4] only
produced diagrams in a limited number of cases, those where
certain so called wellformedness properties could be shown to
hold. Other work restricted the shapes that can be drawn to
circles, again at the expense of not drawing all diagrams [8]
More recent work takes any abstract description and produces
a diagram [5]. However, this often produces poor layout and
leaves the user with little control over the wellformedness
properties of the diagram.

The lack of effective general embedding methods for Euler
diagrams severely restricts the use of visual languages that are
based on them. Using hand drawn instances of such diagrams
is cumbersome in all but the smallest examples, and it is not
possible to automatically layout, transform or translate into
such languages. Hence a general embedding tool that produces
good layout would be of great benefit.

This paper improves on the state of the art by showing how
circles can be drawn in diagrams including those which are
not wellformed. We also show how to integrate ellipse based
layout where a position for circles cannot be found. It is a
general embedding method as it allows for arbitrary curves
to be drawn when neither circles nor ellipses can be used.
Our approach takes an inductive strategy, adding the required
curves to the diagram one at a time. To add a curve we form
the hybrid graph for the current diagram and examine this

graph to choose the next curve to add, based on what shapes
the candidate curves can take.

Section II introduces important concepts used throughout
this paper. Section III-A presents techniques for adding a circle
to a diagram. Section III-B devises methods for adding an
ellipse to a diagram. In both the circles and ellipses cases,
we demonstrate that the wellformedness properties of the
original diagram are largely preserved under the addition of
the new curve. In section III-C we demonstrate how to add
curves in general, using a method similar to that of [7]. These
techniques are combined into a new method to draw an Euler
diagram in section IV. The approach prioritizes the drawing of
circles and ellipses over arbitrary shaped curves, since these
are aesthetically pleasing.

II. DEFINITIONS

An Euler diagram consists of labelled closed curves, where
labels may be used for more than one curve. Since Euler
diagrams convey information by the overlaps present between
the curves, it is helpful to identify the regions to which the
curves give rise. The smallest of these regions are called
minimal regions: a minimal region is a connected component
of the plane bounded by curve segments.

We extend the notion of minimal regions to basic regions,
which are sets of minimal regions contained by some set of
curves, but outside the rest of the curves. We can then go on
to define a zone, which is a set of basic regions defined by
curves with the same label sets [11].

A range of diagram properties have been defined, which are
sometimes called wellformedness conditions:

1) All of the curves are simple (no curve self-intersects).
2) No pair of curves runs concurrently.
3) There are no triple points of intersection between the

curves (there are no points that are mapped to more
than twice by the curves).

4) Whenever two curves intersect, they cross.
5) Each basic region is connected (consists of exactly one

minimal region).
6) Each curve label is used on at most one curve.

Definitions of these properties can be found in [9], except that
for basic region connectedness (property 5) which is more typ-
ically stated for zones (a connected zones condition); for our
purposes weakening the condition to basic regions is helpful.
A further diagram property concerns the connectedness of the
diagram. If all the curves form a connected component then
we say the diagram is atomic, otherwise it is nested [10].
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Euler diagrams are associated with various graphs. In this
paper, we are interested in three of these associated graphs,
all of which are defined in [7]. First, we can take an Euler
diagram, and construct its Euler graph which has a vertex at
each point where two curves meet and the edges are the curve
segments that connect the vertices.

A common concept in graph theory is that of a dual graph
of a plane graph. From the Euler graph we can also form its
dual, but we need a slightly more general notion, the modified
Euler dual, which contains additional vertices and edges in
the region ‘outside’ the curves. In particular, there is one extra
vertex for each Euler graph edge next to the outside region and
these vertices are connected by a loop that encloses the whole
diagram.

Finally, we require the hybrid graph, which is formed from
the Euler graph and the modified Euler dual by joining them
together, placing a vertex wherever two edges cross and adding
a triangulation. The triangulation edges join modified dual
vertices to Euler graph vertices. A hybrid graph is shown on
the right of figure 1.

Whilst we are primarily interested in the hybrid graph, we
want to be able to talk about the graphs from which it arose.
To this end, we say that the vertices (resp. edges) of a hybrid
graph that arose from the Euler graph are Euler vertices, those
which arose from the modified Euler dual are dual vertices
and the other vertices are new vertices (resp. edges).

Of fundamental significance to the drawing problem is
the notion of an abstract description of a diagram. These
descriptions capture the overlaps that are to be present between
the curves and, thus, capture the semantics of the diagram.
However, as these descriptions do not carry with them any
information about the actual layout of the diagram; the task
of Euler diagram generation is that of laying out the curves in
the diagram. Our diagram descriptions thus comprise a set of
abstract curves, which are labelled. Note that these elements
are not curves in any concrete sense. In addition, a description
includes a set of abstract basic regions; each abstract basic
region is a set of abstract curves.

III. ADDING CURVES TO DIAGRAMS

Given an Euler diagram, d, with diagram description D, we
now present a method to add a curve to d, given a description
of how to add an abstract curve to D. In order to add a
new abstract curve, to D, we need to describe how the curve
impacts on the abstract basic regions. The impact on each
abstract basic region, is captured by saying that either it is to be
inside the curve, outside the curve or ‘split’ by the curve. The
impact on the abstract basic regions can then be characterized
by two sets: in and out, where the abstract basic regions inside
or split are in in and those outside or split are in out.

Of course, we do not want to add arbitrary curves, we want
to add curves that have a particular impact on the basic regions.
Given the sets in and out we can identify how to add an
appropriate curve to d using the hybrid graph, provided d is
atomic. Thus, given an arbitrary atomic diagram, d, we first
construct its Euler graph and then the dual of the Euler graph.

If d is nested then d is transformed into an atomic diagram,
d′, by moving the nested parts until they just touch. Then we
can use the hybrid graph of the obtained atomic diagram to
add a curve. After the curve addition, this can be reversed to
return the diagram to its original nested state, modulo the new
curve addition; see [11] for graph transformations used in the
context of Euler diagrams.

A. Adding Circles

We can add a circle to the diagram centred on any vertex
in the hybrid graph. Whilst the techniques we describe do not
capture all of the ways in which a circle can be placed in the
diagram, the techniques are more general than [6], which only
considered completely wellformed Euler diagrams.
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Fig. 1. An Euler diagram and its hybrid graph.

To illustrate the idea, we consider adding circles in three
different ways to the diagram on the right of figure 1. First,
we will consider an in set consisting of one basic region,
in = {P} and an out consisting of all the basic regions in the
diagram. Since in contains exactly one abstract basic region,
we know that we can simply draw an appropriate circle in the
corresponding basic region; such a circle can be constructed
by centering it on a suitable dual vertex, as shown on the left
of figure 2.
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Fig. 2. Three ways of adding circles.

If, instead, in = {PQ,PQR}, and out as before, then we
can add a circle around a new vertex as shown in the middle
of figure 2. Here, in contains two abstract basic regions. To
be able to add a circle in the appropriate manner, the two
corresponding basic regions in the drawn diagram must be
separated by an Euler edge. If this is the case then there will
be a new vertex that the circle can be drawn around.

As a final example, taking in as all the basic regions in the
diagram, we can add a circle around the Euler graph vertex
placed on all three curves, as shown on the right of figure 2.
Since in is large in this case (i.e. contains more than two
abstract basic regions) we cannot add a circle around a new
vertex or a dual vertex.
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Fig. 3. A diagram to which we wish to add an ellipse.
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Fig. 4. A cycle in the modified Euler dual and an ellipse that results.

Finally, we note that adding a circle using this technique
preserves the wellformedness properties of the original di-
agram, provided the label of the new circle is not already
present.

B. Adding Ellipses

To add an ellipse, we utilize the modified Euler dual. In
particular, we find a simple cycle in it that is a potential route
for the ellipse. To illustrate the idea, consider the diagram
in figure 3. Take in = {∅, P,Q, PQ,R, PR,QR,PQR} and
out = {∅, P,Q, PQ,R, PR,QR, S, PS,RS, PRS}. We can
find a simple cycle in the modified dual that passes through
precisely the basic regions to be split (i.e. those in in ∩ out);
such a cycle is shown on the left of figure 4. This cycle
captures a route for a new curve that will result in a diagram
with the required abstraction. The shading indicates the range
of paths that such a curve can take: the cycle can be re-routed,
provided it stays within the shaded area and the vertices do not
leave the minimal regions in which they are placed. In addition
the edges must cross the same Euler edges after the re-routing
as they did before the re-routing. Using these observations,
we can see that if it is possible to add an ellipse, it must pass
through this shaded area, passing through each basic region
in the area, and passing through each minimal region at most
once. An appropriate ellipse is shown on the right of figure 4.

Once we have found an appropriate simple cycle, should
one exist, we can observe that the wellformedness properties
are maintained (as with circles), if the label of the new curve
is not already in the diagram. Further, the cycle should not
pass through the region outside all of the curves more than
once. If it does then the basic region inside just the ellipse
will be disconnected.

The problem remains of how to identify whether an ellipse
can be drawn through the allowed region. A search based
method could explore different values for the centre, rotation
and axis length of potential ellipses. A fitness function based
on the amount of overlap between the ellipse and the disal-
lowed region would mean that zero fitness implies that there
is an ellipse that will fit.

Such a search method can be also be adapted to find a
‘good’ ellipse, if the search twice is run twice, each time with
an adjusted fitness function. On one occasion searching for
the smallest fitting ellipse, and on the other, searching for the
largest fitting ellipse. Taking an average ellipse of the two
is likely to produce a result that does not pass too close to
regions it does not cross. Moreover, taking account of other
good features of the ellipse, such as rotation aligned to 90
degree angles would also be feasible. We also note that this
method can also be used to draw circles that cannot be added
using the techniques of section III-A if making major and
minor axes equal is prioritized.

C. Adding Curves in General

If the methods in the above sections for adding circles and
ellipses fail to add a curve in the required manner then we
can use the hybrid graph to find a route for the curve, which
can always be done. This was previously considered in [7], so
we just sketch the ideas here. We add the curve by finding a
suitable closed sequence of edges in the hybrid graph, so that
the correct basic regions contained by the new curve, outside
the new curve, or split by the new curve. The properties of
the selected path impact on the wellformedness properties of
the drawn diagram; again, this was detailed in [7].

IV. DRAWING ENTIRE DESCRIPTIONS

So far, we have demonstrated how to add curves to a
diagram in a variety of ways. A more general problem is
determining how to draw a diagram d given an arbitrary
diagram description, D. For our approach, we need to add
curves to d in a way that ensures the final result represents D.
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Fig. 5. A diagram to be drawn.
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Fig. 6. Choosing a curve to add.

Deriving the in and out for adding a curve to a partially
constructed diagram can always be achieved [7]. Hence, the
process of creating an Euler diagram is that of successively
adding curves to build up the diagram. For a given diagram,
a curve can be added by:
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Fig. 7. The drawing sequence.

1) Determine whether one of the currently undrawn curves
can be added as a circle using the techniques of sec-
tion III-A. If so, add an appropriate circle, otherwise
proceed to the next step.

2) Determine whether one of the currently undrawn curves
can be added as an ellipse using the techniques of
section III-B. If so, add an appropriate ellipse, otherwise
proceed to the next step.

3) Finally, use the techniques outlined in section III-C to
add one of the undrawn curves with an arbitrary shape.

This process iterates, starting with an empty diagram and
adding an abstract curve at each iteration until all the curves
are in the diagram. Clearly, there are various strategies that
can be applied when more than one curve can be drawn at
the same stage, but these are not detailed here due to space
limitations.

There is good evidence that people like Euler diagrams
drawn with circles, which is why we prioritise them; for
example Wilkinson [12], identifies that out of the 72 Euler
diagrams used in articles appearing in Science, Nature and
online affiliated journals during 2009, 65 (90%) use circles.

A. Example

To illustrate the drawing process, suppose we start with
description, D, of the diagram, d, in figure 5. Of course,
here we have already drawn d, but this drawing is merely
given to help illustrate the drawing approach, rather than the
other option of writing down its description in full. We will
work through one curve addition in detail, in the middle of
the drawing process, making reference to figures 6 and 7.

Suppose that we have reached a point where diagrams d1,
d2, d3 and d4 have been drawn, as in figure 7. Then there
remain three curves to be drawn, namely T , U , and V . Figure 6
shows possible drawings of the resultant diagrams. We can see
that T can be added as a circle, so we choose to add this next,
giving d5 in figure 7. To d5, neither U nor V can be added
using the circle drawing methods of section III-A, so we see
whether either can be added as an ellipse. We see that U can
be added to d5 as an ellipse using the methods of section III-B,
which gives d6. Finally, we add U (which cannot be added as
a circle or ellipse) by finding a suitable closed sequence of
edges in the hybrid graph.

V. CONCLUSION

This paper presents a novel method for drawing Euler
diagrams using circles and ellipses, as well as arbitrary curves
where necessary. The method is inductive, adding one curve at
a time to the diagram. The approach we have taken to identify
an order in which to draw the curves prioritizes drawing circles

and ellipses, since these are aesthetically pleasing, over using
arbitrary curves. Moreover, the techniques we presented for
adding circles and ellipses largely ensure that the wellformed-
ness properties of the original diagram are preserved. Even in
the case of adding arbitrary curves, we can sensibly choose a
closed sequence of edges in the hybrid graph, which form the
route that the to-be-added curve will follow, so that we avoid
breaking certain wellformedness properties. The approach is
sufficiently general that all descriptions can be drawn.

Future work will involve extending the techniques so that
circles and ellipses can be added in more general ways,
allowing wellformedness conditions to be broken in preference
to using a less pleasing shaped curve. Alternative shapes, such
as rectangles or ovals can also be added to diagrams with
this technique. The different routes that a curve may follow
can profoundly impact on the ability of users to accurately
and effectively interpret the drawn diagrams. Thus, empirical
studies need to be undertaken so that any choice of curve
routing is fully informed.

.
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