
Evolving Program Trees with Limited Scope
Variable Declarations

Tom Castle
School of Computing

University of Kent
Canterbury, Kent CT2 7NF

Email: tc33@kent.ac.uk

Colin G. Johnson
School of Computing

University of Kent
Canterbury, Kent CT2 7NF

Email: C.G.Johnson@kent.ac.uk

Abstract—Variables are a fundamental component of computer
programs. However, rarely has the construction of new variables
been left to the evolutionary process of a tree-based Genetic
Programming system. We present a series of modifications to
an existing GP approach to allow the evolution of high-level
imperative programs with limited scope variables. We make
use of several new program constructs made possible by the
modifications and experimentally compare their use. Our results
suggest the impact of variable declarations is problem dependent,
but can potentially improve performance. It is proposed that the
use of variable declarations can reduce the degree of insight
required into potential solutions.

I. INTRODUCTION

Variables are a fundamental component of computer pro-
grams. However, rarely has the power of constructing new
variables been bestowed upon the evolutionary process of a
tree-based Genetic Programming (GP) [1] system. Without
variable declarations, all variables must be supplied as inputs
to the system, including any auxiliary variables required for
the computation process that are not part of the specified inputs
or outputs. With complex programs, this can require a consid-
erable degree of insight into the solution space. By supporting
the evolution of variable declarations, the aim is to lighten this
burden without excessively degrading performance.

It has previously been described how the Strongly Formed
Genetic Programming (SFGP) variant of GP can be used to
enforce a high-level imperative structure on evolved program
trees [2]. In this paper, we present a series of modifications
to SFGP that allow it to support node-types that can declare
new limited scope variables. Limited scope variables are com-
monly found in modern high-level imperative programming
languages, but are particularly challenging to incorporate into
an evolutionary system. The difficulty is that each variable
must not be used prior to being declared, nor beyond the extent
of its scope. Neglecting the limited scope aspect of variable
declarations may simplify the problem. But, this is inconsistent
with the way local variables are used by human programmers,
and produces programs reliant on global variables [3].

One of the frequently mentioned issues with genetic pro-
gramming is the difficulty in evolving iteration or recur-
sion [4], [5]. If a mechanism for supporting variable decla-

rations is used, iterative constructs that more closely resemble
those used in high-level imperative programming languages
are simple to implement. These may supply indices or ele-
ments through variables that they declare. Such constructs are
commonly used in human written code, and it seems likely that
they could help to expand the range and scale of problems GP
can be applied to.

The rest of this paper will be structured as follows. Section
II will discuss some of the related work in the literature,
including a brief summary of variable use in GP. This will
be followed by a description of the SFGP system that is to be
modified to support variable declarations. These modifications
will be outlined in Section IV, along with a list of new
constructs that can be supported. A series of experiments to
examine the effect of these constructs on the evolutionary
performance will be given in Sections V and VI. Finally, we
conclude and summarise some future work.

II. RELATED WORK

Variables are widely used in applications of GP for a variety
of purposes. The inputs for programs in a GP population
are typically supplied using variables, with the set of inputs
defined by the GP practitioner and would normally be the same
for all programs in a population. There is often no facility for
the value of these variables to be altered. However, Koza [1,
Chapter 18.2] did propose a mechanism for assigning the value
of a global variable using a SET-SV operator. He suggested
that the use of a settable variable like this was beneficial for
the evolution of building blocks, since the variable provided a
way of labelling a useful computation so that it could be used
elsewhere in the program. Koza’s approach not only treated
all variables as global, but also required them to be defined in
advance; no variable declarations here.

Linear GP variants [6], [7] commonly make use of defined
memory registers which can be both assigned to and have
values retrieved from them. The number of available registers
is defined in advance to include registers for each input, plus
additional registers for facilitating calculations. Brameier and
Banzhaf [7, Chapter 2.1] make the point that it is important
for a sufficient number of registers to be provided to avoid
valuable information being overwritten. However, too manyc© 2012 IEEE Press

registers may spread the computation too widely, and make
it difficult to build a solution. As Oltean and Grosan [8] put
it, “The number of supplementary registers depends on the
complexity of the expression being discovered. An inappro-
priate choice can have disastrous effects on the program being
evolved”.

Stack based GP systems [9], [10] provide an alternative
approach to memory, where the result of expressions are
pushed onto a stack and popped off as inputs are required.
As such, they are able to support an expandable memory
allocation (within some reasonable bounds). PushGP [10]
evolves programs in the specially designed Push programming
language. Push provides a NAME data type, which maintains
its own stack of variable labels, upon which values may be
pushed by a program to define a new variable.

There has been some limited use of variable declarations
with tree based GP approaches. The authors of OOGP [11]
imply their existence by stating that “new local variables
may occur within block statements”. But they fail to give
any additional details. A far more thorough explanation is
given by Kirshenbaum [12], in his work with statically scoped
local variables. He describes a method for supporting Lisp’s
LET expression, which is able to define variable bindings
with limited scope. This is achieved by adding each LET
expression’s bindings to the set of available operators for each
of the expression’s subtrees as they are generated.

We take a similar approach to Kirshenbaum, but must deal
with a slightly more complicated scenario, to cater for an
imperative structure based on statements and blocks. The
scope of a variable in an imperative program should not
just descend into the operator’s arguments, but should also
be accessible to sibling operators (for example, statements
following a declaration, within the same block).

III. STRONGLY FORMED GENETIC PROGRAMMING

Strongly Formed Genetic Programming (SFGP) [2] is a
technique for evolving program trees that conform to strict
structural constraints. It extends Montana’s Strongly Typed
Genetic Programming (STGP) [13] system, so also includes
strong data-typing restrictions. The authors demonstrate that
it can be used to enforce an imperative structure equivalent to
many popular high-level imperative programming languages,
and make use of some standard programming constructs such
as for loops and for-each loops.

STGP imposes a requirement upon all terminals and non-
terminals to define the data-type of their return value and a
further requirement of all non-terminals to define the required
data-type of each of their arguments. SFGP has the same
requirements, with one addition: all non-terminals must also
define the required node-type for each of their arguments. The
node-type property of an argument is defined as being the
required terminal or non-terminal that can be a child node
at this point, which when evaluated will return the value of
the specified data-type. Both abstract and concrete node-types
are used, where the possible concrete node-types are all those
found in the terminal and non-terminal sets, and the abstract

node-types are those that exist only in the inheritance hierarchy
of the concrete nodes1, so cannot themselves be instantiated.
The use of abstract node-types allow multiple concrete node-
types to be supported for an argument. For example, a
Statement abstract node-type could be satisfied with an
Assignment, an IfStatement, or a Declaration. The
initialisation and genetic operators of SFGP are designed to
ensure all of these constraints are satisfied.

The structural constraints make it possible to enforce an
imperative structure comprised of statements and blocks. They
also enable some additional programming constructs to be
represented, that cannot be supported with just STGP. A gen-
eralised Assignment statement for setting the value of vari-
ables is possible, rather than requiring one SET-VAR-x opera-
tor per variable x. This is possible because the Assignment
operator may define one of its arguments to be a variable,
whereas in STGP only the data-type could be restricted. For
the same reason, more useful loop constructs are enabled that
assign the value of their index or the element being processed
to an available variable on each iteration. One of the limitations
that this paper seeks to address, is that a variable of the correct
data-type must already exist and will then be hijacked for the
loop’s own purpose.

IV. ALGORITHM MODIFICATIONS

There are two forms of variable declaration that we wish to
support, each requiring different scope, consistent with modern
imperative languages such as C/C++ and Java:

• Standard declarations create a new variable and assign
it a value according to some expression. The variable’s
scope extends from the statement following the decla-
ration, up to the end of the block the declaration was
contained within. The variable must not be in scope for
the declaration’s own subtrees, but should be available at
any level of nesting for the following statements, up to
the point it is removed from scope.

• Some more advanced statement types, such as loops, may
declare variables for use only within the body of a child
block. This is the case for loop constructs that declare
a new variable, which is updated on each iteration with
the index or element. These variables should be available
at any level of nesting within the loop statement that
declared them, but not beyond.

To support these types of declaration, we introduce syntax up-
dates. A syntax update is an opportunity for a node to modify
the terminal and non-terminal sets. These syntax updates can
be applied as the initialisation procedure progresses in order
to change the available syntax for the construction of a node’s
subtrees or any following nodes. A syntax update may involve
the addition or removal of nodes from the syntax. Each node
is able to define arity+1 syntax updates, which when the tree
is traversed depth-first, are applied before and after each of its
child nodes are processed. Figure 1 illustrates this, with the
dotted branches indicating the points of each syntax update,

1where an object-oriented implementation is assumed.

A

.............
.............

.............
......

....

....

....

.............
.............

.............
......

1 B

.............
.............

............

...

...

...

.

.............
.............

............

2 C
...
..

3

4 C
...
..

5

6

7 D
...
..

8

9

Fig. 1: Example illustrating the position and order of syntax
updates. The syntax updates are indicated by dotted branches.

which are labelled with the order they would be applied. In
this example, the syntax updates 2, 4 and 6 are all defined
by the B node. Syntax updates 2 and 4 could be used to add
variables, for use in one or both of its child subtrees. These
variables could be removed in the syntax update labelled 6,
which would restrict their scope to the node’s child subtrees.
Syntax update 6 could also be used to define variables to be
available for successive nodes, such as node D.

The following sections describe the modifications that are
necessary to use these syntax updates to evolve programs with
limited scope variable declarations.

A. Initialisation

SFGP uses a grow initialisation procedure to construct
random program trees, where each node is selected at random
from those with a compatible data-type and node-type required
by its parent (or the problem itself for the root node). The
only modification necessary to support variable declarations,
is for the syntax updates for each node to be applied as the
tree is constructed. High-level pseudocode for the initialisation
procedure is shown in algorithm 1. In the example, in Figure 1,
the initialisation procedure would have applied the root’s first
syntax update, labelled 1, prior to selecting which node should
be set as its first child. Any modifications made to the syntax in
that first syntax update, would have influenced which nodes
were available to be selected from. The initialisation would
have continued down the tree, filling the nodes in a depth-first
manner, with each syntax update applied in the order indicated.
This ensures that each node that is selected, is chosen from
only those that should be available at that point.

B. Mutation

A program tree undergoing SFGP’s subtree mutation has a
node randomly selected and replaced with a newly generated
subtree with a compatible data-type and node-type. To support
the dynamic syntax, the randomly generated subtree must
be constructed from the available syntax at the mutation
point, including any additional in-scope variables that have
been declared prior to that point. The available syntax at the
mutation point can be easily obtained by performing a partial
traversal of the program tree, only up to the mutation point,
with each node’s syntax updates applied. The new subtree for
the mutation can then be constructed from the updated syntax
using the initialisation procedure.

Algorithm 1 Initialisation procedure, where dt, nt and depth
are the required data-type, node-type and maximum depth. The
filterNodes(S, dt, nt, depth) function is defined to return
a set comprised of only those nodes in S with the given
data-type and node-type, and with non-terminals removed if
depth = 0. The updateSyntax(S, r, i) function performs the
task of updating the available syntax, S, as defined for the ith
position of the node-type r.

1: function GENERATETREE(dt, nt, depth)
2: V ← filterNodes(S, dt, nt, depth)
3: while V not empty do
4: r ← removeRandom(V)
5: for i← 0 to arity(r) do
6: S ← updateSyntax(S, r, i)
7: dti← required data-type for ith child
8: nti← required node-type for ith child
9: subtree← generateTree(dti, nti, depth−1)

10: if subtree 6= err then
11: attach subtree as ith child
12: else
13: break and continue while
14: end if
15: end for
16: S ← updateSyntax(S, r, arity(r))
17: return r . Valid subtree complete
18: end while
19: return err . No valid subtrees exist
20: end function

There is one further problem that needs to be overcome.
No restrictions are in place on which subtree may be selected
for replacement by the mutation operator. So, a node which
performs a variable declaration could be replaced, potentially
leaving dangling variables. A dangling variable, in this case,
is a use of a variable without an associated declaration. To
resolve this issue, a repair operation is performed, which is
described in Section IV-D.

C. Crossover

Subtree crossover in SFGP operates on two program trees.
A node is randomly selected in one program tree and the
subtree rooted at that node is swapped with a subtree from
the other program tree, selected at random from those with
a compatible data-type and node-type. The dynamic syntax
requires no modifications to this basic practice. However, there
are two specific scenarios that need to be handled for variable
declarations to be supported. (1) As with mutation, the subtree
that is removed may contain the declaration for variables that
are used elsewhere in the program tree. These would become
dangling variables. (2) The subtree that is swapped into the
program tree may also contain dangling variables that were
previously supported by declarations that were not part of
the genetic material transferred. Both of these situations are
resolved with the same repair operation, described in Section
IV-D. An alternative solution could be to prevent crossovers

TABLE I: Type restrictions for each node’s children. d is used
to indicate that any pre-specified data-type is applicable. A
Void data-type indicates no value is returned.

Node Child data-types Child node-types
ForLoopDecl Integer

Void
Expression
CodeBlock

ForEachLoopDecl array of d
Void

Expression
CodeBlock

Declaration d Expression

that lead to dangling variables, but it seems unlikely that the
algorithm will be able to take advantage of declarations if they
are prevented from being exchanged.

D. Repair Operation

To remove all dangling variables introduced by the
crossover and mutation operators, a repair operation is applied
to each program after undergoing one of these genetic opera-
tors. The repair operation replaces any dangling variables with
an in-scope variable of a compatible data-type. To do this, the
program tree is traversed, with each node checked to see if it
is a dangling variable. A node is defined as a dangling variable
if it has a Variable node-type and if that variable does not
exist in the updated syntax at that point. To ensure the syntax
includes only in-scope variables, all syntax updates are applied
as the tree is traversed. If a dangling variable is identified, then
it is replaced with a variable selected at random from those in
the updated syntax with the correct data-type. If there are no
suitable alternative variables then the genetic operator must be
discarded and reattempted.

E. Syntax

The dynamic syntax feature makes it possible to intro-
duce new types of node which can perform our desired
variable declarations. These nodes are considered supple-
mentary to the list provided in [2], and will be used
in conjunction with the node-types described there. Three
node-types from that paper that are of particular relevance
here are CodeBlock, Statement and Expression. A
CodeBlock contains a specified number of Statement
nodes which get evaluated in sequence. We arbitrarily chose
to use code-blocks of size 3. Statement and Expression
are both abstract node-types, which have concrete sub-
types such as Assignment/IfStatement/ForLoop and
Add/Variable/Literal respectively. The following new
node-types are all subtypes of Statement and have a Void
data-type, which indicates they do not return a value. The type
information for these nodes is listed in Table I.

• Declaration - Adds a variable to the syntax on its
last syntax update. The value of this variable is set as the
result of evaluating the child expression.

• ForLoopDecl - Adds an integer variable to the syntax
on its second syntax update and removes the same
variable on its third syntax update. On evaluation, the
first child is evaluated to give the number of iterations
(capped at 100). The child code-block is evaluated once

per iteration, with the value of the variable set as the
current index, starting from 1.

• ForEachLoopDecl - Adds a variable of the same
data-type as its array input to the syntax on its second
syntax update. The variable is removed on the third
syntax update. On evaluation, the first child is evaluated to
provide an array. The child code-block is evaluated once
per element in the array, with the value of the variable
set as the current element.

To limit the scope of variables to the code-block in which
they are declared, the CodeBlock node records the state of
the syntax on its first syntax update and reverts the syntax to
that state on its final syntax update. This results in all variables
declared within that block being removed from the syntax.

V. EXPERIMENTS

A series of experimental runs were performed to test the
impact of the introduction of variable declarations. Three
different scenarios are compared, using different terminal and
non-terminals sets. The labels SFGP, LOOP and DECL are
used to distinguish the different experimental setups.

• SFGP - The terminal and non-terminal sets were made
up of a problem specific selection of general purpose
operators, without variable declarations. For two of the
three problems, an identical setup is used as in [2] (the
reverse-list problem was not used there).

• LOOP - As for SFGP, but each form of loop node
was replaced with the equivalent declarative form. For
instance, ForLoop was replaced with ForLoopDecl,
which operates according to the same semantics, except
that it declares its own variable for storing the iteration
index.

• DECL - As for LOOP, but with the addition of a
Declaration operator.

For each experimental setup, a sample of 500 runs were
performed on three problems: factorial, even-n-parity and
list reversion. These problems were chosen as they require
programming constructs such as iteration and arrays to solve
generally, and have been tackled previously in the litera-
ture [5], [14], [15]. A population of 500 and a maximum of 50
generations were allowed in all cases, with the crossover and
mutation operators chosen from with probabilities 0.9 and 0.1
respectively. Tournament selection was used with a tournament
size of 7. All other control parameters are outlined in tables II,
III and IV. The experiments were conducted using the EpochX
evolutionary framework [16], with operators implemented as
specified in Sections III and IV.

On each problem, auxiliary variables are required for the
normal, non-declarative loops and for returning a value. These
variables are of an integer data-type for the factorial and list-
reverse problems, and boolean for the even-n-parity problem.
The initial value for the integer variables is 0, and is true
for the boolean variables. Any auxiliary variables required for
the SFGP setup are also supplied for the LOOP and DECL
setups, even where not required. This is in order to keep the
setups constant, other than the constructs under examination.

TABLE II: Parameter tableau for the factorial problem.
ForLoop is used on SFGP, but replaced with ForLoopDecl
for LOOP and DECL. Declaration is only used in the
DECL setup.

Root data-type: Integer
Root node-type: SubRoutine
Max. depth: 6
Non-terminals: SubRoutine, CodeBlock,

ForLoop/ForLoopDecl, Declaration,
Assignment, Add, Subtract, Multiply

Terminals: i, loopV ar, 1

A. Factorial

The task to be solved here is an implementation of the
factorial function. One input is provided, which is the integer
variable i, where the ith element of the sequence is the
expected result. The first 20 elements of the sequence were
used to evaluate the quality of solutions, with a normalised
sum of the error used as an individual’s fitness score. The
fitness function is defined in (1), where n is the size of the
training set, i is the ith training case, f(i) is the correct
result for training case i, and g(i) is the estimated result for
training case i returned by the program under evaluation. Each
individual which successfully handles all training inputs is
tested for generalisation using a test set consisting of elements
21 to 50 of the sequence.

Fitness =

n∑
i=0

|f(i)− g(i)|
|f(i)|+ |g(i)|

(1)

B. Even-N-Parity

The boolean parity problems are widely used as a bench-
mark task in the GP literature [1], [7]. However, they have
only occasionally been tackled in the general form; for all
values of n [14], [17]. A program which successfully solves
the even-n-parity problem, must receive as input an array of
booleans, arr, of unknown length and must return a boolean
true value if an even number of the elements are true,
otherwise it must return false. All possible inputs to the
3-bit even-parity problem were used as the training data, as
used by Wong and Leung [14]. The fitness of an individual is
a simple count of how many of the 8 inputs are incorrectly
classified. A test set consisting of all possible input arrays of
lengths 4 to 10 was used to test the generalisation of solutions
that successfully solve the training cases.

C. Reverse List

A solution to the list reversion problem receives as input
a list of variable length, and reverts the order of all elements
in the list, returning the resultant list. In our experiments in
this paper we use a list of characters, but any element data-
type could equally have been used. The same five randomly
generated lists of lengths 9..10 elements are used as the
training inputs (shown below), with a further 30 randomly
constructed lists of lengths 10..20 used to test generalisation.

TABLE III: Parameter tableau for the even-n parity prob-
lem. ForEachLoop is used on SFGP, but replaced with
ForEachLoopDecl for LOOP and DECL. Declaration
is only used in the DECL setup.

Root data-type: Boolean
Root node-type: SubRoutine
Max. depth: 8
Non-terminals: SubRoutine, CodeBlock,

ForEachLoop/ForEachLoopDecl,
Declaration, IfStatement, Assignment,
And, Or, Not

Terminals: arr, resultV ar, loopV ar1, loopV ar2, true,
false

TABLE IV: Parameter tableau for the list reverse prob-
lem. ForEachLoop is used on SFGP, but replaced with
ForEachLoopDecl for LOOP and DECL. Declaration
is only used in the DECL setup.

Root data-type: Character[]
Root node-type: SubRoutine
Max. depth: 8
Non-terminals: SubRoutine, CodeBlock,

ForLoop/ForLoopDecl, Declaration,
ArrayLength, Subtract, Divide, Swap

Terminals: arr, loopV ar1, loopV ar2, 1, 2

The fitness of an individual is calculated as the sum of the
levenshtein difference for each list, between the returned list
and the correctly reverted list.

[U,V,B,L,N,U,G,D,A,H] [X,I,D,L,O,I,R,P,W]
[I,A,D,B,E,G,K,U,D] [C,R,T,U,U,U,P,W,N,M]

[U,E,Q,W,G,U,O,M,O]

VI. RESULTS & DISCUSSION

The expectation was that the use of declarative loops would
have a minimal impact on performance, but that the use of the
Declaration node would severely degrade performance.
This seemed likely because a Declaration which is intro-
duced by a mutation operation will be unable to immediately
contribute to the fitness of the individual. A second mutation
is necessary to use the variable provided by that declaration
in some productive way. Until that point, the declaration is
effectively ‘junk’ code. So in our results, we would expect to
see little difference between the SFGP and LOOP experimental
setups, but for these both to display substantially better results
than the DECL setup. The results summary in table V and
related performance curves in Figures 2, 3 and 4, show that
these expectations are only partially correct. The table displays
the proportion of runs that found programs that were correct
for all training and test cases (only training cases were used
for fitness). It also shows the required computational effort,
which is a calculation of the number of individuals that
must be processed in order to produce a solution with 99%
confidence [18]. The supplied confidence intervals for this
value, are calculated using Wilson’s ’score’ method [19].

Generation

1 10 20 30 40 50
0

25

50

75

100
P

ro
ba

bi
lit

y
of

 S
uc

ce
ss

 (
%

)

8 : 29400

0

63933

127866

In
di

vi
du

al
s

to
 b

e
P

ro
ce

ss
ed

P(M,i)
I(M,i,z)

(a) SFGP

Generation

1 10 20 30 40 50
0

25

50

75

100

P
ro

ba
bi

lit
y

of
 S

uc
ce

ss
 (

%
)

8 : 113000

0

510000

1020000

In
di

vi
du

al
s

to
 b

e
P

ro
ce

ss
ed

P(M,i)
I(M,i,z)

(b) LOOP

Generation

1 10 20 30 40 50
0

25

50

75

100

P
ro

ba
bi

lit
y

of
 S

uc
ce

ss
 (

%
)

8 : 533000

0

1533333

3066666

In
di

vi
du

al
s

to
 b

e
P

ro
ce

ss
ed

P(M,i)
I(M,i,z)

(c) DECL

Fig. 2: Performance curves for the factorial problem. P (M, i) is the success rate on the test cases and I(M, i, z) is the number
of individuals to process to find a solution with 99% confidence.

On the factorial problem, the DECL version does indeed
perform terribly in comparison to SFGP. But, the results for
LOOP are only slightly better. The results for the even-n-parity
and list reverse problems are even more surprising. SFGP
is the worst of the three setups on both of these problems.
On the even-n-parity problem, LOOP shows a statistically
significant drop in required computational effort compared to
both DECL and SFGP. While on the list reverse problem,
DECL has the lowest required computational effort, which is
also a statistically significant result.

The results suggest the impact of variable declarations is
problem dependent. It seems to be the case on the factorial
problem, that there is an advantage in having index variables
that will remain in scope beyond the last statement of a loop. It
will be necessary to expand this experiment to a wider range of
problems to get a better understanding of the circumstances
in which variable declarations are beneficial to performance
and when they are harmful. However, the primary motivations
of this paper are not in the performance benefits. Allowing
new variables to be declared is more consistent with how
high-level imperative programming languages are used by
human programmers. This is particularly true for the new loop
constructs that supply their own limited scope variables. A
second advantage, is that variable declarations can reduce the

degree of insight required in to potential solutions. The need
to consider the quantity and data-type of auxiliary variables
to provide is removed if they can be successfully declared by
the programs themselves.

One concern with the modifications that were introduced,
was that the need for a repair operation would be excessively
damaging to the exchange of building blocks. The repair
operation makes no consideration for the context of variables,
and simply maps the dangling variables to new ones based
on data-type. Table VI lists the proportion of individuals
generated by each genetic operator that required one or more
dangling variables to be repaired. Although we have not, as
yet, examined the impact of the repair operation, it seems that
any impact should be minimal since the proportion of individ-
uals undergoing the operation is low. Note that mutations are
unable to cause dangling variables with the syntax used for the
LOOP experiments, because the only declarations available are
provided by loops, where the scope of the variable is limited
to one of its own subtrees. So if the declaration is replaced,
so are all references to that variable.

VII. CONCLUSION

The addition of variable declarations can either improve or
degrade evolutionary performance depending on the problem

Generation

1 10 20 30 40 50
0

25

50

75

100
P

ro
ba

bi
lit

y
of

 S
uc

ce
ss

 (
%

)

6 : 30500

0

59866

119733

In
di

vi
du

al
s

to
 b

e
P

ro
ce

ss
ed

P(M,i)
I(M,i,z)

(a) SFGP

Generation

1 10 20 30 40 50
0

25

50

75

100

P
ro

ba
bi

lit
y

of
 S

uc
ce

ss
 (

%
)

7 : 12200

0

25800

51600

In
di

vi
du

al
s

to
 b

e
P

ro
ce

ss
ed

P(M,i)
I(M,i,z)

(b) LOOP

Generation

1 10 20 30 40 50
0

25

50

75

100

P
ro

ba
bi

lit
y

of
 S

uc
ce

ss
 (

%
)

8 : 15000

0

31000

62000

In
di

vi
du

al
s

to
 b

e
P

ro
ce

ss
ed

P(M,i)
I(M,i,z)

(c) DECL

Fig. 3: Performance curves for the even-n-parity problem. P (M, i) is the success rate on the test cases and I(M, i, z) is the
number of individuals to process to find a solution with 99% confidence.

TABLE V: Results summary, where Exp is the experiment,
Train% is the probability of success on the training cases,
Test% is the percentage of runs that found a solution that
generalised to the test set. Effort is the required computational
effort and 95% CI is its confidence interval.

Exp. Train% Test% Effort 95% CI

Factorial
SFGP 70.8 70.6 29,400 25,800 - 33,500
LOOP 22.8 22.8 113,000 90,600 - 142,000
DECL 7.6 7.6 533,000 333,000 - 854,000

Parity
SFGP 91.6 81.4 30,500 26,400 - 35,400
LOOP 99.0 95.2 12,200 11,000 - 13,700
DECL 98.2 92.0 15,000 13,500 - 16,900

Reverse
SFGP 82.8 79.8 28,800 25,800 - 32,400
LOOP 83.4 83.2 23,700 21,100 - 26,600
DECL 88.4 87.8 20,000 17,900 - 22,400

and the way they are used. The Declaration nodes, that
were solely for the purpose of adding new variables, were less
damaging than expected, and in one case actually improved
performance. However, the main advantage of declarations
remains that they remove some of the challenge in allocating
auxiliary variables, particularly where less is known about the
solution in advance. The use of declarative loops was not en-
tirely successful, and the substantial reduction in success rates
on the factorial problem, in comparison to SFGP, demonstrates

TABLE VI: Summary of repair operations, showing the per-
centage of program trees produced by each genetic operator
that required the repair operation to fix one or more dangling
variables.

Exp. Repair Operations
Crossover Mutation

Factorial LOOP 5.7% -
DECL 4.8% 0.6%

Parity LOOP 16.3% -
DECL 16.3% 1.8%

Reverse LOOP 12.1% -
DECL 13.3% 1.1%

that more work is needed to consider the circumstances in
which they can be used productively. But use of loops that
can declare their own variables will lead to programs that are
more representative of human programming efforts. The value
of loops generally is in producing smaller and more general
solutions to more complex problems, so more work in this
direction could be valuable.

REFERENCES

[1] J. R. Koza, Genetic Programming: On the Programming of Computers
by Means of Natural Selection. Cambridge, MA, USA: MIT Press,
1992.

Generation

1 10 20 30 40 50
0

25

50

75

100
P

ro
ba

bi
lit

y
of

 S
uc

ce
ss

 (
%

)

13 : 28800

0

305333

610666

In
di

vi
du

al
s

to
 b

e
P

ro
ce

ss
ed

P(M,i)
I(M,i,z)

(a) SFGP

Generation

1 10 20 30 40 50
0

25

50

75

100

P
ro

ba
bi

lit
y

of
 S

uc
ce

ss
 (

%
)

10 : 23700

0

305333

610666

In
di

vi
du

al
s

to
 b

e
P

ro
ce

ss
ed

P(M,i)
I(M,i,z)

(b) LOOP

Generation

1 10 20 30 40 50
0

25

50

75

100

P
ro

ba
bi

lit
y

of
 S

uc
ce

ss
 (

%
)

10 : 20000

0

108000

216000

In
di

vi
du

al
s

to
 b

e
P

ro
ce

ss
ed

P(M,i)
I(M,i,z)

(c) DECL

Fig. 4: Performance curves for the list reverse problem. P (M, i) is the success rate on the test cases and I(M, i, z) is the
number of individuals to process to find a solution with 99% confidence.

[2] T. Castle and C. G. Johnson, “Evolving high-level imperative program
trees with strongly formed genetic programming,” in Proceedings of the
15th European Conference on Genetic Programming, 2012.

[3] W. Wulf and M. Shaw, “Global variable considered harmful,” SIGPLAN
Notices, vol. 8, pp. 28–34, February 1973.

[4] V. Ciesielski and X. Li, “Experiments with explicit for-loops in genetic
programming,” in Proceedings of the 2004 IEEE Congress on Evolu-
tionary Computation. Portland, Oregon: IEEE Press, 20-23 Jun. 2004,
pp. 494–501.

[5] A. Agapitos and S. M. Lucas, “Learning recursive functions with object
oriented genetic programming,” in Proceedings of the 9th European
Conference on Genetic Programming, ser. LNCS, vol. 3905. Budapest,
Hungary: Springer, 2006, pp. 166–177.

[6] P. Nordin and W. Banzhaf, “Evolving Turing-complete programs for
a register machine with self-modifying code,” in Genetic Algorithms:
Proceedings of the Sixth International Conference. Pittsburgh, PA,
USA: Morgan Kaufmann, 1995, pp. 318–325.

[7] M. Brameier and W. Banzhaf, Linear Genetic Programming. Springer,
2007.

[8] M. Oltean and C. Grosan, “A comparison of several linear genetic
programming techniques,” Complex Systems, vol. 14, no. 4, 2004.

[9] T. Perkis, “Stack-based genetic programming,” in Proceedings of the
1994 IEEE World Congress on Computational Intelligence, vol. 1.
Orlando, Florida, USA: IEEE Press, 1994, pp. 148–153.

[10] L. Spector and A. Robinson, “Genetic programming and autoconstruc-
tive evolution with the push programming language,” Genetic Program-
ming and Evolvable Machines, vol. 3, no. 1, pp. 7–40, Mar. 2002.

[11] R. J. Abbott, “Object-oriented genetic programming, an initial im-
plementation,” in Procceedings of the Sixth International Conference
on Computational Intelligence and Natural Computing, Cary, North
Carolina USA, 2003.

[12] E. Kirshenbaum, “Genetic programming with statically scoped local
variables,” in Proceedings of the Genetic and Evolutionary Computation
Conference. Las Vegas, Nevada, USA: Morgan Kaufmann, 2000, pp.
459–468.

[13] D. J. Montana, “Strongly typed genetic programming,” Evolutionary
Computation, vol. 3, no. 2, pp. 199–230, 1995.

[14] M. L. Wong and K. S. Leung, “Evolving recursive functions for the even-
parity problem using genetic programming,” in Advances in Genetic
Programming 2. Cambridge, MA, USA: MIT Press, 1996, ch. 11, pp.
221–240.

[15] S. Harding, J. Miller, and W. Banzhaf, “Self modifying cartesian
genetic programming: Fibonacci, squares, regression and summing,” in
Proceedings of the 12th European Conference on Genetic Programming,
ser. LNCS, vol. 5481. Tübingen, Germany: Springer, 2009, pp. 133–
144.

[16] T. Castle and L. Beadle, “Epochx: genetic programming software for
research,” http://www.epochx.org, 2007.

[17] L. Huelsbergen, “Finding general solutions to the parity problem by
evolving machine-language representations,” in Genetic Programming
1998: Proceedings of the Third Annual Conference. Madison, Wiscon-
sin, USA: Morgan Kaufmann, 1998, pp. 158–166.

[18] D. Andre and J. R. Koza, “Parallel genetic programming on a network of
transputers,” in Proceedings of the Workshop on Genetic Programming:
From Theory to Real-World Applications, J. P. Rosca, Ed., Tahoe City,
California, USA, 9 Jul. 1995, pp. 111–120.

[19] M. Walker, H. Edwards, and C. Messom, “Confidence intervals for
computational effort comparisons,” in Proceedings of the 10th European
Conference on Genetic Programming, ser. LNCS, vol. 4445. Valencia,
Spain: Springer, 2007, pp. 23–32.

