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ABSTRACT
Evaluating the significance differences between the group of
comatose patients and the group of brain death is important
in the detection of brain death. This paper presents a novel
method for the discrimination between discrete states of brain
consciousness. Based on a collaborative adaptive filtering ar-
chitecture using a convex combination of two heterogeneous
adaptive filters, the evolution of the mixing parameter can
be used as an indicator of the fundamental signal nature of
different EEG recordings. Simulations illustrate the suitabil-
ity of this approach to differentiate between the coma and
quasi-brain-death states.

1. INTRODUCTION

The investigation of the information processing mechanisms
of the brain, including consciousness states, is an active area
of research. When considering consciousness status the iden-
tification of brain death is an important topic within such
research as there can be severe implications of declaring a
patient brain dead - the legal definition of brain death is “irre-
versible loss of forebrain and brainstem functions” [1]. How-
ever, different medical criteria for determining brain death
have been established in the different countries [2]. One
such diagnostic example is the Takeuchi criterion [3] which
involves the subsequent series of tests: coma test, pupil test,
brainstem reflexes test, apnea test, and EEG confirmatory
test [4]. As can be imagined, with such thorough testing hi-
erachy, it can be difficult to implement brain death diagnosis
effectively and timely. Specialized personnel and technology
are needed to perform a series of tests which are expensive,
time consuming and can put patient at a risk, for example,
in apnea tests, medical case instruments should be removed,
confirmatory tests can take as long as 30 minutes each and
need to be performed several times over intervals of up to ten
hours, these tests put stress on already compromised organs

[5]. To overcome the above difficulties, preliminary EEG
tests have been proposed in [6, 7], to be used to determine
whether further brain death tests, especially those requiring
patients to be disconnected from important medical devices,
need to be implemented, in this way an initial prognosis of
quasi-brain-death (QBD) is given. The term “quasi-” means
that this is a preliminary decision, because this brain death
diagnosis was made at an early stage, judged independently
by medical doctors or physicians, whereas the final diagnosis
of brain death needs further medical tests (apnea test, EEG
confirmatory test).

Recent advance in collaborative adaptive filtering [8] en-
lightens the possibility for performing online assessment of
the fundamental characteristics of a signal. By implement-
ing the collaborative structure with two heterogenous adaptive
filters, tracking the adaptive mixing parameter within such a
structure is possible to gain an indication of which subfilter
within the structure currently has the better performance in
term of its estimation error, and hence an hint on signal na-
ture can be obtained by the type of the dominant subfilter,
i.e. linearity/nonlinearity, sparsity/nonsparsity [9]. Thus, this
technique provides a convenient and flexible method which
can test for fundamental signal properties as compared with
hypothesis and block-based methods [10, 11]. From the med-
ical viewpoint, such collaborative structure offers real time
processing ability and hence reduces the risk to the patient
when performing preliminary EEG tests.

In this paper, we propose to use a collaborative adap-
tive filter in the complex domain to perform preliminary
EEG test by discriminating two kinds of brain conscious-
ness states, called coma and QBD respectively. By design,
spatially symmetric pairs of EEG electrodes are used to con-
struct complex-valued signals, and such scheme facilitates
the use of cross information and simultaneous modelling of
the amplitude-phase relationships [12]. To identify the un-
derlying amplitude-phase relationship within different types
of EEG signals, we here employ standard CLMS algorithm
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Fig. 1. The structure of convex combination of two subfilters.
Each subfilter is adapted using its own cost function, with the
mixing parameter λ(k) adapted to minimise the overall cost
function.

[13] and recently proposed Least Mean Phase (LMP) algo-
rithm [14] to train the subfilters. Unlike the mean squared
error criterion based CLMS algorithm, the LMP algorithm is
derived based on least mean square phase error, and hence
outperforms CLMS algorithm in the situations where the per-
formance depends primarily on the phase information within
the signals [15] or the signal amplitude undergoes very faster
variations than that in phase [14]. Via a collaborative adap-
tive combination of these two subfilters, we will find that the
evolution of the mixing parameter illustrate the suitability
of this approach to differentiate between the pair-wise coma
and QBD states based on their underlying amplitude-phase
relationships.

2. COLLABORATIVE FILTERING STRUCTURE

As shown in Fig. 1, the adaptive convex combination scheme
obtains the output of the overall filter, given by

y(k) = λ(k)y1(k) +
(
1− λ(k)

)
y2(k) (1)

where y1(k) and y2(k) are the outputs of CLMS and LMP
trained adaptive filters respectively, and λ(k) is the mixing
parameter at time instant k, being kept between 0 and 1. The
CLMS algorithm can be described as [13]

y1(k) = xT (k)w1(k)

e1(k) = d(k)− y(k)

w1(k + 1) = w1(k)− µ∇w1E1(k)

= w1(k) + µe(k)x∗(k) (2)

where w1(k) is the N × 1 weight vector of filter coefficients,
x(k) denotes the input vector [x(k), . . . , x(k−N +1)]T with
the same length, E1(k) =

1
2 |e1(k)|

2 is cost function, and µ1

is the step-size.
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Fig. 2. The Electrode placement.

The LMP algorithm is derived based on the mean phase
error cost function E2(k) = 1

2e
2
2(k), and can be described

as[14]

y2(k) = xT (k)w2(k)

e2(k) = ∠d(k)− ∠y(k)
w2(k + 1) = w2(k)− µ2∇w2E2(k)

= w2(k) +
ȷµ2e2(k)x∗(k)(
xT (k)w2(k)

)∗ (3)

where ∠(·) is the phase operation. A geometric analysis of
this algorithm has illustrated that this phase error based cost
function can correct the error in phase of the estimated sig-
nal by rotating the estimated signal toward the desired signal
[14], and hence outperforms CLMS algorithm in the situa-
tions where the performance depends primarily on the phase
information within the signals.

The mixing parameter λ(k) is made adaptive, and is up-
dated by minimising the overall cost function

E(k) =
1

2
|e(k)|2 =

1

2
|d(k)− y(k)|2 (4)

The update can be obtained by using the following gradient
decent adaptation

λ(k + 1) = λ(k)− µλ∇λE(k) (5)

where µλ is a small positive constant. The gradient of the
overall cost function with respect to λ(k) is given by

∇λE(k) =
1

2

(
e(k)

∂e∗(k)

∂λ(k)
+ e∗(k)

∂e(k)

∂λ(k)

)
(6)

The two gradient terms from 6 can be evaluated as

∂e(k)

∂λ(k)
=

∂er(k)

∂λ(k)
+ ȷ

∂ei(k)

∂λ(k)

∂e∗(k)

∂λ(k)
=

∂er(k)

∂λ(k)
− ȷ

∂ei(k)

∂λ(k)
(7)
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Fig. 3. Two channel recordings of a coma patient and the
evolution of the corresponding mixing parameter λ(k).

where (·)r and (·)i denote respectively the real and imaginary
part of a complex-valued number. Rewriting (1) in terms of
its real and imaginary parts and substituting into (4) yields

∂e(k)

∂λ(k)
= y1(k)− y2(k) and

∂e∗(k)

∂λ(k)
= (y1(k)− y2(k))

∗

(8)
Finally, the gradient becomes

∇λE(k) = ℜ
(
e(k)(y1(k)− y2(k))

∗) (9)

where ℜ(·) denotes the real part of a complex number. This
yields the mixing parameter update as

λ(k + 1) = λ(k) + µλℜ
(
e(k)(y1(k)− y2(k))

∗) (10)

3. THE EEG DATA

The patient’s brain activity was directly recorded at the bed-
side with a portable EEG system (NEUROSCAN ESI) in the
intensive care unit (ICU) in Shanghai Huashan Hospital affili-
ated to Fudan University China. In the experiment, nine elec-
trodes were chosen to apply to patients. Among these elec-
trodes, six exploring electrodes (F3, F4, F7, F8, Fp1, Fp2)
as well as GND were placed on the forehead, whereas two
electrodes (A1, A2) as the reference were placed on the ear-
lobes, as shown in Fig. 2. The measured voltage signal was
digitized with a sampling rate 1 kHz and the resistances of
the electrodes were set to be less than 8 kΩ. Experimental
data was obtained from 34 patients of ages ranging from 17
to 85 years old; half of the patients were in a state of coma,
and the other half had already been assessed to be in quasi-
brain-death status by clinical doctors. Due to the fact that the
strongest voltage signals are normally obtained from forehead
area, we focus our research on signals extracted from pairing
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Fig. 4. Two channel recordings of a QBD patient and the
evolution of the corresponding mixing parameter λ(k).
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Fig. 5. The average evolution of the mixing parameter λ(k)
with corresponding standard deviation error bars for 17 coma
patient and 17 QBD patients.

spatially symmetric electrodes Fp1 and Fp2, furthermore, a
complex-valued EEG signal representation is constructed as
Fp1+ȷFp2 to facilitate the use of cross information and simul-
taneous modelling of the amplitude-phase relationships [12].

4. SIMULATIONS

To illustrate the robustness of the proposed collaborative fil-
tering structure for brain consciousness state discrimination,
simulations were conducted on the pre-defined coma and
QBD EEG signals in one step-ahead prediction setting. The
filter length N of both subfilters was 10 with the step-size
µλ = 0.001, and the initial value of λ(0) = 0.5 for a fair



initialisation of both subfilters.
Fig. 3 shows the amplitudes of the pair-wise EEG sig-

nals recorded from Fp1 and Fp2 for a typical coma patient
with a time window lasting for 5 seconds, and the evolution
of the corresponding mixing parameter λ(k) is shown in the
bottom graph. It can be seen that the value of λ(k) for this
coma patient decreased below 0.5 and converged at 0.37 in
the end, indicating that the subfilter 2, trained based on mean
squared phase error, achieved more accurate estimation per-
formance than that of its counterpart based on standard mean
squared amplitude error, and hence more weight was adap-
tively given to the subfilter 2. As contrast, the amplitudes of
the EEG signals recorded from Fp1 and Fp2 for a QBD pa-
tient were illustrated in the top and middle graphes in Fig. 4,
although the amplitudes of this QBD EEG signals were in a
very similar range as that of coma EEG signals shown in Fig.
4, the recordings contained more obvious small amplitude but
fast oscillations, resulting in a noise-like phase information
and consequently a worse performance of LMP based subfil-
ter 2 than that of CLMS based subfilter 1, and the evolution
of the corresponding mixing parameter λ(k) increased grad-
ually as the adaptation progressed. This phenomenon hap-
pened in all QBD patients we investigated. In order to have a
general knowledge of the all available EEG data, the average
values of mixing parameter λ(k) for coma and QBD patients
respectively, together with standard deviations calculated per
250 samples (0.25 second), were shown in Fig. 5. It can
been seen that the average response of λ(k) for QBD signals
illustrated a predominant weight of amplitude based CLMS
algorithm contributed to the overall collaborative adaptive fil-
ter, whereas in case of coma EEG signals, LMP, the phase
error based estimation algorithm, contribute more to the over-
all performance, consequently, a clear discrimination between
coma and QBD signals cna be obtained by the opposite trends
in the evolution of λ(k) in both cases.

5. CONCLUSION

In this paper, an online method for the EEG-based prelimi-
nary examination in the process of clinical diagnosis for brain
death has been proposed. This is achieved by using the col-
laborative adaptive filter, which composes of both magnitude-
based and phase-based adaptive filters and by a convenient
representation in the complex domain of pair-wise EEG sig-
nals recorded from spatially symmetric electrodes. According
to different underlying amplitude-phase relationships within
coma and QBD states, the evolution of the mixing parameter
can be used as an indicate to discriminate them.
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