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Abstract
Until now there has been no support for specifying and enforcing
contracts within a lazy functional program. That is a shame, be-
cause contracts consist of pre- and post-conditions for functions
that go beyond the standard static types. This paper presents the de-
sign and implementation of a small, easy-to-use, purely functional
contract library for Haskell, which, when a contract is violated, also
provides more useful information than the classical blaming of one
contract partner. From now on lazy functional languages can profit
from the assurances in the development of correct programs that
contracts provide.

Categories and Subject Descriptors D.1.1 [Programming Tech-
niques]: Applicative (Functional) Programming

General Terms Languages, Reliability

Keywords purely functional, lazy, library, Haskell

1. Introduction
Pre- and post-conditions have been important tools for develop-
ing correct programs since the early days of programming. A con-
tract for a function comprises both a pre- and a post-condition. Fig-
ure 1 shows definitions in Haskell of two functions with contracts
that operate on the type Formula, which represents propositional
logic formulae. The two functions clausalNF’ and clause’ have
rather non-descriptive types. The function clausalNF’ transforms
a propositional formula into clausal normal form. To work cor-
rectly, the function requires its input to be in conjunctive normal
form and to be ”right-bracketed”, that is, for example And (Atom
’a’) (And (Atom ’b’) (Atom ’c’)) is used instead of And
(And (Atom ’a’) (Atom ’b’)) (Atom ’c’). The output is a
list of list of literals, where a literal is an atom or a negated atom.
This pre-condition and post-condition are expressed in the contract
conjNF & right >-> list (list lit), which is attached to
clausalNF’ using the function assert in the definition of the
contracted function variant clausalNF. The function clause has
a similar contract. For any contract c the function assert c is
roughly the identity function, except that it also enforces the con-
tract. The program states the contracts and monitors them at run-
time.

Since the work of Findler and Felleisen [12] on contracts for ea-
ger functional languages, contracts have become an important item

[Copyright notice will appear here once ’preprint’ option is removed.]

data Formula =
Imp Formula Formula | And Formula Formula |
Or Formula Formula | Not Formula | Atom Char

clausalNF =
assert (conjNF & right >-> list (list lit))

clausalNF’

clausalNF’ :: Formula -> [[Formula]]
clausalNF’ (And f1 f2) = clause f1 : clausalNF’ f2
clausalNF’ f = [clause f]

clause = assert (disj & right >-> list lit) clause’

clause’ :: Formula -> [Formula]
clause’ (Or f1 f2) = f1 : clause’ f2
clause’ lit = [lit]

Figure 1. Contracts of functions for clausal normal form

in the toolbox of the Racket/Scheme programmer. Other functional
languages, however, have not yet profited from the support of con-
tracts for several reasons:

• Eager functional contracts were introduced as a small library of
contract combinators. However, the implementation in Racket
uses its powerful macro system to smoothly integrate contracts
into the language1. Thus contracts are very easy to use, for ex-
ample, do not require user-supplied program location parame-
ters. Implementors of other programming languages, however,
do not have such a powerful macro system and are wary of mak-
ing the implementation effort and of extending the language.
• In contrast to dynamically typed Racket, many functional

programming languages have a static type system based on
Hindley-Milner types with parametric polymorphism. Thus
contract combinators need to be statically typed too and it is
desirable to have type-directed contract combinators such as
list :: Contract a -> Contract [a].
We also have to avoid classes in types. To see why, consider
the following example usage of the Haskell object observation
debugger HOOD [16]:

length :: Observable a => [a] -> Int
length = observe "fun" length’

length’ :: [a] -> Int
length’ = List.length

1 Recently added features concerning mutable data also required modifica-
tions of the language implementation [10].
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Here observe "fun" behaves like an identity function but also
records input and output of the length’ function for debugging
purposes. However, the observation function does not have the
type of the identity function: the type of length includes the
class Observable and thus adding an observation may require
substantial changes to type annotations in the whole program.
To avoid this problem, we have to ensure that contract combi-
nators have simple parametrically polymorphic types, without
class contexts.
• Eager functional contracts are strict. Let nat be the contract

that holds only for non-negative integers. With strict contracts
we would get

assert (list nat) [4,-1,2] = error "..."

Asserting an eager contract yields either the unchanged argu-
ment or an error/exception. In contrast, lazy functional lan-
guages demand lazy contracts. Asserting a lazy contract yields
those parts of the argument data structure that meet the contract;
only those parts that violate the contract are ”cut off”:

assert (list nat) [4,-1,2] = [4,error "...",2]

Because lazy evaluation generally only evaluates parts of a data
structure, a computation may succeed without any contract vio-
lation error, if it only demands those data structure parts that
meet the contract. Such lazy contracts preserve the lazy se-
mantics of the program and thus ensure that we can add con-
tracts anywhere in a program without changing its semantics,
provided contracts are not violated. For example, the following
definition of the infinite list of fibonacci numbers requires lazy
contracts:

fibs :: [Integer]
fibs = assert (list nat)

(0 : 1 : zipWith (+) fibs (tail fibs))

In this paper we develop a library for contracts in Haskell that
makes the following contributions:

• The contract combinators have simple parametrically polymor-
phic types, such that adding a contract does not change the type
of a function (Section 2).
• The library provides lazy contract combinators. Adding con-

tracts leaves the semantics of a program unchanged, unless a
contract is violated (Sections 2 and 3).
• The library is written in pure, portable Haskell, without any

use of side-effecting primitives such as unsafePerformIO that
could change the semantics of the program (Section 3).
• All data-type-dependent code is simple and thus easy to write

by hand if necessary (Section 3).
• The contract combinators have a nice algebra of properties.

Contract assertions are partial identities and we claim that they
are idempotent too. Thus contracts are projections, like eager
contracts (Section 4).
• If a contract is violated, then the raised exception does not

simply blame the server (contracted expression) or its client,
but provides additional information about the specific value that
caused the violation (Section 5).
• The library can use Template Haskell to derive all data-type-

dependent code and include source code locations. Thus the
programmer can formulate contracts for new algebraic data
types without any additional work (Section 6).

The contract library for Haskell is available on Hackage2.

2. Simple Contract Combinators with a Problem
Using previous work on eager contracts [11] and typed contracts
[19], we can easily design and implement most of a contract library
for Haskell.

We implement a parametric type Contract a and a function

assert :: Contract a -> (a -> a)

that turns a contract into a partial identity, that is, assert c v
id. Here v is the standard information-theoretic partial order on
values with least element ⊥. For simplicity we consider ⊥ to be
an expression. It represents both non-termination and an exception
raised by a violated contract.

Most of the contract library consists of combinators for building
contracts of type Contract T, for various types T.

We start with a combinator that turns a predicate into a contract:

prop :: Flat a => (a -> Bool) -> Contract a

used for example as

nat :: Contract Integer
nat = prop (>=0)

to specify natural numbers as integers greater or equal zero.
We have to restrict prop by a new class Flat to be used for flat

types only. A type is flat if for all values v1 and v2 the ordering
v1 @ v2 implies v1 = ⊥. We cannot use prop for non-flat types
such as lists, because the predicate could be arbitrarily strict and
thus violate our aim of building lazy contracts [2]. For example

nats’ = prop (all (>=0)) :: Contract [Integer]

would not be lazy and thus would be unusable for our infinite list
of fibonacci numbers.

So the class Flat has only a few instances such as

instance Flat Integer
instance Flat Float
instance Flat Char

In our initial example in Figure 1 we already used two combi-
nators for building contracts:

(&) :: Contract a -> Contract a -> Contract a
(>->) :: Contract a -> Contract b -> Contract (a -> b)

The conjunction combinator (&) builds a contract that is vio-
lated if one of the components is violated. The combinator (>->)
looks similar to the function type; it does not indicate logical im-
plication. The function combinator combines a pre- and a post-
condition to a contract for a function. For a function to be be
correct, whenever the pre-condition holds, the post-condition must
hold too. However, if the pre-condition is violated, then the client
(caller) of the function is wrong. A function contract is an agree-
ment between both a function and its client. So neither pre- nor
post-condition should be violated. In summary, the function con-
tract combinator is rather like the conjunction combinator, except
that values of two possibly different types are monitored.

A contract that is always met is useful as component of a bigger
contract to express that some values are irrelevant. The opposite
contract that is never met can still be occasionally useful in a lazy
functional language. We can use

true :: Contract a
false :: Contract a

for example in

2 http://hackage.haskell.org
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type Contract a = a -> a

assert c = c

class Flat a where
prop :: (a -> Bool) -> Contract a
prop p = \x -> if p x then x else error "..."

pNil [] = []
pNil ( : ) = error "..."

pCons c cs [] = error "..."
pCons c cs (x:xs) = c x : cs xs

true = id
false = const (error "...")

c1 & c2 = c2 . c1
pre >-> post = \f -> post . f . pre

Figure 2. A lazy contract implementation for most combinators

const = assert (true >-> false >-> true) const’

const’ :: a -> b -> a
const’ x y = x

to express that the second argument of the function is never de-
manded. Because that argument is never demanded, its contract will
never be used and thus will never be violated.

Finally we need combinators to build contracts for algebraic
data types, which generally are not flat. Here we introduce for each
data constructor a combinator that is used like a data constructor in
pattern matching.

pNil :: Contract [a]
pCons :: Contract a -> Contract [a] -> Contract [a]

Now we can define a contract for infinite lists:

infinite :: Contract [a]
infinite = pCons true infinite

If this contract is asserted for a finite list and evaluation demands
the last constructor, [], of this finite list, then a contract violation
exception is raised. Here we also use the contract true to state that
we do not restrict the list elements in any way.

All our combinators can be implemented using the same con-
tract type as for the well-known eager contracts. Even the new data
constructor combinators can easily be implemented using that type.
The short implementation is given in Figure 2.

However, one important combinator is still missing. On their
own, data constructor combinators such as pNil and pCons are of
rather limited use, the infinite list contract being one of the few
examples where they suffice. We need a combinator for combining
two data constructor contracts disjunctively:

(|>) :: Contract a -> Contract a -> Contract a

This combinator allows us, for example, to define the contract of a
(finite or infinite) list of natural numbers as follows:

nats :: Contract [Integer]
nats = pNil |> pCons nat nats

The definition intentionally looks very similar to the definition of
an algebraic data type.

We cannot define (|>) using the contract type definition

type Contract a = a -> a

type Contract a = a -> Maybe a

assert :: Contract a -> (a -> a)
assert c x = case c x of

Just y -> y
Nothing -> error "Contract violated."

class Flat a where
prop :: (a -> Bool) -> Contract a
prop p x = if p x then Just x else Nothing

pNil :: Contract [a]
pNil [] = Just []
pNil ( : ) = Nothing

pCons :: Contract a -> Contract [a] -> Contract [a]
pCons c cs [] = Nothing
pCons c cs (x:xs) = Just (assert c x : assert cs xs)

true :: Contract a
true = Just

false :: Contract a
false = const Nothing

(|>) :: Contract a -> Contract a -> Contract a
c1 |> c2 = \x -> c1 x ‘mplus‘ c2 x

(&) :: Contract a -> Contract a -> Contract a
c1 & c2 = \x -> c1 x >>= c2

(>->) :: Contract a -> Contract b -> Contract (a -> b)
pre >-> post =
\f -> Just (f ‘seq‘ (assert post . f . assert pre))

Figure 3. Implementation of typed lazy contract combinators

We can combine two functions of type a -> a only by composi-
tion and we have done so already for the contract combinator (&).
For disjunction we would need to apply both functions separately
and then somehow combine the two results: if one is an exception,
then we should return the value of the other one. We cannot test for
exceptions in a purely functional language3.

3. Implementing Lazy Contract Combinators
A simple modification of our contract type definition solves our
problem:

type Contract a = a -> Maybe a

The Maybe a type enables us to test for contract violation and then
to try the next contract. The return value Nothing indicates that the
contract is violated for the top constructor of the monitored value.
The return value Just v indicates successful matching of the top
constructor and returns the value with possibly further contracts
attached to its components.

Recall that for Maybe a its monadic functions are defined as
follows:

(>>=) :: Maybe a -> (a -> Maybe b)
(Just x) >>= f = f x
Nothing >>= f = Nothing

3 There is an impure solution [6] that, however, still cannot handle non-
termination in one argument.
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mplus :: Maybe a -> Maybe a -> Maybe a
(Just x) ‘mplus‘ m = Just x
Nothing ‘mplus‘ m = m

Figure 3 lists the full implementation of our contract combina-
tors.

In the definition of the function contract combinator seq first
evaluates the function itself before returning it wrapped in asser-
tions. This definition ensures

assert (c1 >-> c2) ⊥ = ⊥

that is, function contracts are strict like all other contracts. Without
seq the expression assert (c1 >-> c2) ⊥ instead would be the
function that demands no argument and always returns ⊥, which
in Haskell can be distinguished from the function ⊥ itself. Thus
the function contract combinator would change the semantics of a
program even when the contract is not violated. Admittedly, we do
not expect this case to ever occur in practice.

The contract type reminds of parser combinators. However,
contracts are deterministic: contract application assert c is a
function for any contract c. No value of a second type, e.g. a parse
tree, is constructed. Hence we only need the Maybe a type with its
two choices, not the more general list type [a] that would provide
an arbitrary number of choices.

A pattern combinator tests only for the top constructor. If that
fits, then the pattern combinator succeeds. Hence

assert (pCons nat pNil |> pCons true pNil) [-3] =
[error "Contract violated."]

Here matching the list constructor of pCons nat pNil succeeds
and therefore the second list contract pCons true pNil is never
tried, even though the contract for the list element, nat, is violated.
For all our examples the simple semantics suffices and it is easy to
understand.

For example, we can define a parameterised contract for the list
data type

list :: Contract a -> Contract [a]
list c = pNil |> pCons c (list c)

and use it to define the contract of list of natural numbers:

nats :: Contract [Integer]
nats = list nat

We can also define functions with non-contract parameters to
construct contracts:

listOfLength :: Int -> Contract [a]
listOfLength 0 = pNil
listOfLength (n+1) = pCons true (listOfLength n)

However, in such a case we need to be sure that the parameter value
is well-defined, so that it cannot introduce non-termination into the
program. For example

lengthAtLeast :: Int -> Contract [a]
lengthAtLeast 0 = true
lengthAtLeast (n+1) = pCons true (lengthAtLeast n)

contractTake :: Int -> [a] -> [a]
contractTake n =

assert (lengthAtLeast n >-> listOfLength n)
(take n)

is only safe, because the function take is strict in its integer param-
eter, which determines how many list elements shall be returned.

prop p1 |> prop p2 = prop (\x -> p1 x || p2 x)

prop p1 & prop p2 = prop (\x -> p1 x && p2 x)

c1 & (c2 & c3) = (c1 & c2) & c3

true & c = c

c & true = c

false & c = false

c1 |> (c2 |> c3) = (c1 |> c2) |> c3

false |> c = c

c |> false = c

true |> c = true

c |> c = c

c1 |> (c2 |> c1) = c1 |> c2

c1 |> (c1 & c2) = c1

true >-> true = true

c1 >-> false = c2 >-> false

(c1 >-> c2) & (c3 >-> c4) = (c3 & c1) >-> (c2 & c4)

(c1 >-> c2) |> (c3 >-> c4) = c1 >-> c2

Figure 4. Contract properties

c1 & (c1 |> c2) = c1

c1 & (c2 & c1) = c1 & c2

c & c = c

Figure 5. Claimed contract properties

4. Properties of Contracts
Our contract type Contract a is a combination of the function
type with the Maybe monad. Thus we have a rich set of known
properties to work with for establishing an algebra of contracts.
Contract itself is not a monad.

4.1 An Algebra of Contracts
Figure 4 lists many simple properties enjoyed by contracts. All
of these can be proved by simple equational reasoning, using the
monad laws of Maybe a.

All the properties of conjunction and disjunction of contracts
also hold for conjunction and disjunction of Booleans in a lazy lan-
guage. Recall that some standard properties of Boolean algebra do
not hold for the Boolean type in non-strict languages. For example,
(&&) and || are not commutative and the standard distribution laws
do not hold. These properties do not hold for contracts either, with
similar counterexamples. So the non-strict algebra of (&&) and ||
is a good guideline for developing the lazy contract algebra of &
and |>.

The ”distribution” law for conjunction and function contract
may at first surprise. It holds because the function contract com-
binator is not some kind of implication but more a kind of con-
junction. A function contract holds only if both the input and the
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output of a function meet the respective subcontracts. From this
”distribution” law of conjunction and function plus idempotence of
conjunction further laws follow:

(c1 >-> c) & (c3 >-> c) = (c1 & c3) >-> c

(c >-> c2) & (c >-> c4) = c >-> (c2 & c4)

Figure 5 lists further properties of contracts that we have not
proved but claim also hold. They require stronger proof methods
than equational reasoning, but are linked to the idempotence of con-
tracts discussed in the subsequent subsection. The last property in
the list, idempotence of conjunction, is a corollary of the preceed-
ing property, taking c2 = true.

4.2 Contracts are Projections
Eager contracts are projections [1, 11], that is, they are idempotent
and partial identities.

Lemma 4.1 (A contract is a partial identity).
For any contract c

assert c v id

This can be proved using induction on the contract combinators.
Idempotence is more difficult to establish. It would follow from

idempotence of conjunction, c & c = c. In practice, both prop-
erties probably need to be established in a single inductive proof.
Intuitively idempotence holds because if a contract returns Just v,
that value v is the same as would be returned by the eager contract
type a -> a, and pattern contracts only test for the top constructor
before returning Just v or Nothing.

Claim 4.2 (A contract is idempotent).
For any contract c

assert c . assert c = assert c

4.3 Distinct Contract Exceptions
We identified non-termination and any contract exception as the
single value ⊥. However, we might distinguish them, following
[22], such that exceptions are values above ⊥ in the information
order, but still values of any type. We would change our partial
order to consider exceptions as least elements, because a contract
replaces some parts of values by exceptions. However, with that
choice our contracts are neither partial identities, nor idempotent
(the properties of Figure 4 are unaffected). The reason is that
contracts such as

⊥ :: Contract a
prop ⊥ :: Flat a => Contract a
prop (\x -> if odd x the True else ⊥) :: Contract Int

exist. They would still introduce ⊥ instead of exceptions.
For related reasons other works [1, 8] restricted the definitions

of contracts such that a contract can never introduce ⊥ itself.
However, the desirable freedom to use the whole language to define
contracts and the fact that we are just defining a library makes this
an impractical choice.

5. Informative Contract Violation
A contract is concluded between two partners, a server and a client.
If a contract is violated, one of the two partners is to blame for it. A
major contribution of Findler and Felleisen’s functional contracts
[12] is its system for choosing whom to blame. In a higher-order
language function arguments can themselves be functions. If such
a functional argument is used within the function such that the pre-
condition of the functional argument is violated, then the function
itself has to be blamed for contract violation, not the caller that
passed the functional argument.

type Contract a = a -> Bool -> Either Bool a

assert :: Contract a -> (a -> a)
assert = monitor True

monitor :: Bool -> Contract a -> (a -> a)
monitor b c x =
case c x b of

Right x -> x
Left b -> error ("Contract violated. Blame "

++ if b then "server."
else "client.")

(>->) :: Contract a -> Contract b -> Contract (a->b)
pre >-> post = \f b -> Right (f ‘seq‘
(monitor b post . f . monitor (not b) pre))

true :: Contract a
true = \x b -> Right x

false :: Contract a
false = \x b -> Left (not b)

Figure 6. Implementing blaming

5.1 Blaming
The blaming system for higher-order functional languages applies
to both eager and lazy languages equally, and thus we can eas-
ily add it to our lazy contract library. For eager languages sev-
eral equivalent implementations for handling blame are known
[11, 12, 19]. Here we simply extend a contract by a Boolean state
that indicates whether the server or the client of the contract are
to blame in case of violation. The Maybe monad is replaced by
Either Bool a so that blame information is available when a sub-
contract is violated. Figure 6 shows the most interesting extended
definitions. Contract monitoring starts by potentially blaming the
server, that is, the expression for which the contract is asserted.
The function contract combinator >-> negates the Boolean blame
indicator for monitoring the contra-variant argument, but passes it
unchanged for monitoring the co-variant result.

Now there are two different possible implementations of the
contract false that can never be met: The contract either always
blames the party indicated by the given Boolean argument, or it
always blames the opposite party by negating the Boolean value.
So let us look back at our example of Section 2:

const = assert (true >-> false >-> true) const’

Any client of const will provide some second argument, but if
that second argument is actually demanded, then clearly const’ is
wrongly defined and has to be blamed. In this example false is in
a contra-variant position of the whole contract and hence to blame
the server, false has to negate its Boolean parameter. So on its
own, false always blames its client, never its server. We do not
provide the server-blaming variant in the library, because it does
not seem to be of any practical use.

5.2 Witness Tracing
Blaming alone, however, is rather unsatisfactory. It just points the
finger at one partner without providing any evidence that would
explain in which way a complex contract was violated. Blaming
hardly provides a good starting point for debugging. Furthermore,
blaming can be misleading. Often when a contract is violated nei-
ther server nor client are wrong, but the contract itself! Specifying
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type Contract a =
(String -> String) -> a -> Either String a

assert :: Contract a -> (a -> a)
assert = monitor id

monitor :: (String->String) -> Contract a -> (a->a)
monitor wc c x =

case c wc x of
Right v -> v
Left w -> error ("Contract violated. Witness:"

++ wc ("{" ++ w ++ "}"))

(>->) :: Contract a -> Contract b -> Contract (a->b)
pre >-> post = \wc f -> Right (f ‘seq‘

(monitor (wc . \w->("(_->"++w++")")) post . f .
monitor (wc . \w->("("++w++"->_)")) pre))

pNil :: Contract [a]
pNil = \wc x -> case x of

[] -> Right x
_:_ -> Left "_:_"

pCons :: Contract a -> Contract [a] -> Contract [a]
pCons cx cxs = \wc x -> case x of

(y:ys) ->
Right

(monitor (wc . \w->("("++w++":_)")) cx y :
monitor (wc . \w->("(_:"++w++")")) cxs ys)

[] -> Left "[]"

Figure 7. Implementing witness tracing

the right contract is challenging and contract monitoring just checks
whether specification and implementation agree.

Hence our lazy contracts report, when they are violated, the top
data constructor, or whole flat value, that causes the contract viola-
tion, plus all data constructors in the path above it. For example

*Main> clausalNF form
[[Atom ’a’],[Atom ’b’,Not
*** Exception: Contract violated. Witness:
((And (Or (Not {Not })))-> )

Here we do not need to know the full definition of the formula
form. The error message tells us all that we need to know: The for-
mula contains a double-negation and therefore is not in conjunctive
normal form, as the contract of clausalNF requires. More pre-
cisely, the contract was asserted for a function that took as argu-
ment a formula with And at the top, with Or as second argument,
which has a Not as second argument, which has the forbidden Not
as argument.

To trace the required information of a potential witness of con-
tract violation, our contracts pass an additional argument that accu-
mulates a description of the context of a monitored value, and a vio-
lated contract returns a string describing the offending value itself.
The representation of the context is of type String -> String
to easily slot another context or expression representation into the
hole of the context. Figure 7 gives an outline of the implementa-
tion. The printed witness describes just the data that needs to be
evaluated to notice the contract violation.

5.3 Location + Blame + Witness
Our final contract library combines blaming and witness tracing,
records the source location of a contract and raises a special ex-

ception to provide the maximal information when the contract is
violated. For example:

*Main> clausalNF form
[[Atom ’a’],[Atom ’b’,Not
*** Exception: Contract at ContractTest.hs:101:3
violated by
((And (Or (Not {Not })))-> )
The client is to blame.

6. Deriving Contract Combinators
For every data constructor Con that we want to pattern match in a
contract we have to define a pattern contract pCon. These defini-
tions are simple, even with handling of location, blame and witness
information, but they are still tedious. Hence our contract library al-
lows their automatic derivation using Template Haskell [23]. Tem-
plate Haskell is a meta-programming extension of Haskell that
the Glasgow Haskell compiler, the only Haskell system used for
professional Haskell program development, provides. Template
Haskell allows us to define in the contract library functions that
will generate Haskell code at compile time, type check that code
and compile it.

The user no longer needs to define these pattern contracts at
all, but can basically derive them on demand where needed, that is,
directly write

conjNF = $(p ’And) conjNF conjNF |> disj
disj = $(p ’Or) disj disj |> lit
lit = $(p ’Not) atom |> atom
atom = $(p ’Atom) true

Here p is a Template Haskell function that receives the name of a
data constructor as argument. The $ and the single quote in front of
the data constructor are syntax required by Template Haskell. The
definition of a pattern contract is short so that repeated derivation
is not a problem.

Alternatively, the programmer can also write the declaration

$(deriveContracts ’’Formula)

to derive all pattern contract definitions for the type Formula.
Finally, assert is also a Template Haskell function:

clausalNF =
$assert (conjNF & right >-> list (list lit))

clausalNF’

Template Haskell allows the definition of assert to determine its
own location in the file and then generate code for calling the real
assertion function with that location as parameter.

7. Further Contract Features
Initial experience of using contracts raises new questions and de-
mand for additional contract combinators.

7.1 Negation
We have conjunction, &, and disjunction, |>, of contracts. However,
we cannot have negation

neg :: Contract a -> Contract a

for contracts. General negation would violate basic semantic prop-
erties of contracts [2].

Nonetheless, in practice we often want to express that the top
data constructor of a monitored value is not a specific given data
constructor. Hence we introduce additional combinators such as the
following for every data type.

pNotImp :: Contract Formula
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pNotAnd :: Contract Formula
pNotOr :: Contract Formula
pNotNot :: Contract Formula
pNotAtom :: Contract Formula

These negated pattern contracts provide nothing new. In fact

pNotImp = pAnd true true |> pOr true true |>
pNot true |> pAtom true

However, for types with many data constructors these combina-
tors are certainly substantial abbreviations and they are needed fre-
quently. Additionally, our implementation can perform an efficient
single pattern match instead of many repeated ones.

We use these negated pattern contracts in the definition of con-
tracts for our initial propositional formulae example. They substan-
tially simplify our definition of ”right-bracketedness”.

conjNF, disj, lit, atom,
right, rightConjNF :: Contract Formula

conjNF = pAnd conjNF conjNF |> disj
disj = pOr disj disj |> lit
lit = pNot atom |> atom
atom = pAtom true

right = pImp (right & pNotImp) right |>
pAnd (right & pNotAnd) right |>
pOr (right & pNotOr) right |>
pNot right |> pAtom true

rightConjNF = conjNF & right

Even for data types with few constructors they can express an
idea more clearly. So

head’ = assert (pNotNil >-> true) head

is more direct than

head’ = assert (pCons true true >-> true) head

to express that the function only works on non-empty lists.

7.2 Contracts for the IO monad
We have contract combinators for flat types, algebraic data types
and the function type constructor. However, a real programming
language has more types, especially abstract data types. The most
notorious in Haskell is the IO monad that is required for any input
or output actions.

For example, we may want to write a contract for an IO action
that gets a natural number from standard input:

getNat :: IO Integer
getNat = assert (io nat) getNat’

The choice of contract combinator is natural, following our
general approach of type-directed contract combinators. How do
we define the IO contract combinator?

io :: Contract a -> Contract (IO a)
io c = \io -> Just (io >>= return . assert c)

Our definition simply follows the scheme we are already using
for the function contract combinator >->. After all, the function
type is ”just” an abstract data type as well4. With this definition our

4 The forced evaluation with seq by the function contract combinator is
required because of the peculiar semantics of functions in Haskell. It is
not needed for other types. For example, if io = ⊥, then also io >>=
return . assert c = ⊥.

IO contract combinator also has the same properties as the function
contract combinator:

io c1 & io c2 = io (c1 & c2)

io c1 |> io c2 = io c1

io true = true

Our definition of the contract combinator for the abstract data
type IO a raises the question whether we should do the same for
other data types. For example, we have

list :: Contract a -> Contract [a]
list c = pNil |> pCons c (list c)

Alternatively we could follow our definition of io:

list’ c = \xs -> Just (xs >>= return . assert c)

which is the same as

list’ c = \xs -> Just (map (assert c) xs)

It turns out that the two definitions are equivalent5, thus confirm-
ing our original definition. Hence we prefer to define a contract
combinator for a non-abstract algebraic data type such as list in
terms of the only primitive contract combinators, the pattern con-
tract combinators, such as pNil and pCons. For an abstract data
type we define a contract combinator using the scheme above with
the respective map function for the type.

7.3 Strict data types
Haskell allows the definition of strict data types. The strictness flag
! in a data type definition states that the data constructor is strict in
that argument. For example,

data SListBool = SNil | SCons !Bool !SListBool

defines the type of finite Boolean lists that are either ⊥ or fully
defined.

Happily we do not need to adapt our definition of contract
combinators. As usual we have

pSNil :: Contract SListBool
pSNil SNil = Just SNil
pSNil (SCons b bs) = Nothing

pSCons :: Contract Bool -> Contract SListBool ->
Contract SListBool

pSCons c cs SNil = Nothing
pSCons c cs (SCons b bs) =
Just (SCons (assert c b) (assert cs bs))

A contract traverses the strict list and builds a new strict list.
Thus demanding the top data constructor of a contracted strict
list automatically forces checking the whole list. The result will
be either a contract violation (⊥) or the whole list. So on strict
data types lazy contracts behave like eager contracts. It would be
possible to define more expressive contract combinators for data
types with strictness flags, that, for example, ensure that a list
is ordered; but because strictness flags are rarely used in Haskell
programs, such an extension does not seem worthwhile.

In the definition of SListBool all constructor arguments are
strict and the only other types used are flat types. In such a case the
data type is actually a flat type. We can declare it an instance of the
class Flat and use expressive prop contracts.

5 They are not equal, because list ⊥ = ⊥, but list’ ⊥ = Just ⊥.
However, in the context of a contract with assert they always yield the
same result.
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8. Related Work
This paper builds firmly on three sets of previous work: Findler
and Felleisen’s work on eager contracts for higher-order functions
[12], Hinze, Jeuring and Löh’s work on typed contracts for func-
tional programming, and our own previous work on lazy functional
contracts.

Eager Higher-Order Contracts Findler and Felleisen’s paper on
contracts for higher-order functions [12] made contracts popular for
eager functional programming languages. All interesting properties
of functional values, which are passed around by higher-order func-
tions, are undecidable; it is impossible to monitor a function con-
tract for all argument-result-pairs. However, Findler and Felleisen
realised that it is sufficient to monitor both pre- and post-condition
of a functional value only when this function is applied. The result-
ing contract system is sound.

The second major contribution of that paper is a system for
correctly attributing blame in case of contract violation and its
implementation. We easily added blaming to our lazy contract
library. However, additionally our contracts report a witness, a
partial value, that caused a contract violation.

Findler and Felleisen’s contract system also provides dependent
function contracts, where the contract for the function codomain
can use the actual argument value. Such dependent contracts are
more expressive but easily change a non-strict function into a strict
function; hence our lazy contract combinators do not provide them.

Subsequent work [11, 13] stresses that contracts are projections
and thus they can be implemented in a simple, modular and efficient
way. Our first implementation of Figure 2 copies that work and our
full implementation with disjunction is an extended variant.

The papers do not discuss algebraic data types, because in strict
languages these domains are flat and hence contracts for algebraic
data types are predicates like for other flat types. Consequently
disjunction is not considered either. Because of the universality
of predicate contracts in strict and dynamically typed functional
languages, type-directed contracts such as list are also of little
interest.

Although disjunction is not discussed in the papers, the contract
system of Racket does provide a disjunctive contract combinator
[14, Version 5.2.1] [15]. To support disjunction, a Racket contract
for type a contains both a function of type a -> a and a function
of type a -> Bool. Together they are used similarly to our type a
-> Maybe a. In particular, the disjunctive combinator applies the
a -> Bool functions of all its direct sub-contracts, checks that at
most one of the results is True (otherwise it fails) and then applies
the corresponding sub-contract further [10]. So disjunction behaves
similarly to |> but is not sequential.

Blume et al. proposed and studied several semantic models of
eager higher-order contracts [1, 11, 13]. To prove soundness, the
definition of contracts is first restricted, to avoid e.g. having a con-
tract ⊥. Later, recursive contracts are added to regain expressiv-
ity. In a discussion of the most permissive contract, true, Findler
and Blume point out that the contract true, to be the most permis-
sive contract, should always report contract violation and blame the
client. However, they also note that such a contract would be use-
less in practice. In contrast, our true, which cannot be violated,
is very useful to leave parts of a contract unconstrained. Similarly,
the least permissive contract should always blame the server, but
we demonstrated in Section 5.1 that our definition of false, which
always blames the client, is more useful. As a consequence in our li-
brary false = prop (const False) does not hold for flat types
whereas true = prop (const True) does.

Typed Contracts for Functional Programming Hinze, Jeuring
and Löh [19] transferred contracts for higher-order functions to
the statically typed language Haskell. Hence they proposed con-

tract combinators with parametrically polymorphic types; we have
adopted all of them except for dependent contracts. Typed con-
tracts also emphasis type-directed contract combinators such as
list. However, the work disregards the lazy semantics of Haskell,
defining contracts with a seemingly random mixture of eager and
lazy monitoring. Predicate contracts can be applied to expressions
of all types, not just flat types, thus breaking laziness. However,
these predicate contracts are required for expressing many interest-
ing properties, because a type-directed contract combinator such as
list can only express a uniform property over all list elements:
our pattern contracts and disjunction are missing.

Contracts are not projections, because generally they are not
idempotent. Idempotence is lost because of the eagerness of pred-
icate contracts. Hinze et al. make the point that if contract con-
junction & was commutative, then idempotence would be a simple
consequence. However, our lazy contracts demonstrate that com-
mutativity of conjunction is not necessary for idempotence; we can
have the latter without the former.

Hinze et al. also provide an interesting technique for provid-
ing more informative error messages than standard blaming. Their
library provides several source locations as explanation of a sin-
gle violated contract. However, these sets of source locations are
still hard to understand for a programmer and the system requires a
source code transformation to insert source locations into the pro-
gram. Otherwise the programmer would have to do this substantial
work.

Lazy Contracts for Functional Languages Lazy contracts were
first discussed and several implementations presented in 2004 [5].
That paper makes the point that while eager contracts must be
True, lazy contracts must not be False. This means that uneval-
uated parts of a data structure can never violate a lazy contract.
The paper uses predicates on values of all types and hence, de-
spite some technical tricks using concurrency, the contracts are lazy
but neither idempotent nor prompt. The paper itself gives exam-
ples of where contract violations are noticed too late. This prob-
lem was later rectified [3, 4]. Both these papers implement lazy
assertions as libraries that require only the commonly provided
non-pure function unsafePerformIO, which performs side effects
within a purely functional context. The first lazy and idempotent
implementation [4] uses patterns contracts similar to those in this
paper to express contracts over algebraic data types. However, a
non-deterministic implementation of disjunction leads to seman-
tic problems. Later [3] provided a more user-friendly language for
expressing contracts and improved the internal structure of the im-
plementation, but the implementation principles were identical and
hence the non-deterministic disjunction remained.

A semantic investigation [2] developed contracts that are pure
and implementable within the functional language. However, for
every algebraic data type its contracts requires a different imple-
mentation type. Thus disjunction is not a parametrically polymor-
phic combinator but requires a class context. Furthermore, the im-
plementations of some combinators are large and complex. Dis-
junction is more powerful than in the lazy contracts described in
the present paper, for example

assert (pCons nat pNil |> pCons true pNil) [-3]

=assert (pCons (nat |> true) (pNil |> pNil))

=[-3]

but this additional expressibility does not seem to be needed in
practice.

Comparing Contracts Degen, Thiemann and Wehr [7, 8] classify
existing contract systems for Haskell as eager (straight translation
of [12]), semi-eager [19] and lazy [3–5]. They check whether the
systems meet their desirable properties of meaning preservation
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and completeness. Each contract system meets at most one of
these properties. The authors show that it is impossible to meet
both properties. Our lazy contracts are meaning preserving but not
complete. The notion of completeness seems to be biased towards a
strict semantics, contradicting the principle that unevaluated parts
can never violate a lazy contract. Our lazy contracts have limited
expressibility, but they have a clear semantics.

Generic Programming We use Template Haskell to derive pat-
tern contracts and to enable the assertion function to determine its
own location in the source code [23]. The derivation of pattern con-
tracts is an instance of generic programming. Many generic pro-
gramming systems have been proposed and even been implemented
for Haskell [17, 18, 20, 21]. All of these have two disadvantages
that make them unsuitable for being used for our pattern contracts:
First, they introduce one or more classes that will then appear in the
type of every derived pattern contract. Thus pattern contracts will
not be parametrically polymorphic. Second, they consider func-
tions as second class values. That means that either they can only
generically define code for types that do not involve function types
at all, or they can recognise a functional value within an algebraic
data type, but cannot do anything with it, that is, apply any trans-
formation to it.

Template Haskell provides few static guarantees and thus re-
quires us to ascertain that our contract library will derive typeable
and correct code for any data constructor. However, Template
Haskell provides all the functionalities needed in the contract li-
brary.

9. Conclusions and Future Work
This paper describes the design of a practical contract library for
lazy typed functional languages and its implementation for Haskell.
The library meets many essential criteria, such as combinators
with simple parametric types, a lazy semantics, a rich algebra of
properties, informative exceptions in case of contract violation and
automatic code generation to make it easy to use.

Interestingly the resulting contract system reminds strongly of a
subtyping system, especially with a definition of sub-contracts/types
for algebraic data types that looks very similar to the actual type
definition of algebraic data types. Defining subtypes of algebraic
data types is also where we see the main application area of the con-
tract system. Many programs require several variants of some big
algebraic data types. In practice programmers then simply ignore
the subtyping and define a single algebraic data type that encom-
passes all variants, because they want to reuse functions that work
on several subtypes and have the flexibility to exchange some code
without having to change between numerous similar but separate
data types. The classical example is a compiler: it consists of a long
sequence of passes, each of which works with a slightly differently
structured abstract syntax tree, In practice, subtle differences are
ignored and only a few different abstract syntax tree structures are
used in one compiler. Lazy contracts provide a new solution.

Our next step is to develop the algebra of contract combinators
further and thus also prove our claim that these contracts are idem-
potent. The main current shortcoming and thus biggest challenge
for future development of the contract library is its lack of a depen-
dent function contract combinator that allows using the function
argument in the post-condition. We can define

(>>->) :: Contract a -> (a -> Contract b) ->
Contract (a -> b)

pre >>-> post = \f ->
Just (f ‘seq‘ \x -> let y = assert pre x

in assert (post y) (f y))

and use it for example in

contractTake :: Int -> [a] -> [a]
contractTake =
assert (prop (>=0) >>->

\n -> lengthAtLeast n >-> listOfLength n)
take

It is easy to extend this picky implementation to use indy moni-
toring [9], which may blame the contract itself, not just the server
or the client. However, >>-> is not a lazy contract combinator; the
post-condition may force evaluation of too much of the function
argument and thus the contract may change the semantics of the
program. A definition of a lazy dependent function combinator is
still an open problem. Meanwhile the existing contract library can
be used in practice.
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A. Proofs
The following are proofs for Section 4. All proofs use the imple-
mentation of contracts given in Figure 3.

A.1 General properties of contracts
Lemma A.1. Let c be any contract. If c v = Just v’ implies
that v’ v v, then assert c v v v.

Proof. Case analysis:

c v = ⊥: assert c v = ⊥ v v.
c v = Just v’: assert c v = v’ v v.
c v = Nothing: assert c v = error "..." = ⊥ v v.

Lemma A.2. Let c be any contract. If c v = Just v’, then
v’ v v.

Proof. Induction on the contract c, using its definition.

⊥ v = Just v’: Impossible.
true v = Just v’: Then v’ = v v v.
false v = Just v’: Impossible.
prop p v = Just v’: Then v’ = v v v.
(c1 & c2) v = Just v’:

Then c1 v = Just v’’ and c2 v’’ = Just v’. With ind.
hyp. follows v’ v v’’ v v.

(c1 |> c2) v = Just v’:
Then either c1 v = Just v’ or c1 v = Nothing and c2 v =
Just v’. With ind. hyp. follows v’ v v in either case.

(c1 >-> c2) v = Just v’:
If v = ⊥, then v’ = ⊥ and thus v’ v v.
Otherwise v’ = assert c2 . v . assert c1. Let v’’
be any possible argument value of the function v’. If the
first assertion assert c1 v’’ 6= Just ... or the second
assertion assert c2 (v (assert c1 v’’)) 6= Just ...,
then v’ v’’ = ⊥. Otherwise by induction hypothesis and
Lemma A.1 we have assert c1 v’’ v v’’ and likewise also
assert c2 (v (assert c1 v’’)) v v (assert c1 v’’).
With continuity of all functions follows v (assert c1 v’’) v
v v’’. Alltogether assert c2 (v (assert c1 v’’)) v
v v’’.
Hence in all cases v’ v’’ v v v’’ and thus v’ v v.

(pCon c1 . . . cn) v = Just v’ where pCon is the contract
combinator for data constructor Con.
From the definition follows that v = Con v1 . . . vn and
v’ = Con (assert c1 v1) . . . (assert cn vn). By ind.
hyp. and Lemma A.1 we get that assert c1 v1 v v1, . . .,
assert cn vn v vn. So v’ v v.

Corollary A.3 (Contracts are partial identities).
assert c v v v.

Proof. From Lemma A.2 and Lemma A.1.

Corollary A.4. assert c is strict for any contract c.

Proof. From Corollary A.3 follows that assert c ⊥ v ⊥. Hence
assert c ⊥ = ⊥.

Lemma A.5 (Asserting &).

assert (c1 & c2) = assert c2 . assert c1

Proof.

assert (c1 & c2)

=\x -> case c1 x >>= c2 of

Just z -> z

Nothing -> error "..."

=\x -> case (case c1 x of

Just y -> c2 y

Nothing -> Nothing) of

Just z -> z

Nothing -> error "..."

=\x -> case c1 x of

Just y -> case c2 y of

Just z -> z

Nothing -> error "..."

Nothing -> error "..."

=\x -> case c1 x of

Just y -> assert c2 y

Nothing -> error "..."

=(assert c is strict, Corollary A.4)
\x -> case c1 x of

Just y -> assert c2 y

Nothing -> assert c2 (error "...")

=(assert c is strict, Corollary A.4)
\x -> assert c2 (case c1 x of

Just y -> y

Nothing -> error "...")

=\x -> assert c2 (assert c1 x)

=assert c2 . assert c1

Claim A.6 (Idempotence of contracts).

assert c . assert c = assert c

Proof.

assert c . assert c

=(Lemma A.5)
assert (c & c)

=(claimed idempotence of conjunction)
assert c

A.2 Properties of predicate contracts
Lemma A.7 (Disjunction).

prop p1 |> prop p2 = prop (\x -> p1 x || p2)
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Proof.

prop p1 |> prop p2

=\x -> case prop p1 x of

Just y -> Just y

Nothing -> prop p2 x

=\x -> case (if p1 x then Just x else Nothing) of

Just y -> Just y

Nothing -> prop p2 x

=\x -> if p1 x then Just x else prop p2 x

=\x -> if p1 x then Just x else

(if p2 x then Just x else Nothing)

=\x -> if p1 x || p2 x then Just x else Nothing

=prop (\x -> p1 x || p2)

Lemma A.8 (Conjunction).

prop p1 & prop p2 = prop (\x -> p1 x && p2 x)

Proof.

prop p1 & prop p2

=\x -> prop p1 x >>= prop p2

=\x -> case prop p1 x of

Just y -> prop p2 y

Nothing -> Nothing

=\x -> case (if p1 x then Just x else Nothing) of

Just y -> prop p2 y

Nothing -> Nothing

=\x -> if p1 x then prop p2 x else Nothing

=\x -> if p1 x

then (if p2 x then Just x else Nothing)

else Nothing

=\x -> if p1 x && p2 x then Just x else Nothing

=prop (\x -> p1 x && p2 x)

A.3 Properties of the conjunction contract combinator &
Lemma A.9 (Associativity of &).

c1 & (c2 & c3) = (c1 & c2) & c3

Proof.

c1 & (c2 & c3)

=\x -> c1 x >>= (c2 & c3)

=\x -> c1 x >>= (\y -> c2 y >>= c3)

=(associativity of >>= for the Maybe monad)
\x -> (c1 x >>= c2) >>= c3

=\x -> (\y -> c1 y >>= c2) x >>= c3

=\x -> (c1 & c2) >>= c3

=(c1 & c2) & c3

Lemma A.10 (Left neutral element of &).

true & c = c

Proof.

true & c

=\x -> true x >>= c

=\x -> Just x >> c

=(Just = return is left identity for Maybe monad)
=\x -> c x

=c

Lemma A.11 (Right neutral element of &).

c & true = c

Proof.

c & true

=\x -> c x >>= true

=\x -> c x >> Just

=(Just = return is right identity for Maybe monad)
=\x -> c x

=c

A.4 Properties of the disjunction contract combinator |>
Lemma A.12 (Associativity of |>).

c1 |> (c2 |> c3) = (c1 |> c2) |> c3

Proof.

c1 |> (c2 |> c3)

=\x -> c1 x ‘mplus‘ (\y -> c2 y ‘mplus‘ c3 y) x

=\x -> c1 x ‘mplus‘ (c2 x ‘mplus‘ c3 x)

=(associativity of mplus for Maybe)
\x -> (c1 x ‘mplus‘ c2 x) ‘mplus‘ c3 x

=\x -> (\y -> c1 y ‘mplus‘ c2 y) x ‘mplus‘ c3 x

=(c1 |> c2) |> c3

Lemma A.13 (Left neutral element of |>).

false |> c = c

Proof.

false |> c

=\x -> const Nothing x ‘mplus‘ c x

=\x -> Nothing ‘mplus‘ c x

=(Nothing = mzero is left identity for Maybe)
\x -> c x

=c

Lemma A.14 (Right neutral element of |>).

c |> false = c
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Proof.

c |> false

=\x -> c x ‘mplus‘ const Nothing x

=\x -> c x ‘mplus‘ Nothing

=(Nothing = mzero is right identity for Maybe)
=\x -> c x

=c

Lemma A.15 (Idempotence of |>).

c |> c = c

Proof.

c |> c

=\x -> c x ‘mplus‘ c x

=\x -> case c x of {Just y -> Just y; Nothing -> c x}
=\x -> c x

=c

A.5 Guarded commutativity and absorption
Lemma A.16 (Guarded commutativity of disjunction).

c1 |> (c2 |> c1) = c1 |> c2

Proof.

c1 |> (c2 |> c1)

=\x -> case c1 x of

Just y -> Just y

Nothing -> case c2 x of

Just y -> Just y

Nothing -> c1 x

=(case distinction c1 x = ⊥, Just y, Nothing)
\x -> case c1 x of

Just y -> Just y

Nothing -> case c2 x of

Just y -> Just y

Nothing -> Nothing

=\x -> case c1 x of

Just y -> Just y

Nothing -> c2 x

=c1 |> c2

Lemma A.17 (Absorption 1).

c1 |> (c1 & c2) = c1

Proof.

c1 |> (c1 & c2)

=\x -> case c1 x of

Just y -> Just y

Nothing -> case c1 x of

Just z -> c2 z

Nothing -> Nothing

=(case distinction c1 x = ⊥, Just y, Nothing)
\x -> case c1 x of

Just y -> Just y

Nothing -> Nothing

=c1

A.6 Corollaries
Corollary A.18.

false & c = false

Proof.

false & c

=(Lemma A.13, left neutral element of |>)
false |> (false & c)

=(Lemma A.17, absorption 1)
false

Corollary A.19.
true |> c = true

Proof.

true |> c

=(Lemma A.10, left neutral element of &)
true |> (true & c)

=(Lemma A.17, absorption 1)
true

A.7 Properties of the function contract combinator >->
Lemma A.20 (Relation with true).

true >-> true = true

Proof.

true >-> true

=\f -> Just (f ‘seq‘ (assert true . f . assert true))

=\f -> Just (f ‘seq‘ (id . f . id))

=\f -> Just f

=true

Lemma A.21 (false postcondition).

c1 >-> false = c2 >-> false
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Proof.

c1 >-> false

=\f -> Just (f ‘seq‘ (assert false . f . assert c1))

=\f ->

Just (f ‘seq‘ (const (error "...") . f . assert c1))

=\f -> Just (f ‘seq‘ const (error "..."))

=\f ->

Just (f ‘seq‘ (const (error "...") . f . assert c2))

=\f -> Just (f ‘seq‘ (assert false . f . assert c2))

=c2 >-> false

Lemma A.22 (Distribution with &).

(c1 >-> c2) & (c3 >-> c4) = (c3 & c1) >-> (c2 & c4)

Proof.

(c1 >-> c2) & (c3 >-> c4)

=\f -> (c1 >-> c2) f >>= (c3 >-> c4)

=\f -> Just (f ‘seq‘ (assert c2 . f . assert c1))

>>= (c3 >-> c4)

=\f -> (c3 >-> c4) (f ‘seq‘ (assert c2 . f . assert c1))

=\f -> Just (f ‘seq‘ (assert c4 . assert c2 . f .

assert c1 . assert c3))

=(Lemma A.5)
\f -> Just (f ‘seq‘ (assert (c2 & c4) . f .

assert (c3 & c1)))

=(c3 & c1) >-> (c2 & c4)

Lemma A.23 (Non-distribution with |>).

(c1 >-> c2) |>(c3 >-> c4) = c1 >-> c2

Proof.

(c1 >-> c2) |> (c3 >-> c4)

=\f -> (c1 >-> c2) f ‘mplus‘ (c3 >-> c4) f

=\f -> Just (f ‘seq‘ (assert c2 . f . assert c1))

‘mplus‘ (c3 >-> c4) f

=(MonadPlus law for Just = return)
\f -> Just (f ‘seq‘ (assert c2 . f . assert c1))

=c1 >-> c2

B. Properties of the contract combinator io
The following are proofs for Section 7.2.

Lemma B.1.

io c1 & io c2 = io (c1 & c2)

Proof.

io c1 & io c2

=\x -> io c1 x >>= io c2

=\x -> Just (x >>= return . assert c1) >>=

\y -> Just (y >>= return . assert c2)

=\x -> Just ((x >>= return . assert c1) >>=

return . assert c2)

=\x -> Just (x >>= (return . assert c1 >>=

return . assert c2))

=\x -> Just (x >>= (return . assert c2 . assert c1))

=\x -> Just (x >>= (return . assert (c1 & c2))

=io (c1 & c2)

Lemma B.2.
io c1 |> io c2 = io c1

Proof.

io c1 |> io c2

=\x -> io c1 x ‘mplus‘ io c2 x

=\x -> Just (x >>= return . assert c1)

‘mplus‘ io c2 x

=\x -> Just (x >>= return . assert c1)

=io c1

Lemma B.3.
io true = true

Proof.

io true

=\x -> Just (x >>= return . assert true)

=\x -> Just (x >>= return . id)

=\x -> Just (x >>= return)

=\x -> Just io

=true

C. Two definitions of the list contract combinator
The two list contract combinators are not equal, but we can prove
that they are equal in all contract contexts surrounded by assert.
Basically the results ⊥ and Just ⊥ of a contract cannot be distin-
guished. We denote this equivalence by ≡.

The next lemma is not only of interest for the subsequent
lemma. However, the two expressions will give different fault ex-
planations if a contract is violated.

Lemma C.1.

assert (list c) V = map (assert c) V

Proof. Structural induction on the value V .
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V = ⊥:
assert (list c) ⊥

=assert (pNil |> pCons c (list c)) ⊥
=⊥
=map (assert c) ⊥

V = []:
assert (list c) []

=assert (pNil |> pCons c (list c)) []

=[]

=map (assert c) []

V = W:WS:
assert (list c) (W:WS)

=assert (pNil |> pCons c (list c)) (W:WS)

=assert c W : assert (list c) WS

=(induction hypothesis)
assert c W : map (assert c) WS

=map (assert c) (W:WS)

Lemma C.2.
list c V ≡ list’ c V

Proof. Structural induction on the value V .

V = ⊥:
list c ⊥

=(pNil |> pCons c (list c)) ⊥
=⊥
≡Just ⊥
=list’ c ⊥

V = []:
list c []

=(pNil |> pCons c (list c)) []

=Just []

=Just (map (assert c) [])

=list’ c []

V = W:WS:
list c (W:WS)

=(pNil |> pCons c (list c)) (W:WS)

=Just (assert c W : assert (list c) WS)

=(Lemma C.1)
Just (assert c W : map (assert c) WS)

=Just (map (assert c) (W:WS))

=list’ c (W:WS)

D. Some Properties that do not hold
Contracts do not form a distributive lattice with & and |>. So a
number or properties that might be expected do not actually hold.
Comparing with the properties of the lazy Booleans is helpful in
identifying which properties hold and which do not.

Lemma D.1 (Commutativity).
& is not commutative.

Proof. For example

⊥ & false = \x -> ⊥
false & ⊥ = \x -> Nothing

So

(⊥ & false) |> true = \x -> ⊥
(false & ⊥) |> true = \x -> Just x

Hence

assert ((⊥ & false) |> true) e = ⊥
assert (false & ⊥) |> true) e = e

Similarly && is not commutative:

⊥ && False = ⊥ 6= False = False && ⊥
Lemma D.2 (Commutativity).
|> is not commutative.

Proof. For example

⊥ |> true = \x -> ⊥
true |> ⊥ = \x -> Just x

Hence

assert (⊥ |> true) e = ⊥
assert (true |> ⊥) e = e

Similarly || is not commutative.

⊥ || True = ⊥ 6= True = True || ⊥
Lemma D.3 (Distributivity 1).

(c1 & c2) |> c3 6= (c1 |> c3) & (c2 |> c3)

Proof.

(false |> true) & (⊥ |> true) = \x -> ⊥
(false & ⊥) |> true = \x -> Just x

Note that also

(b1 || b2) && b3 6= (b1 && b3) || (b2 && b3)

because

(False || True) && (⊥ || True)

=⊥
@True

=(False && ⊥) || True

Lemma D.4 (Distributivity 2).

(c1 & c3) |> (c2 & c3) 6= (c1 |> c2) & c3)

Proof.

(true & false) |> (⊥ & false) = \x -> ⊥
(true |> ⊥) & false = \x -> Nothing
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Note that also

(b1 && b3) || (b2 && b3) 6= (b1 || b2) && b3

because

(True && False) || (⊥ && False)

=⊥
@False

=(True || ⊥) && False

Lemma D.5.
false >-> false 6= false

Proof.

(false |> true) f = f

((false >-> false) |> true) f = const (error "...")
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