
Quantifying Performance Changes with Effect Size Confidence
Intervals

TOMAS KALIBERA, RICHARD JONES, University of Kent

Measuring performance and quantifying a performance change are core evaluation techniques in pro-
gramming language and systems research. Out of 122 recent scientific papers published at PLDI, ASPLOS,
ISMM, TOPLAS, and TACO, as many as 65 included experimental evaluation that quantified a performance
change using a ratio of execution times. Unfortunately, few of these papers evaluated their results with the
level of rigour that has come to be expected in other experimental sciences. The uncertainty of measured
results was largely ignored. Scarcely any of the papers mentioned uncertainty in the ratio of the mean exe-
cution times, and most did not even mention uncertainty in the two means themselves. Furthermore, most
of the papers failed to address the non-deterministic execution of computer programs (caused by factors such
as memory placement, for example), and none addressed non-deterministic compilation (when a compiler
creates different binaries from the same sources, which differ in performance, for example again because
of impact on memory placement). It turns out that the statistical methods presented in the computer sys-
tems performance evaluation literature for the design and summary of experiments do not readily allow this
either. This poses a hazard to the repeatability, reproducibility and even validity of quantitative results.

Inspired by statistical methods used in other fields of science, and building on results in statistics that
did not make it to introductory textbooks, we present a statistical model that allows us both to quantify
uncertainty in the ratio of (execution time) means and to design experiments with a rigorous treatment of
those multiple sources of non-determinism that might impact measured performance. Better still, under
our framework summaries can be as simple as “system A is faster than system B by 5.5% ± 2.5%, with
95% confidence”, a more natural statement than those derived from typical current practice, which are often
misinterpreted.

Categories and Subject Descriptors: D.2.8 [Software Engineering]: Metrics—Performance measures; D.3.4
[Programming Languages]: Processors—Run-time environments

General Terms: Experimentation, Measurement, Performance

Additional Key Words and Phrases: statistical methods, random effects, effect size

1. INTRODUCTION
Quantification of performance change is a common task in experimental computer sci-
ence. Out of all 122 papers published in ASPLOS, ISMM, PLDI, TACO and TOPLAS in
2011 up to 2nd August, 65 included empirical evaluation that quantified performance
change by giving the ratio of execution times (for example, speed-ups of optimisations,
or overheads of new techniques). Quantification of performance change is also part of
the software development process (for example, detecting performance regressions),
both open-source and commercial.

Execution times for quantification are obtained by running benchmark applications
using the two systems to compare. Computer systems are becoming more complex and
increasingly resemble the direct products of nature observed by physicists and natu-
ral scientists — an overwhelming number of factors influence performance. Some are
unknown, some are out of the experimenter’s control, and some are non-deterministic.
Repeated executions of the same benchmark on the same system, even when the exper-
imenter does everything possible to enforce the same conditions, always report slightly
different execution times. This is even more pronounced if the same experiment is re-
peated by an independent experimenter using different equipment. Thus, for credible

Author’s addresses: T. Kalibera (R.E. Jones), School of Computing, University of Kent, Canterbury, CT2 7NF,
UK.
A preliminary version of a portion of this work was presented at the Third European Performance Engineering
Workshop.

2 T. Kalibera, R.E. Jones

quantification of performance change, one needs to design experiments and summarize
their results in a repeatable and reproducible manner. Experiment design and statis-
tical inference are the fields of statistics that address these issues, and are widely
applied in physics, natural sciences and social sciences.

Unfortunately, the practice in computer science lags behind. Of the 122 papers at
ASPLOS, ISMM, PLDI, TACO, and TOPLAS we looked at, 90 evaluated execution
time based on experiments. This includes ratio of execution times for two systems and
also the execution times for a single system. 71 of these 90 papers completely ignored
the question of uncertainty in the measured times. This lack of rigour makes repeata-
bility difficult and undermines the validity of the results. We hardly dare mention that
simple rules for summarizing and reporting uncertainties are taught to every student
of physics and natural sciences [Kirkup 1994], are part of engineering practice [Taylor
and Kuyatt 1994], and are based on statistics taught in introductory courses. More-
over, advice on elementary experiment design and statistical inference has been read-
ily available to computer scientists in the form of textbooks aimed and used for teach-
ing [Jain 1991; Lilja 2000]. A subset of the statistics of the latter textbook has been
advocated in the context of Java runtime performance evaluation [Georges et al. 2007]
and compared with the practice in scientific papers, with results not particularly flat-
tering to our field.

Nevertheless, even though the best quantification method recommended so far in our
field ([Georges et al. 2007] based largely on [Lilja 2000]) is ahead of current practice,
it has a number of flaws. It exacts a high price for statistical rigour in summarizing
results: we do not get a reliable estimate of the metric that we are ultimately interested
in, which is the ratio of execution times. Maybe this flaw on its own is a significant
detractor from wider adoption of the method in practice. Even worse, the rigour that
the method does provide is highly questionable, as the method is based on statistical
significance, a concept with a number of shortcomings, some of which have been known
for seven decades [Cohen 1994]. While statistical significance still dominates elemen-
tary statistical textbooks and is still used by some researchers even in other fields,
its limits have been well described and arguments for its deprecation have been made
in statistics [Royall 1986], psychology [Cohen 1994], education [Coe 2002], ecology,
medicine, bio-medicine, and biology [Nakagawa and Cuthill 2007]. Critical views of
statistical significance have also been published in the context of research in sociology,
criminology, economics, marketing, chemistry, and nursing (see Fidler and Cumming
[2007] for references and details). Some journals explicitly require alternative meth-
ods [Hill and Thompson 2005]. And such methods are available. As we demonstrate
in this paper, the specialized statistical literature [Fieller 1954; Davison and Hinkley
1997] provides methods to estimate the ratio of execution times we are interested in —
inference of the ratio of means is possible, and a so-called effect size confidence interval
can be constructed for it.

Apart from the problems with the summary of results, Georges et al.’s quantification
method, while ahead of the prevailing practice in the field, lacks rigour in experimen-
tal design. It is based on a two-level 1 hierarchical experiment that repeats executions
of a benchmark, each consisting of repeated measurements. For example, to evaluate
an optimisation in a Java virtual machine, the method requires us to run many invoca-
tions of the JVM and have each invocation run and measure many iterations of a test
application. Two levels are not enough. It is well known that a large number of factors
that influence performance are inherently non-deterministic or need to be randomized
by experimenter to avoid measurement bias [Mytkowicz et al. 2009]. The first group
includes for example context switches, hardware interrupts, memory placement due

1Please note that we use the term ‘level’ informally. In our text, it is not what‘factor level’ means in statistics.

Quantifying Performance Changes with Effect Size Confidence Intervals 3

to virtual-to-physical memory mapping [Kalibera et al. 2005], randomized algorithms
in compilation [Kalibera and Tuma 2006], or decisions of a just-in-time compiler on
which methods to compile. Non-deterministic compilation by itself means that compi-
lation needs to be repeated. The second group includes symbol names of methods and
variables in source code which impacts binary code layout [Gu et al. 2004], the size of
the UNIX process environment or the linking order [Mytkowicz et al. 2009].

To efficiently run experiments with such as number of sources of non-determinism,
we need more than two levels. Georges et al.’s quantification method, however, does
not allow this. It is, in fact, based on one-level only summarization, which looks at
the means from the lowest level (repeated measurements) instead of the measure-
ment themselves. There is a better way. While not included in elementary statistical
textbooks, there are statistical methods which model so-called random effects [Charles
E. McCulloch 2008], which can represent non-deterministic factors in our experiments.
To our knowledge, however, none of the existing models can be used directly. Thus, we
extend one such model to be more robust and to support an arbitrary number of exper-
iment levels. We also derive the optimum number of repetitions at each level (with the
best recommended method so far, there is no systematic guidance to select the number
of repetitions).

Our contributions in this work are:

(1) Statistical Inference for Quantification. A statistical model of a hierarchy of
random effects that contribute to fluctuations in performance. This allows us to
build a confidence interval for the mean performance metric (such as execution
time) within such a hierarchy. This is our first original contribution to statistics.

(2) Experiment Planning for Quantification. After some initial measurements,
the model can also be used to guide the experiment. Repeating all experiments
blindly is often very expensive. However, the model will give the optimum number
of repetitions of experiments at different levels of the hierarchy that are necessary
to provide the narrowest confidence interval in available experimentation time.
This is our second original contribution to statistics.

(3) Asymptotic Parametric Quantification Method. A parametric approach to
constructing a confidence interval for the ratio of mean metric values, based on
Fieller’s theorem [Fieller 1954], asymptotic normality of the mean, and our statis-
tical model. Hence, for example, the result of a study might be that the change is
5.5% ± 2.5%, with 95% confidence. Such a statement provides a clear but rigorous
account of the magnitude of the performance change and the uncertainty involved.

(4) Bootstrap Quantification Method. An alternative non-parametric approach to
constructing the same confidence interval using hierarchical random re-sampling
(a bootstrap method). This is an application of an existing statistical method, used
in our field much less than it deserves.

(5) Evaluation. Thorough evaluation of the two approaches on a set of benchmarks.
We estimate the true coverage of the intervals that can be obtained. We also es-
timate a false alarm rate (the case where a change is detected although there is
none), given a threshold of how large changes need to be for us to care. A particu-
larly important benefit of our method is that it supports a rigorous way to use such
a threshold. This is our third original contribution.

Contributions 1, 2, 4, and partially 3 and 5 also apply to evaluations of a single sys-
tem. For contributions 1 and 2, we extend and correct a preliminary version published
in [Kalibera and Tuma 2006], which in turn extends [Kalibera et al. 2005]. For item
5, we use our benchmark data from [Kalibera and Tuma 2006] as inputs for (new)
statistical simulations.

4 T. Kalibera, R.E. Jones

Table I. Current Practice of Performance Quantification

PLDI ASPLOS ISMM TOPLAS TACO Total
Number of Papers 55 32 13 13 9 122

Evaluated Execution Time 42 (28) 25 (20) 12 (11) 5 (2) 6 (6) 90 (67)
Ignored Uncertainty In Measurement 39 (24) 18 (12) 5 (5) 4 (1) 5 (5) 71 (47)

Evaluated Ratio of Execution Times 27 (25) 22 (19) 9 (8) 1 (1) 6 (6) 65 (59)

Source: Scientific papers at selected venues published in 2011, up to 2nd August. Counts are given in form
‘A (M)’, where A is the number of all papers that reported the metric, and M the number of papers where
the metric was important or the main result in the evaluation.

2. BACKGROUND: CURRENT QUANTIFICATION METHODS
In this section, we provide an overview of quantification methods currently used, we
describe their limitations, and we summarize the best-so-far quantification methods
recommended for overcoming these limitations.

2.1. Currently Used Methods
To map the current quantification methods used in computer science, we analysed pa-
pers published at selected conferences (PLDI, ASPLOS, ISMM) and journals (TOPLAS,
TACO). We restricted our survey to papers published between 1st January and 2nd Au-
gust, 2011. We thus cover all papers from the conferences, issues 1–4 of TOPLAS, and
issues 1–2 of TACO — 122 papers in total.

As summarized in Table I, nearly three quarters of the papers studied included em-
pirical performance evaluation that measured and reported execution time. The major-
ity of the execution time evaluations (over 70%) reported the ratio of execution times
as a measure of performance change (the remaining 30% reported execution time for
a single system). In total, over half of all papers reported the ratio of execution times.
We also noted papers where execution time was important for the evaluation (counts
in parentheses in the table). More than half of the papers had empirical evaluations
with execution time as an important metric. Out of these papers where execution time
was an important metric, in nearly 90% it was the ratio of execution times that was
reported (only in 10% of cases it was the absolute execution time for a single system).
Nearly half of all papers had empirical evaluation with ratio of execution times as an
important metric. The ratio of execution times thus seems to be a metric that people
care about and report. Anecdotal evidence confirms that this metric is also important
to industrial developers.

In practice, where decisions have to be made based on the results of performance
quantification, there are certain minimum thresholds for relative performance change
above/below which it is considered of no practical interest. These thresholds may de-
pend on the evaluation context (a particular system, regression test, optimisation, new
feature). These thresholds are also assumed and used in Georges et al. [2007]. Of the
papers in our survey, thresholds on ratio of execution times are explicitly part of an
auto-tuning algorithm by Singer et al. [2011], where they have to be set (manually,
based on experience) large enough to cater for variabilities in the data. However, most
papers that quantify performance change report only the ratio of (mean) execution
times, and thus imply that this ratio alone, maybe along with an understanding of the
context of the study, is sufficient to assess importance of a performance change. The use
of ‘thresholds’ to assess importance is implied. We also have confirmation from a senior
member of a well-known industrial research laboratory of the use of such thresholds
in industry.

Nearly 80% of the papers studied that evaluated execution time (both absolute and
relative) failed to mention anything about uncertainty in the figures they reported.
The numbers are not that much better if we only focus on papers where execution

Quantifying Performance Changes with Effect Size Confidence Intervals 5

time was an important metric: 70% of these papers failed to mention uncertainty. Note
that we were very generous in the classification — if a paper reported that uncertainty
was low, without any further details, we gave it the benefit of the doubt and counted
it as having taken uncertainty into account. Ignoring uncertainty represents a severe
lack of rigour in face of the fact that execution time on today’s computer systems is
always subject to variation in performance. While majority of the papers studied ran
experiments on real hardware, it should be mentioned that some (particularly from
ASPLOS) were based on execution time measurements in a simulator. It is certainly
possible to have a simulator in which execution time is deterministic, and we did not
attempt to check the particular simulators used in individual papers we analysed.
However, if a simulator is deterministic, it is not a realistic one [Alameldeen and Wood
2003]. Thus, we have not attempted to extract simulations from the summary — using
a deterministic simulator in our opinion falls into the category of ignoring uncertainty.

We used to hear arguments that, for very large speed-ups (say 2×), summarizing
uncertainty is a waste of effort. This implies that experimenter experience is that, in
the given system, uncertainty would be much smaller. However, in systems research
much smaller performance changes are usually reported. Mytkowicz et al. [2009] found
that out of 88 papers from ASPLOS 2008, PACT 2007, PLDI 2007, CGO 2007 with ex-
perimental evaluation in a dedicated section, the median of reported speed-ups was
only 10%. In their work they show that the measurement bias with SPEC CPU 2006
benchmarks can easily obfuscate this speed-up when evaluating compiler optimisa-
tions. This means proper randomization to avoid this bias would have lead to higher
uncertainty than 10%, and hence proper handling of this uncertainty would be neces-
sary (such a randomization tool was later provided by Curtsinger and Berger [2012]). A
senior member of a well-known industrial research lab told us that he would care only
about differences of 10% for new work, but look for differences of as little as 2-3% or
even 1% when looking for regressions (where he would look at uncertainty too). Since
such small performance changes are often of interest, ignoring uncertainty in systems
research represents a serious threat to validity. When speed-ups are large compared
to expected uncertainty, validity would not be threatened, but ignoring it would still
be a serious lack of rigour and in our view not a property of good research.

Out of the 19 papers that touched on uncertainty in any way, most reported un-
certainty of single systems in the form of a standard deviation or of 95% confidence
intervals. It was exceptional for a paper to specify how the confidence intervals were
constructed; most were presumably based on the normal distribution. While most pa-
pers reported the ratio of execution times, they mostly showed uncertainty only for
the means in isolation of each of the two systems compared. Only three of the papers
reported the uncertainty of the ratios. However, it seems from the text of two of these
that they did not take uncertainty of both systems into account, but only normalized
the uncertainty of the new system against the mean of the old system. The third pa-
per was ours, and it took the uncertainty of both systems into account, but we have to
admit that our text did not say that. The remaining papers which address uncertainty
do so by saying that it was low (without giving numbers), and one says that a proposed
optimisation reduced it (without giving numbers).

The papers we studied gave extremely little information on the experimental design
used. From some papers, it is not even obvious if benchmarks were executed more than
once, and hence if the reported execution time is not just a single measurement. Only
very few papers mention that their experiments repeat at two levels (i.e. execution of
a benchmark and measurement within that benchmark). However, all of those that do
also seem to treat the data as if it came from a one-level experiment. If executions were
repeated, the numbers of repetitions seemed to be arbitrary. Some experiments used
an adaptive number of iterations based on a heuristic — the benchmark code itself

6 T. Kalibera, R.E. Jones

calculates the standard deviation of the last few measurements taken and terminates
the experiment once the standard deviation is sufficiently small.

Some papers claim to use certain evaluation methodologies, such as those of
Mytkowicz et al. [2009], Georges et al. [2007] or Georges et al. [2008]. However, these
papers rarely made it clear how the concrete experiments were performed. One paper
claims to use the method proposed by Mytkowicz et al. to reduce variance, without any
further details. However, the cited paper argues for dealing with measurement bias
through randomization, which in fact increases the variance, but for very good rea-
sons. Some papers mention uncertainty due to the decisions of a just-in-time compiler
of which methods to compile. Confidence intervals or standard deviation error bars
are usually shown for a single system with one particular configuration, even when
multiple configurations were used. Uncertainty quantified in this way is prone to bias.

Summary. The ratio of (mean) execution times is the major metric for quantification of
performance change. A threshold for the minimum/maximum ratio is used as a mea-
sure of the practical importance of a difference. Uncertainty in the ratio of execution
times is almost never quantified, and when it is, only in an unclear way. Sometimes
separate uncertainties for the two systems (means) are shown, but more commonly
even these are ignored. Benchmarks are mostly repeated only at one level, or excep-
tionally at two levels (executions and measurements). Two-level experiments, if done
at all, are evaluated as if they were one-level only (we believe by merging all the mea-
surements from the different executions, but the texts are not explicit here).

2.2. What Is Wrong With Currently Used Methods
Any paper that reports execution time, yet ignores the uncertainty of the final met-
ric, be it absolute execution time of one system or the ratio of execution times for two
systems, is methodologically flawed. Moreover, failing to address uncertainty makes
the results unrepeatable. Repeating any experiment will lead to slightly different re-
sults due to variability in measurement. Without quantified uncertainty, we cannot
know if we got a ‘slightly’ different result due to variability in measurement, or a very
different result due to an error. Note that a failure to address uncertainty is not the
only way to get unrepeatable results. A common problem is measurement bias, when
the experimenter fails to identify and then describe or vary a factor that largely influ-
ences the results [Mytkowicz et al. 2009]. In such a case, statistics even properly used
for factors that were varied cannot help and the summarized uncertainty would be
misleadingnly small. The responsibility for identifying these factors lies fully on the
experimenter and no statistics can help. But even when important factors are fixed
and described or varied properly, failing to address uncertainty is a potential threat
to validity when quantifying performance change, and this threat is particularly high
when the observed change is relatively small (e.g. 10%), which it often is. When such
quantification is used to show that an optimisation provides a good speed-up, there is
a risk that the ‘improvement’ lies within the range of uncertainty. A similar risk ap-
plies to some extent when quantification is used to show that the overhead of a certain
feature is small — if the uncertainty of the new system is much larger than the old
one, the price may in practice be high even if the mean overhead is small.

Failure to report how many repetitions of a benchmark were executed makes re-
peatability harder. Often, the reader is only left with suspicion that insufficient repeti-
tions were made and in particular that the researchers did not repeat whole executions
of benchmarks (that in turn repeat measurements within a single execution). Some-
times, the reported number of measurements used for averaging is suspiciously small
(e.g. three or five). Failure to repeat enough times, or indeed to repeat at all, increases
the risk of obtaining unrepeatable results and reaching incorrect conclusions.

Quantifying Performance Changes with Effect Size Confidence Intervals 7

In summary, our survey of published papers suggests that the current practice of
quantification of performance change in scientific papers is weak. We are not the
first to find this, but we were surprised at how prevalent this practice is even in the
most recent papers. The lack of reporting of uncertainties while quantifying a perfor-
mance change in Java runtimes research was documented by Georges et al. [2007].
Mytkowicz et al. [2009] discovered that measurement bias was not addressed in ex-
perimental computer systems performance evaluation; this is a more general problem,
but it also applies to the quantification of performance change. These shortcomings
have arisen despite well-known textbooks on computer systems performance evalua-
tion [Jain 1991; Lilja 2000] having described a number of errors common in perfor-
mance evaluation.

2.3. Currently Proposed Methods
Experimental design and statistical inference are mature fields of mathematical statis-
tics with many results and described in a number of texts. Basic recommendations on
conducting experiments in physics and natural sciences, measuring uncertainties, cal-
culating propagation of uncertainties, and reporting the results are available in text-
books such as [Kirkup 1994]. More advanced rules of propagation of uncertainties can
be found in a recommendation by NIST [Taylor and Kuyatt 1994]. High-level overview
and pointers to works on experiment design and the scientific method in general can
be found in [Wilson 1952]. While physics does not deal with exactly the same problems
as experimental computer science, many ideas are general. Moreover, basic methods of
statistical inference and experimental design, in the context of computer systems per-
formance evaluation, have then been presented in books [Jain 1991; Lilja 2000]. These
books have been and are being used as textbooks for teaching performance evalua-
tion courses. Georges et al. [2007] argued for wider adoption of a performance change
quantification method based on Lilja’s book, in the context of performance evaluation
of Java runtimes. They also added some practical recommendations for the number of
repetitions of benchmark measurements.

In this section, we summarize the current recommended best practice for quantifi-
cation of performance change, based on Jain [1991], Lilja [2000], and Georges et al.
[2007].

2.3.1. Experiment Design. Georges et al. [2007] recommends repeating measurements
within a single benchmark, as well as repeating executions of the whole benchmark.
The number of measurements within a benchmark is controlled by a heuristic in the
benchmark — as soon as the standard deviation of the last few measurements is
small enough, the benchmark’s execution is finished. The number of benchmark execu-
tions is an arbitrary choice of the experimenter, or, alternatively, additional executions
are adaptively added until confidence interval for the mean is sufficiently narrow (its
width is within 1% or 2% of the sample mean).

Lilja [2000] and particularly Jain [1991] also recommend experimental designs that
cope with various combinations of factors that can be fixed by the experimenter. These
designs apply to factors that can take only a finite, usually small, number of values
(i.e. a particular processor or benchmark). The effect of choosing a particular value
(say the processor) on performance is of interest to the experimenter. Such effects are
called fixed effects in statistics (see [Charles E. McCulloch 2008] and [Searle et al.
1992] for more detailed discussion of fixed and random effects). The experimental de-
signs then help in planning which combinations of values of which factors to run to
get reasonable information given reasonable experimentation time. The methods rec-
ommended by Jain [1991] and Lilja [2000], however, do not address effects of factors
that can take a large number of values, usually at random and often not under our

8 T. Kalibera, R.E. Jones

control, for which the performance effect of a particular choice is not interesting. Such
a factor can be, say, a particular mapping of virtual to physical pages chosen by the
operating system. In statistics, these are called random effects. In this work, we only
address random effects. Our work could be extended to include fixed effects, as there
indeed are statistical models that include both types of effects [Charles E. McCulloch
2008], but we do not attempt it here.

Georges et al. [2008] proposes a particular experiment design for performance eval-
uations within managed environments with just-in-time compilation. The design as-
sumes generation of several compilation plans and then running both systems using
these plans. The motivation for this design, in contrast to just keeping the compila-
tion plans random (unpaired) for the two systems, is smaller uncertainty within given
experimentation time.

2.3.2. Summary of Experiment Results. A performance change is quantified using statis-
tical significance [Georges et al. 2007; Lilja 2000; Jain 1991]. The output is a binary
decision: “the systems (may) have the same performance” or “(it is likely that) the sys-
tems do not have the same performance”. This decision is based on the probability that
the actually observed difference or larger in (sample) means of the two systems would
occur if the (true) means were the same. This probability is called the p-value in statis-
tical tests. The p-value is compared against a pre-defined threshold called significance
level (i.e. 5%). If the p-value is smaller, then the second decision, that the systems do
not perform the same, is chosen. Otherwise, the first decision, the default that they
may have the same performance, is chosen.

There are two recommended alternative methods that provide this kind of quantifi-
cation. The preferred one is a visual test using confidence intervals. The other one is
a statistical test. The visual test is as follows. We construct two confidence intervals
for the means of the two systems. We check if they overlap. If they do not, the decision
is that “it is likely that the systems do not have the same performance”. If they do
overlap, the method recommended by Lilja [2000] and Georges et al. [2007] finishes,
concluding that “the systems may have the same performance”. The method by Jain
[1991] adds another step — it falls back to a statistical test if the intervals overlap only
slightly, that is if centre of neither interval lies within the other. The visual test is pre-
ferred, because in addition to the binary decision, it is easy to give a visual measure of
how large the difference in the means actually is, compared to their uncertainty. While
this is a clear aid for an analyst, it lacks a rigorous semantics (and in his dissertation,
Georges [2008] recommends using the statistical test instead).

The confidence interval used for the visual test has the same underlying statisti-
cal backing as the statistical test. It is assumed that measurements are independent
identically distributed and follow the normal distribution (the normality assumption
is incorrectly omitted in many texts as we discuss in greater detail in Section 3.2). Jain
[1991] and Lilja [2000] suggest using Student’s t-test for unequal variances (or the cor-
responding interval). Georges et al. [2007] additionally recommend (an interval based
on) the z-test for sample sizes over 30. Georges et al. also suggest working with sample
means of measurements from individual executions, instead of with the measurements
themselves. The corresponding test/interval is hence only for these sample means. An
alternative solution that is sometimes used, but not part of their recommendation, is
to join all the measurements from the different executions and treat them as coming
from a one-level experiment.

Lilja [2000] and particularly Jain [1991] then describe analysis of variance (ANOVA)
methods to summarize experiments where multiple fixed factors are varied (i.e. pro-
cessor, memory size, etc.). Georges et al. [2007] summarizes also some of the ANOVA
methods from [Lilja 2000], but does not recommend it for use in (Java) performance

Quantifying Performance Changes with Effect Size Confidence Intervals 9

evaluations as the outputs are too hard to understand and doing all the measurements
to provide the inputs is too time consuming. We do not address these types of factors
(‘fixed effects’) in this work, but our method should be extensible to do so.

The summarisation method that Georges et al. [2008] recommends for the replay
compilation design leads to a test/interval based on paired t-test. The inputs are dif-
ferences of means obtained from the old and new systems, averaging over multiple ex-
ecutions with a given compilation plan. We do not address paired comparisons in this
work, but most of our criticism of the recommended quantification using the test/inter-
val we mention later applies to it as well.

3. WHAT IS WRONG WITH THE CURRENTLY PROPOSED METHODS
Even though the current recommended best practice for quantification of performance
change by [Jain 1991], [Lilja 2000], and [Georges et al. 2007] is ahead of the pitiful
practice in the field, it has a number of problems.

3.1. Experiment Design
Repetition of executions (and measurements) is not enough. It is necessary to include
all inherently random factors in the experiment, and hence to repeat experiments at
level(s) even higher than execution of the benchmark. For example, randomized com-
pilation necessitates both compilation and running the experiments for different bina-
ries. We have found this to be essential in our earlier work with the GNU C++ Com-
piler when benchmarking CORBA middleware and when benchmarking applications
within the Mono platform [Kalibera and Tuma 2006]. The empirical evaluation in this
paper confirms this need on the Mono platform. Furthermore, we need to randomize
and include additional (non-random) factors that it does not make sense to fix. These
factors can arise from the operating system or the language environment. Mytkowicz
et al. [2009] provide evidence that unexpected factors such as the size of UNIX process
environment or the linking order can impact performance. Gu et al. [2004] observed
a performance impact of the names of identifiers in the source code. It is obvious that
many additional factors of this kind have not yet been discovered to have significant
performance impact, so they cannot be really fixed in experiments. Sufficient random-
ization, called for by Mytkowicz et al. [2009], is hence necessary. Curtsinger and Berger
[2012] provide a randomization tool applicable to applications studied in [Mytkowicz
et al. 2009].

Note in particular that randomization of identifier names or linking order leads in
turn again to randomized compilation/building. Repeating compilation or repeating at
an even higher level can be very expensive, because large systems take long to compile.
Repeating too many times is a waste of resources, but repeating too few times under-
mines repeatability and validity. Hence, a good experiment design method should also
allow the researcher to derive an optimum number of repetitions at different levels, so
as to make efficient use of the time available for experimentation in order to reduce
uncertainty in the final result. The present recommended best practice does not offer
this.

3.2. Summarization of Experiment Results
The single most significant problem of the best recommended method is that it does
not tell us what we want to know. It does not give us the metric we are ultimately
interested in, a reliable estimate of the ratio of execution times. Of course, we can
use the recommended method and, in the case that the (binary) conclusion is that the
systems are likely to differ in performance, we can in addition report the ratio of the
sample means. But the recommended method would not give us the uncertainty of this
ratio, so we do not know how much of the ratio is due to uncertainty. Since we do not

10 T. Kalibera, R.E. Jones

report uncertainty of the ratio, the results we provide are unrepeatable and may not
be valid. This problem also means that the recommended method does not allow us to
compare the ratio against a threshold (the minimal/maximal change that is important
to us).

The problem of not supporting comparison against a threshold is more significant
than it may seem at first — the recommended method looks for a performance differ-
ence however small as long as it is unlikely to be by pure chance. However, the larger
the sample size is (the more measurements we have), the more unlikely even a very
small difference becomes. Hence, the decision of the method is influenced by the num-
ber of measurements. In practice this means that with a large sample size (and in our
field it is easy to generate very large samples), the decision will nearly always be “it
is likely that the systems do not have the same performance”, no matter how small
or large the difference actually is. The method then becomes of very little use — it
just adds an illusion of rigour to the results and, worse, only to the results we are not
interested in.

The fact that this does not tell us what we want, and that it often gives the same
answer only because the sample size is very large, is a fundamental drawback to the
statistical significance. This drawback has been known for the last seven decades [Co-
hen 1994]. It has been reiterated by researchers in psychology [Cohen 1994], educa-
tion [Coe 2002], and more recently in bio-medicine and biology [Nakagawa and Cuthill
2007]. This and other drawbacks of the method have been brought up in criticism of
statistical significance also in sociology, criminology, economics, marketing, chemistry,
and nursing (see Fidler and Cumming [2007] for references and details). The draw-
backs, however, seem to be quite unknown to experimental computer scientists. Even
worse, methods based on statistical significance are notoriously hard to interpret. This
may be partially because they do not give us the answer to what we want to know, but
they also offer temptations, such as the belief that the p-value is actually the proba-
bility that the systems have the same performance. The interpretation of the results
of statistical tests is so difficult that even statistical textbooks sometimes get it wrong
(examples are given by Cohen [1994]). In a study by Oakes [1986] cited by Cohen
[1994], 68 of 70 psychologists made an error in the interpretation of a statistical test.
Interpretation of the visual test using confidence intervals seems simpler, but it is not
much so. This is well reflected by the wording used and stressed by Lilja [2000], and
repeated by Georges et al. [2007] and Georges et al. [2008], to describe the positive
outcome (the systems differ in performance) of the visual test — “there is no evidence
to suggest that there is not a statistically significant difference”.

The wording is rather cryptic as it tries to be precise, which we do not find it to be.
In frequentist statistics which the texts rely on, the wording is incorrect. The goal of
the comparison is to learn something about the difference in the true but unknown
means of two random variables. The true means are either equal or different, and
the statistical significance does not speak about this difference (it speaks about the
difference of the sample means instead). Hence, the second part of the wording, “sta-
tistically significant difference” is incorrect. The first part of the wording that speaks
about non-existence of evidence is incorrect as well. The test is about verifying if the
data we have measured are unlikely provided the true unknown means are the same.
Hence, we are checking if the data we have form an evidence against the assumed zero
performance change. We can make no claims about non-existence of evidence. And we
are not looking for evidence for the true means being equal, but rather against it.

Lilja [2000] (also cited by Georges et al. [2007]) explain the wording by stating that
there is always a certain probability, ‘α’, that a large observed difference was due to
random fluctuations. This is correct, but does not justify the wording in our opinion.
Even more, the context in the texts suggests that in the visual test of confidence inter-

Quantifying Performance Changes with Effect Size Confidence Intervals 11

val overlap, this probability (α) is the significance of the confidence intervals used (i.e.
α = 0.05 for 95% confidence interval), which it is not. In fact, with the visual test this
probability is not known. If we use 95% confidence intervals, the probability of such an
error is not 5%, but under the normality assumption is below 1% [Payton et al. 2003].
This makes the visual test far more conservative than it may seem, and hence its re-
sults are even harder to interpret, and more likely to mislead. Also, one would need far
more experimentation time to show a performance change. Further information on the
error of the visual test can be found in Payton et al. [2003; Schenker and Gentleman
[2001].

With the (non-visual) statistical test, the theory tells us the probability of erro-
neously concluding that compared systems do not have the same performance when
actually they do. The probability of this error is the threshold we are comparing the
p-value against (often 5%). For this reason, Schenker and Gentleman [2001] (cited
by Georges [2008]) prefer statistical test over the visual test. Our understanding is
that the visual test is generally preferred, though, in our field, and that both method
share their key problems.

Yet another issue of visual and non-visual test is the use of parametric methods on
data that violate their assumptions. Computer performance measurements cannot be
assumed to be normally distributed. Often they are multi-modal, with long-tails to
the right. Deviations from normality may not be fatal for the t-test/confidence inter-
val though, and some practitioners in other fields ignore them as well. The sample
mean is asymptotically normal due to the Central Limit Theorem. Many texts in our
field omit the normality assumption of the t-test or incorrectly state that the Central
Limit Theorem is enough to overcome it ([Lilja 2000; Jain 1991; Georges et al. 2007]).
The Central Limit Theorem is not enough, but some more involved studies show that,
under certain deviations from normality, the parametric methods work well, even for
reasonably small sample sizes (see for example Basu and DasGupta [1995] or Rasch
and Guiard [2004]) given a reasonably high confidence (95% confidence intervals and
wider). Still, there is no general agreement that ignoring the normality assumption
is an acceptable practice, one should certainly make it clear if such assumptions are
ignored. Robust statistical methods do exist (see Erceg-Hurn and Mirosevich [2008]
for summary and references), and there has been no study of how the t-test/confidence
interval is affected by violations from normality common in computer performance
data.

4. HOW TO DO THINGS BETTER
A good quantification method needs to provide an estimate of the ratio of execution
time means and an estimate of its uncertainty. These estimates should be based on
experiments that include all random factors to which the measured system is subject,
both factors naturally random and factors that we randomize to avoid measurement
bias. A statistical model of such an experiment can then offer some way of planning
the experiment: how many repetitions are needed at each level.

4.1. Experiment Design with Random Effects
There are factors that influence performance, which are inherently random and we
cannot control them. To get valid results (avoid bias), we need to repeat experiments
at a high enough level to include all random factors. For example, if our system is prone
to randomized compilation which has an effect on performance, we need to repeat com-
pilations and measure multiple binaries. With managed runtimes, the ‘binary’ may be
the binary of the virtual machine or the byte-code of the application. If we took an
extreme position, it would be all compiled code that influences performance observed
by the benchmark. In theory, we could start from the top level for each measurement,

12 T. Kalibera, R.E. Jones

thus compiling the binary, executing it only once and running only one iteration (say
after dropping the initial measurements that were prone to warm-up noise). This ap-
proach would allow use of a one-level model. However, it would be an extravagant
waste of time if the variation in binaries had a far smaller effect on performance than
the variation in, say, executions or measurements. In this case, intuitively it should be
possible to do better by executing each binary multiple times and reporting more than
one measurement in an execution.

This situation can be modeled mathematically by a random effect models with n-way
classification. Such random effects model is based on a hierarchy of n random ways,2
which have effect on the random distribution of the actual measurements. Hence, a
model with n-way classification corresponds to an n+1 level experiment. In particular,
a three-level experiment with repeated compilations, executions, and measurements
corresponds to a model in 2-way classification (measurements influenced by execution
and compilation). Random effects models are sometimes also referred to as random
effects (n-factor) ANOVA. References to specialized literature on related models can be
found in Charles E. McCulloch [2008], though we have not found a model that would
apply directly. Derivation of such a model is one of the contributions of this work.

4.2. Quantification with Effect Size Confidence Interval
We propose to construct a confidence interval for the ratio of mean execution times.
This confidence interval will be a measure of uncertainty of the metric that is of ul-
timate interest. Reported results can thus be for instance that system A is 4%±1.5%
faster than system B, with 95% confidence. Multiple intervals would also lend them-
selves easily to graphical visualisation. The method gives us a way to rigorously com-
pare against a threshold. Say that we only care about differences larger than 3%. Here,
we would conclude that performance of two systems is different if the upper bound of
the confidence interval is less than 0.97 or its lower bound greater than 1.03,

Note also that the method still allows a significance-based binary decision. We con-
clude that the systems “may have the same performance” if the interval includes 1.
Otherwise, we would conclude that the systems are “likely not to have the same perfor-
mance”. The chance of erroneously concluding that the systems differ in performance
here is the confidence of the interval (5% for a 95% confidence interval). Hence, even
for the significance based method only, we have the advantage over the recommended
practice that we know this error. In summary, the confidence interval for the ratio of
means subsumes the currently best recommended practice.

Constructing a confidence interval for a metric that measures the difference in two
systems is a known concept in statistics. Such a metric is called the effect size and
hence the effect size confidence interval. Effect size confidence intervals have been pro-
posed for quantification as a replacement for significance methods in psychology [Co-
hen 1994], education [Coe 2002], medicine, bio-medicine, and biology [Nakagawa and
Cuthill 2007]. The change in statistical methods is not smooth, but evidence can be
found that effect size is already being used, at least to some extent, in medicine [Bland
and Altman 2000] and psychology [Dunleavy et al. 2006]. To support the change, the
use of effect size has sometimes been made an official requirement (Hill and Thompson
[2005] list 23 journals mostly in psychology and education that require reporting effect
size, and the American Psychological Association [2001] requires it in its Publication
Manual).

2In statistical texts, one can say also ‘n factors’, but we refrain from doing so here to avoid confusion with
the informal meaning of a ‘factor’ used throughout the text. In our text, a ‘factor’ refers to a technical/real
cause that may impact performance and a ‘way’ refers to a statistical model of (some of) such causes.

Quantifying Performance Changes with Effect Size Confidence Intervals 13

There are different metrics used for measure the effect size in different fields and
one of them is the ratio of means. There are statistical methods for interval construc-
tion, although they did not make it to introductory textbooks (more information and
references can be found in [Beyene and Moineddin 2005; Schaarschmidt 2007; Dilba
et al. 2007]). From several available methods, we have a closer look at two. One is
based on statistical simulation (bootstrap) [Davison and Hinkley 1997]. The other is
based on Fieller’s theorem [Fieller 1954], which gives a confidence interval for the ratio
of means of normally distributed variables. We show how both methods can be applied
in the experimental design we propose, and empirically evaluate them.

4.3. Related Efforts
Some of the things we propose here have been proposed earlier in computer science,
but have not been widely adopted.

A bootstrap-based method for construction of confidence intervals is being used in
the Haskell community, supported by the Criterion benchmarking library [O’Sullivan
2009]. The library is for measuring performance of one system only in single-level
experiments. Apart from using robust methods it has also the advantage of detecting
outliers and auto-corellation of the data. The tool is based on [Boyer 2008].

Confidence interval for speed-up has been proposed by Luo and John [2004] in
the context of processor simulation. The uncertainty does not come from random ef-
fects, but rather from random sub-sampling – only randomly chosen execution inter-
vals from the whole application execution are simulated, the same intervals in both
of the systems to compare. The confidence interval proposed for this problem comes
from [Cochran 1977], it is a parametric interval based on asymptotic normality of not
only the means, but also their ratio, which is only possible for large samples. The
method by Fieller [1954] that we use in this work is more general.

5. OUTLINE OF THE NEW METHOD
The rest of our paper includes a detailed description of our quantification method and
its empirical evaluation based on real benchmark results. We offer two alternative
descriptions of our method. Section 6 provides a guide for practitioners, while Sec-
tion 7 is a variant for scientists with some statistical background. Section 6 describes
the method in practical terms and with recommendations on how it can be used. Sec-
tion 7 formulates the method in statistical terms, gives the assumptions and necessary
proofs, and discusses further alternatives. We use the terminology common in the field.

In statistical terms, the core of the method is our statistical model of random effects
in n-way classification, which models performance in one system. We apply it indepen-
dently to both systems we aim to compare. For clarity, the model is described for 2-way
classification first (3 levels in the experiment, Section 7.1.1), but later in the general
form of n-way classification (an arbitrary number of levels, Section 7.1.2). While we
keep referring to ‘execution time’ in the statistics to make presentation concrete, the
model is sufficiently general for any response variable, given the stated assumptions.
We then show how to construct the confidence interval for the mean within this model,
still for the mean of each system separately (Section 7.2). We give two alternative
methods, a parametric method based on asymptotic normality and a non-parametric
method based on bootstrap. Later we show how to construct the confidence interval for
the ratio of the means of two systems, again using a parametric and non-parametric
method (Section 7.3). The non-parametric bootstrap method is a natural extension of
the method for a single system. The parametric method uses Fieller’s theorem [Fieller
1954].

14 T. Kalibera, R.E. Jones

6. FOR PRACTITIONERS: THE NEW METHOD WITHOUT STATISTICS
The technique we propose here comprises of the actual statistical method (proven and
precisely defined in the following section) and of practical advice how to use it. We feel
that it is important to stress that while the statistical method is general, our advice
may not be. The practicalities depend on the context (the goal of the study, the critical-
ity of the results and the consequences of possible errors, the kind of computer system
evaluated, the runtime environment, infrastructure, and benchmarks). We understand
that having a single best technique that could be mechanically followed in every study
might be appealing, but we strongly believe that such practice is an illusion, and we
definitely do not provide one here.

6.1. Designing the Experiments
We describe our technique sequentially, but in practice it would be an iterative process.
At the end of this section, we provide a small worked example.

Initial number of levels. When planning experiments, we first decide what the high-
est level of the experiment should be. All factors influencing performance above that
level need to be controlled (and documented). The highest level might be compilation
(of the benchmark, runtime environment, or all). If compilation is found to be fully
deterministic, this may not be needed. Though note that even symbol names have im-
pact on performance [Gu et al. 2004], so we may choose to randomize these or otherwise
randomize the building process to get rid of other sources of measurement bias.

On the other hand, in practice, if repeating say compilation is very expensive, and
we know that it has relatively little impact on performance or we find it out during
the following process, we may choose not to repeat it. The threshold we then use for
comparisons, however, needs to be set accordingly.

After deciding on the highest level, we continue by identifying lower levels. We need
to add an additional lower level to the experiment if the variability (say in executions)
is expected or known to be higher than in the level above (say compilations), while the
cost of repeating at the lower level is smaller than at the higher level. If we create a
level where it is in fact not needed, we may detect this later in the following process.
Also, we can measure the costs of repetition in the following process as a side-effect
(for example, such cost is the time to build a new binary). In the formulae below, the
number of levels is n+1 (where n is the number of ‘ways’ in the statistical model, which
is one less than the number of levels in the experiment).

Numbers of repetitions. Having decided on initial levels of the experiment, we run
the experiment a few times to estimate variability at different levels. With our method,
we always use the same repetition counts at a particular level (thus all executions have
the same number of measurements, all binaries same number of executions, etc.). We
denote the repetition counts as ni, where 1 ≤ i ≤ n + 1 is the level of the experiment
(nn+1 is the number at highest level, say compilation).

For the initial experiment, we can set all these counts to the same value, say 30.
Note that these counts do not include warming-up various components of the experi-
ment. Usually, we want to evaluate only measurements from a steady-state of every
execution. Say that we do so by discarding the first c1 measurements of each execution
before collecting the n1 we need. c1 must be found by the experimenter. Repetitions at
higher levels, ci, 1 < i ≤ n, also may have a non-zero cost. For instance, compilation
has notable cost as it takes time to compile. All costs are represented as counts of mea-
surements — the cost of compilation is the compilation time divided by the (average)
time for a measurement. Precision here is not crucial, as the costs are only needed for
optimisation.

Quantifying Performance Changes with Effect Size Confidence Intervals 15

To run the initial experiment, we need to have c1 already and we use ni = 30. During
the experiment we collect measurements and also measure the costs for repetition ci
for 1 < i ≤ n. Based on the costs and the measurements, we decide on optimum counts
of repetitions at all but the highest level (the derivation is provided in Sections 7.4
and 7.5) :

n1 =

⌈√
c1
T 2
1

T 2
2

⌉
, ∀i, 1 < i ≤ n ni =

⌈√
ci
ci−1

T 2
i

T 2
i+1

⌉
.

We obtain Ti, the unbiased estimator of the variance at level i, through an iterative
process. First, we calculate Si, the biased estimator of the variance at level i (formulae
below). Then, we start calculating Ti as (the derivation is provided in Section 7.6)

T 2
1 = S2

1 ,

∀i, 1 < i ≤ n+ 1 T 2
i = S2

i −
S2
i−1
ni−1

.

If we should get T 2
i ≤ 0 (or at least very small), then this level of the experiment

induces little variation so we can remove level i from the experiment. This is semanti-
cally equivalent of running the experiment all again with fewer levels, but we obtain
the same effect by dropping data from the repetitions. We calculate Sis as follows (the
used notation is detailed in Sections 7.1.2 and 7.1.3)

S2
1 =

1∏n+1
k=2 nk

1

n1 − 1

nn+1∑
jn+1=1

. . .

n1∑
j1=1

(
Yjn+1...j1 − Y jn+1...j2•

)2
for i, 2 ≤ i ≤ n

S2
i =

1∏n+1
k=i+1 nk

1

ni − 1

nn+1∑
jn+1=1

. . .

ni∑
ji=1

Y jn+1...ji • . . . •︸ ︷︷ ︸
i−1

− Y jn+1...ji+1 • . . . •︸ ︷︷ ︸
i

2

and finally

S2
n+1 =

1

nn+1 − 1

nn+1∑
jn+1=1

Y jn+1 • . . . •︸ ︷︷ ︸
n

− Y • . . . •︸ ︷︷ ︸
n+1

2

Y denotes the measurements, indexed by experiment levels (highest to lowest). The
bar over Y denotes an arithmetic mean. The mean is always calculated over all the
indexes that are denoted by a bullet. While the formulas for Sis may seem involved in
full generality, it is easy to see how they are constructed. Suppose we have functions
M and V that calculate sample mean and variance of a vector,

M(x1 . . . xk) =
1

k

k∑
i=1

xi V (x1 . . . xk) =
1

k − 1

k∑
i=1

(xi −M(x1 . . . xk))
2

Any statistical software would have these functions. For n = 2, each of S2
1 , S2

2 , and S2
3

is created by three applications of these functions to the data, where V is applied once
and M two times, but always in different order (see Table II). Each application of M
or V reduces the dimension of the data. For example, to calculate S2

2 we first apply
M on measurements from each execution, hence getting a two-dimensional matrix
(binaries × execution means) from a three-dimensional matrix (binaries × executions
× measurements). Second, we apply V on the execution means, getting a vector (one

16 T. Kalibera, R.E. Jones

Table II. Interpretation of S2
i in Three-level Experiment

Binaries Executions Measurements Interpretation
S2
1 M M V Mean variance at level 1 (due to measurements)

S2
2 M V M Mean variance at level 2 (of execution means)

S2
3 V M M Variance at level 3 (of binary means)

element per binary) of variances of the execution means. Third, we apply M on this
vector and get S2

2 .
If we obtain a small number of repetitions at some level, we may decide to remove

that level to simplify the experiment. Indeed for practical purposes we can also in-
crease the number of repetitions at the lowest level (i.e. measurements), if a measure-
ment is very short. As there is no further overhead for additional measurements at
the lowest level (since we do not have to repeat higher levels and nor perform further
warm-up), it is cheap to get more data useful for other things, such as spotting unusual
behaviour. This method would not work well for very small repetition numbers (say,
below 5, but this depends on experimenter’s judgment) — if at all possible, we should
not use such small counts. Note that in practice, to make the process simpler at the
cost of more expensive experiments in the end, we could assume Ti = Si. In that case
we would not get problems with the negative numbers, but the resulting numbers of
repetitions at higher levels may be higher than needed.

Once we have decided on the final number of levels and repetition counts, we re-run
the experiments and continue as follows. In the following, ni and n refer to the new set-
ting. In practice, the established setting would be re-used for very similar experiments
(same platform, benchmarks, etc).

Example. Let us assume that we are to dimension an experiment based on three-
level data (n = 2) shown in Table III (Raw Data). We have measurements from 3
binaries, each executed 2 times, and reporting 2 measurements per each execution. In a
real experiment we will have more, but this is to demonstrate the method. To calculate
the T 2

i we need the S2
i , which we will calculate iteratively as demonstrated in the table.

First, we calculate the (matrices of) execution means and variances (• •M and • • V),
as recorded in the second and third table. Next, we calculate the column means and
variances of • •M , getting vectors •MM and •VM . Also we calculate •MV . Finally,
we get S2

3
.
= 3.6 (VMM), S2

2
.
= 2.6 (MVM), and S2

1
.
= 16.5 (MMV). The grand mean,

the mean of all measurements, is 6.5 (MMM). We now obtain the Ti: T 2
1 = S2

1
.
= 16.5,

T 2
2 = S2

2 −S2
1/2

.
= −5.7, and T 2

3
.
= 2.3. As we find that T 2

2 < 0, we can remove the second
level of the experiment. Hence, we only will run one execution per binary.

Let us also suppose that we observed that the system stabilises running a single
execution reliably after 10 measurements (c1 = 10, suppose that Table III already con-
tains only the stable measurements). We need to find the optimum repetition counts.
As we decided to remove the second level of the experiment, this optimum repetition
count is just the number of measurements per execution (the number of executions per
binary will always be 1, and the number of binaries we can increase any time to get
more precise results). To find the optimum we need to recalculate the T 2

i and hence
the S2

i for two-level experiment (n = 1). Applying the same method as before, we get
S2
2
.
= 3.6 and S2

1
.
= 12.7 (Table IV), hence T 2

1
.
= 12.7 and T 2

2
.
= 0.4. And thus the optimum

number of measurements per binary, n1, is

n1 =

⌈√
c1
T 2
1

T 2
2

⌉
.
=

⌈√
10

12.7

0.4

⌉
= 18

Quantifying Performance Changes with Effect Size Confidence Intervals 17

Table III. Example Data (Three-level)

Raw Data
• • • Binaries

Executions 9 5 10 6 1 12
8 3 7 11 2 4

Execution Means
• •M Binaries

Exec. 7.0 8.0 6.5
5.5 9.0 3.0

Execution Variances
• • V Binaries

Exec. 8.0 8.0 60.5
12.5 8.0 2.0

Binary Means
•MM Binaries

6.3 8.5 4.8

Variances of Exec. Means
•VM Binaries

1.1 0.5 6.1

Means of Exec. Variances
•MV Binaries

10.3 8.0 31.3

Variance of Binary Means
VMM S2

3

3.6

Mean Variance of Exec. Means
MVM S2

2

2.6

Mean of Measur. Variances
MMV S2

1

16.5

Grand Mean
MMM

6.5

Table IV. Example Data (Data from Table III Transformed to Two-level Data)

Raw Data
•• Binaries

Measur. 9 10 1
8 7 2
5 6 12
3 11 4

Sample Means and Variances
•M Binary Means 6.3 8.5 4.8
•V Binary Variances 7.6 5.7 24.9
VM , S2

2 Variances of Binary Means 3.6
MV , S2

1 Mean of Measurement Variances 12.7
MM Grand Mean 6.5

We would thus run two-level experiment with n1 = 18 measurements per binary, exe-
cuting each binary only once.

6.2. Summarizing the Results
Quantifying Performance of One System. We report performance of one system (in

isolation) as the arithmetic mean of all measurements Y (we omit the bullets in the
notation for simplicity). We estimate its uncertainty using a (1−α) confidence interval
(i.e. α = 0.05 gives a 95% confidence interval):

Y ± t1−α2 ,ν

√
S2
n+1

nn+1
= t1−α2 ,ν

√√√√√ 1

nn+1(nn+1 − 1)

nn+1∑
jn+1=1

Y jn+1 • . . . •︸ ︷︷ ︸
n

− Y • . . . •︸ ︷︷ ︸
n+1

2

where t1−α2 ,ν is the 1 − α
2 -quantile of the t-distribution with ν = nn+1 − 1 degrees of

freedom. The mathematical background is given in Section 7.2.2.
Alternatively, we can use statistical simulation (bootstrap) to calculate the confi-

dence interval. Say that we perform 1000 steps (or more if there is time). Within each
step, we use the real data to simulate a new experiment. First, at the highest level, we
randomly decide which iterations of the real experiment to use (e.g. which binaries).
We generate the same number of iterations as the real experiment, but some of the
real iterations can be used multiple times while some not be used at all. We then apply
this principle to lower levels. In the end, we get the same number of measurements
as in a real experiment, with the same structure (repetition counts at each level and
number of levels), and we calculate a sample mean of all these measurements. Hence,
we get 1000 means, each originating from one step of the simulation.

We form a (1 − α) confidence interval for the mean using α/2 and 1 − α/2 sample
quantiles of these means. If we have 1000 steps, we can do this by ordering the sim-

18 T. Kalibera, R.E. Jones

Table V. Example Raw Data (Three-level)

Raw Data - Old System
• • • Binaries

Executions 9 11 16 13 15 7
5 6 12 8 10 14

Raw Data - New System
• • • Binaries

Executions 10 12 9 1 8 5
6 7 11 4 3 2

ulated means and taking the 25th and 975th values. Pseudo-code that illustrates this
procedure is shown in Figure 1 on page 26 and more details are given in Section 7.2.1.

Quantifying Performance Change. To quantify a performance change of a ‘new’ sys-
tem over an ‘old’ system, we use the same numbers of repetitions and levels for both.
We report the ratio of mean execution times of the two systems. As a measure of un-
certainty, we report a (1−α) confidence interval (again α = 0.05 gives a 95% confidence
interval) as follows. For detailed notation and derivation, see Sections 7.3 and 7.3.2.

OY · NY ∓

√(
OY · NY

)2
−
((

OY
)2
− t2α

2 ,ν
·
OS2

n+1

nn+1

)((
NY
)2
− t2α

2 ,ν
·
NS2

n+1

nn+1

)
OY

2
− t2α

2 ,ν
· OS2

n+1 · nn+1
−1

The term tα
2 ,ν

denotes the α
2 -quantile of the t-distribution with ν = nn+1− 1 degrees of

freedom. The left-super-scripts ‘N’ and ‘O’ denote the new and the old system that we
compare.

Alternatively, we can use statistical simulation (bootstrap) to calculate the confi-
dence interval. The algorithm is similar to the case of one system. We again perform a
number of steps (say 1000), each producing the metric of interest from a simulated ex-
periment, which now is the ratio of means. Hence, in each step, we simulate measure-
ments from both systems, calculate their sample means, and then their ratio. When
we have these 1000 ratios, we take the sample quantiles for the confidence interval
(i.e. 25th and 975th for a 95% interval). Pseudo-code that illustrates this procedure is
shown in Figure 2 on page 28 (Section 7.3.1).

Example. Let us assume we have measurements from an old and a new system as
shown in Table V. In practice, we would have more repetitions, but let us use a sim-
ple example to demonstrate the method. Let us first show how to calculate confidence
interval for the mean of one system. We will demonstrate this on the old system. We
need to calculate the variance at highest level, OS2

3, but not the other variances, so
there is less work to do than when dimensioning the experiment. Variances at the
highest level are simply variances of means (of binaries, in our case). For the old sys-
tem, the mean for the first binary is 7.8, for the second 12.3 and for the third 11.5 (all
numbers rounded to one decimal place). The grand mean is hence 10.5 and variance of
the means, OS2

3, is 5.8. The 95% confidence interval for the mean of the old system is
hence

Y ± t1−α2 ,ν

√
S2
n+1

nn+1

.
= 10.5± 4.3

√
5.8

3

.
= 10.5± 6.0

where 4.3 is a (rounded value of) the 0.975 quantile of the t-distribution with 2 degrees
of freedom. The confidence interval for the mean of the new system would be obtained
in the same way.

Alternatively, we can use the bootstrap method to calculate the confidence interval.
Table VI shows three bootstrap replicates of our measurements. In practice, we would
need much more. The first replicate uses binaries 1, 2, and 1 from the original old

Quantifying Performance Changes with Effect Size Confidence Intervals 19

Table VI. Bootstrap Replicates of Raw Data (Old System from Table V)

• • • Binaries

Executions 9 11 12 8 9 9
5 5 8 12 11 9

Binaries
14 10 13 13 8 8
15 7 8 12 16 13

Binaries
7 7 11 11 9 9

15 15 9 11 9 9

system (Table V). For example, the third selected binary, which corresponds to binary
1 of the old system of Table V, takes executions 1 and 1 from the original binary. For
the first execution, it takes measurements 1 and 1 from the original execution. For
the second execution, it takes measurements 2 and 1. The grand means of these three
replicates are, after rounding, 9.0, 11.4, and 10.2. When sorted, we have 9.0, 10.2, and
11.4. Three replicates is certainly not enough, but if we had, say, 1000, we would take
the 25th and 975th from such sorted sequence as the lower and upper bound of a 95%
confidence interval for the mean of the old system.

We are also interested in the 95% confidence interval for the ratio of the mean execu-
tion times of the new and old system from Table V, we proceed as follows. We already
know that OS

2
3
.
= 5.8. Using the same algorithm we calculate NS

2
3
.
= 4.6. The grand

means are OY = 10.5 and NY = 6.5. From Student’s t-distribution, t2α
2 ,ν

= t20.05
2 ,2

.
= 18.5.

The confidence interval for the ratio of means is therefore

10.5 · 6.5∓
√
(10.5 · 6.5)2 −

(
10.52 − 18.5 5.8

3

) (
6.52 − 18.5 4.6

3

)
10.52 − 18.5 5.8

3

.
=

68.3∓ 60.2

74.5
.

The confidence limits are thus 0.1 and 1.7 (90% performance improvement to 70% per-
formance degradation). Such a wide interval would not be useful in practice, but this
example has used only very small repetition counts.

Alternatively, we could calculate the confidence interval for the ratio of means of the
two systems using the bootstrap method. The bootstrap replicates would be created
for both systems in the same way as we demonstrated it for the old system. We would
then calculate the ratio of means of these replicates (the first of the new system over
the first of the old system, the second of the new over the second of the old, etc.). From
these ratios, we would select the respective quantiles.

7. FOR SCIENTISTS: THE NEW METHOD AND THE STATISTICS BEHIND IT
In this section, we formulate the method in statistical terms, give its assumptions
and provide proofs. We also discuss alternatives. In the description of the statis-
tics behind our method, we assume the execution time of the operation of interest
is a continuous random variable, Y . The range of Y is a subrange of real numbers:
∃BCET ,WCET ∈ R : P (Y < BCET) = P (Y > WCET) = 0, where BCET is the best-
case execution time and WCET is the worst-case execution time. We assume that the
expectation of Y exists and that its variance is finite, E(Y) = µ and var(Y) = σ2. The
‘operation of interest’ can be anything that is the goal of the measurement, small or
large, depending on the benchmark we use. Y models only the steady state duration of
the operation, and we only focus on steady state performance here.

7.1. Statistical Model for a Hierarchy of Random Effects
7.1.1. Two-way Classification. We first describe the model with three levels3 of hierar-

chy. For clarity of exposition, we shall use our running example of random effects in
compilation, execution, and measurement. Later we show a general description for an

3In our text, the term ‘level’ always refers to levels in a benchmark experiment — it should not be confused
with its statistical meaning in texts that address fixed effects models. We only have random effects.

20 T. Kalibera, R.E. Jones

arbitrary number of levels. The intuition behind the model is simple: the times mea-
sured in a single execution are randomly distributed, with a mean that is also a ran-
dom variable (this notion is later formalised using conditional expectation). In turn,
the mean of these execution means in a binary4 is a random variable. And, finally,
the mean of these binary means is an unknown constant, the grand mean µ for the
whole system we are interested in. We start with a formalisation of the model and its
properties.

We assume that measurements from a single execution are independent identically
distributed. Their mean differs for different executions, as the measurements are in-
fluenced by random effects related to a particular execution. This can be expressed
using conditional expectation as E(Y |[µE = m]) = m, where µE is a random vari-
able which gives a mean m (a number), a mean of measurements of one particu-
lar execution. The expression says that the random variable E(Y |µE) has the value
of m when random variable µE has the value of m. We use a shorter notation for
this, E(Y |µE) = µE . We assume that the variance of measurements within execution
is a constant σ2

E = var(Y |µE) (homoscedastic). This says that the random variable
var(Y |µE) has the value of σ2

E no matter what is the value of µE . We then assume
that the µE are independent identically distributed within a given binary, but the
mean of this distribution is again a random variable within a system: E(µE |µB) = µB .
We assume that the variances of execution means within a binary are constant:
var(µE |µB) = σ2

B . The binary mean µB is a random variable for a given system,
E(µB) = µS , where µS is a constant. We denote the variance of µB as var(µB) = σ2

S ,
where σ2

S is a constant.
It can be shown that E(Y) = µS (= µ) and that var(Y) = σ2

E + σ2
B + σ2

S (= σ2).
We will do so later for the general case of n-way classification. In summary, we have
the following random effects model in two-way classification (the distribution of the
observed execution time is randomly influenced in two ways, through execution and
compilation):

E(Y) = µ, var(Y) = σ2 = σ2
E + σ2

B + σ2
S

E(Y |µE) = µE , var(Y |µE) = σ2
E

E(µE |µB) = µB , var(µE |µB) = σ2
B

E(µB) = µ, var(µB) = σ2
S

7.1.2. N-way Classification. In n-way classification, the measurements within an execu-
tion (Y |µ1) are independent identically distributed with mean µ1 and variance σ2

1 . µ1

is a random variable. σ2
1 is a constant:

E (Y |µ1) = µ1, var (Y |µ1) = σ2
1 . (1)

When n, the number of ways of the classification, is two or more, the mean of µ1|µ2 is
µ2, again a random variable. In general,

∀i, 1 ≤ i ≤ n− 1, E (µi|µi+1) = µi+1, var (µi|µi+1) = σ2
i+1. (2)

Finally, µn|µn+1 is a random variable with mean µn+1, which is a constant:

E (µn) = µn+1, var (µn) = σ2
n+1. (3)

LEMMA 7.1 (RULE OF ITERATED EXPECTATIONS). If X and Y are random vari-
ables and the expectations exist, E [E(Y |X)] = E(Y). Wasserman [2004], Theorem 3.24,
p. 55.

4We use the term ‘binary’ to denote a single binary executable, that is, a product of compilation. For the
statistical model, it is just a factor.

Quantifying Performance Changes with Effect Size Confidence Intervals 21

We will now show that µn+1 = E(Y) (note that E(Y) = µ by definition):

µ = E(Y) =(L7.1) E [E (Y |µ1)] =
(1) E (µ1)

∀i, 1 ≤ i ≤ n− 1, E (µi) =(L7.1) E [E (µi|µi+1)] =
(2) E (µi+1)

E (µn) =(3) µn+1

LEMMA 7.2 (PROPERTY OF CONDITIONAL VARIANCE). For random variables X
and Y , var(Y) = E [var(Y |X)] + var [E(Y |X)]. Wasserman [2004], Theorem 3.27, p. 55.

We will now show that σ2 = var(Y) =
∑n+1
i=1 σ

2
i (note that var(Y) = σ2 by definition):

σ2 = var(Y) =(7.2) E (var (Y |µ1)) + var (E (Y |µ1)) =
(1) E

(
σ2
1

)
+ var (µ1) =

= σ2
1 + var (µ1)

∀i, 1 ≤ i ≤ n− 1, var (µi) =(7.2) E (var (µi|µi+1)) + var (E (µi|µi+1)) =
(2)

= E
(
σ2
i+1

)
+ var (µi+1) = σ2

i+1 + var (µi+1)

var (µn) =(3) σ2
n+1.

In summary, we have the following model in n-way classification:

E(Y) = µ, var(Y) = σ2 =
∑n+1
i=1 σ

2
i

E(Y |µ1) = µ1, var(Y |µ1) = σ2
1

∀i, 1 ≤ i ≤ n− 1 E(µi|µi+1) = µi+1, var(µi|µi+1) = σ2
i+1

E (µn) = µ, var (µn) = σ2
n+1.

7.1.3. Properties of a Sample Mean with N-way Classification. We would like to estimate the
unknown parameter of interest µ = E(Y) (for example, mean execution time) based on
(balanced5) measurements of Y . In this section, we will show that the (sample) arith-
metic mean is an unbiased estimator of µ and that it is asymptotically normal. We will
also derive the variance of this estimate, so that we can later construct a confidence in-
terval for µ. Let ni be the numbers of repetitions at each level of the experiment. With
three levels, we thus have a 2-way classification and n3 is the number of binaries, n2
the number of executions per each binary, and n1 number of steady state measure-
ments per each execution, and hence n1n2n3 is the total number of measurements. For
n-way classification, we denote the sample mean Y as

Y = Y • . . . •︸ ︷︷ ︸
n+1

=
1∏n+1

i=1 ni

 nn+1∑
jn+1=1

nn∑
jn=1

. . .

n1∑
j1=1

Yjn+1jn...j1

 (4)

LEMMA 7.3 (LINDEBERG–LEVY CENTRAL LIMIT THEOREM). Let X1 . . . Xn be in-
dependent identically distributed with mean µ and finite positive variance σ2. Then,
X• =

1
n

∑n
i=1Xi has an asymptotically normal distribution with mean µ and variance

σ2/n, which we denote as X• ≈ N
(
µ, σ2/n

)
.

LEMMA 7.4. Let X1 . . . Xn be independent identically distributed normal variables,
Xi ∼ N

(
µi, σ

2
i

)
. From the properties of normal distribution [Wasserman 2004], it fol-

5In ‘balanced’ experiments, the numbers of repetitions at each level are constant, i.e. every binary is exe-
cuted the same number of times, every execution makes the same number of measurements, etc.

22 T. Kalibera, R.E. Jones

lows that X• has normal distribution with mean µ• and variance σ2•/n, which we
denote as X• ∼ N

(
µ•, σ

2•/n
)

LEMMA 7.5. Let f(t;µ1, σ1),f(t;µ2, σ2) be density functions of normal variables with
means µ1, µ2 and variances σ2

1 , σ
2
2∫

f(τ ;µ1, σ1)f(t− τ ;µ2, σ2))dτ = f

(
t;µ1 + µ2,

√
σ2
1 + σ2

2

)
.

In other words, a convolution of density functions of normal variables (the left-hand
side of the equation) is also a density function of a normal variable. Moreover, the
normal variable has mean µ1 + µ2 and variance σ2

1 + σ2
2 (by a known property of the

normal distribution).

LEMMA 7.6. Let X, Y be random variables with expectations and finite variance,
X ∼ N

(
µX , σ

2
X

)
and Y | [X = x] ∼ N

(
x, σ2

)
. Then, Y ∼ N

(
µX , σ

2
X + σ2

)
.

Proof. Let f be the probability density function of normal distribution with mean µ
and variance σ2:

f(x;µ, σ) =
1

σ
√
2π

exp

(
− (x− µ)2

2σ2

)
, where exp(z) = ez

The density functions of X and Y |X from Lemma 7.6 are:

fX(x) = f(x;µX , σX), fY |X(y|x) = fY |x(y) = f(y;x, σ)

By the definition of conditional density:

fY,X(y, x) = fY |X(y|x) · fX(x)

It follows, that:

fY (y) =

∫
fY,X(y, x) dx =

∫
fY |X(y|x)fX(x) dx

=

∫
1

σ
√
2π

exp

(
− (y − x)2

2σ2

)
· 1

σX
√
2π

exp

(
− (x− µX)2

2σ2
X

)
dx[

substituting
u = x− µX

]
=

∫
1

σ
√
2π

exp

(
− (y − µX − u)2

2σ2

)
· 1

σX
√
2π

exp

(
− u2

2σ2
X

)
du

=

∫
f(y − u;µX , σ)f(u; 0, σX) du

=(L7.5) f

(
y;µX ,

√
σ2 + σ2

X

)
Hence, Y ∼ N(µX , σ

2
X + σ2).

With these lemmas, we can infer asymptotic distributions of estimators in our n-way
model. Informally, the basic idea is simple. We get asymptotic normal distributions for
sample means of executions by the Central Limit Theorem (Lemma 7.3), which propa-
gates to the grand mean Y by the properties of the normal distribution (Lemma 7.4).
Similarly, the sample mean of means of executions within a binary (µ1|µ2) is asymp-
totically normal by the Central Limit Theorem, which propagates to the ‘mean of the
grand mean’ by properties of the normal distribution. The two are then joined by con-
volution, with the help of Lemma 7.5.

Quantifying Performance Changes with Effect Size Confidence Intervals 23

Formally, the application of Lemma 7.3 on sample means for individual executions
is described as:

∀jn+1 . . . j2, Y jn+1...j2•
∣∣ [(µ1)jn+1...j2

= m
]
≈ N

(
m,

σ2
1

n1

)
The meaning is that for a particular representation m of the respective execution
mean, we get a normally distributed sample mean with this expectation m. The ranges
for jn+1 . . . j1 are as in (4). However, for simplicity, we just will write

∀jn+1 . . . j2, Y jn+1...j2•
∣∣(µ1)jn+1...j2

≈ N
(
(µ1)jn+1...j2

,
σ2
1

n1

)
Further summarisation to a higher level (i.e. binaries) keeps the asymptotic normal
distribution by Lemma 7.4:

∀jn+1 . . . j3, Y jn+1...j3••
∣∣(µ1)jn+1...j3• ≈ N

(
(µ1)jn+1...j3•,

σ2
1

n1n2

)
We now keep applying Lemma 7.4 for all i, 1 < i ≤ n:

∀jn+1 . . . ji+1, Y jn+1...ji+1 • . . . •︸ ︷︷ ︸
i

∣∣(µ1)jn+1...ji+1 • . . . •︸ ︷︷ ︸
i−1

≈ N

(µ1)jn+1...ji+1 • . . . •︸ ︷︷ ︸
i−1

,
σ2
1∏i

k=1 ni

finally getting for i = n+ 1 (again by Lemma 7.4)

Y • . . . •︸ ︷︷ ︸
n+1

∣∣(µ1)• . . . •︸ ︷︷ ︸
n

≈ N

(µ1)• . . . •︸ ︷︷ ︸
n

,
σ2
1∏n+1

k=1 nk

which could be written simply as

Y
∣∣µ1 ≈ N

(
µ1,

σ2
1∏n+1

k=1 nk

)
(5)

Now we need to derive the distribution of µ1. This can be done quite similarly to
the distribution of Y |µ1. By applying the Central Limit Theorem (Lemma 7.3) on (un-
known) means of executions, we get an asymptotically normal distribution of the sam-
ple mean of these means:

∀jn+1 . . . j3, (µ1)jn+1...j3•
∣∣(µ2)jn+1...j3

≈ N
(
(µ2)jn+1...j3

,
σ2
2

n2

)
The ranges for jn+1 . . . j1 are as in (4). Hence, in a 2-way classification model, sample
execution means µ1 have two sums (over binaries and over executions) and sample
binary means µ2 have a single sum (over binaries). By applying Lemma 7.4, we get

∀jn+1 . . . j4, (µ1)jn+1...j4••
∣∣(µ2)jn+1...j4• ≈ N

(
(µ2)jn+1...j4•,

σ2
2

n2n3

)
Now we keep applying Lemma 7.4 for all i, 1 < i < n:

∀jn+1 . . . ji+2, (µ1)jn+1...ji+2 • . . . •︸ ︷︷ ︸
i

∣∣(µ2)jn+1...ji+2 • . . . •︸ ︷︷ ︸
i−1

≈ N

(µ2)jn+1...ji+2 • . . . •︸ ︷︷ ︸
i−1

,
σ2
2∏i+1

k=2 nk

24 T. Kalibera, R.E. Jones

Finally, for i = n, by Lemma 7.4 we get

(µ1)• . . . •︸ ︷︷ ︸
n

∣∣(µ2)• . . . •︸ ︷︷ ︸
n−1

≈ N

(µ2)• . . . •︸ ︷︷ ︸
n−1

,
σ2
2∏n+1

k=2 nk

which can be written as

µ1|µ2 ≈ N

(
µ2,

σ2
2∏n+1

k=2 nk

)
(6)

The same procedure for µ2|µ3 gives

µ2|µ3 ≈ N

(
µ3,

σ2
3∏n+1

k=3 nk

)
For the general case of µi|µi+1, 1 ≤ i ≤ n− 1, we then get

µi|µi+1 ≈ N

(
µi+1,

σ2
i+1∏n+1

k=i+1 nk

)
(7)

The means at the highest level of non-determinism (the means of binaries in the case
of 2-way classification), the µn, come from a single (non-conditional) distribution with
mean µ and variance σ2

n+1. By the Central Limit Theorem, Lemma 7.3, their sample
mean is thus normally distributed:

µn ≈ N
(
µ,
σ2
n+1

nn+1

)
(8)

By this we have the last missing bit for Lemma 7.6. Now, by using Lemma 7.6 on (7)
and (8), we get

µn−1 ≈ N
(
µ,
σ2
n+1

nn+1
+

σ2
n

nnnn+1

)
and then by further applications of the lemma and (7) we get

µ1 ≈ N

(
µ,

n+1∑
i=2

σ2
i∏n+1

k=i nk

)
(9)

Now we can apply Lemma 7.4 on (5) and (9), by which we get

Y ≈ N

(
µ,

n+1∑
i=1

σ2
i∏n+1

k=i nk

)
(10)

Hence, the sample arithmetic mean Y is an unbiased estimator of µ with n-way classi-
fication, is normally distributed, and we have an expression for its variance.

7.2. Confidence Interval for the Mean of One System
Within the model described in the Section 7.1, we can construct a confidence interval
for the mean execution time (µ) of a single system. In Section 7.3, we extend this to the
confidence interval for the ratio of means of two systems.

We show how to construct the interval using two alternative methods. The bootstrap
method is intuitively simple and works for additional metrics, such as the median,
as well as the mean. The parametric method based on asymptotic normality of the

Quantifying Performance Changes with Effect Size Confidence Intervals 25

model (shown in Section 7.1), only works for the mean, but has the potential to provide
narrower intervals for larger sample sizes. We compare the two methods empirically
in Section 8.

7.2.1. Bootstrap Confidence Interval for One System. Let us assume that we have n + 1
levels of hierarchy in our experiment and that we decided to repeat nn+1, nn, . . . n1
times at each level. When we have completed benchmarking, we would thus have
nn+1nn · . . . · n1 measurements, which we denote as

Yjn+1jn...j1 (∀i, 1 ≤ i ≤ n+ 1, 1 ≤ ji ≤ ni)

We assume that the measurements from a single execution, that is Yjn+1...j2• for any
fixed jn+1 . . . j2, are independent identically distributed, and we assume independence
of means at higher levels as described in the previous section.

Very informally, the core idea behind bootstrap is to simulate (many) experiments
based on the real data and then calculate what we want on the simulated data, in
our case to calculate the confidence interval. So instead of one realization of Y which
comes from our real data, we can have many realizations, generated by simulation,
which is much faster than real experimentation. From these simulated realizations,
we construct the confidence interval by selecting appropriate quantiles. Detailed dis-
cussion and formulation of different bootstrap methods can be found in Davison and
Hinkley [1997].

The simulation of the new realizations of Y in each iteration randomly selects a
subset of real data (Y• . . . •︸ ︷︷ ︸

n+1

) with replacement. This means that the size of the subset

will be the same as of the original set (nn+1 · . . . · n1), but some data points may not
be present, while others can be presented multiple times. In each iteration, the sim-
ulation calculates a sample arithmetic mean of the subset. After all iterations finish,
we estimate the 0.025 and 0.975 quantiles for a 95% confidence interval (if we have
1000 iterations, the quantiles can be estimated as 25th and 975th ordered values, al-
though different estimators for quantiles exist). Pseudo-code for the described method
is shown in Figure 1. For a 95% interval, we select α = 0.05.

Out of the wide variety of bootstrap methods, the key decisions here were how to do
resampling, and how to construct the confidence interval given the simulated means.
For resampling, depending on the underlying distribution and the statistic of interest,
it is sometimes better to resample with replacement only at higher levels of the hier-
archy, but keep the lower levels intact [Ren et al. 2010; Davison and Hinkley 1997].
A naı̈ve alternative is then also to ignore the structure of the model and resample at
random from all measurements. We cover these alternatives in our evaluation later.
The method of resampling shown in Figure 1, replacement at all levels, seems to work
best (or at least not worse than others), and is a common default.

For the construction of the confidence interval given the simulated means, we use
the percentile method. This method is sensitive to non-symmetrical distributions of the
statistic, but it should not be much of a problem here as we have shown earlier that
Y is asymptotically normal. Still, one can easily plug in alternative bootstrap methods
for confidence interval construction [Davison and Hinkley 1997]. Statistical software
packages, such as R, implement plenty of different methods.

7.2.2. Asymptotic Confidence Interval for One System. Alternatively to bootstrap, we can
construct a confidence interval for the mean with n-way classification using the asymp-
totic normality of Y (equation 10 of Section 7.1.3). For this we need to estimate the
unknown variance of the sample mean. It is easier to do this directly than by estimat-
ing the individual variances σ2

i , 1 ≤ i ≤ n+ 1.

26 T. Kalibera, R.E. Jones

Input: n, (n1, . . . , nn), Yjn+1jn...j1 where ∀i, 1 ≤ ji ≤ ni, nIterations = 1000, α = 0.05
Output: lower, upper

Uses: mean(x) ... arithmetic average
Uses: quantile(probability, x) ... select a sample quantile
Uses: resample (replacement, x) ... random resampling

simulatedMeans = new vector[nIterations]
foreach iteration in 1..nIterations {
simulatedMeasurements = new vector[nn+1 · . . . · n1]
foreach jn+1 in resample(1..nn+1, replacement = yes) {
foreach jn in resample(1..nn, replacement = yes) {
. . .
foreach j1 in resample(1..n1, replacement = yes) {
append Yjn+1jn...j1 to simulatedMeasurements

}
. . .

}
}
simulatedMeans[iteration] = mean(simulatedMeasurements)

}
lower = quantile(probability = α/2, simulatedMeans)
upper = quantile(probability = 1− α/2, simulatedMeans)

Fig. 1. Bootstrap Confidence Interval for One System.

We use the following estimator:

S2
n+1 =

1

nn+1 − 1

nn+1∑
jn+1=1

Y jn+1 • . . . •︸ ︷︷ ︸
n

− Y • . . . •︸ ︷︷ ︸
n+1

2

We show in Section 7.6 that S2
n+1/nn+1 is an unbiased estimator of the variance of the

sample mean, that is

E

(
S2
n+1

nn+1

)
=

n+1∑
i=1

σ2
i∏n+1

k=i nk

Note this also means that as long as we have a hierarchical experiment (n ≥ 1), S2
n+1

is not an unbiased estimator of σ2
n+1. Relying on asymptotic normality even after the

unknown variance of the sample mean is replaced by its estimate, we get an asymptotic
(1− α) confidence interval for µ:

Y ± u1−α2

√
S2
n+1

nn+1
= Y ± u1−α2

√√√√√ 1

nn+1(nn+1 − 1)

nn+1∑
jn+1=1

Y jn+1 • . . . •︸ ︷︷ ︸
n

− Y • . . . •︸ ︷︷ ︸
n+1

2

(11)

We do not claim that Y has a t-distribution, as we do not assume normality of Y |µ1,
µ1|µ2, . . . , µn−1|µn, and µn. A one-way model that makes such normality assumptions
can be found in Charles E. McCulloch [2008], including the respective confidence inter-
val, which uses the t-distribution with nn+1 − 1 degrees of freedom. For large numbers
of degrees of freedom, the t distribution converges to normal, so the choice is not im-
portant. For small number of degrees of freedom, say smaller than 30 and definitely
smaller than 20, the confidence intervals become wider with the t-distribution than

Quantifying Performance Changes with Effect Size Confidence Intervals 27

with the Normal distribution. This means that under the normality assumptions, one
should definitely use the t distribution, otherwise the interval would be too narrow
(its coverage will be smaller than the projected 1 − α). In the practice, a larger than
projected coverage is usually regarded as better than a smaller one, so it makes sense
to use the t distribution anyway.

7.3. Confidence Interval for Ratio of Means
In this section, we show how the method for constructing the confidence interval for
the mean of one system (Section 7.2) can be extended to a confidence interval of the
ratio of means of two systems. We will refer to these systems as ‘old’ and ‘new’, and
make the same set of assumptions for the two systems as we did for the single sys-
tem so far (independence and identical distributions at multiple levels). We denote
the corresponding random variables for execution time as OY and NY , and the means
as Oµ = E(OY) and Nµ = E(NY). Thus, we now have a bivariate distribution (F) of
ONY = (OY,N Y) ∼ F (xO, xN). We assume that OY and NY are independent. The vari-
ances Nσ2

i , Oσ2
i and expectations in the two systems can differ. Even the distributions

may differ. The parameter of interest is now

θ = t(F) =
Nµ
Oµ

=

∫
xN dF (xO, xN)∫
xO dF (xO, xN)

We estimate θ using measurements of the two systems. Again, we use balanced mea-
surements and the same repetition counts (n1, . . . , nn+1) for both systems. It can be
shown that T ,

T = t(F̂) =
NY
OY

is an unbiased (plugin) estimator for θ (Davison and Hinkley [1997], Example 2.2).
Hence, we can estimate θ using the ratio of arithmetic averages of the two systems,
and we will do so both in the bootstrap and the asymptotic parametric method.

We estimate the unknown variances var(OY) and var(NY) by OS
2
n+1 and NS

2
n+1 from

Section 7.1.

7.3.1. Bootstrap Confidence Interval for Ratio of Means. To construct a bootstrap interval
for the ratio of means θ, we need to simulate many realisations of its estimator T .
α/2- and 1 − α/2- quantiles of these realisations form a (1 − α) percentile bootstrap
confidence interval for θ. The pseudo-code is shown in Figure 2. Discussion of more
elaborate bootstrap methods for construction of the ratio of means can be found in von
Luxburg and Franz [2009].

7.3.2. Asymptotic Confidence Interval for Ratio of Means. We can construct an asymptotic
interval for θ using a theorem by Fieller [1954], which gives confidence limits for the
ratio of means of two normally distributed variables.

LEMMA 7.7 (FIELLER’S THEOREM [FIELLER 1954]). Let X,Y be normally dis-
tributed random variables, not necessarily independent. Let x, y be unbiased estimates
of the means E(X), E(Y). Let vxx, vyy be variances of x and y (note, not of X and Y). Let
vxy be sample covariance of x and y. Then, the confidence limits for E(X)/E(Y) are:

α1, α2 =

(
xy − t2vxy

)
∓
√
(xy − t2vxy)2 − (x2 − t2vxx) (y2 − t2vyy)

x2 − t2vxx
where α1 is the lower limit (− sign) and α2 is the upper limit (+ sign). t is the critical
value for the two-tail t-distribution, that is, for a 95% interval it is the 0.025th quantile

28 T. Kalibera, R.E. Jones

Input: n, (n1, . . . , nn),
O,NYjn+1jn...j1 where ∀i 1 ≤ ji ≤ ni, nIterations = 1000, α = 0.05

Output: lower, upper

Uses: mean(x) ... arithmetic average
Uses: quantile(probability, x) ... select a sample quantile
Uses: resample (replacement, x) ... random resampling

function simulateMean(oldnew) {
simulatedMeasurements = new vector[nn+1 · . . . · n1]
foreach jn+1 in resample(1..nn+1, replacement = yes) {
foreach jn in resample(1..nn, replacement = yes) {
. . .
foreach j1 in resample(1..n1, replacement = yes) {

append oldnewYjn+1jn...j1 to simulatedMeasurements
}
. . .

}
}
return mean(simulatedMeasurements)

}

simulatedRatios = new vector[nIterations]
foreach iteration in 1..nIterations {

simulatedRatios[iteration] = simulateMean(oldnew = ’N’)
simulateMean(oldnew = ’O’)

}
lower = quantile(probability = α/2, simulatedRatios)
upper = quantile(probability = 1− α/2, simulatedRatios)

Fig. 2. Bootstrap Confidence Interval for Ratio of Means of Two Systems.

of the respective t-distribution. The interval will be bounded and non-trivial, that is
−∞ < α1 < α2 < ∞ for 0 < t2 < x2/vxx. Details on other cases can be found in Fieller
[1954] and von Luxburg and Franz [2009].

Note that the requirement of t2 < x2/vxx from the theorem is intuitive. It states that
the estimator of the denominator (the sample mean of the old system) should be sta-
tistically significantly different from zero. In our case with sample means of execution
times, this condition is hardly ever violated. Nevertheless, it can still happen due to
the statistical nature of the condition and hence the condition needs to be checked. As
we detail later in our evaluation, we have seen the condition violated for a sample size
of two in our experiments. The requirement that t2 > 0 is also easily met in practice, as
we are not interested in intervals for confidence close to zero. In our case, we also as-
sume independence of the two variables, which implies vxy = 0. The (1− α) confidence
interval for θ is hence:

OY · NY ∓

√(
OY · NY

)2
−
((

OY
)2
− t2α

2 ,ν
·
OS2

n+1

nn+1

)((
NY
)2
− t2α

2 ,ν
·
NS2

n+1

nn+1

)
OY

2
− t2α

2 ,ν
· OS2

n+1/nn+1

(12)

where tα
2 ,ν

is the α
2 - quantile of the t-distribution with ν = nn+1−1 degrees of freedom.

The Fieller’s result can be extended for unbalanced experiments, where the calcula-
tion of the numbers of degrees of freedom becomes more complicated. Details can be
found in Dilba et al. [2007] and Schaarschmidt [2007]. In our case of a hierarchical

Quantifying Performance Changes with Effect Size Confidence Intervals 29

experiment, this number could be modified to match the number of degrees of freedom
in our variance estimates. Note that Fieller’s method assumes normality of the two
variables, that is of OY and NY , which will be violated in practice — execution time is
not normally distributed. Relying only on the asymptotic normality of the mean and
looking only for an asymptotic interval, we would use the quantiles of the standard
Normal distribution instead of the t-distribution in the interval. To be conservative,
we would in practice use the t-distribution anyway, as in the case of the interval for
a single system. The robustness of Fieller’s method to deviations from normality is
touched in [von Luxburg and Franz 2009].

For alternative methods for construction of the confidence interval for the ratio of
means we refer the reader to Beyene and Moineddin [2005] and von Luxburg and
Franz [2009]. A common alternative is based on the delta method.

7.4. Experiment Planning
To obtain an unbiased result and realistic error bars (confidence interval), one has to
make sure that all the randomness of the system is encapsulated by the experiment.
For example, if the system of interest has non-deterministic compilation and different
binaries also differ in performance, one has to run multiple binaries within that exper-
iment. The cost of building a new binary can be high, e.g. for the Mono platform, which
we use for validation of our method, the compilation time was about 20 minutes. If
the fluctuations in performance due to non-determinism in compilation are small (σS
is small) compared to, say, the one due to non-determinism in execution (σB), which
is the usual case in our experiments, time allocated to experimentation would be bet-
ter spent by running the existing binaries multiple times rather than building new
binaries. We can formalise such trade-offs and, based on initial experiments that re-
peat a few times at all levels to estimate the variances, we can calculate the optimum
number of repetitions at each level that results in the most precise result for a given
experimentation time.

Let us assume the random effects model in n-way classification of Section 7.1. We
have run initial experiments to obtain estimates of the variances σ2

1 , σ
2
2 , . . . , σ

2
n+1. We

will discuss later which estimators can be used. We also assume we know the cost of a
new repetition at the (non-top) levels, c1, c2, . . . , cn, so that the total cost of experimen-
tation is

c = (cn + . . . (c3 + (c2 + (c1 + n1)n2)n3 . . .)nn)nn+1 (13)
The unit of the costs (c, ci) is the number of (the lowest-level) measurements that could
be obtained in that time. The practical meaning of the costs and their use have been
described informally in Section 6.1. With three levels only, the total cost would be

c = (c2 + (c1 + n1)n2)n3

where n1 is the number of steady state measurements, c1 is the number of warm-up
measurements of an execution that are not included into summarization (cost of a new
execution), n2 is the number of executions, c2 is the number of measurements that
could be done in the time needed to build one binary, and n3 is the number of binaries.

The costs ci can be calculated during the initial experiments that have to be executed
to estimate the variances σ2

i . For the purpose of experiment planning, precise estimates
of the costs are not needed — the planning is a back-of-the-envelope calculation. For
instance, we can use averages from the initial experiments. The optimisation problem
is to find the n1, . . . , nn that minimize f ,

f(n1, n2, . . . , nn+1) =

n+1∑
i=1

σ2
i∏n+1

k=i nk

30 T. Kalibera, R.E. Jones

Function f is a measure of the precision of the result, as it is a measure of the width
of the confidence interval for the mean — (equation 11 in Section 7.2). In this section,
we will show that the optimal numbers of repetitions n1, . . . , nn are

n1 =

√
c1
σ2
1

σ2
2

, ∀i, 1 < i ≤ n, ni =

√
ci
ci−1

σ2
i

σ2
i+1

(14)

The optimal number of repetitions thus only depends on two adjacent levels of the
experiment, no matter what the total number of levels is. For example, in a 2-way
model, we have

n1 =

√
c1
σ2
1

σ2
2

and n2 =

√
c2
c1

σ2
2

σ2
3

The number of samples n1 should be large when the cost for warm-up c1 is high and/or
when the variance in samples σ2

1 is higher than the variance in executions σ2
2 . The

number of executions n2 should be large when the cost of a build c2 is larger than the
cost of a run c1 and/or when the variance in executions σ2

2 is larger than the variance
in binaries σ2

3 .

7.5. Derivation of the Optimalisation Formula
For the proof, we will use the following notation

∀i, 1 < i ≤ n+ 1, si = σ2
i

∀i, 1 < i ≤ n+ 1, pi =

n+1∏
k=i

nk

k1 = n1, ∀i, 1 < i ≤ n, ki = (ci−1 + ki−1)ni

Note that ki is a recurrent definition of the cost of the experiment c. In the new nota-
tion, we need to find n1, . . . , nn+1 that minimize f under the condition that g = 0 for a
given budget for the experiment c (in fact we only care about n1, . . . , nn):

f = f(n1, . . . , nn+1) =

n+1∑
i=1

si
pi(ni, . . . , nn+1)

=

n+1∑
i=1

si
pi

g = g(n1, . . . , nn+1) = kn+1(n1, . . . , nn+1)− c = kn+1 − c (15)

Note that we sometimes omit the formal arguments of functions for readability. By
the Lagrange Multiplier Theorem, optimum values can only be among solutions of the
system of equations:

∀i, 1 ≤ i ≤ n+ 1,
∂f

∂ni
(n1, . . . , nn+1) + λ

∂g

∂ni
(n1, . . . , nn+1) = 0

g(n1, . . . , nn+1) = 0 (16)

The partial derivatives are expressed in our notation as follows:

∂g

∂n1
= n2n3 · . . . · nn+1 = p2 =

k1
n1
p2,

∂g

∂ni
=(∗) ki

ni
pi+1

∂f

∂n1
= − s1

n1p1
,

∂f

∂n2
= − s1

n2p1
− s2
n2p2

,
∂f

∂ni
= −

i∑
k=1

sk
nipk

Quantifying Performance Changes with Effect Size Confidence Intervals 31

The derivation of ∂f
∂ni

is straightforward, but the derivation of the marked ∂g
∂ni

deserves
some explanation. From the definitions of ki and g we have that

∂g

∂ni
=

∂

∂ni
(kn+1 − c) =

∂

∂ni
kn+1 =

∂

∂ni
(cn + kn)nn+1 =

∂

∂ni
(cn + (cn−1 + kn−1)nn)nn+1

= . . . =
∂

∂ni
(cn + (cn−1 + . . . (ci−1 + ki−1)ni . . .)nn)nn+1

=

(
∂

∂ni
(ci−1 + ki−1)pi

)
+ 0 = (ki−1 + ci−1)pi+1 = pi+1

ki
ni
.

We will solve the system (16) by substitutions and induction, starting from partial
derivatives for ∂

∂n1
. We first express n2i as follows:

∂f

∂n1
+ λ

∂g

∂n1
= 0

λ
k1
n1
p2 =

s1
n1p1

λk1p1p2 = s1 |expand k1, p1
λp22n

2
1 = s1

n21 =
s1
λp22

=
s1

λn22p
2
3

, n22 =
s1

λn21p
2
3

, n23 =
s1

λn21n
2
2p

2
4

,

n2i =
s1

λn21n
2
2 . . . n

2
i−1p

2
i+1

. (17)

Now we can get a solution for n1 from the equation for ∂
∂n2

∂f

∂n2
+ λ

∂g

∂n2
= 0

λ
k2
n2
p3 =

s1
n2p1

+
s2
n2p2

(18)

λk2p1p3 = s1 + s2n1 |expand k2, p1
λ(c1 + n1)n1n

2
2p

2
3 = s1 + s2n1 |substitute n22 using (17) (19)

(c1 + n1)s1 = s1n1 + s2n
2
1 (20)

n1 =

√
s1c1
s2

(21)

which is the initial case of (14) which we need to prove. We follow by induction over i.
Assuming (14) holds for n1, . . . , ni, we prove it for ni+1:

∂f

∂ni+2
+ λ

∂g

∂ni+2
= 0

λ
ki+2

ni+2
pi+3 =

1

ni+2

i+2∑
k=1

sk
pk

=
1

ni+2

(
i∑

k=1

sk
pk

+
si+1

pi+1
+
si+2

pi+2

)
λki+2 · pi+3 =(∗) λkipi+1 +

si+1

pi+1
+
si+2

pi+2
|expand ki+2

λ(ci+1 + (ci + ki)ni+1)ni+2 · p2i+3ni+2ni+1 = λkip
2
i+1 + si+1 + si+2ni+1

32 T. Kalibera, R.E. Jones

The transformation marked by (∗) is a substitution for the same equation, but for ∂
∂ni

.
By expanding the left hand side and substituting n2i+2 using (17), we get

ci+1
s1

n21 · . . . · n2ini+1
+ ci

s1
n21 · . . . · n2i

= si+1 + si+2ni+1

ci+1s1 + cis1ni+1 = si+1 n
2
1 · . . . · n2i ni+1 + si+2 n

2
1 · . . . · n2i n2i+1

It is easy to simplify n21 · . . . · n2i by the induction assumption for (14),

n21 · . . . · n2i =
c1
1

s1
s2
· c2
c1

s2
s3
· c3
c2

s3
s4
· . . . · ci

ci−1

si
si+1

=
cis1
si+1

and thus

ci+1s1 = si+2s1
ci
si+1

n2i+1

ni+1 =

√
ci+1s1si+1

cis1si+2
=

√
ci+1

ci

si+1

si+2

which finishes the induction step. We have solutions of (16) for

n1 =

√
s1c1
s2

, ∀i, 2 ≤ i ≤ n, ni =
√

cisi
ci−1si+1

Technically, we could find a solution for nn+1 based on the budget c and solutions for
n1, . . . , nn, but we are not really interested in nn+1. Still, our solution of (16) need not
be the minimum of (15). To verify that it actually is, we proceed as follows. First, we
reduce the optimisation problem to a single function h, which we get by eliminating
nn+1 from f using g. From (15), since g = 0, we get

(cn + kn)nn+1 − c = 0 hence nn+1 =
c

cn + kn

and

f = f(n1, . . . , nn+1) =
1

nn+1

(
sn+1 +

n∑
i=1

si
ni · . . . · nn

)

For h we have that

h = f(n1, . . . , nn) =
cn + kn

c

(
sn+1 +

n∑
i=1

si
ni · . . . · nn

)
= (22)

=
1

c

(
cn + n1 · . . . · nn +

n−1∑
i=1

ci · ni+1 · . . . · nn

)
·

(
sn+1 +

n∑
i=1

si
ni · . . . · nn

)
(23)

Our optimisation problem of (15) is equivalent to minimizing h. From (22) we know
that h has the form of

h(n1, . . . , nn) = α+
∑

βn∗ +
∑

γ
1

n∗
(24)

where α, β, γ are non-negative real constants and n∗ are products of combinations of
variables from n1, . . . , nn. For 1-way classification, we have

h(n1) = α+ βn1 + γ
1

n1
=

(c1 + n1)(s1 + s2n1)

n1c

Quantifying Performance Changes with Effect Size Confidence Intervals 33

for 2-way classification we have

h(n1, n2) = α+ β1n1 + β2n2 + β3n1n2 + γ1
1

n1
+ γ2

1

n2
+ γ3

1

n1n2
=

=
(c2 + n2c1 + n1n2)(s1 + s2n1 + s3n1n2)

n1n2c

From this general form it is easy to see that h is continuous and positive for ni > 0.
Every element of the sum in (24) is always positive. h does not have a maximum,
because it is unbounded for very small values of any and all of its arguments, as well
as for very large values. Each term of (24) is convex, hence the sum of terms, h, is
convex, so h does not have an inflection point, but has a global minimum.6

7.6. Estimating Unknown Variances
Estimating the unknown variances σ2

1 , . . . , σ
2
n+1 is harder than it may seem. Let us

first define these ‘naı̈ve’ estimators

S2
1 =

1∏n+1
k=2 nk

1

n1 − 1

nn+1∑
jn+1=1

. . .

n1∑
j1=1

(
Yjn+1...j1 − Y jn+1...j2•

)2
S2
2 =

1∏n+1
k=3 nk

1

n2 − 1

nn+1∑
jn+1=1

. . .

n2∑
j2=1

(
Y jn+1...j2• − Y jn+1...j3••

)2
for the general case of i, 2 ≤ i ≤ n

S2
i =

1∏n+1
k=i+1 nk

1

ni − 1

nn+1∑
jn+1=1

. . .

ni∑
ji=1

Y jn+1...ji • . . . •︸ ︷︷ ︸
i−1

− Y jn+1...ji+1 • . . . •︸ ︷︷ ︸
i

2

and finally the already defined

S2
n+1 =

1

nn+1 − 1

nn+1∑
jn+1=1

Y jn+1 • . . . •︸ ︷︷ ︸
n

− Y • . . . •︸ ︷︷ ︸
n+1

2

These estimators are, apart from S2
1 , not unbiased estimators for σ2

1 , . . . , σ
2
n+1. We

will show later in this section that
E
(
S2
1

)
= σ2

1

E
(
S2
2

)
= σ2

2 +
σ2
1

n1

E
(
S2
3

)
= σ2

3 +
σ2
2

n2
+

σ2
1

n1n2

and for the general case of i, 2 ≤ i ≤ n+ 1

E
(
S2
i

)
= σ2

i +

i−1∑
k=1

σ2
k∏i−1

l=k nl
= σ2

i + E

(
S2
i−1
ni−1

)
6We could have found the solutions directly through partial differentiation of h. We have done this for several
values of n using a symbolic algebra system, but we chose to use the Lagrange multiplier method for the
general case, as the computation is simpler.

34 T. Kalibera, R.E. Jones

Let us define estimators T1, . . . , Tn+1 as
T 2
1 = S2

1

∀i, 1 < i ≤ n+ 1, T 2
i = S2

i −
S2
i−1
ni−1

While T 2
i are unbiased estimators of the unknown variances, they have the issue that

they may become negative for i > 1. In our case we need the estimators only to plan the
experiment. Hence, we can simply iteratively remove levels of the experiment where
T 2
i would be negative or zero. Maximum likelihood (ML) and restricted maximum like-

lihood (REML) estimators for one-way model with normality assumption can be found
in Charles E. McCulloch [2008]. Both types have alternatives for T 2

i > 0 and “T 2
i < 0”,

and both types are biased. Estimators for a broad range of random and fixed effects
models can be found in [Searle et al. 1992].

In the rest of this section, we will calculate the expectations of S2
i . We start with the

lemmas we will use.

LEMMA 7.8. Let z = 1
n

∑n
i=1 zi. Then

∑n
i=1 (zi − z)

2
=
(∑n

i=1 z
2
i

)
− n (z)2 .

LEMMA 7.9. Let zi, i = 1, .., n be random variables with constant expectation, Ezi =
Ez1 <∞. The following holds given the variances and expectations exist:

E

(
n∑
i=1

(zi − z)2
)

=

(
n∑
i=1

var(zi)

)
− n var(z).

Proof. From Lemma 7.8 and the linearity of expectation we have that

E

(
n∑
i=1

(zi − z)2
)

=(7.8) E

((
n∑
i=1

z2i

)
− n (z)2

)
=

(
n∑
i=1

E
(
z2i
))
− nE

(
(z)

2
)
.

From the well known property of variance, var(X) = E(X2)−(EX)2, we have E(X2) =
var(X) + (EX)2, and hence(

n∑
i=1

E
(
z2i
))
− nE

(
(z)

2
)

=

(
n∑
i=1

var(zi) + (Ezi)
2

)
− n

(
var (z) + (Ez)

2
)

=

(
n∑
i=1

var(zi)

)
− n var(z)

LEMMA 7.10. Let zi , i = 1, .., n be random variables with constant variance,
var(zi) = var(z1) < ∞, and constant covariance, cov(zi, zj) = cov(z1, z2) < ∞ for i 6= j.
Then

var

(
n∑
i=1

zi

)
= n var(z1) + (n2 − n) cov(z1, z2)

and

E

(
1

n− 1

n∑
i=1

(zi − z)2
)

= var(z1)− cov(z1, z2)

Note that the first part of the lemma implies that

var(z) =
var(z1)

n
+
n− 1

n
cov(z1, z2)

Quantifying Performance Changes with Effect Size Confidence Intervals 35

Proof. The first part follows immediately from the property of the variance of a sum of
random variables:

var

(
n∑
i=1

zi

)
=

(
n∑
i=1

var(zi)

)
+ 2

n∑
i<j

cov(zi, zj) = n var(z1) + (n2 − n) cov(z1, z2).

The second part follows from Lemma 7.9 and from the first part:

E

(
1

n− 1

n∑
i=1

(zi − z)2
)

= (L7.9) 1

n− 1

(
n∑
i=1

var(zi)

)
− n

n− 1
var(z)

=
n

n− 1
var(z1)−

1

n(n− 1)
var

(
n∑
i=1

zi

)

=
n

n− 1
var(z1)−

1

n− 1
var(z1)−

n(n− 1)

n(n− 1)
cov(z1, z2)

= var(z1)− cov(z1, z2)

The plan is to use Lemma 7.10 to calculate, in turn, the expectation of each variance
estimator S2

i . We will use it for all 1 ≤ i ≤ n+1, although i = 1 and i = n+1 are special
cases which could be solved in an easier way. In each step, we will calculate as a side
effect the variance of

∑n
i=1 zi, which will be handy for calculation of the term “var(z1)”

in the next step. For this plan, we also need the covariances of “z1, z2”. We will first
calculate these covariances using the following three lemmas.

LEMMA 7.11. For random variables Xi, i = 1, ..,m and Yj , j = 1., , .n it follows from
a known property of covariance that

cov
(
X,Y

)
=

1

mn

m∑
i=1

n∑
j=1

cov(Xi, Yj).

Note that if in addition cov(Xi, Yj) is a constant, then cov(X,Y) = cov(X1, Y1).

LEMMA 7.12 (LAW OF TOTAL COVARIANCE). For random variables X,Y ,Z:
cov(X,Y) = E(cov(X,Y |Z)) + cov(E(X|Z), E(Y |Z)).

This is a known property which can be shown using the law of total expectation and
the definition of covariance.

LEMMA 7.13 (TOWER PROPERTY OF CONDITIONAL EXPECTATION). For random
variables X,G,H: E(X|G) = E(E(X|G,H)|G).

The proof is simple, but depends on “low-level” formal definition of conditional expec-
tation using σ− algebras that we avoid here. Details can be found in [Steele 2001].

The covariance at the lowest level (measurements in one execution) can be calculated
as follows. For k 6= l

cov
(
Yjn+1...j2k, Yjn+1...j2l

)
= (L7.12)E

(
cov

(
Yjn+1...j2k, Yjn+1...j2l| (µ1)jn+1...j2

))
+

+ cov
(
E
(
Yjn+1...j2k| (µ1)jn+1...j2

)
, E
(
Yjn+1...j2l| (µ1)jn+1...j2

))
= (∗) 0 + cov

(
(µ1)jn+1...j2

, (µ1)jn+1...j2

)
= var

(
(µ1)jn+1...j2

)
= (†) σ2 − σ2

1 .

36 T. Kalibera, R.E. Jones

The equality marked by (∗) follows from independence of measurements in an execu-
tion (an assumption of our model) and from the nesting of expectations in our model,
E(Y |µ1) = µ1. The equality marked by (†) follows from Lemma 7.2 on page 21 (see the
derivation of σ2 = var(Y) below the Lemma). Covariances at higher levels require an
additional step. For the second level, we have for k 6= l

cov
(
Yjn+1...j3kj1 , Yjn+1...j3lj1

)
=(L7.12) E

(
cov

(
Yjn+1...j3kj1 , Yjn+1...j3lj1 | (µ2)jn+1...j3

))
+

+ cov
(
E
(
Yjn+1...j3kj1 | (µ2)jn+1...j3

)
, E
(
Yjn+1...j3lj1 | (µ2)jn+1...j3

))
.

Note that in our model it is not important what the last index (j1) is in the above,
and particularly if the two variables that are arguments of the covariance have it the
same or not. The first term above is again zero from the assumptions of our model,
because the two executions only have in common the mean of their means, which is
the conditional. The second term can be expanded using Lemma 7.13 (we omit the
largest index jn+1 for brevity)

E
(
Y...j3kj1 | (µ2)...j3

)
= (7.13)E

(
E
(
Y...j3kj1 | (µ1)...j3k , (µ2)...j3

)
| (µ2)...j3

)
= (∗)E

(
(µ1)...j3k | (µ2)...j3

)
= (µ2)...j3

The marked equality follows from our model, where once we know the mean of mea-
surements in the execution µ1, the additional knowledge of the mean of execution
means in a binary µ2 makes no difference. Also, we use the nesting of expectations
from the model, E(Y |µ1) = µ1. By applying the same approach to both arguments of
the covariance we get

cov
(
Yjn+1...j3kj1 , Yjn+1...j3lj1

)
= cov

(
(µ2)jn+1...j3

, (µ2)jn+1...j3

)
= var

(
(µ2)jn+1...j3

)
= σ2 − σ2

1 − σ2
2

We use the same approach to calculate the covariance for all levels 1 ≤ i ≤ n + 1. We
always use the same conditioning trick on the conditional expectation of higher level,
which reduces the conditional expectation using the one from the previous step. We
demonstrate this at level i + 1. The induction assumption is the result from the i-th
level

cov
(
Yjn+1...ji+1kji−1...j1 , Yjn+1...ji+1lji−1...j1

)
= σ2 − σ2

1 − . . .− σ2
i =

n+1∑
k=i+1

σ2
k

E
(
Yjn+1...j1 | (µi)jn+1...ji+1

)
= (µi)jn+1...ji+1

Hence at (i+ 1)-th level,

cov (Y...kji..., Y...lji...) = (L7.12)E
(
cov (Y...kji..., Y...lji...) | (µi+1)...ji+2

)
+

+ cov
(
E
(
Y...kji...| (µi+1)...ji+2

)
, E
(
Y...lji...| (µi+1)...ji+2

))
E
(
Y...| (µi+1)...ji+2

)
= E

(
E
(
Y...| (µi)...ji+1

, (µi+1)...ji+2

)
| (µi+1)...ji+2

)
= (i-th level)E

(
(µi)...ji+1

| (µi+1)...ji+2

)
= (µi+1)...ji+2

Quantifying Performance Changes with Effect Size Confidence Intervals 37

And thus

cov (Y...kji..., Y...lji...) = var
(
(µi+1)...ji+2

)
=

n+1∑
k=i+2

σ2
k

Now we can finally calculate the expectations of S2
i . We start at the lowest level,

i = 1. We define 1zk = Yjn+1...j2k. From the properties of our model, we have a constant
variance of 1zk, var(1zk) = var(Y) = σ2 = var(1z1). Also we have from the previous that
cov(1zk, 1zl) = cov(1z1, 1z2) = σ2 − σ2

1 for all k 6= l, 1 ≤ k, l ≤ n1. By Lemma 7.10 we get

E

(
1

n1 − 1

n1∑
k=1

(1zk − 1z)
2

)
= σ2 − σ2 + σ2

1 = σ2
1

Thus, for S2
1

E
(
S2
1

)
= E

 1∏n+1
k=2 nk

1

n1 − 1

nn+1∑
jn+1=1

. . .

n1∑
j1=1

(
Yjn+1...j1 − Y jn+1...j2•

)2
=

1∏n+1
k=2 nk

n+1∏
k=2

nk E

(
1

n1 − 1

n1∑
k=1

(1zk − 1z)
2

)
= σ2

1

By Lemma 7.10 we also get the variance of the sum of 1zks, which we will need in the
following steps:

var

(
n1∑
k=1

1zk

)
= n1σ

2 + (n21 − n1)(σ2 − σ2
1) (25)

= n21σ
2 − n21σ2

1 + n1σ
2
1 = n1σ

2
1 + n21

n+1∑
k=2

σ2
k (26)

Now let us calculate S2
2 . We now have 2zk = Y jn+1...j3k•. By Lemma 7.11 and from the

previous calculation of covariances, we have for k 6= l

cov(2z1, 2z2) = cov(2zk, 2zl) = cov
(
Yjn+1...j3kj1 , Yjn+1...j3lj1

)
=

n+1∑
k=3

σ2
k

We get the variance of 2zk (2z1) using the previous step (Equation 25):

var(2z1) =
1

n21
var

 n1∑
j1=1

Yjn+1...j3kj1

 =
1

n21
var

 n1∑
j1=1

1zj1

 =(25) σ
2
1

n1
+

n+1∑
k=2

σ2
k

Using Lemma 7.10, for S2
2 we get

E
(
S2
2

)
= E

 1∏n+1
k=3 nk

1

n2 − 1

nn+1∑
jn+1=1

. . .

n2∑
j2=1

(
Y jn+1...j2• − Y jn+1...j3••

)2
= E

(
1

n2 − 1

n2∑
k=1

(2zk − 2z)
2

)
=
σ2
1

n1
+

n+1∑
k=2

σ2
k −

n+1∑
k=3

σ2
k =(L7.10) σ2

2 +
σ2
1

n1

38 T. Kalibera, R.E. Jones

Using the same lemma we also get the variance needed for the next step

var

(
n2∑
k=1

2zk

)
= (L7.10)n2

(
σ2
1

n1
+

n+1∑
k=2

σ2
k

)
+ (n22 − n2)

(
n+1∑
k=3

σ2
k

)
=
n2
n1
σ2
1 + n2σ

2
2 + n22

n+1∑
k=3

σ2
k

= n22

(
σ2
1

n1n2
+
σ2
2

n2
+

n+1∑
k=3

σ2
k

)
We can now abstract what we should get at level i.

izk = Y jn+1...ji+1k • . . . •︸ ︷︷ ︸
i−1

cov (iz1, iz2) =

n+1∑
k=i+1

σ2
k

var (iz1) =
i−1∑
k=1

σ2
k∏i−1

l=k nl
+
n+1∑
k=i

σ2
k

var

(
ni∑
k=1

izk

)
= n2i

(
i∑

k=1

σ2
k∏i

l=k nl
+

n+1∑
k=i+1

σ2
k

)

Leaving the previous as the induction assumption, we proceed at level i+ 1. From the
previous calculations of covariances we get

i+1zk = Y jn+1...ji+2k • . . . •︸ ︷︷ ︸
i

cov (i+1z1, i+1z2) =

n+1∑
k=i+2

σ2
k

For the variance of i+1z1 we have, by properties of variance and from the induction
assumption, that

var(i+1z1) =
1

n2i
var

 ni∑
ji=1

izi

 =

i∑
k=1

σ2
k∏i

l=k nl
+

n+1∑
k=i+1

σ2
k

Hence, by Lemma 7.10,

E
(
S2
i+1

)
= (L7.10) var(i+1z1)− cov (i+1z1, i+1z2) =

i∑
k=1

σ2
k∏i

l=k nl
+

n+1∑
k=i+1

σ2
k −

n+1∑
k=i+2

σ2
k

= σ2
i+1 +

i∑
k=1

σ2
k∏i

l=k nl

To complete the induction we also need to derive the variance of the sum. We do so
again by Lemma 7.10:

var

(
ni+1∑
k=1

i+1zk

)
= (L7.10)ni+1 var(i+1z1) + (n2i+1 − ni+1) cov(i+1z1, i+1z2)

Quantifying Performance Changes with Effect Size Confidence Intervals 39

= ni+1

(
i∑

k=1

σ2
k∏i

l=k nl
+

n+1∑
k=i+1

σ2
k

)
+ (n2i+1 − ni+1)

(
n+1∑
k=i+2

σ2
k

)

= ni+1

(
i∑

k=1

σ2
k∏i

l=k nl

)
+ ni+1σ

2
i+1 + n2i+1

n+1∑
k=i+2

σ2
k

= n2i+1

(
i+1∑
k=1

σ2
k∏i+1

l=k nl
+

n+1∑
k=i+2

σ2
k

)

For i = n+1, the derivation is exactly the same. We just formally define
∑m
k=m . . . = 0.

Note that as a side effect of the proof, we have also derived the variance of the sample
mean Y without the normality assumptions,

var
(
Y
)
=

1

n2n+1

var

(
nn+1∑
k=1

n+1zk

)
=

1

n2n+1

n2n+1

n+1∑
k=1

σ2
k∏n+1

l=k nl
=

n+1∑
k=1

σ2
k∏n+1

l=k nl

8. EVALUATION
Both of our methods for constructing the confidence interval for the ratio of mean
execution times depend on assumptions we make about the statistical properties of the
data and on the actual sample size for which the asymptotic properties begin to hold.
For asymptotic properties to hold, a larger sample size is better with our method, just
as it is with currently recommended visual tests of overlapping confidence intervals
and even null-hypothesis statistical tests. However, in practice, too large a sample size
is also undesirable. With the currently recommended method, there is the danger of
focusing on small changes of no practical interest. With our method, this problem does
not affect the comparison directly, because we quantify the effect size. However, it still
has an indirect effect — if we choose to ignore a random factor in the experiment,
however small its impact on performance might be, an unduly large sample size will
lead to unrealistically narrow confidence intervals with too small coverage. Too small
coverage means that the interval when constructed many times in many experiments
would cover the true unknown ratio in less than the projected percentage (e.g. 95%) of
cases.

Note that violations of assumptions of statistical properties of the data do not nec-
essarily make parametric methods unusable in practice — for example, the t-test and
ANOVA are known to be more robust than was initially assumed [Basu and DasGupta
1995; Rasch and Guiard 2004]. References to works on the robustness of ANOVA can
be found in Maxwell and Delaney [2004].

The goal of our evaluation is to sanity check our method on real data and demon-
strate the trade-offs between sample size (experimentation time), number of levels in
the experiment, actual coverage, false alarm rate, and the threshold for change that
we still care about. We tested our method on a set of real benchmarks, for which we
run orders of magnitude more repetitions that could normally be afforded in a real
comparison study.

8.1. Benchmarks
We chose the Mono platform [Novell, Inc. 2011], an open-source implementation of
.NET, for our experiments. We expect that our conclusions with regard to the statisti-
cal method should apply to other managed platforms, such as Java, and to some extent
to any runtime system. We run four benchmarks, each in multiple variants, so that in
total we have 10 tests. FFT is a Fast Fourier Transformation benchmark adapted from

40 T. Kalibera, R.E. Jones

the SciMark2 suite [Pozo and Miller 2005; Re and Vogels 2011]. TCP Ping and HTTP
Ping are simple remote procedure call benchmarks, which include two processes that
communicate via TCP and HTTP channels. Rijndael is an encryption benchmark7. For
each benchmark we ran a variant with the default optimisations enabled and then an
‘OPT’ variant with all optimisations enabled. The motivation was that different opti-
misation levels should lead to different performance, and may also lead to difficulties
when quantifying performance.

For the FFT benchmark, we also run one variant that allocates a new FFT buffer
for every measured iteration, and another variant ‘NA’ that re-uses the same buffer
for all of its execution. We introduce the ‘NA’ variant because we found that the de-
fault version violates the independence assumption of our measurements within exe-
cutions. The reason is subtle: memory placement influences conflict misses, which in
turn significantly influence the measured performance of FFT. It might seem that re-
allocating the buffer before each measurement would nicely randomize out this effect.
But it appears that memory locations get re-used by the allocator almost regularly,
hence creating a dependence in the measurements. With the ‘NA’ version, the location
of the buffer does not change within a single execution, but instead changes between
executions, so the assumption is not violated. The lesson learned from this is that it is
better to have non-determinism where we can control it with the experiment, and that
randomization to avoid measurement bias is harder than it may seem. Note that the
solution of ‘not reallocating’ within an execution is not a general one — if the collector
was a moving one, there would again be non-determinism in location out of our control.

The benchmarks were run on an Intel Pentium 4 under Fedora 4 (Linux 2.6.11) with
Mono 1.1.13. Our experiments had three levels: we repeated compilations, executions,
and measurements. The re-compilation involved a complete re-build of the Mono plat-
form, which took about 20 minutes. Benchmark executions took roughly 15s with FFT,
6s with Rijndael, 4s with HTTP, and 102ms with TCP). We used 150 builds of the plat-
form for the experimentation and 100 executions of each benchmark. For the FFT and
Rijndael benchmarks, we took 64 raw measurements per execution, for TCP we took
256 and for HTTP we took 512. We chose these numbers to get more measurements
for benchmarks where one measurement was fast and where the variation in measure-
ments seemed high. However, for our evaluation it should matter only that we have
a sufficient number of measurements to estimate the variance. We target our evalua-
tion at steady state performance. To ensure reaching the steady state, we dropped the
initial 30% of measurements from each execution. By manual inspection on selected
graphs, we verified that this is a safe choice. In a real performance study, we would
drop much less with these benchmarks. We observed that the build of the Mono plat-
form itself is not deterministic and impacts performance at least in some benchmarks,
so re-building was necessary. But, the choice of (only) three levels was an arbitrary
one. Partial re-building (the runtime, the compiler, the class libraries) could introduce
more levels, perhaps saving overall experimentation time, but we did not attempt that.

8.2. Variation in the Data
The variation in the (real) measurements for the study is shown in Table VII. The table
shows sample relative (percentage) variation at each level of the experiment, which is
the square root of the variance estimate (S2

3 , S2
2 , S2

1), normalized against the sample
mean of all measurements Y . With our data, the S2 estimates were almost identical

7Source code for the benchmarks is available from http://www.cs.kent.ac.uk/~tk243/esize.tgz

http://www.cs.kent.ac.uk/~tk243/esize.tgz

Quantifying Performance Changes with Effect Size Confidence Intervals 41

Table VII. Relative Percentage Variation in the Real Data

Compilation [%] Execution [%] Measurement [%]
FFT NA OPT 3.4 8.2 1.4

FFT NA 3.4 7.8 1.4
FFT OPT 4.4 8.2 4.3

FFT 4.1 6.7 4.6
HTTP OPT 0.2 0.8 (0) 22.5

HTTP 0.2 0.7 (0) 21.5
Rijndael OPT 0.4 3.8 (3.5) 9.3

Rijndael 0.4 3.5 (3.2) 9.1
TCP OPT 0.6 1.7 (0) 41.8

TCP 0.6 1.8 (0) 38.6

Source: Estimated relative variation for compilation, execution, and mea-
surement, S (T). The T estimates are only shown when they differ from S
by more than 0.1%. All estimates are normalized against grand mean Y .

to the unbiased 8 T 2 estimates (shown in parentheses when they differ by more than
0.1%). All the FFT benchmarks have noticeable performance variation due to non-
deterministic compilation (3.4% to 4.4%). In case of the ‘NA’ versions it is even more
than the variation due to non-deterministic measurement. The non-FFT benchmarks
have variation due to compilation below 1%. The FFT benchmarks also have high vari-
ation due to execution (6.7% to 8.2%), which is far more than the variation due to
measurement (1.4% to 4.6%). The non-FFT benchmarks have higher variation due to
measurements than execution. The HTTP and TCP benchmarks have no variation due
to execution (the S2

2 estimate in this case is only positive because of its bias). In a real
experiment, we would thus remove repetition of execution for these benchmarks. The
new variation due to binaries would then be 0.2% for both HTTP benchmarks and 0.5%
for both TCP benchmarks (not shown in the table). The level of optimisation (OPT or
default) does not seem to have much impact on the relative variation. And (not shown
in the table), it did not have too much impact on execution time, either.

8.3. False Alarm Rate
When applied to two identical systems, our method should ideally always report 1 as
the ratio of the means and a (narrow) confidence interval around it. Due to statistical
nature of performance, though, we may get a not so narrow interval and it may not
include 1. If it does not include 1 and we care about changes of any size, we conclude
incorrectly that the two compared systems have different performance (a false alarm).
If, say, we cared only about differences above 2% (our threshold was 2%), we only
would get a false alarm if the lower bound of the interval was above 1.02, or the upper
bound below 0.98. This would be less likely than with a zero threshold, but could still
happen. In addition to the threshold, a significant factor influencing the false alarm
rate is the number of binaries we use to estimate the interval. More binaries means
a larger sample size, but also much more expensive experiments (adding a binary not
only adds compilation time, but also time for executions and measurements).

We ran a statistical simulation to quantify these trade-offs. In each iteration, the
simulation takes at random two sets of binaries with replacement,9 producing ‘two’
systems to compare. It then applies either of our two methods to compute 95% confi-

8The bias of statistical estimators should not be confused with measurement bias. Both lead to systemati-
cally wrong results, but the causes are different. Measurement bias is due to poor experiment design. Bias
in estimators is due to limited statistical methods.
9 ‘Replacement’ means that after choosing an element from the set at random, it is replaced in the set and
available to be chosen again. This contrasts with ‘no replacement’ methods where, once an element is chosen,
it cannot be chosen again.

42 T. Kalibera, R.E. Jones

dence interval for the ratio of means. Finally, the simulator makes a decision whether
the two systems differ, based on a pre-defined threshold: we used 0%(the ‘significance’
approach), 1%, 2%, . . . , 5%. We report the percentages of decisions that the systems
are different. Such a decision is always a false alarm, because we fed the method with
data from the same system.

0 10 20 30 40 50 60

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

Binaries/Threshold/False: fft_scimark_na_oall / rrr

Binaries

T
hr

es
ho

ld

False Alarms Rate

0.01
0.02
0.03
0.04
0.05

(a) FFT NA OPT, RRR-Bootstrap.

0 10 20 30 40 50 60
0.

00
0.

02
0.

04
0.

06
0.

08
0.

10

Binaries/Threshold/False: fft_scimark_na_oall / fdpar

Binaries

T
hr

es
ho

ld

False Alarms Rate

0.01
0.02
0.03
0.04
0.05

(b) FFT NA OPT, Asymptotic.

5 10 15 20 25

0.
00

0
0.

00
1

0.
00

2
0.

00
3

0.
00

4
0.

00
5

Binaries/Threshold/False: rijndael / rrr

Binaries

T
hr

es
ho

ld

False Alarms Rate

0.01
0.02
0.03
0.04
0.05

(c) Rijndael, RRR-Bootstrap.

0 10 20 30 40 50 60

0.
00

0
0.

00
1

0.
00

2
0.

00
3

0.
00

4
0.

00
5

Binaries/Threshold/False: rijndael / fdpar

Binaries

T
hr

es
ho

ld

False Alarms Rate

0.01
0.02
0.03
0.04
0.05

(d) Rijndael, Asymptotic.

Fig. 3. False alarm rate depending on number of binaries and a threshold for performance change. Each
curve is an isoquant contour, connecting the minimal combinations of thresholds and binaries that lead to
no more than a given false alarm rate. A smaller rate is better, a smaller number of binaries is cheaper
(better) and a smaller threshold is better. Thus, combinations to the top and right of a contour work as well,
but none to the bottom and left do. Note that the shown thresholds for FFT are up to 10%, but only 0.5% for
Rijndael — this means that for Rijndael, binaries do not matter.

8.3.1. Bootstrap vs. Asymptotic. Results for the FFT benchmark (NA OPT) are shown in
Figures 3(a) and 3(b). Figure 3(a) is for the RRR-bootstrap interval, which is the de-
fault and best performing bootstrap, with replacement at all three levels. Figure 3(b) is
for our asymptotic interval. These two-dimensional plots capture a three-dimensional

Quantifying Performance Changes with Effect Size Confidence Intervals 43

function — the lines plotted are (isoquant) contour lines representing thresholds. For
example, the red line connects all minimal combinations of binaries/thresholds that
give a false alarm rate of up to 2%. In other words, the curves show how many bina-
ries are needed to obtain less than a certain false alarm rate for a given threshold of
interest. All combinations to the top and right (higher thresholds and more binaries)
of the line then do as well, but none to the bottom and left do. We construct a 95%
confidence interval. Hence, for large number of binaries, the false alarm rate with 0%
threshold should converge to 5%. The light blue line representing the 5% false alarm
rate should hence approach the x-axis as the number of binaries increases. The line
can also disappear — if the false alarm rate gets below these 5% for a given number of
binaries and remains there also for all larger numbers, it disappears in the graph at
that given number of binaries.

The plots show that the false alarm rate with both methods and 0% threshold gets
close to the 5% false alarm rate with an increasing number of binaries. The asymptotic
method seems better than bootstrap for small numbers of binaries, say 2 to 20, but
there is no practical difference for larger numbers of binaries. While being able to
use less than 20 binaries in experiments would indeed be desirable, the reason for
a good false alarms rate with the asymptotic method is a bad one, as we will show in
Section 8.4 — the intervals are wider than they should be. On the other hand, the plots
show that we could use non-zero thresholds to reduce the number of binaries needed.
For a threshold of 2%, we can reach a 2% false alarm rate with only 3 binaries, using
either method. Larger thresholds are even cheaper, and a threshold of 1% already
helps a lot.

Technical note: the plots are based on simulated measurements for selected numbers
of binaries and simulated comparisons for selected thresholds. The minimum thresh-
old that works with a given number of binaries and a given allowed false alarm rate
is found using linear interpolation. The plots also include one binary only, which cor-
responds to a two-level experiment in which compilation is not repeated at all (1-way
classification model with the asymptotic method).

Results for all the variants of the FFT benchmark are similar. The ‘NA’ versions of
FFT produce slightly fewer false alarms than the default, which could be caused by
less dependence in the data, but the difference is almost negligible, and we did not
attempt to verify the cause. For all FFT benchmarks, 3 binaries would be enough to
obtain no more than a 5% false alarm rate with a threshold of 2%, using either method.
The false alarms rate with 0% threshold converges to 5% as it should.

Results for the Rijndael benchmark are shown in Figures 3(c) and 3(d). Using either
method, 2 binaries are enough to get about a 5% false alarm rate even with threshold of
0%. With the asymptotic method and the 0% threshold, the false alarm rate converges
to 5% as it should. From 2 until about 30 binaries, the false alarm rate increases.
With the bootstrap method, however, the false alarm rate is far too small — it is about
3% for 5 binaries and then keeps decreasing until it gets about 0.5% for 60 binaries.
The reason for this is again the coverage, as we will show in Section 8.4. Other non-
FFT benchmarks behaved similarly. With 0% threshold the false alarm rate converges
to 5% with the asymptotic method, but to a much smaller value with the bootstrap
method. The Ping benchmarks were more susceptible to non-deterministic compilation
than Rijndael with the bootstrap method — more binaries were needed for the same
false alarm rate. With 10 binaries and more, the bootstrap method with 0% threshold
provides up to 5% false alarms, with any non-FFT benchmark. A non-zero threshold
here helps as well: with 1% threshold and 2 binaries, any non-FFT benchmark with
either method provides up to 1% of false alarms.

With the asymptotic method, we have seen (rare) instances of the violation of the
condition in Lemma 7.7 (Section 7.3.2), and hence could not apply the method. These

44 T. Kalibera, R.E. Jones

instances were only with 2 binaries. While this can in theory happen even for large
numbers of binaries, it becomes even less likely. The bootstrap method does not have
a similar problem.

Summary. The results show that choosing a non-zero threshold for comparison, even
a small one (say 1%), can drastically reduce the number of binaries (and hence exper-
imentation time) needed to get a given false alarms rate. The results also show that
the asymptotic and the bootstrap methods differ in the false alarm rate even of large
numbers of binaries and non-FFT benchmarks (we find the cause in Section 8.4). The
results show that increasing the number of compilations does not always reduce the
false alarm rate (again we find the cause in Section 8.4).

8.3.2. Ignoring Non-deterministic Compilation. Running experiments for multiple builds
of the system is expensive, while Table VII shows that the variation due to non-
deterministic compilation is often small. Hence we quantify in more detail the impact
of using only 1 binary on the false alarm rate. Results for FFT (NA OPT) and TCP Ping
(OPT), with asymptotic method, are shown in Figure 4. For both benchmarks, the false
alarm rate increases with the increasing number of executions. With a zero threshold,
the false alarm rates are very high (nearly 60% for 100 executions). Selecting a non-
zero threshold, however, helps. With TCP (OPT), we get a 5% false alarm rate with a
threshold below 2% for up to 100 executions. With FFT (NA OPT), the threshold would
have to be nearly 9%. We also calculated a value for one execution only, that is for a
flat experiment where even non-determinism due to execution is ignored (not seen in
the plots). With FFT (NA OPT) and the flat experiment, the false alarm rate with a 0%
threshold is about 95%, and it is expected to be very high. A 20% threshold gets the
rate down to about 9%. With TCP (OPT), the false alarm rate in a flat experiment is
negligible, below 0.1% already for a 0% threshold. This is in line with Table VII, where
the T 2

2 estimate (executions) is zero and T 2
3 (measurements) is negligible.

The results are similar for all FFT benchmarks, except that ‘NA’ versions do a bit
better than non-‘NA’ (note that the variation due to non-deterministic compilation is
smaller for ‘NA’ versions). All the non-FFT benchmarks show similar trends, only the
false alarm rates differ corresponding to different variations (Table VII). We can get
a 5% false alarm rate with up to 100 executions with a 1% threshold and Rijndael or
HTTP benchmarks. And also with 2% threshold and TCP benchmarks.

Results for RRR bootstrap look similar with the FFT benchmarks, except that the
bootstrap false alarm rates are slightly higher, and much higher for smaller numbers
of executions. With the bootstrap, the rate is smallest at 5 executions (decreasing from
1 to 5, then increasing to 100). With the asymptotic method, it is increasing from 3
executions. For 2 executions, we discovered a violation of the condition in Lemma 7.7,
and hence did not check the trend. For the HTTP and particularly the TCP Ping bench-
marks, the RRR bootstrap false alarm rates are significantly smaller than the asymp-
totic ones, but the trends are the same. We will see in Section 8.4 that this is because
the bootstrap method gives too wide confidence intervals for these benchmarks (their
actual coverage is above 95%). For the Rijndael benchmarks, the bootstrap method
provides higher rates (is worse) for small number of executions, but comparable to the
asymptotic method or better for large number of executions.

Summary. It is indeed possible and desirable to measure only a single binary with
benchmarks where the variability due to non-deterministic compilation is low, but a
non-zero threshold and a reasonable number of executions is necessary. Oversampling
by too many executions leads to increased numbers of false alarms.

8.3.3. Resampling with Replacement vs. Without. Our bootstrap method uses replacement
at all levels of the hierarchy in the data. While this is a natural default, it was not

Quantifying Performance Changes with Effect Size Confidence Intervals 45

0 20 40 60 80 100

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

0.
12

0.
14

Executions (1b)/Threshold/False: fft_scimark_na_oall / fdparsb

Executions

T
hr

es
ho

ld

False Alarms Rate

0.01
0.02
0.03
0.04
0.05

(a) FFT NA OPT, Asymptotic.

0 20 40 60 80 100

0.
00

0
0.

00
5

0.
01

0
0.

01
5

Executions (1b)/Threshold/False: tcp_ping_oall / fdparsb

Executions

T
hr

es
ho

ld

False Alarms Rate

0.01
0.02
0.03
0.04
0.05

(b) TCP Ping OPT, Asymptotic.

Fig. 4. False alarm rate depending on the number of executions and a threshold for performance change.
These numbers represent a 2-level experiment, in which non-deterministic compilation is ignored. However,
it is not ignored in the simulation, and hence an increased sample size leads to a high false alarm rate with
some benchmarks. Note that the thresholds needed for TCP Ping are nearly 8× smaller than those needed
for FFT.

self-evident that it would perform the best. In some cases, it has been suggested that
resampling only at higher levels of the hierarchy, leaving the rest of the data intact, is
better [Ren et al. 2010; Davison and Hinkley 1997]. We therefore compare replacement
at all levels (RRR) with replacement at the two higher levels (RRN) and replacement
only at the highest level (RNN). We also implement a naı̈ve solution of flat resampling
with replacement (FLAT), where measurements from all executions and binaries are
joined into a single set from which they are selected, ignoring the hierarchy and thus
losing the original structure of the data. This also tells us what to expect in cases where
a systematic source of non-determinism in the experiment has not been identified,
or the hierarchy of random effects has simply been ignored and measurements were
treated as if from one single execution, as is sometimes the case in current practice.
The FLAT resampling, however, only corresponds to non-determinism that happens
in the repeated parts of the experiment. Any source of non-determinism above (not
repeated) will result in bias, instead.

The results are shown in Figure 5 for the FFT benchmark (default settings) and
the TCP Ping benchmark. Flat resampling is clearly the worst for both benchmarks,
though for TCP it is probably still good enough, as it increases the comparison thresh-
old needed by less than 0.5%. This is no surprise as TCP has no variation at the second
level (executions) and very small variation at the third level (compilations). All of RRR,
RRN, and RNN perform about the same for FFT. For TCP Ping, RRR seems somewhat
better than RRN and RNN, but the corresponding difference in possible threshold is
negligible. RRR ought to be better, as the other methods leave the measurements in-
tact, while measurements are the key source of variation in this benchmark. All of
these observations also apply to other benchmarks of their class (FFT, non-FFT). In
the Rijndael benchmarks, though, the RRN resampling gets close to RRR. Note that
in contrast to the Ping benchmarks, Rijndael’s variation is by and large due to non-
deterministic execution. In summary, RRR seems as good a choice as any, does not
perform worse than other methods, and we use it in all other experiments.

46 T. Kalibera, R.E. Jones

0 10 20 30 40 50 60

0.
00

0.
05

0.
10

0.
15

Binaries

T
hr

es
ho

ld

Resampling

RRR
RRN
RNN
FLAT

(a) FFT.

0 10 20 30 40 50 60

0.
00

0
0.

00
5

0.
01

0
0.

01
5

Binaries

T
hr

es
ho

ld

Resampling

RRR
RRN
RNN
FLAT

(b) TCP Ping.

Fig. 5. Minimum numbers of binaries and minimum permissible thresholds for a 5% false alarm rate with
different resampling techniques and the bootstrap method. A smaller number of binaries and a smaller
threshold are better. Note that the thresholds needed for TCP Ping are about 10× smaller than those needed
for FFT.

Note that flat resampling is particularly bad for the FFT benchmarks, which are
susceptible to random effects at higher levels of the hierarchy (Table VII). To reliably
evaluate performance changes for an FFT benchmark with a 5% false alarm rate, one
would need a threshold of 2% and with it as many as 35 binaries. Note that RRR needs
only 3 binaries under the same conditions, which means more than a tenfold reduction
in experimentation time. On the other hand, for non-FFT benchmarks, selection of the
resampling method has no practical impact, and even flat resampling is acceptable.

Summary. RRR resampling seems to be a safe choice. Replacement should be done
at all the levels of the real experiment.

8.4. Coverage
The false alarms evaluation so far provides only part of the story. A method that would
always give a confidence interval for performance change of say 0% ± 0.5% no matter
what the data were would score best, as it would have no false alarms. Ideally, we
would like to validate that the intervals our method produces are really 95% confi-
dence intervals for the ratio of means — i.e. that they include the ratio in 95% of cases
(their coverage is 95%). The consequences of improper coverage, apart from simply
lack of precision in the reported uncertainty estimate, depends on how the quanti-
fied performance change is to be used. If it is to support, say, introduction of a new
optimisation, which seems fairly common, the conservative default is to make the per-
formance change seem smaller (or even zero), and hence smaller coverage is a problem,
but higher coverage does not matter so much. If, on the other hand, the goal is, say, to
show that a new feature has small overhead, the conservative default is to make the
overhead look big, and hence higher coverage is a problem, but smaller coverage does
not matter so much.

For our evaluation of coverage, we need to know what the true, but normally un-
known, ratio of means is, and hence we need to assume a particular model of the data.
Moreover, it has to be a simple model, so that we know the effect size based on the
model parameters. Here we use a hierarchical normal model: measurements within
an execution are independent identically distributed with means that also come from

Quantifying Performance Changes with Effect Size Confidence Intervals 47

a normal distribution. At each level of the experiment, the distribution of the means
for the lower level is normal. The grand mean (Y) is then the same as the mean of the
means at highest level (µB or µn in n-way classification, Section 7.1).

The parameters of the model are the mean µ = µn at the highest level and the
variances at all levels, σi, 1 ≤ i ≤ n + 1. For the experiment, we choose a 5% true
performance improvement, that is θ =Nµ/Oµ = 0.95. We use the same variances for
both systems. Hence, the parameters of the experiment are Oµ and σi, 1 ≤ i ≤ n + 1.
Values of the parameters are likely to influence the resulting coverage, so we have to
explore multiple selected combinations. To make the selection realistic, we feed the
model with parameters estimated from the measured data, for each benchmark. We
use the S2

i estimates for the variances and use three levels for all benchmarks.
Our evaluation is a statistical simulation of experiments. In each iteration we gen-

erate synthetic data for the two systems to compare — we simulate binary means,
execution means, and finally individual measurements. On the simulated data of the
two systems we apply our quantification methods, the (RRR) bootstrap and the asymp-
totic method. We report the ratio of cases in which the constructed confidence interval
includes the real effect size of θ = 0.95. This ratio, which is our estimate of the coverage
of the interval, should be 95%, as we construct 95% confidence intervals. Note that in
a way, the false alarm rate experiments also provided a coverage estimate (with a 0%
threshold, the false alarm rate should have been 5% with 95% intervals, because the
true effect size was θ = 1). Here we complement those experiments with coverages for
θ = 0.95 (a real change) and using synthetic data. Hence, in contrast to the false alarm
rate experiments, the results now cannot be affected by deviations from normality,
initialisation noise, lack of independence, or by heteroscedasticity.

8.4.1. Coverage in Three-level Experiment. Results of the simulation for a large number
of samples at all levels (100 at each level) are shown in Figure 6. Coverages with
the asymptotic method, Figure 6(b), converge to the projected 95% as the number of
binaries increases. The coverages are similar for different benchmarks. They are about
99% for 3 binaries, below 98% for 10 binaries, and below 97% for 20 binaries. For 50
binaries they are 95-96%. With the bootstrap method, coverages are different for FFT
and non-FFT benchmarks. For FFT benchmarks, the coverages also converge to 95% as
with the asymptotic method, although they are smaller for small numbers of binaries.
The non-FFT benchmarks with the bootstrap method have high coverage of about 95%
for just 3 binaries and their coverage further increases up to 98-99% for 50 binaries.

The coverages in Figure 6 are all estimated for a large number of executions per
binary. In practice, experimentation time is a precious resource. We hence looked if
we could get similar coverages for smaller numbers of executions, thus saving some
experimentation time. Figure 7 then shows the results for for FFT (NA OPT) and
Rijndael (OPT) benchmarks. We ran the experiment for all benchmarks, but only with
the asymptotic method as the bootstrap method would require too high computation
costs to evaluate. In Figure 7, the coverages are colour coded. White is the projected
ideal coverage of 95%. Blue denotes too high coverages, darker blue is worse (higher
coverage). Red would denote smaller coverages, darker red would be worse (smaller
coverage). However, in this plot, the coverage was always 95% or only slightly below,
so no red colour is present. The diagonal line shows cells for the same numbers of
binaries and executions.

Figure 7(a) shows that we can get close to the projected coverage of 95% with a
high number of binaries, which is in line with Figure 6. Increasing the number of
executions per binary does not seem to impact the coverage. Figure 7(b) shows that
the Rijndael benchmark performs similarly. The other benchmarks do as well. This
suggests that the repetition count at the highest level is most important for coverage.

48 T. Kalibera, R.E. Jones

Synthetic Data Coverage−bcov

Number of Binaries

In
te

rv
al

 C
ov

er
ag

e

3 10 20 30 40 50

0.
85

0.
90

0.
95

1.
00

●

●

●

●

●

●

●

●
●

●
●

●

●

● ●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

● ●

●

● ●

●

●

●

●
●

●

●

●

●

●

●
● ●

●

● ●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

Rijnd. OPT
TCP
HTTP OPT
HTTP
TCP OPT
Rijndael

●

●

●

●

FFT NA
FFT OPT
FFT NA OPT
FFT

(a) RRR Bootstrap Confidence Interval.

Synthetic Data Coverage−fdpcov

Number of Binaries

In
te

rv
al

 C
ov

er
ag

e

3 10 20 30 40 50

0.
85

0.
90

0.
95

1.
00

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

● ● ●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

● ● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

HTTP
FFT OPT
FFT NA
FFT
Rijndael
TCP OPT
FFT NA OPT
Rijnd. OPT
HTTP OPT
TCP

(b) Asymptotic Confidence Interval.

Fig. 6. Actual coverage of a 95% confidence interval for the ratio of means, estimated in a hierarchical
normal model, fed by estimated parameters from actual benchmarks.

Coverage fft_scimark_na_oall/fdpcovrl
 (white 95%, blue 99%, red 94%)

Executions

B
in

ar
ie

s

3 15 30 40 50 60 70 80 90

3
10

15
20

25
30

35
40

45
50

(a) FFT NA OPT (from 94.8% to 98.9%).

Coverage rijndael_oall/fdpcovrl
 (white 95%, blue 99%, red 94%)

Executions

B
in

ar
ie

s

3 15 30 40 50 60 70 80 90

3
10

15
20

25
30

35
40

45
50

(b) Rijndael OPT (from 95% to 98.9%).

Fig. 7. Actual coverage of a 95% asymptotic confidence interval for the ratio of means, estimated in a hi-
erarchical normal model, fed by estimated parameters from actual benchmarks. White is the 95% coverage.
Red is smaller coverage (darker is worse-smaller), blue is higher coverage (darker is worse-higher). Overall,
white is ideal, darker is worse than lighter, and red is usually worse than blue. The diagonal line denotes the
same numbers of binaries and executions. If printed in greyscale, note that the plots are almost completely
blue — the coverage is only rarely below 95%, and if so, only slightly.

Note that we have shown in Section 7.4 that the repetition at some lower level can,
however, be important for getting most precise results (narrowest intervals) within
given experimentation time.

We also explored coverages with the asymptotic method, but using only the normal
approximation instead (“normal-asymptotic”) of the t-distribution (“asymptotic”). See
Section 7.3.2 for more details. With the normal-asymptotic method, the coverages are
too small for small number of binaries (around 88% for 3 binaries), but converge to the
projected 95% as the number of binaries increases. They get above 90% for 5 binaries

Quantifying Performance Changes with Effect Size Confidence Intervals 49

and above 94% for 15 binaries. Similarly to the asymptotic method, it is the number of
binaries that impacts (improves) the coverage, not the number of executions. We also
ran the false alarms experiments with the normal-asymptotic method. The false alarm
rate with 0% threshold converged to 5% with all benchmarks. As in practice a too-high
coverage is often worse than too-low coverage, it makes sense to use the asymptotic
method (t-distribution) even in cases when the normality assumptions cannot be made.

Summary. With the asymptotic method, the coverage is too large for small numbers
of binaries, but converges to the projected number as the number of binaries increases.
With the bootstrap method, the coverage of FFT benchmarks is too low for small num-
bers of binaries, but then converges to the projected number. The coverage of non-FFT
benchmarks with the bootstrap is always too large. With the asymptotic method but
only the normal approximations, the coverages also converge to the projected number
(all benchmarks), but are too small for small number of binaries. In most cases, the
asymptotic method would be the best choice. The number of executions does not have
an impact on the coverage.

8.4.2. Ignoring Non-deterministic Compilation. With the non-FFT benchmarks, the perfor-
mance variation due to non-deterministic compilation is very small (1%, Table VII
below). In practice, one would probably choose not to repeat compilations with these
benchmarks, but rather select an appropriate comparison threshold. In another sim-
ulation, we look at what the true coverage would be if we choose to do this. The ex-
periment we simulate ignores variation due to non-deterministic compilation, but the
simulation does not. Figure 8 shows the results, for the asymptotic method and varying
numbers of executions. The coverage decreases with increasing number of executions.
This is expected, because as the intervals get narrower, they are more likely to miss
the true mean that takes many different binaries into account. This reduction is first
good with the asymptotic method (all benchmarks) and the bootstrap method (non-
FFT benchmarks), because it corrects for the over-coverage of these methods. But, the
coverage soon gets unacceptably low and not only so with the FFT benchmarks, which
are prone to non-deterministic compilation to a high degree. The coverage also gets
too low with an unduly large number of binaries with the non-FFT benchmarks where
this impact is very small.

We also looked at the trade-offs between the repetition counts for measurements per
execution and executions per binary, with respect to coverage. We ran the experiments
with the asymptotic method only. Figure 9 shows the results for the FFT NA and HTTP
Ping OPT benchmarks. With the FFT NA benchmark, the number of measurements
per execution do not seem to make a difference. The too-high coverage gets first better
and then too small, as the number of executions increases, as in Figure 8(b). Other
FFT benchmarks behave similarly. With the HTTP Ping OPT benchmark, the number
of measurements per execution matters once the number of executions is high. In-
creasing the number of measurements makes the coverage worse, no matter from how
many executions these measurements are. Other Ping benchmarks behave similarly,
except that the coverages are higher than with FFT. The Rijndael benchmarks lie in
between — increasing the number of measurements per execution makes the coverage
worse, but perhaps not as strongly as with the Ping benchmarks. The differences be-
tween benchmarks can be explained with the variations at different levels (Table VII).
In this experiment, anything that makes the interval narrower makes also the cov-
erage worse. With FFT benchmarks, variation due to non-deterministic execution is
much larger than that due to non-deterministic measurement, and hence the coverage
decreases more with increased executions. With the other benchmarks and particu-
larly the Ping benchmarks, variation due to execution is far smaller than that due to

50 T. Kalibera, R.E. Jones

Synthetic Data Coverage−bcovsbr

Number of Executions

In
te

rv
al

 C
ov

er
ag

e

3 20 40 60 80 100

0.
2

0.
4

0.
6

0.
8

1.
0

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

● ●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

● ● ●

●
●

●

●
●

●

●
●

●

●

●
●

●
●

●
● ●

●

●

●

●

●
●

●
●

●

●

●

● ●
●

●
●

●
●

●

●

● ●

●

●

● ●
●

●
●

●
●

●
● ●

● ●

●
● ●

●

● ●

●

●

●

●
●

● ● ●

● ●

● ●

●
●

●

●

●

●

●

●

●

Rijndael
Rijnd. OPT
HTTP
HTTP OPT
TCP OPT
TCP

●

●

●

●

FFT NA OPT
FFT NA
FFT
FFT OPT

(a) RRR Bootstrap Confidence Interval.

Synthetic Data Coverage−fdpcovsbr

Number of Executions

In
te

rv
al

 C
ov

er
ag

e

3 20 40 60 80 100

0.
2

0.
4

0.
6

0.
8

1.
0

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
● ●

●
●

●
●

● ●

●
●

●

●

●
●

●

●
● ●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

Rijnd. OPT
Rijndael
HTTP
HTTP OPT
TCP OPT
TCP

●

●

●

●

FFT NA OPT
FFT NA
FFT OPT
FFT

(b) Asymptotic Confidence Interval.

Fig. 8. Actual coverage of a 95% confidence interval for the ratio of means, estimated in a hierarchical
normal model. In contrast to Figure 6, this plot simulates a 2-level only experiment (a scenario in which the
experimenter would choose to ignore uncertainty due to compilation). Closer to 0.95 is better.

Coverage fft_scimark_na/fdpcovrs
 (white 95%, blue 99%, red 34%)

Measurements

E
xe

cu
tio

ns

5 9 14 18 23 27 32 36 41 45

3
15

30
40

50
60

70
80

90

(a) FFT NA (from 34% to 98%).

Coverage http_ping_oall/fdpcovrs
 (white 95%, blue 99%, red 71.6%)

Measurements

E
xe

cu
tio

ns

36 72 108 180 252 324

3
15

30
40

50
60

70
80

90

(b) HTTP OPT (from 72% to 99%)

Fig. 9. Actual coverage of a 95% asymptotic confidence interval for the ratio of means, estimated in a
hierarchical normal model. In contrast to Figure 7, this plot simulates a 2-level only experiment (a scenario
in which the experimenter would choose to ignore uncertainty due to compilation). If printed in greyscale,
note that the plots have a blue line of cells at about 3 executions, while all cells above are red. The tone of
the red colour does not match in the two plots — the coverage of FFT is far worse.

measurement, and hence the number of executions is not important in reducing the
coverage.

Summary. When non-deterministic compilation has minimal impact on variability
in performance, it makes sense to use only one binary. However, over-sampling (too
many executions and/or measurements, depending on the benchmark) can inflate the
influence of ignored variability due to compilation and result in a too low coverage.

Quantifying Performance Changes with Effect Size Confidence Intervals 51

8.5. Dimensioning the Experiments
We compare the results precision that would be obtained with our method against the
default single-level method.

Let us first focus on the FFT benchmark (descriptions of the benchmarks were given
in Section 8.1) and let us assume we have a window of 6 hours for our experiments.
From Table VII we see that the benchmark has high variation at all three levels, in-
cluding compilation, and hence multiple binaries have to be measured.

The usual one-level approach would execute each binary once, obtaining one mea-
surement (after warmup). One execution with one measurement (and 19 warm-up
measurements) takes about 5 seconds. Compilation takes about 20 minutes (1200 sec-
onds), so we can take about 6 ∗ 3600/1205 = 17 samples within our 6 hours. We would
calculate the sample mean from these 17 samples and provide an asymptotic confi-
dence interval based on t-test like e.g. in [Lilja 2000; Jain 1991; Georges et al. 2007].
The half-width of such 95% interval would be about 4.7% of the mean with the FFT
benchmark (±4.7%), as we can derive from Equation 10 on page 24 and the definition
of the t-test: (

1/Y
)
t1−α2

√
var(Y) =

(
1/Y

)
t1−α2

√
σ2
3 + σ2

2 + σ2
1

17

We substitute the sample mean and the unbiased estimates T 2
i of variances σ2

i .
With the method we propose in this work, we dimension the experiment using Equa-

tion 13 on page 29. We would collect n1 measurements from each execution and run
each binary n2 times, where:

n1 =

⌈√
c1
σ2
1

σ2
2

⌉
and n2 =

⌈√
c2
c1

σ2
2

σ2
3

⌉

The costs are c1 = 19 (19 warmup measurements) and c2 = 5343 (number of measure-
ments that could roughly be done in 20 minutes, the time needed for compilation).
Substituting the unbiased estimates T 2

i of variances σ2
i , we get n1 = 4 and n2 = 28.

One execution will take within 6 seconds (4 measurements and warmup) and all exe-
cutions of one binary will take about 150 seconds, and so within 6 hours we can build
and measure b6 ∗ 3600/1350c = 16 binaries, obtaining 1792 samples. Using Equation 11
on page 26 we would calculate a 95% confidence interval for the mean, half-width of
which would about 2.3% of the mean (±2.3% instead of the ±4.7% with the single-level
method).

Interval half-widths for all benchmarks and for experimentation windows of 3,6,
and 9 hours are shown in Table VIII. Our method would use the 3-level model for
all FFT and Rijndael benchmarks. With HTTP and TCP benchmarks, it would only
execute each binary once, but collecting multiple measurements. It would not repeat
executions because variation due to execution in those benchmarks is small (and the
T 2
2 estimate turns negative). Our method is always better than the default method

(and by design it should never be worse). The benefits are particularly big when the
variation due to non-deterministic compilation is far below variations at lower levels
(see Table VII).

Note that when running multiple benchmarks on different versions of the same man-
aged runtime, one can re-use the binaries of the runtime. Even in this case there would
be a balance between spending time on compiling or on running existing binaries, but
the optimisation procedure would need to be extended and will require a summariza-
tion technique over different benchmarks.

52 T. Kalibera, R.E. Jones

Table VIII. Result Precision with Our Method and the Default Method

95% Confidence Interval Half-width (smaller is better)
3 hours exp. [our/default] 6 hours exp. [our/default] 9 hours exp. [our/default]

FFT NA OPT 3.3% / 7.5% 2.0% / 4.6% 1.5% / 3.6%
FFT NA 3.2% / 7.1% 1.9% / 4.4% 1.5% / 3.4%

FFT OPT 4.3% / 8.6% 2.5% / 5.3% 2.0% / 4.1%
FFT 3.6% / 7.6% 2.3% / 4.7% 1.8% / 3.7%

HTTP OPT 0.5% / 18.8% 0.3% / 11.5% 0.3% / 9.1%
HTTP 0.4% / 18.0% 0.3% / 11.1% 0.2% / 8.7%

Rijndael OPT 1.3% / 8.3% 0.2% / 5.1% 0.1% / 4.0%
Rijndael 0.6% / 8.1% 0.2% / 5.0% 0.2% / 3.9%

TCP OPT 1.3% / 34.9% 0.8% / 21.5% 0.6% / 16.9%
TCP 1.3% / 32.2% 0.8% / 19.8% 0.6% / 15.5%

Source: Relative half-widths of 95% confidence interval for the mean (relative to the grand mean) with
our method and the default single-level method. Smaller is better. Shown for 3, 6, and 9 hours time win-
dows for experimentation. Our method repeats executions and/or measurements where it is beneficial
to improve result precision, but the default method can only use one execution and measurement from
a binary. With FFT and Rijndael benchmarks, our method uses both multiple executions per binary and
multiple measurements per execution. With TCP and HTTP, it uses a single execution per binary but
multiple measurements, as it leads to better precision. Our method is always better, and particularly
more so when the variation due to compilation is smaller than variations due to effects at lower levels.

8.6. Summary of Evaluation
Our evaluation has demonstrated that both the bootstrap and the asymptotic method
work reasonably well. For the bootstrap, resampling with replacement at all levels
(RRR) is a safe choice. For the asymptotic method, using the t-distribution even when
normality assumptions cannot be made seems a safe choice. It is particularly more
conservative (produces wider intervals) than relying just on asymptotic normality. The
asymptotic method in theory may fail to provide a result when the sample mean of the
“old” system appears not significantly different from zero. We have seen it happen, but
only for 2 or 3 binaries/executions, never for larger sample sizes. The coverages with
the asymptotic method converge to the projected value. With the bootstrap method,
this is however not the case with all the benchmarks. The non-FFT benchmarks, which
means those of our benchmarks with high variation due to non-deterministic compila-
tion, always have too high coverages. What has not been shown in the analysis is that
the bootstrap method is easier to implement, and perhaps to understand, than the
asymptotic method, but takes more computation time. The computation time, though,
should not be a problem in a regular application of the method, when only a few inter-
vals need to be constructed.

We demonstrated that choosing a non-zero threshold for comparisons simplifies the
quantification considerably — it reduces the necessary experimentation time (total
number of samples, expensive repetitions of compilation and execution) and/or the
false alarm rate. It may even completely eliminate the need for repetition at the high-
est level (i.e. compilations) when the variation caused by non-determinism at that
level is small. Repeating compilations was necessary with the FFT benchmarks. With
the other benchmarks, using a single binary with a well chosen threshold would pro-
vide the same results and indeed reduce experimentation time. The Ping benchmarks
would not need repetition of executions, either. Hence, even with the same system to
test (in our case Mono), one can expect different benchmarks to have very different
needs for statistical modeling. Selection of good repetition counts is important — too
low and too high counts lead to poor coverage and a high false alarm rate, but selecting
a sensible (non-zero) threshold reduces this problem in practice.

Note that the necessity of repeating compilation of FFT benchmarks in Mono is by
itself an important observation. FFT benchmarks are (still) used as we have seen in

Quantifying Performance Changes with Effect Size Confidence Intervals 53

our survey of the “2011” papers mentioned previously (15 of all 122 papers measured
also FFT). In one case, the evaluation with FFT even used the Mono platform. As com-
pilation is expensive one needs to balance carefully whether to spend time on more
executions of existing binaries or to produce more binaries. A similar tradeof is be-
tween running more measurements of the same execution, or investing into starting
(and warming up) a new execution. These tradeoffs are different for each benchmark,
and out method allows to find the optimum numbers.

9. CONCLUSION
Empirical evaluations in computing, particularly in programming languages and sys-
tems research, are dominated by quantification of performance change measured by
the ratio of execution times. Regrettably, we find that evaluations reported even at
premier venues commonly fail to report uncertainty in measurements or to cater for
non-determinism from various sources.

In this work we attack both problems — we have created a statistical model that
captures such non-determinism and we show how to construct a confidence interval for
the ratio of means within the model. Our model is based on general assumptions and
caters for random factors that influence performance and factors that the experimenter
intentionally randomizes to reduce bias. We evaluate our method experimentally using
statistical simulation on a set of benchmarks.

The best method for quantification of performance change recommended in the field
to date is based on a visual test for overlap of confidence intervals and only provides a
binary answer as to whether the difference seen is unlikely to be by pure chance. Our
method can provide the same answer, if needed. However, such an answer is usually
not needed — what is needed is an uncertainty estimate for the ratio of means, and
our method provides that as well.

We have learned a number of lessons along the way. Introductory statistical text-
books offer insufficient guidance to advance evaluation practice in computer systems,
because these are not updated fast enough nor with computer systems in mind. Books
specializing in computer systems performance evaluation explain statistical methods
in the context of computer science, but still only include mostly introductory statis-
tics, which leads to recommendations of limited applicability. It may be that lack of
applicability also contributes to the poor adoption of their recommendations, though
it may also be that there is simply not enough pressure to do better evaluations. To
move forward, we need to consult methods in the original statistical publications, and
we sometimes need to adapt them to our field. As a part of that, we need to advance
our knowledge of the various factors in computer systems that influence performance.
The work we present here is based on both of these activities.

While our method is better than the best recommended one, and even more so than
current practice, it does not solve all problems. More work needs to be done to incor-
porate fixed effects, that is effects of factors such as hardware platform or operating
system, which only have a small set of values controlled by the user and experimenter.
This should be doable, and fixed effects have been addressed even in books on com-
puter systems performance evaluation. There is a need for further work on rigorous
summarization over different benchmarks. Apart from better statistics, we need bet-
ter benchmarks, benchmarks better analysed, and we could and should improve the
experimentation practice in our field by bringing more of the scientific method used in
“real” science, particularly physics and natural sciences — thorough reports, archival
of experimental artifacts, repeatability and, most importantly, reproducibility demon-
strated through independent reproduction studies.

54 T. Kalibera, R.E. Jones

REFERENCES
ALAMELDEEN, A. R. AND WOOD, D. A. 2003. Variability in architectural simulations of multi-threaded

workloads. In Proceedings of the 9th Annual International Symposium on High-Performance Computer
Architecture (HPCA). IEEE, Anaheim, CA.

AMERICAN PSYCHOLOGICAL ASSOCIATION. 2001. Publication Manual of the American Psychological Asso-
ciation (5th edition).

BASU, S. AND DASGUPTA, A. 1995. Robustness of standard confidence intervals for location parameters
under departure from normality. Annals of Statistics 23, 4, 1433–1442.

BEYENE, J. AND MOINEDDIN, R. 2005. Methods for confidence interval estimation of a ratio parameter with
application to location quotients. BMC Medical Research Methodology 5, 1.

BLAND, J. M. AND ALTMAN, D. G. 2000. The odds ratio. BMJ 320, 7247.
BOYER, B. 2008. Robust java benchmarking, part 2: Statistics and solutions. https://www.ibm.com/

developerworks/java/library/j-benchmark2/.
CHARLES E. MCCULLOCH, SHAYLE R. SEARLE, J. M. N. 2008. Generalized, Linear, and Mixed Models.

Wiley.
COCHRAN, W. G. 1977. Sampling Techniques: Third Edition. Wiley.
COE, R. 2002. It’s the effect size, stupid: What effect size is and why it is important. In Annual Conference

of the British Educational Research Association (BERA).
COHEN, J. 1994. The Earth is round (p < .05). American Psychologist, 997–1003.
CURTSINGER, C. AND BERGER, E. D. 2012. Stabilizer: Enabling statistically rigorous performance evalua-

tion. Tech. rep., University of Massachusetts, Amherst.
DAVISON, A. C. AND HINKLEY, D. V. 1997. Bootstrap Methods and Their Applications. Cambridge Univer-

sity Press.
DILBA, G., SCHAARSCHMIDT, F., AND HOTHORN, L. A. 2007. Inferences for ratios of normal means. R

News 7, 1.
DUNLEAVY, E. M., BARR, C. D., GLENN, D. M., AND MILLER, K. R. 2006. Effect size reporting in applied

psychology: How are we doing? The Industrial-Organizational Psychologist 43, 4.
ERCEG-HURN, D. M. AND MIROSEVICH, V. M. 2008. Modern robust statistical methods: An easy way to

maximize the accuracy and power of your research. American Psychologist 63, 7, 591–601.
FIDLER, F. AND CUMMING, G. 2007. Psychology in the Schools 44, 5.
FIELLER, E. C. 1954. Some problems in interval estimation. Journal of the Royal Statistical Society, 175–

185.
GEORGES, A. 2008. Three pitfalls in java performance evaluation. Ph.D. thesis, Ghent University.
GEORGES, A., BUYTAERT, D., AND EECKHOUT, L. 2007. Statistically rigorous Java performance evaluation.

In Proceedings of the 22nd annual ACM SIGPLAN conference on Object-Oriented Programming Systems,
Languages and Applications (OOPSLA). ACM.

GEORGES, A., EECKHOUT, L., AND BUYTAERT, D. 2008. Java performance evaluation through rigorous
replay compilation. In Proceedings of the 23rd ACM SIGPLAN conference on Object-Oriented Program-
ming Systems, Languages and Applications (OOPSLA). ACM.

GU, D., VERBRUGGE, C., AND GAGNON, E. 2004. Code layout as a source of noise in JVM performance. In
Component And Middleware Performance Workshop, OOPSLA 2004.

HILL, C. AND THOMPSON, B. 2005. Computing and interpreting effect sizes. In Higher Education: Hand-
book of Theory and Research. Vol. 19. Springer, 175–196.

JAIN, R. 1991. The Art of Computer Systems Performance Analysis. Wiley.
KALIBERA, T., BULEJ, L., AND TUMA, P. 2005. Automated detection of performance regressions: The Mono

experience. In Proceedings of the 13th International Symposium on Modeling, Analysis, and Simulation
of Computer and Telecommunication Systems (MASCOTS). IEEE.

KALIBERA, T. AND TUMA, P. 2006. Precise regression benchmarking with random effects: Improving Mono
benchmark results. In Proceedings of Third European Performance Engineering Workshop (EPEW).
LNCS Series, vol. 4054. Springer.

KIRKUP, L. 1994. Experimental Methods: An Introduction to the Analysis and Presentation of Data. Wiley.
LILJA, D. J. 2000. Measuring Computer Performance: A Practitioner’s Guide. Cambridge University Press.
LUO, Y. AND JOHN, L. K. 2004. Efficiently evaluating speedup using sampled processor simulation. IEEE

Comput. Archit. Lett. 3, 1.
MAXWELL, S. E. AND DELANEY, H. D. 2004. Designing experiments and analyzing data: a model compari-

son perspective. Routledge.

https://www.ibm.com/developerworks/java/library/j-benchmark2/
https://www.ibm.com/developerworks/java/library/j-benchmark2/

Quantifying Performance Changes with Effect Size Confidence Intervals 55

MYTKOWICZ, T., DIWAN, A., HAUSWIRTH, M., AND SWEENEY, P. F. 2009. Producing wrong data without
doing anything obviously wrong! In Proceeding of the 14th international conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS). ACM.

NAKAGAWA, S. AND CUTHILL, I. C. 2007. Effect size, confidence interval and statistical significance: a
practical guide for biologists. Biological Reviews 82, 4, 591–605.

NOVELL, INC. 2011. The Mono Project. http://www.mono-project.com.
OAKES, M. 1986. Statistical Inference: A Commentary for the Social and Behavioural Sciences. Wiley.
O’SULLIVAN, B. 2009. The Criterion package. http://hackage.haskell.org/package/criterion.
PAYTON, M. E., GREENSTONE, M. H., AND SCHENKER, N. 2003. Overlapping confidence intervals or stan-

dard error intervals: What do they mean in terms of statistical significance? Journal of Insect Sci-
ence 3, 1996.

POZO, R. AND MILLER, B. 2005. SciMark 2.0 benchmark. http://math.nist.gov/scimark2/.
RASCH, D. AND GUIARD, V. 2004. The robustness of parametric statistical methods. Psychology Sci-

ence 46, 2, 175–208.
RE, C. AND VOGELS, W. 2011. SciMark – C#. http://code.google.com/p/scimark-csharp/.
REN, S., LAI, H., TONG, W., AMINZADEH, M., HOU, X., AND LAI, S. 2010. Nonparametric bootstrapping

for hierarchical data. Journal of Applied Statistics 37, 9, 1487–1498.
ROYALL, R. M. 1986. The effect of sample size on the meaning of significance tests. American Statisti-

cian 40, 4.
SCHAARSCHMIDT, F. 2007. Confidence intervals for the ratio of means of two normal distributed populations

in the presence of heteroscedasticity. Reports of the Institute of Biostatistics 17, Leibniz University of
Hanover.

SCHENKER, N. AND GENTLEMAN, J. F. 2001. On judging the significance of differences by examining the
overlap between confidence intervals. The American Statistician 55, 3, 182–186.

SEARLE, S. R., CASELLA, G., AND MCCULLOCH, C. E. 1992. Variance Components. Wiley.
SINGER, J., KOVOOR, G., BROWN, G., AND LUJAN, M. 2011. Garbage collection auto-tuning for Java map-

reduce on multi-cores. In Proceedings of the International Symposium on Memory management (ISMM).
ACM.

STEELE, J. M. 2001. Stochastic calculus and financial applications. Springer.
TAYLOR, B. N. AND KUYATT, C. E. 1994. Guidelines for evaluating and expressing the uncertainty of NIST

measurement results. Technical Note 1297, National Institute of Standards and Technology.
VON LUXBURG, U. AND FRANZ, V. 2009. A geometric approach to confidence sets for ratios: Fieller’s theorem,

generalizations, and bootstrap. Statistica Sinica 19, 3.
WASSERMAN, L. 2004. All of Statistics: A Concise Course in Statistical Inference. Springer.
WILSON, E. B. 1952. An Introduction to Scientific Research. McGraw Hill.

http://www.mono-project.com
http://hackage.haskell.org/package/criterion
http://math.nist.gov/scimark2/
http://code.google.com/p/scimark-csharp/

	Introduction
	BACKGROUND: Current Quantification Methods
	Currently Used Methods
	What Is Wrong With Currently Used Methods
	Currently Proposed Methods
	Experiment Design
	Summary of Experiment Results

	What Is Wrong With The Currently Proposed Methods
	Experiment Design
	Summarization of Experiment Results

	How to do things better
	Experiment Design with Random Effects
	Quantification with Effect Size Confidence Interval
	Related Efforts

	Outline of the New Method
	For Practitioners: The New Method without Statistics
	Designing the Experiments
	Summarizing the Results

	For Scientists: The New Method and The Statistics Behind It
	Statistical Model for a Hierarchy of Random Effects
	Two-way Classification
	N-way Classification
	Properties of a Sample Mean with N-way Classification

	Confidence Interval for the Mean of One System
	Bootstrap Confidence Interval for One System
	Asymptotic Confidence Interval for One System

	Confidence Interval for Ratio of Means
	Bootstrap Confidence Interval for Ratio of Means
	Asymptotic Confidence Interval for Ratio of Means

	Experiment Planning
	Derivation of the Optimalisation Formula
	Estimating Unknown Variances

	Evaluation
	Benchmarks
	Variation in the Data
	False Alarm Rate
	Bootstrap vs. Asymptotic
	Ignoring Non-deterministic Compilation
	Resampling with Replacement vs. Without

	Coverage
	Coverage in Three-level Experiment
	Ignoring Non-deterministic Compilation

	Dimensioning the Experiments
	Summary of Evaluation

	Conclusion

