
Repeatability, Reproducibility and Rigor in Systems
Research

Jan Vitek
Purdue University, USA

Tomas Kalibera
University of Kent, UK

ABSTRACT
Computer systems research spans sub-disciplines that in-
clude embedded and real-time systems, compilers, network-
ing, and operating systems. Our contention is that a number
of structural factors inhibit quality research. We highlight
some of the factors we have encountered in our work and ob-
served in published papers and propose solutions that could
both increase the productivity of researchers and the quality
of their output.

Categories and Subject Descriptors: C.4 [Performance

of Systems]: Measurement Techniques; K.7.4 [The Comput-

ing Profession]: Professional Ethics— Codes of good practice

General Terms: Experimentation

Keywords: Scientific method, Reproducibility, Repeatability

1. INTRODUCTION
“One of the students told me she wanted to do an
experiment that went something like this ... under
certain circumstances, X, rats did something, A. She
was curious as to whether, if she changed the circum-
stances to Y, they would still do, A. So her proposal
was to do the experiment under circumstances Y and
see if they still did A. I explained to her that it was
necessary first to repeat in her laboratory the experi-
ment of the other person — to do it under condition X
to see if she could also get result A — and then change
to Y and see if A changed. Then she would know that
the real difference was the thing she thought she had
under control. She was very delighted with this new
idea, and went to her professor. And his reply was,
no, you cannot do that, because the experiment has
already been done and you would be wasting time.”
— Feynman, 1974, Cargo Cult Science

Publications are the cornerstone of academic life. Computer
science is in a unique position amongst scientific disciplines
as conferences are the venue of choice for our best work.
With the perceived benefit of shortening time to publication
due to a single-stage reviewing process, conferences have had

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EMSOFT’11, October 9–14, 2011, Taipei, Taiwan.
Copyright 2011 ACM 978-1-4503-0714-7/11/10 ...$10.00.

profound impact on the way science is conducted. To appear
competitive, researchers are trapped in an arms race that
emphasizes quantitative measures. The pressure to pub-
lish novel ideas at an ever increasing rate favors perfunctory
feasibility studies over the kind of careful empirical evalua-
tion that is the hallmark of great research. To make matter
worse, few publications venues are willing to accept empiri-
cal papers that evaluate a previously formulated theory on
the ground of insufficient novelty.

“When we ignore experimentation and avoid contact
with the reality, we hamper progress.” — Tichy

The essence of the scientific process consists of (a) positing a
hypothesis or model, (b) engineering a concrete implemen-
tation, and (c) designing and conducting an experimental
evaluation. What is the value of an unevaluated claim? How
much work is needed to truly validate a claim? What is rea-
sonable to expect in a paper? Given the death march of our
field towards publication it is not realistic to expect much.
Evaluating a non-trivial idea is beyond the time budget of
any single paper as this requires running many benchmarks
on multiple implementations with different hardware and
software platforms. Often a careful comparison to the state
of the art means implementing competing solutions. The
result of this state of affairs is that papers presenting poten-
tially useful novel ideas regularly appear without a compari-
son to the state of the art, without appropriate benchmarks,
without any mention of limitations, and without sufficient
detail to reproduce the experiments. This hampers scientific
progress and perpetuates the cycle.

“In the exact sciences observation means the study
of nature. In computer science this means the mea-
surement of real systems.” — Feitelson, 2006, Ex-
perimental Computer Science

Embedded systems research is particularly affected due to
the inherent difficulties of experimental work in the field.
Unlike many other sub-disciplines of computing, there are
literally no widely available repositories of embedded soft-
ware that can be used to conduct measurements. Compa-
nies are notoriously tight-fisted with their source code. Thus
researchers have to (re)invent “representative” applications
from scratch every time they want to evaluate a claim. To
make matters worse these applications are rarely portable
as they are intimately tied to specific features of the operat-
ing environment — be that hardware, software or external
devices. Finally, the basic properties of interest, such as for
example power consumption, response time or worst case
execution time, are particularly difficult to measure non-

intrusively and there is not even agreement on what metrics
to use to present results.

“An inherent principle of publication is that others
should be able to replicate and build upon the pub-
lished claims. Therefore, a condition of publication is
that authors are required to make materials, data and
associated protocols available to readers promptly on
request.” — Nature Methods, Author’s guide

Important results in systems research should be repeatable,
they should be reproduced, and their evaluation should be
carried with adequate rigor. Instead, the symptoms of the
current state of practice include:

• Unrepeatable results,
• Unreproduced results,
• Measuring the wrong thing,
• Meaninglessly measuring the right thing.

The enabling factors for this state of affairs, beyond the
sheer pressure to publish, are:

• Lack of benchmarks,
• Lack of experimental methodology,
• Lack of understanding of statistical methods.

We can do better without hindering the rate of scientific
progress. In fact, we contend that adopting our recommen-
dations will lead to more opportunities for publication and
better science overall.

2. DEADLY SINS
“In industry, we always ignore the evaluation in aca-
demic papers. It is always irrelevant and often
wrong.” — Head of a major industrial lab, 2011

We list some common mistakes. While not always deadly
in the sense of voiding the scientific claims of the research,
they make the published work much less useful.

Unclear experimental goals.
Without a clear statement of the goal of an experiment and
of what constitutes a significant improvement, there is no
point in carrying out any evaluation. Too often, authors as-
sume that an improvement on any metric, however small, is
sufficient. This is not so, as there are tradeoffs (e.g. speed
vs. space or power) and it is necessary to report on all rele-
vant dimensions. Wieringa et al. [19] recommend each paper
be accompanied by an explicit problem statement describ-
ing: the research questions (what do we want to know?), the
unit of study (about what?), relevant concepts (what do we
know already?), and the research goal (what do we expect
to achieve?).

Implicit assumptions or experimental methodology.
Experiments must clearly describe all aspects of the ex-
perimental setup and methodology. Mytkowicz et al. [16]
show how innocuous aspects of an experiment can introduce
measurement bias sufficient to lead to incorrect conclusions.
Out of 133 papers from ASPLOS, PACT, PLDI, and CGO,
none adequately considered measurement bias. The authors
suggest setup randomization, i.e. running each experiment
in many different experimental setups and using statistical
methods to mitigate measurement bias. In general, all as-
sumptions on which a claim relies should be made explicit.

Clarke et al. [5] uncovered that performance of the Xen vir-
tual machine critically relied on SMP support being turned
off. The authors of the original paper had not realized that
this was a key assumption.

Proprietary benchmarks and data sets.
One of the hallmarks of research done with industry is ac-
cess to proprietary benchmarks and data sets. But what
is the value of publishing numbers obtained with unknown
inputs? As far as the reader is concerned, there is little
point in showing data on such experiments as nothing can be
learned. Consider for instance the Dacapo benchmark suite
for Java applications [4]. The suite arose out of the per-
ceived deficiencies of the previously accepted SPEC JVM98
benchmark suite. Without access to the SPEC code and
data it would have been difficult to identify its deficiencies.
As a recent exercise in forensic bioinformatics by Baggerly
and Coombes [3] demonstrates, access to data is essential to
uncover, potentially life-threatening, mistakes.

Weak statistical analysis.
At PLDI’11, 39 of 42 papers reporting execution time did
not bother to mention uncertainty. Every student learns
about uncertainty in measurements and how to estimate this
uncertainty based on statistical theory [14, 18]. Reporting
on an experiment without giving a notion of the variability
in the observations may make weak results appear conclusive
or make statistical noise appear like an actual improvement.
More sophisticated statistical methods are available but very
few authors appeal to them.

Measuring the wrong thing/right thing meaninglessly.
A danger associated with the complex phenomena that are
being measured is to attribute an observation to the wrong
cause. In our work on real-time Java [12], we wanted to
measure the impact of compiler optimization of high-level
language features on a representative embedded platform.
We failed to realize that our platform was emulating float-
ing point operations, and the two compilers being compared
were emitting different numbers of those operations. Thus,
we ended up measuring the quality of floating point opti-
mizations instead of what we had in mind. Another com-
mon error in submitted papers is to use training data to
evaluate profile based techniques or to measure the cost of
a feature in isolation without taking into account its impact
on a complete system. In both cases, the results are likely
to be off.

Lack of a proper baseline.
Establishing a credible baseline is crucial to meaningful re-
sults. Many authors use as baseline their own implementa-
tion with and without some optimization. But to be thor-
ough, they should compare with the state of the art. This
means, e.g. in the field of compilers, comparing against a
production compiler. Sometimes coming up with the ap-
propriate baseline requires re-implementing previously de-
scribed algorithms, a time consuming but necessary task.

Unrepresentative workloads.
Unrepresentative workloads are perhaps the greatest danger
for empirical work. Either the benchmark over-represents
some operations (such as micro-benchmarks tend to do, or
are order of magnitudes smaller than real programs), the

distribution of inputs is unlike real application (as is of-
ten the case in simulations), or when the external envi-
ronment is modeled in an inappropriate fashion (e.g. run-
ning on an over-powered configuration, or failing to cap-
ture the complexity of the external world). In our research
on JavaScript performance we have observed that industry
standard benchmarks do not accurately represent the behav-
ior of websites [17] and shown that performance improve-
ment claims do not generalize to real-world usage.

3. CASE STUDY
Garbage collection (GC) is a mature research area, about
40 years old, which involved heavy experimentation from
the beginning. Over the years the quality of experiments
has improved as members of the GC community have come
together to form the Dacapo group and standardized best
practice reporting and methodology. Commercial and aca-
demic interests have focused GC research on the Java pro-
gramming language. The GC community developed its own
standardized set of benchmarks, the Dacapo benchmark
suite [4], which includes a range of highly non-trivial bench-
marks built using open-source highly used Java libraries
(close to a million lines of code). The suite has recently been
updated by more recent workloads, which make heavier use
of multiple cores. There is some criticism that the commu-
nity lacks realistic benchmarks for gigantic heaps, typical in
large e-business applications.

The main metric in quantitative studies of GCs is execu-
tion time of complete systems. This is what users experi-
ence, what is easy to interpret, and what can be measured
on benchmark applications. But there is a well known trade-
off between maximum memory size and execution time: the
smaller the memory, the more often the GC runs, and hence
the longer the execution. To address this trade-off the GC
community devised a reporting best practice which is to
show results for multiple heap sizes. The workings of the
GC algorithm are often intimately intertwined with the ap-
plication. This makes GC benchmarking hard: one has to
worry about non-obvious factors, such as code inserted by
the compiler into the application (so called barriers) to make
a particular GC work, or overhead of the memory allocator.

As the experiments involve execution of the complete sys-
tems, factors not directly related to GC or memory have also
to be taken into account. One such factor is the just-in-time
compiler of the Java VMs which picks methods to optimize.
Java VMs make this decision based on how hot the methods
are. Due to statistical nature of sampling, re-running the
experiment can lead to different sets of methods optimized,
with different performance. Hence, we have a random fac-
tor that influences whole VM executions, and thus we need
to repeat VM executions many times. Such a repetition is
needed for other reasons as well, such as to reliably random-
ize memory placement. Sometimes it is possible to enforce
the same sets of methods to compile to both systems [8]
and perform paired experiments, which can be more pre-
cise. This is, however, only possible when the code of the
systems differs only slightly, and thus these sets of methods
to compile are defined and realistic for both systems.

The current practice for summarization of results is to cal-
culate geometric mean over different benchmarks. There is
an ongoing debate which mean is more appropriate (arith-
metic, harmonic, or geometric) and a general understanding
that a single number is not enough, and that the analy-

sis should look at individual benchmarks separately. This
is mainly because we have still a relatively small set of
benchmarks that is unlikely to cover all applications, and
that we are nowhere near heaving weights that would ex-
press how common particular benchmarks are in real ap-
plications. These weights would otherwise be excellent for
weighted means.

The number of benchmarks in the Dacapo suite is small
enough to make looking at individual benchmarks possible,
and as they are widely known to the community, a seasoned
analyst can infer information simply based on which bench-
marks a GC performed well and on which it did not. Com-
parisons of two systems are common, with the main metric
of interest being the ratio of mean execution times. Al-
though there is some understanding in the community that
confidence intervals should be used, they rarely are and if so
then almost always for individual systems only (and not say
for the ratio of means of the two systems). Statistical tests
or analysis of variance (ANOVA) seem to be used only in
papers about how statistics should be applied in the field [7,
8]. Experiment design is still primitive — the best studies
in systems research repeat benchmark runs as well as it-
erations in benchmarks, but summarize the results, with a
single arithmetic mean, as if they were all independent and
identically distributed (which they are not).

So, while not perfect, the state of affairs in measuring
garbage collection algorithms has acquired some rigor to
make understanding (and trusting) reported results possi-
ble.

4. HOW TO MOVE FORWARD
We identify five areas in need of improvement.

4.1 Statistical methods
The phenomena we observe, postulate hypotheses about,
and later measure, are influenced by numerous factors. In
systems research, a common phenomenon is performance,
measured by execution time. Factors involved are many and
stem from the architecture, operating system, compiler, and
the application. Some factors are controlled by the experi-
menter (i.e. architecture, compiler options, or time of day
of running the experiment). They are either fixed for the
whole experiment and become assumptions of the hypoth-
esis, or they are systematically varied. There are uncon-
trolled factors, some of which can be observed and some of
which cannot. All uncontrolled factors need to be random-
ized. Some parts of the experiment can be out of the control
of the experimenter. Real-time systems respond to stimuli
from the real world, which themselves have random nature.
Given these complexities, it is difficult to decide how many
repetitions of what combinations of factor configurations to
run (experiment design) and how to summarize the results,
separating the randomness from the properties of interest
(statistical inference). Both experimental design and sta-
tistical inference are mature fields of statistics. Pointers to
literature and basic principles of the scientific method can
be found in [20, 10, 15]. Few advanced statistical methods
are actually used in computer science.

It is crucial that the factors relevant to our field are known
and well understood. In contrast to natural and social sci-
ences, which focus on objects that have not significantly
changed over the last few hundred years, computers are new
and change rapidly. Factors influencing them are hard to

find and not well studied. For example, memory placement
is a known factor influencing execution time, through the
number of cache misses. Some factors that in turn influence
memory placement are less obvious: linking order, size of
the space for environment variables in UNIX [16], symbol
names [9], mapping of virtual to physical pages [11], or ran-
domly generated symbol prefixes during compilation [13]. If
we miss a factor, the results we get are biased and only a
reproduction study can find this.

There are also certain limits to which we can readily adopt
all statistical methods used in natural and social sciences.
These methods are based on the normal distribution, which
is common for a wide range of phenomena observed in na-
ture, but less so in computer systems. The normal distri-
bution can be viewed as a model where many independent
sources of error can add as well as each remove a constant
from the true quantity. A good example of violation of this
principle is execution time. The sources of “error”here (such
as cache misses at all levels, slow-paths, etc.) often can
add much more to execution time than they could remove.
Also, they are often not independent. Consequently, execu-
tion time usually has a multi-modal distribution, where each
fragment is highly skewed to the right (things can go excep-
tionally slow, but not so much exceptionally fast). Still, we
get asymptotic normality through repetitions of the same,
independent, measurements. Using methods based on the
normality assumptions is in either case better than nothing.
And, for additional rigor, there are non-parametric methods
that do not rely on the normality assumptions, and partic-
ularly the bootstrap methods are intuitively simple [6].

4.2 Documentation
...“must include instructions for building and in-
stalling the software from source, and any dependen-
cies on both proprietary and freely available prereq-
uisites. For software libraries, instructions for using
the API are also required. Test data and instructions.
The test dataset(s) must enable complete demonstra-
tion of the capabilities of the software, and may either
be available from a publicly accessible data archive,
or may be specifically created and made available
with the software. The results of running the soft-
ware on the test data should be reproducible, and
any external dependencies must be documented.” —
PLoS Computational Biology author’s guide.

The smallest bar we have to clear is documentation and
archival of all experiment artifacts for future reference. The
authors thus can look up later exactly under what conditions
the earlier results were obtained, to confront the results with
and validate against new findings. Good archival and doc-
umentation allows this even long after the actual hardware
or software infrastructures to repeat the experiment become
unavailable. Indeed, this can also lead to negative results,
such as finding an error in the earlier experiments. The
community should provide means of corrections of published
papers for these instances.

4.3 Repetition
Repetition is the ability to re-run the exact same experiment
with the same method on the same or similar system and
obtain the same or very similar result. While this is needed
for authors to ensure stability of their results, we argue that
it is also needed for the community at large. The ability
to repeat an experiment gives a baseline against which to

evaluate new ideas. Thus, supporting repetition makes sys-
tems research easier. For reviewers, requiring submissions
to be repeatable (e.g. by requiring executables or web in-
terfaces) allows them to vary the input to the program and
test the robustness of the proposed method, at least in cases
when this does not require special hardware or software in-
frastructure. And generally, it helps to gain confidence as
to the lack of random errors on the experimenter side and
sufficient statistical methods for the random effects in the
underlying system. Of course there is a cost in repetition
— submitting a paper with enough supporting material for
repeatability takes more time and may prevent authors from
publishing results early. A good thing in our opinion. Is a
paper for which the author feels that it is not worth making
the code available worth reviewing? Support for repetition
(access to data and protocols) was crucial in uncovering re-
cent mistakes in biological studies [3].

4.4 Reproducibility
Independent confirmation of a scientific hypothesis through
reproduction by an independent researcher/lab is at the core
of the scientific method. The reproductions are carried out
after a publication, based on the information in the paper
and possibly some other information, such as data sets, pub-
lished via scientific data repositories or provided by the au-
thors on inquiry. Some journals (e.g. PLOS and Nature
Methods) and some government institutions (e.g. NIH) re-
quire authors to archive all data and provide it on demand
to anyone interested, so as to allow reproduction and pro-
mote further research. While there is an ongoing discussion
of what should be mandatorily disclosed, as there is a trade-
off between the confidence we get into scientific theories and
duplication of efforts, the need for independent reproduc-
tion is accepted as a matter of course, and reproductions
are in addition to new research and reviews part of the sci-
entist’s job. Reproductions are published in journals, no
matter whether they end up confirming or disapproving the
original work. This is not happening in computer “science”.
Notable attempts to change this include Reproducible Re-
search Planet [2] and the Evaluate Collaboratory [1]. Re-
producible Research Planet is a webspace for scientists to
archive and publish data and code with their papers. It was
promoted in several scientific papers in various fields of sci-
entific computing. The motivation for authors to disclose
data should be, apart from good practice, increased chance
of being cited. The Evaluate Collaboratory then, in addi-
tion to organizing workshops on experimental evaluation of
software and computer systems, initiated a petition to pro-
gram committee chairs of conferences and workshops that
called for acceptance of reproduction studies as first class
publications. Although the petition got notable support,
reproduction studies are not yet being published at major
conferences. The reasons for the lack of reproductions is not
just the lack of will, but also lack of knowledge, methods, and
tools that would allow repeatability of experimental studies
in computer science.

Reproduction is more powerful that replication as it can
uncover mistakes (or fraud) more readily that replication.
Replication is important as it provides a baseline and facil-
itates extending and building on previous work.

4.5 Benchmarks
Experimental studies in systems are based on benchmark

applications. A benchmark is a factor in an experiment
as much as anything else. If we run just one benchmark,
we have measured the phenomenon of interest just for this
benchmark. If the benchmark is actually the application the
user wants to run, then this is fine (modulo inputs). Oth-
erwise, to draw more general conclusions, we need to ran-
domize the benchmark factor as well: run using many differ-
ent benchmarks that are representative of real applications,
and statistically summarize the results. Despite a journey
of improvement from instruction mixes, kernel benchmarks,
and micro-benchmarks, today’s benchmarks are often inad-
equate. In some domains, unfortunately including real-time
embedded systems, they almost do not exist. Application
benchmarks, which mimic the real applications to the high-
est extent possible, are essential. Ideally, application bench-
marks are simply instrumented real applications with real-
istic data sets. When evaluating systems, we usually want
the system to perform best/well for any application from a
particular domain. Then, we need not one but many appli-
cation benchmarks, as diverse as possible, to rule out bias
through some factors hidden in most of the benchmarks.
Micro-benchmarks can also be useful, as they simplify com-
plex experiments by splitting them into several simpler ex-
periments and allow the experimenter to vary a given factor
of interest. Given the complexity of computer systems and
the limited knowledge of factors that influence performance,
hypotheses formed based on results with micro-benchmarks
need to be validated by application benchmarks.

5. RECOMMENDATIONS
We propose the following changes to our practices:

• Develop open source benchmarks: We need
benchmarks. Good, documented, open-source, and
thoroughly evaluated benchmarks should be fully ac-
cepted as first class contributions for publications at
premier conferences and journals, and should be wor-
thy of support by governmental research agencies.
This is important both to validate them through the
review process and to create a reward system. So far,
published benchmarks have been an exception rather
than a rule and the authors are not aware of any fund-
ing being available for that thankless task.

• Codify best practice documentation, method-
ologies and reporting standards: We need to
agree on minimal standards for documenting experi-
ments and reporting results. This can be done through
community effort and dedicated working groups. We
need to understand the factors that influence measur-
able properties of computer systems, and we need to
have better understanding of their statistical proper-
ties. Good observational studies on these topics have
appeared at premier conferences, and this needs to
continue. Reviewers should be encouraged to recognize
the value of statistical methods and educated in their
proper use. Lectures on statistical methods should be
incorporated in the curriculum and statisticians should
be consulted when designing new experimental proto-
cols.

• Require repeatability of published results: Re-
peatability should be part of the publication reviewing

process. Based on the paper and supplementary ma-
terial on the experiments (documentation, configura-
tion, source code, input data sets, scripts), the review-
ers should verify that the experiments are repeatable.
This includes checking the documentation and report-
ing standards, including appropriate use of statistics,
but does not mean that reviewers should be expected
to re-run the experiments. Lack of repeatability can
then be discovered by a reproduction study.

• Encourage reproduction studies: Thorough re-
production studies should be fully accepted as first
class contributions for publications at premier confer-
ences and journals. Researchers should be expected to
have some publications of this kind on their curricula.
Reproduction studies should be supported by govern-
mental research agencies. The standards for good re-
production studies should require high level of rigor,
repeatability and thoroughness, no matter if they ap-
prove or disapprove the original work. The credit of
publications on new ideas should increase when inde-
pendently confirmed in published reproduction study.
Students in systems groups should be expected to carry
out a reproduction study early in their PhD.

What we propose will lead to higher quality of research.
And, pragmatically, while there is a cost to the additional re-
quirements, authors should think of this as “pay it forward”.
The benefits kick in when building on earlier work that pro-
vided artifacts to facilitate follow ons. Although it would
be slightly harder to publish new ideas, one can get credit
for publishing reproductions or benchmarks or observational
studies. Also, to be clear, we are not arguing against pub-
lishing“idea papers”, papers that put forward a novel idea or
theory. A good but unevaluated idea should be published,
but an ill-evaluated idea shouldn’t.

“Beware of bugs in the above code; I have only proved
it correct, not tried it.” — Don Knuth

Acknowledgments.
This paper would not have been without Sebastian Fis-
chmeister’s encouragements. We greatly benefited from dis-
cussions with Richard Jones, Matthias Hauswirth, James
Noble, Olga Vitek and Mario Wolzcko. Many of the refer-
ences used in this paper are available at the excellent Evalu-
ate Collaboratory web site (http://evaluate.inf.usi.ch)
where a letter to PC chair awaits signatures.

6. REFERENCES
[1] Evaluate collaboratory: Experimental evaluation of

software and systems in computer science.
http://evaluate.inf.usi.ch/, 2011.

[2] Reproducible research planet.
http://www.rrplanet.com/, 2011.

[3] K. Baggerly and K. Coombes. Deriving chemo
sensitivity from cell lines: Forensic bioinformatics and
reproducible research in high-throughput biology.
Annals of Applied Statistics, 2008.

[4] S. Blackburn, R. Garner, K. S. McKinley, A. Diwan,
S. Z. Guyer, A. Hosking, J. E. B. Moss, D. Stefanović,
et al. The DaCapo benchmarks: Java benchmarking
development and analysis. In Conference on

Object-Oriented Programing, Systems, Languages, and
Applications (OOPSLA), 2006.

[5] B. Clark, T. Deshane, E. Dow, S. Evanchik,
M. Finlayson, J. Herne, and J. N. Matthews. Xen and
the art of repeated research. In USENIX Annual
Technical Conference, 2004.

[6] A. C. Davison and D. V. Hinkley. Bootstrap Methods
and Their Applications. Cambridge University Press,
1997.

[7] A. Georges, D. Buytaert, and L. Eeckhout.
Statistically rigorous Java performance evaluation. In
Conference on Object-Oriented Programming Systems,
Languages and Applications (OOPSLA), 2007.

[8] A. Georges, L. Eeckhout, and D. Buytaert. Java
performance evaluation through rigorous replay
compilation. In Conference on Object-Oriented
Programming Systems, Languages and Applications
(OOPSLA), 2008.

[9] D. Gu, C. Verbrugge, and E. Gagnon. Code layout as
a source of noise in JVM performance. In Component
And Middleware Performance Workshop, OOPSLA,
2004.

[10] R. Jain. The Art of Computer Systems Performance
Analysis. Wiley, 1991.

[11] T. Kalibera, L. Bulej, and P. Tuma. Automated
detection of performance regressions: The Mono
experience. In Symposium on Modeling, Analysis, and
Simulation of Computer and Telecommunication
Systems (MASCOTS), 2005.

[12] T. Kalibera, J. Hagelberg, P. Maj, F. Pizlo, B. Titzer,

and J. Vitek. A family of real-time Java benchmarks.
Concurrency and Computation: Practice and
Experience, 2011.

[13] T. Kalibera and P. Tuma. Precise regression
benchmarking with random effects: Improving Mono
benchmark results. In Third European Performance
Engineering Workshop (EPEW), 2006.

[14] L. Kirkup. Experimental Methods: An Introduction to
the Analysis and Presentation of Data. Wiley, 1994.

[15] D. J. Lilja. Measuring Computer Performance: A
Practitioner’s Guide. Cambridge University Press,
2000.

[16] T. Mytkowicz, A. Diwan, M. Hauswirth, and P. F.
Sweeney. Producing wrong data without doing
anything obviously wrong! In Conference on
Architectural Support for Programming Languages and
Operating Systems (ASPLOS), 2009.

[17] G. Richards, A. Gal, B. Eich, and J. Vitek.
Automated construction of JavaScript benchmarks. In
Conference on Object-Oriented Programing, Systems,
Languages, and Applications (OOPSLA), 2011.

[18] B. N. Taylor and C. E. Kuyatt. Guidelines for
evaluating and expressing the uncertainty of NIST
measurement results. Technical Note 1297, National
Institute of Standards and Technology, 1994.

[19] R. Wieringa, H. Heerkens, and B. Regnell. How to
read and write a scientific evaluation paper. In
Requirements Engineering Conference (RE), 2009.

[20] E. B. Wilson. An Introduction to Scientific Research.
McGraw Hill, 1952.

