
Self-Adaptive Authorization Framework for Policy Based RBAC/ABAC Models

Christopher Bailey, David W. Chadwick, Rogério de Lemos
School of Computing

University of Kent
Canterbury, UK

{c.bailey, d.w.chadwick, r.delemos}@kent.ac.uk

Abstract— Authorization systems are an integral part of any
network where resources need to be protected. They act as the
gateway for providing (or denying) subjects (users) access to
resources. As networks expand and organisations start to
federate access to their resources, authorization
infrastructures become increasingly difficult to manage. In this
paper, we explore the potential of self-adaptive authorization
as a means to automate the management of the access control
configuration. We propose a Self-Adaptive Authorization
Framework (SAAF) that is capable of managing any policy
based distributed RBAC/ABAC authorization infrastructure.
SAAF relies on a feedback control loop to monitor decisions
(by policy decision points) of a target authorization
infrastructure. These decisions are analysed to form a view of
the subject’s behaviour to decide whether to adapt the target
authorization infrastructure. Adaptations are made in order to
either endorse or restrict the identified behaviour, e.g. by
loosening or tightening the current authorization policy. We
demonstrate in terms of representative scenarios SAAF’s
ability for detecting abnormal behaviour, such as, misuse of
access to system resources, proposing solutions that either
prevent/endorse such behaviour, applying a cost function to
each of these solutions, and executing the adaptive changes
against a target authorization infrastructure.

Keywords— self-adaptation, authorization, autonomous access
management, computing security, RBAC, ABAC

I. INTRODUCTION
A great deal of research and time is put into securing

access to, and ensuring legitimate use of protected
resources. There exist a variety of different approaches such
as, role based access control (RBAC) [1] and attribute based
access control (ABAC) [2], as well as more sophisticated
systems involving detection [3], trust and feedback [4], and
usage control [5] to compliment authorization. However,
once authorization has been setup (i.e., defining
authorisation policies) there exists few automated
mechanisms that both identify when such access is being
used incorrectly, and mitigate or prevent further misuse
automatically. Traditionally organisations rely on audit trails
and human administrators to monitor these systems to
identify abnormal behaviour [6]. The detection of abnormal
behaviour, attributed to the misuse of system resources by
authorised subjects, is often not at the forefront of concern
for organisations. However, it is known that an internally
authorised user can cause far greater damage in comparison
to an external attacker simply due to their access rights [7].

For example, during July 2010 it is alleged that a US army
intelligence analyst downloaded millions of classified US
military documents from a US Department of Defence
website [8]. Assuming the analyst was an authorised user
and that access was requested and granted on a document-
by-document basis, we can say that the analyst had
appropriate access rights and utilised the authorization
system correctly. Any monitoring of the authorization
system would not have picked up any abnormal behaviour
as it processed the analyst’s access requests according to its
access control policies. However, to a human administrator
numerous similar requests in a short period of time would
have flagged up inappropriate behaviour, requiring
immediate changes to the authorization infrastructure to
mitigate any further damage.

Assuming that all subjects act appropriately within their
access rights is an increasingly risky assumption to make, as
organisations work together and federate their access control
systems. As the number of subjects with federated access
grows, resource holders are unaware of who is actually
being granted access. It requires increased effort from
system administrators to detect and prevent misuse. This
position paper proposes that authorization infrastructures
need to be capable of automatically identifying abnormal
behaviour and autonomously change their configurations in
order to either prevent further misuse or grant further
access, in case of operational need. The contribution of this
paper is the definition of a self-adaptive framework that
manages a distributed RBAC/ABAC authorization
infrastructure. We discuss behavioural analysis of subject
interactions with the authorization infrastructure, alongside
assessment of the impact of adaptations to enable effective
‘self-adaptive’ changes to the target authorization
infrastructure. More specifically, we apply self-adaptive
techniques in order to monitor, analyse, decide and manage
a target authorization infrastructure.

The rest of this paper is structured as follows. In
Section 2, we discuss related research. In Section 3, we
describe our proposed framework. In Section 4, we outline
the design of a pilot implementation of our framework in
terms of scenarios. Finally Section 5 concludes with an
evaluation of our proposal along with future work.

II. RELATED WORK
This section discusses related research areas. We cover

!000111111 NNNiiinnnttthhh IIIEEEEEEEEE IIInnnttteeerrrnnnaaatttiiiooonnnaaalll CCCooonnnfffeeerrreeennnccceee ooonnn DDDeeepppeeennndddaaabbbllleee,,, AAAuuutttooonnnooommmiiiccc aaannnddd SSSeeecccuuurrreee CCCooommmpppuuutttiiinnnggg

!777888---000---777666!555---444666111222---444///111111 $$$222666...000000 ©©© 222000111111 IIIEEEEEEEEE

DDDOOOIII 111000...111111000!///DDDAAASSSCCC...222000111111...333111

333777

!000111111 NNNiiinnnttthhh IIIEEEEEEEEE IIInnnttteeerrrnnnaaatttiiiooonnnaaalll CCCooonnnfffeeerrreeennnccceee ooonnn DDDeeepppeeennndddaaabbbllleee,,, AAAuuutttooonnnooommmiiiccc aaannnddd SSSeeecccuuurrreee CCCooommmpppuuutttiiinnnggg

!777888---000---777666!555---444666111222---444///111111 $$$222666...000000 ©©© 222000111111 IIIEEEEEEEEE

DDDOOOIII 111000...111111000!///DDDAAASSSCCC...222000111111...333111

333777

!000111111 IIIEEEEEEEEE NNNiiinnnttthhh IIInnnttteeerrrnnnaaatttiiiooonnnaaalll CCCooonnnfffeeerrreeennnccceee ooonnn DDDeeepppeeennndddaaabbbllleee,,, AAAuuutttooonnnooommmiiiccc aaannnddd SSSeeecccuuurrreee CCCooommmpppuuutttiiinnnggg

!777888---000---777666!555---444666111222---444///111111 $$$222666...000000 ©©© 222000111111 IIIEEEEEEEEE

DDDOOOIII 111000...111111000!///DDDAAASSSCCC...222000111111...333111

333777

!000111111 IIIEEEEEEEEE NNNiiinnnttthhh IIInnnttteeerrrnnnaaatttiiiooonnnaaalll CCCooonnnfffeeerrreeennnccceee ooonnn DDDeeepppeeennndddaaabbbllleee,,, AAAuuutttooonnnooommmiiiccc aaannnddd SSSeeecccuuurrreee CCCooommmpppuuutttiiinnnggg

!777888---000---777666!555---444666111222---444///111111 $$$222666...000000 ©©© 222000111111 IIIEEEEEEEEE

DDDOOOIII 111000...111111000!///DDDAAASSSCCC...222000111111...333111

333777

RBAC/ABAC as our base technology, and look at
complementary and alternative methodologies, before
introducing self-adaptation.

A. RBAC / ABAC Authorization
Role based access control (RBAC) and its more generic

variant attribute based access control (ABAC) are models of
authorization, facilitating access to protected resources
through the use of roles/attributes and by assigning
permissions to those roles/attributes. The RBAC/ABAC
authorization model can be extended to include: hierarchy
of roles/attributes, static separation of duties, and dynamic
separation of duties. Our work is focused initially on core
RBAC/ABAC over a distributed implementation.

A distributed RBAC/ABAC authorization infrastructure,
as implemented in [9] comprises the following components: ! a set of distributed role/attribute issuing authorities, also

known as Identity Providers (IdPs), which assign
digitally signed credentials to subjects in a session, ! a Credential Validation Service (CVS) at the Service
Provider’s (SP) site, which validates the roles/attributes
issued to the subject as credentials [10], and ! a Policy Decision Point (PDP) also at the SP’s site,
which evaluates if these roles/attributes give the user
sufficient permission to access the requested resource.

Through the use of policies, attributes and credentials,
subject authorization is provided. We refer to these as
‘assets’ of a distributed RBAC/ABAC authorization
infrastructure. These assets demonstrate the parts of an
authorization infrastructure that is changeable and therefore
can be modified through self-adaptation to impact
authorization decisions.

B. Usage Control
Usage Control (UCON) [5] is an extension to the

traditional access control model. The goal of UCON is to
define rules that further control a user’s access to protected
resources, influencing access pre-, during and post-
authorization. Assuming a user has the necessary access
rights: obligations represent something a user must carry out
before being authorised, and a condition is something that
must be met before the user is given access. Mutable
attributes represent ‘changeable’ attributes belonging to a
user or the protected resource where access is required.
Mutable attributes are treated as anything that can change as
a result of access.

Paper [5] positions the idea that using these mutable
attributes, in conjunction with obligations and conditions,
policies can be defined in order to control when a user can
be given access to a resource based on their usage. It also
identifies the notion of continuity, where continuous
enforcement takes place by evaluating usage rules through
long-term sessions. The pretext to this could arguably be
that usage policies are created in order to prevent misuse or
abnormal behaviour. The limitations of this, however, are
that usage control does not necessarily prevent further

abnormal behaviour from continuing. For example, if a
subject continuously breaks usage control rules no further
action is taken (such as removing the subject’s access
rights), unless a human controller acts from reviewing these
actions in audit logs. Furthermore usage control has no
functionality to grant additional access right if the policy
was originally too restrictive.

C. Intrusion Detection Systems
Intrusion detection systems (IDS’s) were introduced as a

means of mitigating the risk involved with inherent flaws in
security of computing systems. The concept of IDSs is well
known, and the taxonomy of IDSs by Debar et al. [3]
provides an overview of their properties. Primarily, IDSs are
concerned with identifying and notifying administrators of
potential attackers or potential past attacks, however, they
can also be used to identifying legitimate user misuse. They
aid an administrator’s ability to monitor and detect attacks
but rely on the administrator to act in light of attacks. IDSs
detect intrusions using either knowledge-based or
behaviour-based algorithms. Knowledge-based detection
uses information about historical attacks to detect possible
attacks. Behaviour-based uses a model of assumed normal
behaviour comparing actions in a system by users to this
model and identifying how far they deviate from that model.

IDSs can be beneficial for system administrators as they
provide autonomous monitoring and detection, however
they have certain limitations. In [3] an efficiency measure
suggested is timeliness, whereby the IDS has a measure of
the time required to analyse and report when an attack has
happened or is happening. This could be considerably
longer than the time required to grant or deny access
requests, as the IDS has to work reactively, and is likely to
require more processing time to determine if access requests
are legitimate or not (due to more data processing about
behaviour/knowledge). Subsequent to that, we must add the
time it takes for an administrator to react to an alert in order
to carry out preventative measures, which is highly
dependent upon the administrator’s availability and ability,
resulting in a potential further loss/damage.

The above is known as passive detection. Some active
intrusion detection systems do exist [3] whereby they react
instead of waiting for an administrator. However, active
IDSs create further limitations such as the accuracy of their
decisions, false positives/negatives and gaining the trust of
the human controllers.

D. Self-Adaptation
Self-adaptation is a means of providing systems with the

ability to adapt, manage, repair and update themselves
automatically at run-time. This is often achieved through a
feedback control loop [11] in which the system is monitored
to obtain its current state, which is then compared to some
previously planned or expected state in order to decide
whether something needs to be adapted. There are various
ways in which this can be achieved, which is highly

333888333888333888333888

dependent on the domain of the self-adaptive system and its
purpose.

An example of a feedback loop applied to self-adaption
of software systems is the MAPE-K (Monitor, Analyse,
Plan, Effect – Knowledge) reference model [12]. This
model identifies the core activities required for self-adapting
a system. The role of the Monitor is to observe and record
the state in the target system. The Analyser analyses the
state for identifying the need for adaptation. The Planner
generates plans based on the need for adaptation, and the
Effector realises those plans in order for adaptation to
happen. The knowledge part of MAPE-K is related to any
information that enables the provision of self-adaptation,
such as: models of the target system, goals that define what
can be changed in a system [13], historical information
about the use of the system, and previous successful or
failed adaptive strategies.

III. SELF-ADAPTIVE AUTHORIZATION FRAMEWORK
In this paper, we propose a Self-Adaptive Authorization

Framework (SAAF) that is capable of being attached to any
distributed policy based RBAC/ABAC authorization
infrastructure. SAAF’s objective is to autonomously
monitor the usage of an authorization infrastructure, make
judgements on the behaviour of subjects’ interactions (in the
form of authorisation requests and decisions), and adapt the
target authorization infrastructure accordingly. SAAF is
reactive, in the sense that it monitors the use of a target
authorization infrastructure by subjects in order to detect
abnormal behaviour. Once abnormal behaviour is detected a
decision is made on whether to adapt the authorization
infrastructure or not.

Conceptually, SAAF is based on the distributed
RBAC/ABAC model shown in figure 1, and any adaption it
carries out is bound to this. The conceptual model has 7
assets that are manageable. These are the attributes and
credentials assigned to the subjects, the Attribute
Authority’s Credential Issuing Policy, and the resource
owner’s Credential Validation and Access Control Policies,
collectively referred to as Authorization Policies (AZPs).
The conceptual model provides a reference for SAAF to
reason about the state of authorization.

Through changing the subject attributes we control
what credentials may be issued, thus increasing or reducing
the subject’s permissions. The revocation of credentials
allows for the termination of access sessions midway.
Through the adaptation/switching of any of the

authorization policies, SAAF is able to impact a group of
subjects by controlling authorization at a policy level. The
authorization infrastructure interprets these assets in order to
provide access control decisions. The modification of these
assets by SAAF impacts the access control decision thus
preventing or endorsing abnormal behaviour.

SAAF’s operation relies on a collection of goals, a
policy model containing behavioural rules and usage
statistics. The goals represent what must be achieved
through the management of the target authorization
infrastructure, for example to minimise cost to the
organisation.

The policy model portrays a generic view of the target’s
own authorization policies (AZPs), independently of the
actual policy language used by the authorization
infrastructure. Previous research has already defined a
universal construct for RBAC/ABAC system policies [14],
which is referred to as the ontology. The ontology provides
the constructs of an RBAC/ABAC policy, and by
populating those constructs we generate an abstraction of
the given target’s policies. Each policy within the policy
model has an associated meta–policy. The meta-policy
provides behavioural rules that are directly related to the
authorization rules in the corresponding AZP, for example
behavioural rules are associated to specific permissions.
These rules represent statements of usage thresholds (upper
and lower) that capture when the use of a permission
becomes abnormal. Each behavioural rule is assigned a cost
function denoting the impact to the organisation if the
behavioural rule is broken. The policy model represents the
current state of authorization. If SAAF needs to change that
state (as a result of identified abnormal behaviour), the
model is transformed to match those changes (i.e.,
modifying AZPs and removing subject attributes).

The usage statistics provide a historical view of the
authorization infrastructure usage through monitoring of
access requests and decisions being made. These allow
statements of usage to be drawn about subjects,
roles/attributes, and permissions for a certain period of time
(e.g. average frequency of requests by role A or subject S to
read resource R per minute during the last 30 days). This
enables SAAF to identify how subjects are using the system
collectively.

There are two categories of cost that are considered by
SAAF: the cost of doing nothing and the cost of impact to
the authorization infrastructure. The former must outweigh
the latter for adaptation to take place. The latter refers to the
impact that the adaptation might have on the organisation
for example, the cost of removing a credential from a
subject, or removing a role/attribute from a policy. The cost
of executing adaptation is not considered.

In order for SAAF to be able to control a distributed
RBAC/ABAC authorization infrastructure we make the
following assumptions: ! the authorization infrastructure is capable of generating

logs of its actions, e.g., failed and successful credential

Figure 1. Conceptual Model for Distributed RBAC/ABAC Infrastructure

333!333!333!333!

validations, failed and successful access requests, and
that these logs are available to be read by SAAF; ! the authorization infrastructure has interfaces that allow
it to receive new policies or replace old ones currently
in use, and that SAAF can access these interfaces; ! identity providers are capable of allowing SAAF to
modify the user attribute assignments, but if this is not
possible then ! identity providers are capable of accepting notifications
(from SAAF) about their user attribute mis-assignments
and cases of abuse and are willing to remove and add
new attributes to their users and notifies SAAF when
the requested changes have been effected.

A. SAAF Architecture
The architectural design of SAAF, shown in figure 2,

embodies the MAPE-K reference model. The monitor is a
simple component that retrieves assets of the authorisation
infrastructure through observation. For example it captures
an access request and corresponding authorization decision,
sending it to the analyser. The analyser’s objective is to
process the monitored data in order to identify if abnormal
behaviour has taken place. For this, it relies upon the policy
model and historical usage obtained from the modeller. The
analyser updates the modeller with analysed data (to be used
for future analysis) and provides a set of solutions that may
prevent or accept abnormal behaviour, to the planner. This
is in the form of modifying rules belonging to an AZP
and/or adding or removing a subject’s attributes. The role of
the planner is to select the most cost effective solution from
the set of solutions provided by the analyser. The selected
solution is then sent to the modeller for updating the policy
model, and it is transformed into a plan that is sent to the
effector. The effector adapts the authorization infrastructure
in accordance to the plan, resulting in the modification of
subject attributes/credentials and/or the management of
authorization policies. The effector, along with the monitor,
are the only system components that know which protocols,

interfaces and policy formats are needed for communicating
with the various components of the target authorization
infrastructure.

B. SAAF Adaptation Process
The SAAF decision engine is the combination of the

SAAF analyser and the SAAF planner. They perform four
main activities: trigger adaptation, solution analysis,
solution selection and plan generation. The engine’s
objective is to identify abnormal behaviour, in terms of
misuse of access to resources, in order to provide a set of
solutions to endorse or prevent such behaviour, select a
solution, and realise that solution through adaptation.
Although most adaptations serve to further restrict subjects’
accesses to resources, there is one special case in which
rules may be relaxed. This is so called “break the glass”
rules that allow designated users to override deny decisions
in exceptional circumstances [15]. If certain users are found
to be continually breaking the glass, then SAAF may
determine that the circumstance is no longer exceptional,
and it manages policies/assigns attributes to grant these
users normal access. The overall adaptation process is
shown in figure 3.

1) Trigger Adaptation
The trigger adaptation is SAAF’s behavioural analyser,

which identifies situations where an adaptation may need to
occur. The monitored data that the analyser requires are the
access request and corresponding decisions. It also requires
the AZP from the Modeller.

Subject behaviour is assessed by analysing the subject’s
usage, in relation to the active AZP and their meta-policies
(the policy model). The behavioural rules (stated within the
AZP’s meta policies) are restricted to what can be observed
from a set of access requests. For example, from a set of
subject requests we can identify a subject’s active time,
number of granted/denied requests made, and the rate of
requests per time period. This allows us to assign
behavioural rules about the frequency of requests for a given
time period to specific permissions and attributes. This is
akin to behavioural analysis performed in intrusion
detection systems (IDSs) [3].

The trigger adaptation assesses if a subject or a role
breaks any of the stated behaviour rules associated with a
permission (or group of permissions) in the AZP. If a
behaviour rule is broken, abnormal behaviour is detected,
and solution analysis is carried out. Once the monitored data
has been analysed it is used to update usage statistics via the
modeller, for future reference.

2) Solution Analysis
Solution analysis interprets the behaviour of subjects

when utilising the authorization infrastructure based on the
policy model. Solutions may exist in the form of alternative
rules that are capable of preventing/endorsing the identified
abnormal behaviour (e.g., role ‘x’ cannot read resource R).
The analysis to be performed relies on the variables defined
by the identified behaviour, for example, if a permission

Figure 2. SAAF Architecture Diagram

444000444000444000444000

was misused by a subject (or role), the analysis would be
focused around that subject, that role and that permission.
The set of generated solutions is provided to the solution
selector activity.

3) Solution Selector
The solution selector is part of the planner, and its role is

to evaluate which solution should be transformed into a plan
based on its adaptive goals (i.e. cost in this case). The
adaptive goals dictate the selection criteria expressed as a
multi-attribute decision problem. In this paper, goals are
based on a single attribute, which is cost, e.g., the cost of
removing someone’s manager credential is £1000. The
solution selector utilises a cost function to calculate the cost
of each solution, and the cost of doing nothing. It then
orders the solutions in terms of cost and discards those that
are too expensive. For example, if a subject misuses their
access rights to a printer, a solution may be to modify the
policy where their role is no longer valid. However, the cost
associated with this would mean that many subjects are
impacted rather than just the offending subject. A less costly
solution might be to request the identity provider (IdP) to
remove the subject’s role. There may be cases where all
solutions are too costly, outweighing the cost of the current
abnormal behaviour, and as a result, no adaptive change will
occur.

4) Plan Generation
 The generation of a plan identifies what actions need to

be performed for realising the chosen solution. It can be
viewed as an automatically generated set of step-by-step
instructions with specific details on how to execute an
adaptation [16]. For example, a plan may instruct the
effector to “Remove rule A from the AZP and apply this to
the AuthSys”. As part of the generated plan, the planner
updates the policy model in accordance to the required
changes.

IV. PILOT IMPLEMENTATION
This section considers the implementation of SAAF in

the context of a library service that has a number of
resources protected by an instance of the PERMIS
authorization infrastructure [9]. Through the
implementation, we demonstrate how SAAF can be

integrated with PERMIS, and how it manages the
authorization assets.

A. Implementation
The library service relies on the PERMIS authorization

infrastructure [9] that comprises an authorization server, and
multiple Identity Providers (IdPs). The latter are trusted
third parties that handle the authentication of subjects, and
assign roles/attributes to those subjects as digitally signed
credentials. PERMIS implements a distributed
RBAC/ABAC model, relying on IdPs, CVSs and PDPs.
Sources of Authority (SoAs) are the resource owners who
provide the various policies to protect the resources and who
say which IdPs are trusted to assign which attributes to
whom.

The changeable assets of the system are the active AZPs,
written as XML documents, and the subject’s attributes,
stored at the IdPs. Each AZP has a corresponding meta-
policy provided for SAAF. The SoAs AZPs are written
using PERMIS’s own proprietary policy schema. These
policies are stored as a digitally signed X.509 Attribute
Certificates (ACs) for added security in the Library’s own
Lightweight Directory Access Protocol (LDAP) directory.

Attributes and credentials for subjects that require access
to the library’s resources are stored and assigned by two
IdPs. One is the library’s own IdP (LibAdmin) that assigns
attributes for library members and staff, and the other is
ConAdmin that assigns attributes for third party contractors.
Each IdP stores their subjects’ attributes in their own LDAP
directory.

SAAF integration into PERMIS is achievable by
automating the processes that are currently carried out by
the library’s SoA and IdP administrators. To do so, SAAF
uses three interfaces, available from the authorization
infrastructure, which allow it to: request/modify directly the
subjects’ attributes in each IdP’s LDAP directory, and set
the policies in the PERMIS authorization system. It is not
able to modify the IdP’s credential issuing policy, as this is
hard coded into the software. Finally, it observes the access
control requests and decisions processed by the PERMIS
authorization system, which are recorded in logs maintained
by PERMIS.

There are security concerns by allowing SAAF to
control AZPs and LDAP attributes in the authorization
system. Therefore, we utilise SSL/TLS to verify and
authenticate SAAF, which the various components trust. We
assume that SAAF is installed in the same administrative
domain as the library system, and is provided with read
access rights to the log file on the file system.

B. Adaptation Scenarios
The library system has an electronic management system

(LibrarySystem) protected by PERMIS. The current active
AZP allows members of the role ‘Staff’ and ‘Contractor’ to
access individual member details and add and remove them
(see Figure 4). The AZP also allows members of the role

Figure 3. SAAF Adaptation Process

444111444111444111444111

‘Manager’ to order new books, and members of the role
‘Team Leader’ to order new books if they first Break the
Glass. The following scenarios demonstrate how access may
be restricted or relaxed given certain behaviour captured by
subjects of the library’s protected resources.

1) Restricting Access
The library utilises an agency to supply contractors in

place of full time staff when staff members are on leave.
The library allows the agency to manage their subjects’
access in terms of granting the agency’s IdP ‘ConAdmin’ to
assign subjects the role of ‘Contractor’. The agency’s IdP
has been compromised by a group of hackers. They use the
IdP’s privileges to setup a number of fake bot subjects
assigning them the role of ‘Contractor’. The bots
systematically use the library system’s ‘Get’ action to steal
details about library members.

The trigger adaptation reviews each of the bot’s usage

and assesses their current requests to the Get permission, as
well as their historical usage (usage statistics) against the
behavioural rules defined in the active AZP’s meta-policy
(see Figure 5). The behavioural rule states that the rate of
requests for the Get permission must be no greater than 5
requests per minute, 20 requests per 2 hours, or 30 requests
per day. The trigger adaptation remains in this cycle until
abnormal behaviour is detected. If a subject’s usage pattern
breaks this rule the trigger adaptation activity identifies this
as abnormal behaviour.

Within seconds the bots’ usage breaks the behaviour rule
resulting in the trigger adaptation starting the solution
analysis. Solution analysis assesses the broken rule (>5
accesses per minute), and identifies the ‘Contractor’ role
and two bot subjects as the source of this behaviour. From
this it generates the following solutions, as an attempt to
remove the assets that permit the misbehaviour from
occurring:

1. Revoke subject.bot1 & subject.bot2 active ‘Contractor’
 credentials and alter credential issuing policy of ConAdmin
 so that ‘Contractor’ credential is no longer issued to
 subject.bot1 andsubject.bot2
2. Remove role ‘Contractor’ from subject.bot1 & subject.bot2
 in ConAdmin’s attribute database
3. Alter credential issuing policy of ConAdmin so that
 ‘Contractor’ credential is not issued to anyone
4. Alter credential validation policy so that ‘Contractor’
 credentials from subject.bot1 and subject.bot2 are not trusted
5. Alter credential validation policy so that ConAdmin IdP is
 no longer trusted to issue ‘Contractor’ credentials
6. Alter access control policy to remove Get permissions from
 ‘Contractor’ credential
7. Remove ‘Contractors’ role from access control policy (and
 hence all its permissions)

Solution 1 removes the credential from the offending

bots but does not remove their attributes, so they may still
be able to use these for other actions. This is the minimum
change possible to stop the offending behaviour, and is
probably not enough, as other bots exist, which will
continue to attack the library system. Solution 2 is more
severe and removes the bot’s attribute from the IdP’s
attribute database, therefore stopping them using the role of
Contractor to access any resource anywhere. Solution 3 is
yet more severe since it stops any subject from the IdP
being assigned the ‘Contractor’ credential. However, in this
case, this is probably the minimum change that will
eventually be needed. Solutions 4 and 5 are similar to
solutions 2 and 3 but alter the policy of the library system
instead of the IdP. Solution 6 affects all contractors from all
IdPs, since no Contractor can now execute the Get
permission. Solution 7 is the most severe, since it removes
all permissions from the ‘Contractor’ role issued by any IdP
to anyone from anywhere. This is the change of last resort if
no other change is effective. It is needed in cases where
multiple IdPs are infected and are attacking the local site. It

Figure 4. AZP Credential Validation Policy and Access Control Policy

for Contractors

Figure 5. AZP LibrarySystem.Get Behaviour Rule

444222444222444222444222

should only be carried out if the cost of doing so is less than
the cost of the current attack.

The solutions are passed onto the solution selector,
which computes the cost of each solution, as well as the cost
of doing nothing (i.e. the current misbehaviour). All
solutions, which are more costly than doing nothing, are
discarded, the remainder are ordered in terms of cost.
Solution 1 is initially chosen as the least costly one, and is
sent to the planner. However, with continued abnormal
behaviour being exhibited by all the bot subjects, SAAF will
soon be triggered again and the solution selector eventually
selects Solution 3 or 5, preventing the agency’s IdP from
assigning any credentials to its subjects for access to the
library service.

The planner generation initially forms a plan based on
Solution 1 and passes it to the effector. The effector returns
an exception, as it does not have the ability to either revoke
short lived credentials or change the IdP’s issuing policy.
This causes the solution selector to opt for Solution 2, which
is sent to the planner, then to the effector, which
successfully removes the ‘Contractor’ attributes from the
two bot’s LDAP entries. Unfortunately this does not solve
the problem, as other bots are continuing to attack the
library system. Now the mis-behaviour is diagnosed as
severe (<30 accesses per day) and Solution 5 is chosen. In
this case, the plan provides a set of actions that result in the
current credential validation policy being deactivated, and a
new one, minus the rule that trusts the IdP ConAdmin, being
activated. The effector executes this plan against the
PERMIS authorisation system, invalidating all subjects’
‘Contractor’ credentials signed by the ConAdmin IdP.

2) Relaxing Access
In this scenario, we show how an individual’s usage

results in the relaxing of access controls. PERMIS supports
the use of break the glass (BTG) policies as described
earlier. Abnormally high use of BTG permissions could
suggest the need to relax the access control policy, as what
were once considered emergency situations are now proving
to be normal occurrences.

The library system has a subject ‘Charlotte’ who belongs
to the role ‘Manager’. She is capable of ordering new books
and using the library system’s reporting function (see figure
6). Mary is a subject with the role ‘Team Leader’ which
grants Mary the right to order books if she is willing to
break the glass and justify it. Recently, Charlotte has been
very busy and has asked Mary to order many books for her.

SAAF analyses Mary’s behaviour in relation to her BTG
usage to decide whether an adaptation is necessary. As with
the previous scenario, the trigger adaptation operates in a
cycle analysing the requests made by Mary, assessing her
actions (both BTG and book ordering) alongside historical
usage statistics, and checking to see if she is breaking any
behavioural rules. The trigger adaptation eventually
identifies her usage breaks the BTG behaviour rule (greater
than 50 BTG requests in 2 weeks) see figure 7. Note that
Mary’s book ordering behaviour is perfectly normal and

does not break the behavioural rules, which are similar to
those in figure 5.

Solution analysis identifies a set of solutions that
endorse Mary’s actions by identifying a means of increasing
her access. For example, the analyser identifies what access
Mary requires in terms of roles, permissions and attributes,
and provides the following solutions:

1. Remove BTG condition from Team Leader role in access
 control policy LibrarySystem.OrderBook and add condition
 “if subject is Mary”
2. Remove BTG restriction from Team Leader role in access
 control policy LibrarySystem.OrderBook.

Solution 1 represents the need to update the current

access control policy, allowing Mary to perform the action
LibrarySystem.OrderBook. This is considered the safest
and least costly solution, as it only impacts Mary. Solution 2
allows all Team Leaders to order books without breaking
the glass. However this proposes more risk and is likely to

Figure 6. AZP LibrarySystem.Order permission and BTG permission

Figure 7. AZP LibrarySystem.Order Behaviour Rule

444333444333444333444333

be too costly, i.e., more expensive than doing nothing. The
solution selector calculates the costs of both solutions’
against doing nothing, resulting in the selection of Solution
1. As with the first scenario the planner will attempt to
realise Solution 1 and form a plan, requesting the effector to
execute the plan against the authorisation infrastructure.

V. CONCLUSION
There is an inherent need for autonomic management of

authorization infrastructures given the spread of protected
resources and the existence of authorised users over
multiple domains. In this paper, we have presented a Self-
Adaptive Authorization Framework (SAAF) as a solution to
autonomic management of authorization systems. The
approach being proposed is focused on distributed
RBAC/ABAC as an authorization model, and the MAPE-K
autonomic computing reference model. We have described
SAAF in an abstract way in order to promote its portability
across different authorization infrastructures, and have
designed a prototype for integration into the PERMIS
authorization infrastructure. One advantage of SAAF,
compared with more traditional approaches, is its
responsiveness when reacting to circumstances that require
the authorization system to adapt. SAAF has got some
limitations, one being one that it requires a large amount of
trust to be placed in it. SAAF must play the role of trusted
ROOT and acts as the Source of Authority (SoA) for both
the resource provider and the Identity Provider (IdP). Not all
IdPs will be comfortable to allow a third party to affect their
user attribute assignments, which is why we propose an
alternative notification mechanism as well.

Our future work involves the further development of
SAAF, specifically: the definition of cost functions, support
for abnormal under use of resources, and more integration
with risk management. We will draw upon work from trust
access control [17], and cost associated trust access control
[4], in order to build a formal framework for specifying
clear controls that prevent wrongful adaptation. For the
implementation of SAAF, the intent is to rely on model
driven engineering alongside self-adaptation as a potential
means of autonomously managing authorization systems.

ACKNOWLEDGMENT
Co-financed by the Foundation for Science and Technology
via project CMU-PT/ELE/0030/2009 and by FEDER via the
«Programa Operacional Factores de Competitividade» of
QREN with COMPETE reference: FCOMP-01-0124-
FEDER-012983 and an EPSRC grant for studentship.

REFERENCES
[1] ANSI. “Information technology – Role Based Access Control”. ANSI

INCITS 359-2004.
[2] ITU-T Rec X.812 (1995) | ISO/IEC 10181-3:1996 “Security

Frameworks for open systems: Access control framework”.
[3] H. Debar, M. Dacier and A. Wespi, “Towards a taxonomy of

intrustion-detection systems,” Comput. Netw 31, Apr 1999, pp. 805-
822.

[4] M. Serrano, S. Meer, J. Strassner, S. Paoli, A. Kerr and C. Storni,
“Trust and Reputation Policy-Based mechanisms for Self-protection
in Autonomic Communications,” Proc. 6th International Conference
on Autonomic and Trusted Computing, (ATC 09), Springer-Verlag,
2009, pp. 249-267.

[5] R. Sandu and J. Park, “Usage Control: A Vision for Next Generation
Access Control,” In Computer Network Security 2776, Springer-
Verlag, 2003.

[6] ID:Analytics, White paper.: Analysis of Internal Data Theft (2008).
[7] A.P. Moore, D.M. Cappelli, T.C. Caron, E. Shaw, D. Spooner and

R.F. Trzeciak, “A preliminary model of insider theft of intellectual
property,” In Wireless Mobile Networks, Ubiquitous Computing, and
Dependable Applications, vol. 2, 2011.

[8] BBC News. Siprnet: Where the leaked cables came from,
http://www.bbc.co.uk/news/world-us-canada-11863618 [accessed 12-
Jun-2011]

[9] D.W. Chadwick, G. Zhao, S. Otenko, R. Laborde, L. Su and T.A.
Nguyen, “PERMIS: A modular Authorization Infrastructure”,
Concurrency and Computation: Practice and Experience 20, Aug.
2008, pp. 1341-1357.

[10] D.W. Chadwick, S. Otenko and T.A Nguyen, “Adding support to
XACML for multi-domain user to user dynamic delegation of
authority,” International Journal of Information Security 8, Feb. 2009,
pp. 137-152.

[11] Y. Brun, G.M. Serugendo, C. Gacek, H. Giese, H. Keine and M.
Litoiu, “Engineering Self-Adaptive Systems through Feedback
Loops,” In Software Engineering for Self-Adaptive Systems,
Springer-Verlag, 2009, pp. 48-70.

[12] J.O. Kephart and D.M. Chess, “The Vision of Autonomic
Computing,” Computer 36, Jan. 2003, pp. 41-50.

[13] J. Andersson, R. de Lemos, S. Malek and D. Weyns, “Modeling
dimensions of Self-Adaptive software systems,” In Software
Engineering for Self-Adaptive Systems, Springer-Verlag, 2009, pp.
27-47.

[14] L. Shi and D.W. Chadwick, “A controlled natural language interface
for authoring access control policies,” Proc. ACM Symp. Applied
Computing (SAC 11), ACM, 2011, pp. 1524-1530.

[15] A. Ferreira, D.W. Chadwick, P. Farinha, R. Correia, G. Zhao, R.
Chilro and L. Antunes, “How to securely break into RBAC: the BTG-
RBAC model,” Proc. 2009 Annual Computer Security Applications
Conference (ACSAC 09), IEEE Press, 2009, pp. 23-31.

[16] C. da Silva and R. de Lemos, “Dynamic plans for integrations testing
of self-adaptive software systems,” Proc. 6th International Symp.
Software engineering for adaptive and self-managing systems
(SEAMS 11), ACM, 2011, pp. 148-157.

[17] K. Böhm, S. Etalle, J. Den Hartog, C. Hütter, S. Trabelsi, D.
Trivellato and N. Zannone, “A flexible architecture for privacy-aware
trust management,” Theoretical and Applied Electronic Commerce
Research 5, Aug. 2010, pp. 77-96.

444444444444444444444444

