
EpochX: Genetic Programming in Java with Statistics and
Event Monitoring

Fernando E. B. Otero
School of Computing

University of Kent, Canterbury
Kent, CT2 7NF

F.E.B.Otero@kent.ac.uk

Tom Castle
School of Computing

University of Kent, Canterbury
Kent, CT2 7NF

tc33@kent.ac.uk

Colin G. Johnson
School of Computing

University of Kent, Canterbury
Kent, CT2 7NF

C.G.Johnson@kent.ac.uk

ABSTRACT

EpochX is a Genetic Programming (GP) framework written
in Java. It allows the creation of tree-based and grammar-
based GP systems. It has been created to reflect typical ways
in which Java programmers work, for example, borrowing
from the Java event model and taking inspiration from the
Java collections framework. This paper presents EpochX in
general, and gives particular attention to the event model
and the statistics analysis framework.

Categories and Subject Descriptors

I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search—Heuristic methods

General Terms

Algorithms

Keywords

genetic programming, framework, epochx

1. INTRODUCTION
This paper introduces the EpochX system, a freely avail-

able, open source, object-oriented software framework for
genetic programming, written in Java. The software pro-
vides packages for several variants of genetic programming:
strongly-typed tree GP [6, 7], context-free grammar GP [9],
and grammatical evolution [8]. A large number of commonly
used operators are provided, and several benchmark prob-
lems have been implemented as examples. EpochX has been
extensively used in experimental work [2, 3, 4].

The system has a number of benefits. It has been written
to fully exploit the object-oriented nature of the Java lan-
guage. In particular, new problem types and operators are
created in a Java-natural style by the use of inheritance.

A number of distinctive features are provided, designed to
facilitate the analysis of GP runs. One such feature is the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’12 Companion, July 7–11, 2012, Philadelphia, PA, USA.
Copyright 2012 ACM 978-1-4503-1178-6/12/07 ...$10.00.

provision of an event framework, based on the Java event
handling model, which allows actions to be associated with
particular events such as the start or end of generations or
the performance of particular operators. Another feature is
a rich statistics (also referred to as stats) provision, allow-
ing each problem implementation to define its own set of
statistics measures befitting the problem being tackled.

It is often the case that in research applications, informa-
tion about the GP runs needs to be recorded for future anal-
ysis. One simple approach to generate output—and perhaps
the most common one—is to insert print statements in to
the code, which print information either to the terminal or
to a file. While this seems simple, it is easy to see that it can
become rather complex as the information to be outputted,
which usually requires additional statements to be generated
and formatted, occur in multiple places in the code. This
leads to blocks of statements spread through the code for the
purpose of generating and outputting information about the
run. Simple tasks such as changing the output format then
become more complex, since these multiple occurrences of
output statements need to be updated. The use of logging
facilities can centralise the output mechanism, but it still re-
quires the addition of log statements and other statements
to generate the information, throughout the code. Addition-
ally, there is no mechanism to easily integrate textual and
graphical output.

Apart from providing a facility to output information,
there is a requirement to provide a mechanism to gather
statistics data about a run. For example, ECJ [1, 10]—
a popular evolutionary computation framework—provides
statistics hooks, in which ECJ calls predefined methods on
a Statistics object during the run of the evolutionary al-
gorithm. Subclasses of the Statistics class can provide
custom implementations of these hooks (methods), such as:

preInitializationStatistics(EvolutionState state);

preEvaluationStatistics(EvolutionState state);

finalStatistics(EvolutionState state, int result);

to generate additional information about the run. At the
same time that the use of hooks provide a customizable way
of gathering and outputting statistics information, they de-
fine an arbitrary (rigid) structure related to when the infor-
mation is generated. In this paper, we discuss how statistics
information about the run of an evolutionary algorithm is
generated and outputted in the EpochX framework.

The remainder of the paper is structured as follows. Sec-
tion 2 gives details of the basic ideas and design principles of
the EpochX framework. It also outlines the original statis-
tics system (Stats system) and highlights its limitations.

CFG-GPGEGP

common module

core framework

ScriptingInterpreter

SourceGenerator

Grammar

NumericUtils
Evolver

FitnessEvaluator

Config

Initialiser

Figure 1: An illustration the organisational structure of EpochX. Each representation package depends on
the common module which in turn depends on the core evolutionary framework.

Section 3 discusses the new event-driven Stats system with
consideration for how it overcomes these problems. Section
4 discusses how the information gathered can be displayed
to the user. Section 5 lists a complete example code to solve
one commonly used benchmark problem with EpochX and
generate output. This is followed by some conclusions pre-
sented in Section 6.

2. EPOCHX
EpochX has been designed with a modular structure, com-

prised of a core evolutionary framework and separate pack-
ages to support specific representations. Figure 1 shows the
layered structure of the modules, where the representation
packages are built on top of the common module, which in
turn depends on the core framework. The core framework
of EpochX includes the components of the evolutionary al-
gorithm itself and provides an infrastructure for modifying
most aspects of this algorithm. The common module ex-
tends this framework to add a library of commonly used
tools and utilities, that are shared by multiple representa-
tions. The representation packages define the representation
of an individual and supply the operators and other compo-
nents necessary to support that representation.

An evolutionary run is performed by creating an Evolver

object and calling its run() method:

Evolver evolver = new Evolver();

evolver.run();

The Evolver class is composed of a pipeline of components,
which are executed sequentially when the evolver’s run()

method is called. Each component is passed a population of
individuals as input and after performing some processing,
returns a population of individuals which the pipeline will
pass on to the next component. By default, the evolver’s
pipeline is composed of three components:

1. Initialiser

2. FitnessEvaluator

3. EvolutionaryStrategy

An empty population is passed to the first component, which
would typically generate an initial population. The Fitnes-
sEvaluator component will then use a fitness function pro-
vided by the user to assign a Fitness to each individual

in the population. Then, this initial population will be
passed to the EvolutionaryStrategy, which is responsible
for evolving the population. Different implementations of
each of these components are possible, and the pipeline may
be modified to use a different set of components entirely.

For a normal generational evolutionary algorithm, a Gene-
rationalStrategy is defined. This uses a second pipeline
which is executed multiple times until any of a set of user
defined termination criteria are met. Each iteration is con-
sidered to be a ‘generation’. This pipeline would typically
be made up of components that apply genetic operators to
produce a new population from a previous population, and
a FitnessEvaluator to assign a Fitness to each individual
in a generation’s population.

Prior to calling the run() method of the evolver, the
framework should be set up with control parameters that are
suitable for the problem to be solved. A configuration repos-
itory called Config, is provided, which is used to specify the
initial settings of control parameters and to allow them to be
modified as a run progresses. Values are stored in the con-
figuration repository as key/value pairs, with Java’s generics
feature used to enforce the type safety of values and avoid
errors occurring. For instance, a selection operator may de-
fine this configuration key:

ConfigKey<Integer> TOURNAMENT_SIZE =

new ConfigKey<Integer>();

The repository will enforce the generic type constraint of the
key, and ensure that only integer values are set with it. All
components and operators are written to obtain their config-
uration from this repository. Where possible, the framework
and operators are written to insert sensible defaults for their
configuration options into the repository. These defaults
may be overwritten as necessary. The following code would
overwrite the default tournament size, using the key defined
above:

// gets the singleton Config instance

Config config = Config.getInstance();

// initialises it with default values

config.defaults();

// overwrites the default tournament size

config.set(TournamentSelector.TOURNAMENT_SIZE, 3);

The core framework is kept as lightweight as possible.
Many of the operators it relies on are provided as interfaces
which define the functionality required. For example, the
Operator interface, which models a genetic operator, defines
methods for obtaining the number of individuals it operates
on and for applying the operator to an array of individuals.
The framework is able to use these methods without any
knowledge of the representation in use. Implementations of
these operators are supplied by the representation packages
and common module. The most commonly used operators
are supplied for each representation, but new operators are
easily added by implementing the Operator interface and
setting the new operator in the configuration repository.

As a run progresses, data about the progress of the run is
accessible through two facilities that are provided by the
framework: (1) an event system allows components and
other user written code to be notified about each stage of
the algorithm and to receive related data; (2) more indepth
information and statistics are provided through the Stats
system, which presents a convenient and efficient way of gen-
erating additional data to be outputted to the screen and/or
file, either as textual or graphical information. Event man-
agement in EpochX is described in detail in Section 2.1, but
the main focus of this paper is the Stats system. Section
2.2 describes the original (previous) Stats system, as well as
highlighting some of the serious limitations that it suffers
from. However, the Stats system was completely redesigned
for version 2.0 of EpochX to overcome these flaws. There
was also a desire to make it easier for a user to extend the
available ‘stats’, to provide their own data through the same
infrastructure. This new Stats system will be described in
detail in Section 3.

2.1 Events
The event management in EpochX is implemented using

the observer design pattern [5]. The observer pattern de-
fines a one-to-many dependency between an observable ob-
ject and a set of observer objects, allowing observer objects
to be notified of changes of the observable object. EpochX’s
event management uses events (observable objects) to notify
listeners (observer objects) that something of interest has
occurred during the run of the algorithm—e.g., the event of
starting a generation or the event when a genetic operator
has been performed. This allows the listeners to perform
additional actions in response to events.

A singleton EventManager instance is responsible for reg-
istering listeners and also it provides the mechanism to fire
events. The EventManager allows:

• An event to have multiple listeners. When an event has
multiple listeners, the listeners are notified sequentially
when an event is fired. Events that have no listeners,
are never fired.

• Notification of events respecting the class hierarchy.
When an event is fired, the EventManager notifies the
listeners of the specified event and also the listeners
of any of the superclasses of the event—e.g., firing a
CrossoverEvent will notify listeners of the Crossover-
Event and also the listeners of the OperatorEvent.

Custom events can be easily created by implementing the
empty Event interface and events can encapsulate any data
to be passed to the listeners. Custom listeners are created
by implementing the Listener interface:

public interface Listener<T extends Event> {

public void onEvent(T event);

}

The onEvent method is called by the EventManager to no-
tify that an event has occurred. The listener receives the
(typed) event object and can perform an action in response
to the event. Events are fired using the EventManager’s fire
method:

EventManager.getInstance().fire(

new EndGeneration(generation, population));

where the fire method’s parameter is the event object. In
the above example, the EndGeneration event encapsulates
the generation number and the population of the generation
that has just finished.

The core framework provides events for the general lifecy-
cle of an evolutionary algorithm—such as the start/end of a
run, initialisation of the population, generation and genetic
operators—and custom events can be easily incorporated.
For example, the core framework provides a base class for
the creation of genetic operators, which automatically fires
start and end events:

public abstract class AbstractOperator

implements Operator {

public final Individual[] apply(

Individual ... individuals) {

Individual[] parents = clone(individuals);

// fires the start event

StartOperator start =

getStartEvent(individuals);

EventManager.getInstance().fire(start);

// performs the operator

parents = perform(parents);

// fires the end event

EndOperator end = getEndEvent(individuals);

end.setChildren(clone(parents));

EventManager.getInstance().fire(end);

return parents;

}

...

}

Subclasses of the AbstractOperator must implement the
perform method, which is responsible for applying the ge-
netic operator, and may optionally override the getStart-

Event and getEndEvent methods to provide alternative im-
plementations of the start and end operator events. The
default implementation of the StartEvent provides the in-
formation of the parent individuals (the individuals under-
going the genetic operator), while the default implementa-
tion of the EndEvent provides the information of the parent
individuals and also the information of the offspring (the
individuals produced by the genetic operator).

2.2 Stats
The original (previous) Stats system, used in EpochX re-

leases prior to the one described in this paper, uses a central
repository to store data about the progress of an evolution-
ary run. Certain items of raw data, such as a generation’s
population of individuals or the duration of an evaluation,
are inserted into this repository by the framework. Each
item of data is referenced using a key, which is an object
that implements a Stat interface. This key can be used to
retrieve any data stored to it in the repository. But it also
has an alternative use to generate the stat if it does not al-
ready exist. If the repository does not contain any data for
a required stat, then the repository makes a method call on
the stat object itself, requesting for it to be generated. The
stat is then responsible for producing and returning a value
for the key it represents.

To produce a value, a stat object needs to obtain data to
process. It can do this by requesting data from the repos-
itory, using other stats as keys. These stats are its depen-
dencies. This leads to a situation where stats are chained, so
that each one may be dependent on several others, which are
themselves dependent on other stats, and so on. Requesting
a stat value from the repository can trigger a whole chain of
stats to be generated. For example, the GEN_FITNESS_STDEV
stat is responsible for producing the standard deviation of
a population’s fitness scores. It is dependent on two other
stats: GEN_FITNESSES, which provides a list of fitness val-
ues for the population and GEN_FITNESS_AVE, which gives
the mean fitness of the population. The GEN_FITNESS_STDEV
stat could just calculate the mean itself, but by using the stat
system, it ensures that the mean fitness only needs to be cal-
culated once. If the user was to output both the mean fitness
and the standard deviation for each generation, then they
would reuse the same partial calculation. This efficiency be-
comes even more valuable where more complex analysis is
being performed.

When data has been generated, it is stored in the reposi-
tory so that it does not need to be generated again. However,
there are times when the value for a stat changes, and the
stored value must be updated. For example, when a gener-
ation ends, how does the repository know that the average
generation fitness data is out of date? To overcome this is-
sue, each stat is associated with an event which indicates a
point of expiry. The repository then listens for events that
are fired by the EpochX framework, and clears all the data
associated with an event when it occurs. This prevents the
repository returning old data, and new values get generated
instead.

As well as providing a mechanism for gathering data, the
Stats system enables a convenient way of printing the data
to screen or to a file. The repository exposes print methods
for outputting to an OutputStream, with System.out used
by default to print to the console. These methods take a
variable number of Stat objects as arguments, which define
the fields to be printed. Values for these stats are retrieved
or generated as required, and then printed to the output
stream in a delimiter separated row, in the same order as
the stat keys were provided:

Stats.getInstance().print(

GEN_NUMBER,

GEN_FITNESS_MIN,

GEN_FITNESS_AVE);

This provides a simple way of outputting data in a conve-
nient format. A typical use case is for data to be printed
at regular intervals, such as after every generation. This is
supported by combining use of the Stats system with events,
to call a print method on each occurrence of an event. An
idiomatic way of doing this is with an anonymous listener
class:

EventManager.getInstance().add(

EndGeneration.class,

new Listener<EndGeneration>() {

public void onEvent(EndGeneration event) {

Stats.getInstance().print(

GEN_NUMBER,

GEN_FITNESS_MIN,

GEN_FITNESS_AVE);

}

});

In this example, a listener is added to the EndGeneration

event. When the event is fired, the onEvent method will be
called, which will print the latest row of stats data.

The major strengths of the Stats system are that it pro-
cesses data efficiently and it provides a simple and consistent
interface for obtaining data about all aspects of an evolution-
ary run. But, this original implementation suffers from some
significant limitations:

• Each stat can only depend on either the raw data
which is supplied by the framework, or on other stats
which are themselves directly or indirectly dependent
on the raw data.

• It is not possible to create stats which are based on
data from multiple occurrences of an event. For exam-
ple, a stat cannot provide the mean time to perform a
crossover in a generation, because at the end of each
generation only data from the last crossover will be
available.

The next section presents the redesigned Stat system that
addresses the aforementioned limitations.

3. NEW EVENT-DRIVEN STATS SYSTEM
EpochX’s Stats system has been redesigned to take advan-

tage of the event model, described in Subsection 2.1. Stat
objects are implemented to work as listeners and each stat
is associated with an event, which triggers the stat object to
calculate/update its information. This not only provides a
more flexible Stats system but also addresses the limitations
discussed in Section 2—i.e., stats do not depend on raw data
provided by the framework and can collect data from any
event during the run. Additionally, there is no need for a
central repository to store raw data about the progress of
the run, since data is gathered and stored by stats objects.

Stats are implemented by subclassing the AbstractStat

class. The AbstractStat class is not only the base class for
stats, but also provides a mechanism to register and retrieve
stat objects. Stats classes are not instantiated directly, in-
stead they are registered in a repository. This allows the
Stat system to make sure that there is only one instance of
the stat, since it does not make sense to have more than one

object calculating/storing the same information. The cen-
tral repository of stats facilitates the management of their
dependencies—when a stat is instantiated by the Stat sys-
tem, all its dependencies are automatically instantiated if
they are not in the repository—and the prevention of circu-
lar dependencies. For example, if stat A depends on stat B,
and stat B depends on stat A, any attempt to register either
stat A or B will generate an exception.

The new Stats system also makes it easier for a user to
provide custom stats, based on the information of the events
provided by the core framework, custom events or other
stats objects. Although stats classes do not implement the
Listener interface, each stat object has a listener registered
by the superclass AbstractStat to receive the notification
of the event that triggers the stat to be calculated/updated.

Let us consider a simple example of a stat that stores the
current generation number. The basic implementation is:

public class GenerationNumber

extends AbstractStat<StartGeneration> {

private int current;

public void refresh(StartGeneration event) {

current = event.getGeneration();

}

public int getCurrent() {

return current;

}

}

The above example highlights the connection between events
and stat objects. The extends AbstractStat<StartGenera-
tion> clause indicates that the GenerationNumber stat is
triggered by the StartGeneration event. The information
collected by the GenerationNumber stat is also provided by
the StartGeneration event, corresponding to the generation
number associated with the event. The core framework fires
the StartGeneration event at the beginning of each gen-
eration. Every time a new StartGeneration event is fired,
the GenerationNumber stat is updated to store the current
generation number. The information of a stat object can be
queried by retrieving the stat object from the central repos-
itory:

GenerationNumber stat = AbstractStat.get(

GenerationNumber.class);

int generation = stat.getCurrent();

At any point of the execution of the algorithm, a stat object
can be retrieved from the repository and have its information
queried.

The previous example shows how simple it is to implement
a new stat and retrieve its information, although it does not
illustrate the full flexibility of the Stat system. The Stat
system provides a dependency mechanism and more elabo-
rate stats can be created without increasing their complex-
ity by chaining stat objects. The chaining of stat objects is
achieved by defining dependencies amongst them, i.e., a stat
object can depend on one or more stat objects. The basic
idea is to have different stats representing specific units of

information, which can be reused by other stats to derive
different information.

Let us consider an example of the commonly used stat
to compute the population’s average fitness of a generation.
The basic implementation is:

public class GenerationAverageFitness

extends AbstractStat<EndGeneration> {

private double average;

public GenerationAverageFitness() {

super(GenerationFitnesses.class);

}

public void refresh(EndGeneration event) {

Fitness[] fitnesses = AbstractStat

.get(GenerationFitnesses.class)

.getFitnesses();

average = 0.0;

for (Fitness fitness: fitnesses) {

average += fitness.getValue();

}

average /= fitnesses.length;

}

public double getAverage() {

return average;

}

}

The GenerationAverageFitness stat is triggered by the En-
dGeneration event, as indicated by the extends Abstract-
Stat<EndGeneration> clause. The super constructor call
super(GenerationFitnesses.class) informs the Abstra-

ctStat superclass that this stat depends on the Genera-

tionFitnesses stat. By indicating its dependencies, the
Stat system guarantees that the GenerationFitnesses stat
is present in the repository and it can be retrieved using
the call AbstractStat.get(GenerationFitnesses.class).
The GenerationFitnesses is a simple stat that holds the
population’s fitnesses of the current generation. The Gene-

rationAverageFitness queries the information about the
population’s fitnesses to calculate and store the average fit-
ness value. Note that in contrast to our previous Generati-
onNumber stat example, the information provided by the
event which triggers the GenerationAverageFitness stat
(the EndGeneration event) is not actually used—the event
is only used to determine when the GenerationAverageFi-

tness stat should be calculated.
Similarly to the above GenerationAverageFitness exam-

ple, the population’s fitnesses information provided by the
GenerationFitnesses stat can be used to determine the
standard deviation of the population’s fitness values of a
generation:

public class GenerationStandardDeviationFitness

extends AbstractStat<EndGeneration> {

GenerationNumber

• current

GenerationAverageFitness

• average

GenerationFitnesses

• fitnesses

GenerationStandardDeviationFitness

• stdev

<<depends>>

<<depends>>

Stats system

events generated

during the execution

of the evolutionary

algorithm

<<depends>>

Figure 2: An illustration of EpochX’s Stat system. The dependency amongst stat objects creates a chain
(represented by a dashed line): the value of the GenerationFitnesses stat is calculated first, and its informa-
tion is then used by the GenerationAverageFitness; finally, the information of both GenerationFitnesses and
GenerationAverageFitness stats is used by the GenerationStandardDeviationFitness stat.

private double stdev;

public GenerationStandardDeviationFitness() {

super(GenerationFitnesses.class,

GenerationAverageFitness.class);

}

public void refresh(EndGeneration event) {

Fitness[] fitnesses = AbstractStat

.get(GenerationFitnesses.class)

.getFitnesses();

double average = AbstractStat

.get(GenerationAverageFitness.class)

.getAverage();

stdev = 0.0;

for (Fitness fitness: fitnesses) {

stdev += Math.pow(fitnesses[i]

.doubleValue() - average, 2);

}

stdev = Math.sqrt(

stdev / fitnesses.length);

}

public double getStandardDeviation() {

return stdev;

}

}

As can be seen in its constructor, the GenerationStandard-
DeviationFitness stat depends on the GenerationFitne-

sses stat—from where the population’s fitness values will
be retrieved—and on the GenerationAverageFitness stat—
from where the population’s average fitness value will be
retrieved. The dependency amongst stat objects creates
a chain, i.e., the value of the GenerationFitnesses stat
is calculated first, and its information is then used by the
GenerationAverageFitness. Finally, the information of bo-
th GenerationFitnesses and GenerationAverageFitness

stats is used by the GenerationStandardDeviationFitness
stat. This is illustrated in Figure 2.

4. GENERATING OUTPUT BASED ON

STATS INFORMATION
So far we have discussed how information about the execu-

tion of an evolutionary algorithm can be created and stored
based on events. In most cases, the user is interested in
seeing this information in a friendly way, printing it to the
screen or saving it to a file for further analysis, and also
visualizing it in a graphical form.

The first approach that may come to mind (and probably
the one with which most users will be familiar) is to add print
statements in the code. It requires retrieving the stat ob-
ject from the repository and adding the corresponding print
statement (either to the terminal or a file). While this seems
a simple approach, it lacks elegance and flexibility. Firstly,

the code will be polluted with extra print statements,1 which
are only required to output information. Secondly, the out-
put cannot be easily formatted, since the print statements
are spread in the code and there is no mechanism to easily
change between textual and graphical output.

The use of EpochX’s event management, in combination
with the Stat system, provides a simple and flexible solu-
tion: the stat objects represent the information to be printed
and events trigger when the information should be printed.
This is implemented as the StatPrinter. The basic idea is
very simple: the user registers the stats in the StatPrinter,
which will automatically register them in the repository, and
informs which event will trigger the output of the informa-
tion:

StatPrinter printer = new StatPrinter();

printer.add(GenerationNumber.class);

printer.add(GenerationBestFitness.class);

printer.add(GenerationAverageFitness.class);

printer.printOnEvent(EndGeneration.class);

The above example shows how to create a StatPrinter ob-
ject, which outputs the information of the GenerationNum-

ber, GenerationBestFitness and GenerationAverageFit-

ness stats each time an EndGeneration event is fired. The
output that would be generated by this example is:

1 12.0 16.0

2 10.0 13.0

3 10.0 12.5

4 7.0 11.0

where the first column corresponds to the generation num-
ber, the second column corresponds to the best fitness of
the generation (the lower the value the better the fitness)
and the third column corresponds to the average population
fitness. This order is determined by the order in which the
stats were registered in the StatPrinter object (the first
stat registered will be printed in the first column, and so
forth). It is also possible to customize the StatPrinter in
order to change the output to a file and/or use a different
column separator:

StatPrinter printer = new StatPrinter(

new PrintStream("/var/tmp/example.out");

printer.setSeparator(",");

As shown in the examples above, the use of the StatPrin-
ter avoids the need of manually adding print statements to
output information collected by the stat objects, while still
providing a customizable way to present the information to
the user. Additionally, there is no limitation of how many
StatPrinter objects are used simultaneously, and multiple
objects can be used to output the information to different
targets—e.g., there can be a StatPrinter object that out-
put the information to the screen and another StatPrinter
object to output the information to a file.

4.1 Going beyond textual output
While the StatPrinter provides a flexible way to print

information to the screen or a file in a textual form, other

1Even the use of logging facilities requires extra statements
to output information.

forms of output may be required, e.g., sending the informa-
tion through a network connection or presenting the infor-
mation in a graphical form.

In EpochX, different output mechanisms can be easily
implemented using a similar approach to the StatPrinter

without incurring modifications to the code of the algo-
rithm. For example, the StatPrinter can be used to send
the information through a network connection instead of the
screen or a file, by using a network-connected OutputStream.
Graphical output can be generated with custom listeners
that are triggered by events to update a GUI element based
on the information of stat objects, taking advantage of both
the event model and Stats system of EpochX. The listing
below shows an example of a listener that updates a JLabel

component based on the information of a stat object:

public class LabelUpdater<T extends Event>

implements Listener<T>

private JLabel label;

private Class<? extends AbstractStat<?>> klass;

public LabelUpdater(JLabel label,

Class<? extends AbstractStat<?>> klass) {

this.label = label;

this.klass = klass;

}

public void onEvent(T event) {

label.setText(AbstractStat

.get(klass).toString());

}

}

After creating a LabelUpdater object to update the value of
a JLabel component, the listener must be registered in the
EventManager to start receiving the events that trigger the
update:

JLabel generation = new JLabel():

EventManager.getInstance().add(

EndGeneration.class,

new LabelUpdater<EndGeneration>(label,

GenerationNumber.class));

The above example shows how custom listeners can be
created to update GUI components using the information
from stat objects. Specialised listeners (e.g., listeners that
take information from multiple stat objects) can be imple-
mented to display more elaborate output, such as graphs
showing the progress of the best fitness value over the gen-
erations. There are no limits in the number of listeners used
and they can be combined with the StatPrinter and other
output mechanisms, providing different visualisation of the
run information.

5. A COMPLETE EXAMPLE
This section includes a typical example of how the EpochX

framework can be used to evolve solutions to the even-5 par-
ity problem. Even parity is one of the benchmark problems

that is included in the framework, because it is so frequently
used in genetic programming research. However, other prob-
lems can be easily implemented by using an appropriate fit-
ness evaluator.

The configuration repository is set up with the control pa-
rameters for solving the problem, including a list of genetic
operators, an initialisation procedure and settings for pa-
rameters such as population size and maximum depth. Ter-
mination criteria are also set to use both a maximum num-
ber of generations and a fitness target. A run will progress
until one or more of the termination criteria are met. To
get output about the progress of the run, a StatPrinter is
constructed to print information each generation. Finally,
the runs are started by constructing an Evolver instance
and calling its run() method. The listing below shows the
sequence of statements required to run a GP for the even-5
parity problem:

// initialises default configuration

Config config = Config.getInstance();

config.defaults();

// defines the problem with fitness function

Problem problem = new EvenParity(5);

config.set(Initialiser.METHOD,

new RampedHalfAndHalf(problem.getFunctionSet(),

problem.getTerminalSet()));

config.set(FitnessEvaluator.FUNCTION, problem);

// sets control parameters

config.set(Population.SIZE, 100);

config.set(Crossover.PROBABILITY, 0.9);

config.set(Reproduction.PROBABILITY, 0.1);

config.set(BranchedBreeder.ELITISM, 0);

config.set(TreeFactory.MAX_DEPTH, 17);

config.set(TreeFactory.INITIAL_DEPTH, 6);

config.set(TournamentSelector.TOURNAMENT_SIZE, 7);

config.set(MaximumGenerations.MAX_GENERATIONS, 50);

config.set(TerminationFitness.TARGET,

new DoubleFitness(0));

// sets genetic operators

List<Operator> operators =

new ArrayList<Operator>();

operators.add(new Reproduction());

operators.add(new SubtreeCrossover());

config.set(BranchedBreeder.OPERATORS, operators);

// sets termination criteria

List<TerminationCriteria> criteria =

new ArrayList<TerminationCriteria>();

criteria.add(new MaximumGenerations());

criteria.add(new TerminationFitness());

config.set(

GenerationalStrategy.TERMINATION_CRITERIA,

criteria);

// defines the stats to print

StatPrinter printer = new StatPrinter();

printer.add(GenerationNumber.class);

printer.add(GenerationBestFitness.class);

printer.add(GenerationAverageFitness.class);

printer.add(GenerationFitnessVariety.class);

printer.printOnEvent(EndGeneration.class);

// ready to go

Evolver evolver = new Evolver();

evolver.run();

6. CONCLUSION
We have presented an overview of EpochX, a Genetic Pro-

gramming framework which exploits Java’s object-oriented
feature set to provide a rich set of methods for analysing
evolutionary algorithm runs. We have demonstrated the
use of EpochX’s event and statistics management facilities
for analysing GP runs in an efficient and flexible way. The
event-driven Stats system is highly customizable, making it
easier to gather a vast range of information about the exe-
cution of an evolutionary algorithm in a convenient format.

EpochX is available for download, including source code
and documentation, from http://www.epochx.org/.

7. ACKNOWLEDGEMENTS
The authors gratefully acknowledge the financial support

from the EPSRC grant EP/H020217/1.

8. REFERENCES
[1] ECJ: A Java-based Evolutionary Computation

Research System.
http://cs.gmu.edu/ eclab/projects/ecj/, 2012.

[2] L. Beadle and C. G. Johnson. Semantic analysis of
program initialisation in genetic programming.
Genetic Programming and Evolvable Machines,
10(3):307–337, Sept. 2009.

[3] T. Castle and C. G. Johnson. Positional effect of
crossover and mutation in grammatical evolution. In
Proceedings of the 13th European Conference on

Genetic Programming, EuroGP 2010, volume 6021 of
LNCS. Springer, Apr. 2010.

[4] T. Castle and C. G. Johnson. Evolving high-level
imperative program trees with strongly formed genetic
programming. In Proceedings of the 15th European

Conference on Genetic Programming, EuroGP 2012,
volume 7244 of LNCS, pages 1–12. Springer, Apr.
2012.

[5] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design patterns : elements of reusable object-oriented

software. Addison Wesley, 1994.

[6] J. R. Koza. Genetic Programming: On the

Programming of Computers by Means of Natural

Selection. MIT Press, 1992.

[7] D. J. Montana. Strongly typed genetic programming.
Evolutionary Computation, 3(2):199–230, 1995.

[8] M. O’Neill and C. Ryan. Grammatical evolution.
IEEE Transactions on Evolutionary Computation,
5(4):349–358, Aug. 2001.

[9] P. Whigham. Grammatically-based genetic
programming. In Proceedings of the Workshop on

Genetic Programming: From Theory to Real-World

Applications, pages 33–41, 1995.

[10] D. R. White. Software review: the ECJ toolkit.
Genetic Programming and Evolvable Machines,
13(1):65–67, 2011.

