
Abstract Interpretation of Microcontroller Code: Intervals Meet Congruences

Jörg Brauera,∗, Andy Kingb, Stefan Kowalewskia

aEmbedded Software Laboratory, RWTH Aachen University, Germany
bPortcullis Computer Security Limited, Pinner, UK

Abstract

Bitwise instructions, loops and indirect data access present challenges to the verification of microcontroller programs.
In particular, since registers are often memory mapped, it is necessary to show that an indirect store operation does not
accidently mutate a register. To prove this and related properties, this article advocates using the domain of bit-wise
linear congruences in conjunction with intervals to derive accurate range information. The paper argues that these
two domains complement one another when reasoning about microcontroller code. The paper also explains how SAT
solving, which applied with dichotomic search, can be used to recover branching conditions from binary code which,
in turn, further improves interval analysis.

Keywords: embedded systems, binary code, abstract interpretation, linear congruences, intervals

1. Introduction

Recent research in the fields of programming languages and computer security have led to the development of
a large number of techniques and tools for analysing programs for runtime errors and security vulnerabilities [22,
24, 27, 32, 40, 41, 63]. These tools use model checking [3, 20] or abstract interpretation [23] to approximate the
set of reachable program states. Most tools focus on analysing source code presented in a high-level programming
language such as C or Java. Such tools naturally operate on a high-level of abstraction, e.g. by assuming integer
variables to have unbounded precision, or by representing the heap memory symbolically. Furthermore, on desktop
computers, which are the target of classical source code analysers, operating systems typically control the hardware
and the interaction between hardware and software. This is not so for (microcontroller) binary code, which presents
different challenges [5–7, 18, 19, 59, 60, 65, 67, 73, 74] to verification than those posed by programs written in
high-level languages. Microcontroller binary code typically executes a nonterminating loop in which communication
with the environment is performed. Data is then stored and processed, often using bitwise operations, before values
are written to the output ports. Control logic, which is often formulated in terms of Boolean relations on status flags,
and bit-wise operations necessitate reasoning about the program semantics at the granularity of bits. This presents a
problem to verification efforts based on abstract interpretation since most work is tailored to representations of program
semantics using geometric abstractions such as affine [42] or polyhedral spaces [26, 72]. The conceptual difference
between high-level geometric concepts and low-level bitwise relations presents a semantic gap that needs to be bridged.
Furthermore, the hardware is configured and controlled directly by the given program. Verification tools thus need to
integrate a hardware model. Specifically on hardware such as the ATMEL microcontroller series [1], any verification
argument must also pay special attention to the targets of indirect writes. An indirect write is a store operation in which
the contents of one register are stored at a target address that is held in another register. The target address of the store
operation is thus determined at runtime. On the ATmega family of microcontrollers, however, registers are merely
reserved memory locations in the same address space as the SRAM. It is thus possible to mutate a register, such as the
stack pointer or the program status word, if the target coincides with the address of the register.
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0x50: LDI R17 0
0x51: LDI R30 66
0x52: LDI R31 0
0x53: MOV R26 R8
0x54: MOV R27 R9
0x55: RJUMP 2
0x56: LPMPI R0 Z
0x57: STPI X R0
0x58: CPI R30 69
0x59: CPC R31 R17
0x5A: BRNE -5
0x5B: RET
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Figure 1: memcopy loop for the ATMEL ATmega16

1.1. Applications of Range Analysis in Binary Code Verification
One approach to microcontroller verification is thus to assume that indirect stores never access registers [58]. This

approach is based on the assumption that code which accesses registers indirectly is so flawed that verification is not
worthwhile anyway. Though appealing in its simplicity, this assumption is dubious for handcrafted assembly code. It is
also not unknown for compilation itself to introduce errors, particularly at higher levels of optimisation [29, 78]. The
problem of reasoning about the targets of indirect writes is further compounded by the fact that indirect stores often
arise in loops that are responsible, for instance, for data initialisation. Then, the same indirect store operation may write
to a number of different targets. A related problem is therefore showing that all such targets fall within some range that
does not overlap with the registers themselves [18]. The value of this information extends beyond tracking the values of
registers. Indeed, virtually any static analysis that is applied to microcontroller binary code either directly depends on
or indirectly benefits from the results of range analysis. These analyses include, but are not limited to, classical gen/kill
bit-vector analyses [61] and partial order reductions [34, 76] — analyses that can be considered to be client analyses of
range analysis. When these client analyses are deployed on microcontroller code, which typically realise some form of
concurrency, it is necessary to reason about the execution of interrupt handlers (see [66, Sect. 5] and [68]). On ATmega
microcontrollers, the interrupt handlers themselves are controlled and thus depend on the value of the global interrupt
flag. Furthermore, this flag forms part of the program status word, which can be accessed indirectly, hence the causal,
though indirect, relationship between range analysis and the client analyses.

1.2. Illustrative Example
This paper addresses the problem of statically analysing the targets of indirect stores, whilst simultaneously

modelling data at the bit-level. Since the set of targets cannot be exactly determined statically, we employ abstract
interpretation [23] to compute a range of addresses that contains all possible targets. If the enclosing range is suitably
tight, it is possible to verify that the registers are not overwritten. Figure 1 illustrates some ATmega16 [1] assembly
code and the corresponding control flow graph (CFG). The instructions at locations 0x50 – 0x52 assign the 8-bit
registers R17, R30 and R31 to the decimal constants 0, 66 and 0, respectively. The following two instructions initialise
the registers R26, and R27 with symbolic values stored in other registers. The relative jump RJUMP 2 passes control
to location 0x58. The LPMPI R0 Z instruction first loads R0 with the contents of the byte at the address in program
memory determined by the 16-bit register Z; then Z is incremented. The instruction STPI X R0 stores the contents of
R0 into the byte at address X and then increments X. On the ATmega16 microcontroller, each indirect memory access is
indicated through one of the 16-bit pointer registers X, Y or Z. The register X is a short-hand for concatenating the 8-bit
registers R26 and R27, the 8-bit registers R28 and R29 constitute the 16-bit register Y, and likewise Z is an alias for R30
and R31. It is important to note that the ATmega has a Harvard architecture, and hence, program memory is separate
from SRAM. Location 98 in program memory, for example, is different from location 98 in SRAM. Thus, program
memory is accessed with special instructions such as LPMPI R0 Z (load byte from program memory at address Z
in R0 and post-increment Z), whereas SRAM is accessed using instructions such as STPI X R0 (store R0 in SRAM
at address X and post-increment X). Detecting self-modifying code, which we do not consider, is thus trivial. The
instructions CPI R30 69 and CPC R31 R17 compare Z against 69. This is implemented by subtracting the second
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argument from the first one and setting the status flags accordingly. For the subsequent BRNE instruction, only the zero
flag in the status register, which is set iff Z equals 69, is relevant. The net effect of this code is to copy the contents of
three locations in program memory starting at address 66 into SRAM, where the start of the target SRAM region is
defined by the values of the registers R8 and R9 on input.

A classical interval analysis such as the one implemented in our binary code analyser [mc]square [18, 65, 66] can
infer that Z ∈ [66, 69] at program location 0x5A. The interval analyser derives the bound on Z based on the combination
of CPI/CPC instructions followed by BRNE. However, it fails to discover that X falls in a range that contains four integer
values where the lower bound is defined by the initial values R8 and R9. Any sound program analysis based solely on
the interval domain thus has to assume that the indirect store operation at 0x57 could access any addressable memory
location, including the registers. Moreover, if the CPI/CPC instructions were to restrict X instead of Z then, conversely,
the values Z would be unbounded. This is a well-known limitation of interval analysis and stems from that fact that it is
non-relational, that is, cannot express relationships between registers. To avoid such a loss of precision, we combine
the results of a relational analysis for bit-level equalities with interval analysis, with the goal of proving that X is
incremented only in combination with Z. This is sufficient to show partial correctness of the above program fragment
with respect to indirect writes.

1.3. Linear congruences
In microcontroller code for the ATmega16 platform, a memory region is statically reserved rather than dynamically

allocated. Thus, the address of the start of a region that is used as an array is fully determined. Hence, when verifying
such code, it is not necessary to use a symbolic name to refer to a memory region; an address will suffice. The force of
this is that there is no need to adopt a memory model in which regions with different symbolic names are assumed
to be non-interfering. Symbolic memory models are often employed when the position of a region is unknown, as
with dynamically allocated memory in C, but this nevertheless compromises soundness [6]. Furthermore, when basing
an analysis on symbolic memory models, it is only possible to infer a relationship between a concrete offset into a
symbolic region and its value [35]. By way of contrast, when analysing statically reserved regions, it is even possible to
infer a numeric relationship between each address of a region, and the contents of that address.

To represent such relationships, we turn to linear congruences [2, 44, 45, 55] (see [30] for an overview of these
works). In this classical abstract domain [36, 37], the relationships between variables, or equivalently registers, are
described as systems of linear equations which are implicitly conjoined where each equation takes the form∑n−1

i=0 ci · xi mod m = d

where ci ∈ Z are integer coefficients, xi are program variables, m ∈ N is a modulus and d ∈ Z is an integer constant.
Henceforth, denote the above equation by

∑n−1
i=0 ci · xi ≡m d. Such a system may have none, one, or many solutions,

where a solution is an assignment to the values of the variables x0, . . . , xn−1 that satisfies each of the equations. For
example, the system

u + 2v ≡256 3 ∧ v + w ≡256 1

has solutions:
{〈1 + 256k1 + 2k3, 1 + 256k2 − k3, k3〉 ∈ [0, 255] | k1, k2, k3 ∈ Z}

with the interpretation that the first, second and third elements of the tuple prescribe values for u, v and w respectively.
Such relationships arise between variables — or memory locations in the case of microcontroller code — because
of the modular nature of computer arithmetic. It is therefore natural to consider moduli corresponding to the size of
a machine word [55]. Such systems can only represent linear relations subject to wrap-around arithmetic, but not
ranges, and therefore we adopt a more expressive class of congruences based on decomposing variables into their
constituent bits [16, 44, 45]. For instance, suppose u is represented by an unsigned byte whose bits are 〈u0, . . . , u7〉

where ui ∈ {0, 1}. Suppose too that v and w are likewise represented by 〈v0, . . . , v7〉 and 〈w0, . . . ,w7〉, respectively. Then
the above system can be expressed as∑7

i=0 2i(ui + 2vi) ≡256 3 ∧
∑7

i=0 2i(vi + wi) ≡256 1

without any loss of information. It has been shown how such systems can be applied to verify bit-twiddling algo-
rithms [44, 45]. The main contribution of this paper is to show how bit-wise congruences can be married with intervals
to reason about the partial correctness of binary code, in particular the targets of indirect writes.
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1.4. Contributions

Since this paper extends our earlier work [16], we clarify our contributions as follows:

• We explain how relational binary code semantics for microcontroller code can be applied to synthesise transfer
functions for the ATmega16 instruction set;

• We show how the same semantics can be applied to recover branching conditions from binary code using repeated
calls to a SAT solver [15], which refines the pattern-based approach described in [18];

• We explain how to combine intervals and congruence equalities by applying incremental SAT solving;

• We show how a contiguous range, such as [0, 6], can be refined to a set of non-contiguous values, such as
{0, 2, 4, 6}, by applying congruences to ranges;

• To summarise, we show how it is possible to infer accurate ranges by combining intervals and congruences, and
thereby verify the partial correctness of microcontroller binary code with respect to indirect writes.

2. Outline of the Approach

Overall the paper advocates a pragmatic approach to the verification of executable code, and in particular binaries
that are compliant with the AMTEL microcontroller series. To argue that an indirect write does not mutate a register,
interval analysis is deployed to bound the range of addresses that can possibly be written at a particular point in the
code. Interval analysis is, in turn, supported by an analysis for linear congruence relations that is deployed to primarily
improve the fidelity of the range information. Then, to argue the partial correctness of all the indirect writes, it is
sufficient to show that the target addresses do not overlap with an address of any of the memory mapped registers
(Sect. 4.5 explains why there is no circularity in this argument).

2.1. Automatic Abstraction

Since the AMTEL series supports over one hundred instructions, we advocate automatically computing transfer
functions from Boolean formulae that describe the relational semantics of each instruction. This is performed off-line
by focusing on single instructions and using templates for register identifiers. Automation is nevertheless still attractive
because of the complexity of the microcontroller instructions, particularly with regard to the status flags. Transfer
functions are thus derived for each of the instructions for the domain of linear congruences, though using bit-wise
relations so as to capture the bit-level operations are commonplace in microcontroller code.

There is no need to compute transfer functions off-line for interval analysis because, for ATMEL code at least,
ranges only need describe the values of 8-bit data-objects. Therefore we deploy a form of on-line synthesis in which
a Boolean function is used to describe the ranges of the registers before the instruction is executed. This formula is
combined with a propositional description of the instruction itself and dichotomic search is applied to calculate the
output ranges, requiring 8 invocations of a SAT solver for each bound.

2.2. Invariant Refinement

Linear congruences and intervals are complementary abstract domains: the former expresses relational information
between different registers whereas the latter captures values that can be stored in individual registers (without reference
to the values stored in others). Nevertheless, there is an interplay between congruence and interval information so that
one can be used to refine the other, and thereby improve the quality of the analysis as a whole. Refinement is also
important in the handling of microcontroller code that includes conditional branches; here the issue is how to reinterpret
branching code as a form of conditional interval constraint so as to tighten ranges. Again, these refinement techniques
are ultimately aimed at improving interval analysis and which, itself, it designed to meet the ultimate objective of
verifying the safety of indirect writes.
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2.3. Structure of the Paper

Sect. 2 briefly reviews the preliminaries required for these domains so as to keep the paper self-contained. The
ethos of our method is to derive symbolic transformers for congruences and intervals, then derive program invariants,
and finally refine the computed invariants in both domains by passing information between them. Sect. 3 introduces the
basic ingredients of this scheme in terms of a series of examples (returning to the verification problem discussed within
Sect. 1.1). A relational semantics for ATmega16 binary code, which is used to pre-synthesise symbolic transformers
for the instruction set of the microcontroller, is discussed in Sect. 4, followed by an algorithm that recovers branching
conditions in terms of linear constraints using incremental SAT solving in Sect. 5. Sect. 6 explains how to extract
branching information from a binary that can be used to strengthen range information. A reduction technique for
intervals and congruences, which strengthens the abstract invariants in both domains, is discussed in Sect. 7. The paper
concludes with a survey of related work in Sect. 8 and a discussion in Sect. 9.

3. Abstract Domains

The key idea in abstract interpretation is to simulate the execution of each concrete operation f : C → C in a
program using an abstract analogue g : D → D, where C and D denote domains of concrete values and abstract
descriptions, respectively. This section briefly reviews the abstract domains of intervals and bit-level linear congruences
on which our analysis is built. In what follows, let m = 2w where w ∈ N denote the word-length of the microcontroller.
Further, let Zm = {i ∈ N | 0 ≤ i ≤ m − 1}, letV = {v0, . . . , vn−1} be a set of program variables, and let P denote the set
of program locations (or instructions, equivalently).

3.1. Intervals

In our work, the interval abstract domain, is defined Int = {⊥} ∪ {[`, u] | 0 ≤ ` ≤ u ≤ 255} and used to over-
approximate subsets of Z256. A partial order over Int is defined ⊥ vInt i for all i ∈ Int and [`1, u1] vInt [`2, u2] iff `2 ≤ `1
and u1 ≤ u2. To define a Galois connection (℘(Zm), Int, αInt, γInt) between sets of concrete values and and intervals, let
fst([`, u]) = ` and snd([`, u]) = u.

Definition 1. The abstraction αInt : ℘(Zm)→ Int and concretisation γInt : Int→ ℘(Zm) maps are defined as follows:

αInt(v) =

{
⊥ if v = ∅

[min(v),max(v)] otherwise γInt(i) =

{
∅ if i = ⊥

{z ∈ Zm | fst(i) ≤ z ≤ snd(i)} otherwise

3.2. Congruences

In addition to intervals, our analysis is based on abstracting input-output relations, expressed as propositional
formulae, as systems of congruence equations. To explain this abstraction, let sol( f ) ⊆ Bn denote the set of solutions
(models) of a Boolean function over n propositional variables where B = {0, 1}. Likewise let sol(c) ⊆ Zn

m denote the set
of solutions of a congruence system c over n variables.

Example 1. If f = x1 ∧ (x2 ⊕ x3) then sol( f ) = {〈1, 0, 1〉, 〈1, 1, 0〉}. Moreover, if c = (x1 + x2 ≡256 3) ∧ (x3 ≡256 1)
then sol(c) = {〈0, 3, 1〉, 〈1, 2, 1〉, 〈2, 1, 1〉, 〈3, 0, 1〉, 〈4, 255, 1〉, 〈5, 254, 1〉, 〈6, 253, 1〉, . . . , 〈255, 4, 1〉}.

Sets of Boolean vectors, hence Boolean functions, can be abstracted with systems of congruences as follows:

Definition 2. The abstraction αCong : 2Bn
→ 2Zn

m and concretisation γCong : 2Zn
m → 2Bn

maps are defined:

αCong(S ) =

{
x ∈ Zn

m

∣∣∣∣∣∣ {y0, . . . , yn−1} ⊆ S ∧ {λ0, . . . , λn−1} ⊆ Z ∧∑ j<n
j=0 λ j ≡m 1 ∧ x ≡m

∑ j<n
j=0 λ jy j

}
γCong(S ) = S ∩ Bn

Example 2. Returning to the function f from Ex. 1, we have:

αCong(sol( f )) = {〈1, 0, 1〉, 〈1, 1, 0〉, 〈1, 2, 255〉, . . . , 〈1, 254, 3〉, 〈1, 255, 2〉}
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To keep the paper self-contained, we finally discuss the closure algorithm for bit-wise linear congruences originally
described in [45], which is shown in Alg. 1. The algorithm is formulated in terms of some auxiliary functions:
row(M], i) extracts the ith row from a matrix M, where the first row is taken to be 1; triangular(M) puts M into upper
triangular form using Gaussian elimination; numRows(M) returns the number of rows in M. The algorithm starts
with the unsatisfiable congruence system [A | b] = [0, . . . , 0, 1] in line 1; this corresponds to the ⊥ element in the
congruence lattice. [A | b] is then incrementally extended by joining the congruence system with solutions that are not
yet covered by [A | b]; the join operation can also be computed using triangularisation [44, Prop. 3]. This construction
is applied in lines 5–12. The algorithm terminates once there is no model of f left which is not described by [A | b].
Alg. 1 effectively computes αCong as shown in [45, Prop. 1].

Algorithm 1 Compute the congruence closure αCong of a Boolean function f with respect to a fixed modulus m ∈ N.
Here, f is equivalently represented by its set S of models.

1: [A | b]← [0, 0, . . . , 0, 1]
2: i← 0
3: r ← 1
4: while i < r do
5: 〈a1, . . . , ak, b〉 ← row([A | b], r − i)
6: S ′ ← {x ∈ S | 〈a1, . . . , ak〉 · x .m b}
7: if ∃x ∈ S ′ then
8: [A′ | b′]← [A | b] t [Id | x]
9: [A | b]← triangular([A′ | b′])

10: r ← numRows([A | b])
11: else
12: i← i + 1
13: end if
14: end while
15: return [A | b]

4. Invariant Generation by Example

This section builds towards our general method for analysing microcontroller code using several examples. First
transfer functions are derived for each instruction of the ATmega16 prior to analysis: one transfer function for inferring
invariants that are systems of congruence (cp. Sect. 4.1), and another transfer function for inferring interval constraints
(cp. Sect. 4.2). For invariant generation, branching conditions which are extracted from the binary code using SAT
solving (cp. Sect. 4.3) augment the system, which increases precision. Finally, the congruent invariants are strengthened
with intervals, which yields more precise representations of congruences as well as intervals (cp. Sect. 4.4).

4.1. Synthesising Transfer Functions for Congruences

As a first example, consider the instruction EOR R0 R1, which computes the bit-wise exclusive-or of registers R0
and R1 and stores the result in R0. Although this instruction and accompanying transfer function are both relatively
straightforward, the ATMEL ATmega16 possesses over one hundred different instructions in all [1], all of which need
to be separately abstracted. This motivates applying the abstraction scheme of [45] to automatically derive a transfer
function from a bit-level specification of the instruction prior to analysis itself.

We diverge slightly from the abstraction technique of [45] by considering generic instructions that are parameterised
by registers r and s. To express the semantics of EOR r s, we introduce bit-vectors r and s to represent the value of r
and s prior to the instruction and use r′ and s′ to represent their values after it. We index a bit-vector v by v[i] with the
understanding that v[0] denotes the least significant element of v. With ⊕ denoting the Boolean exclusive-or, EOR r s
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is encoded propositionally as:

JEOR r sK ,



∧7
i=0(r′[i]↔ (r[i] ⊕ s[i])) ∧

∧7
i=0(s′[i]↔ s[i]) ∧

S ′ ↔ (N ⊕ V) ∧ V ′ ↔ 0 ∧

N′ ↔ r′[7] ∧ Z′ ↔
∧7

i=0 ¬r′[i] ∧

C′ ↔ C ∧ T ′ ↔ T ∧

H′ ↔ H ∧ I′ ↔ I

where N and N′ denote the values of the negative flag of the status register before and after execution of the instruction.
Likewise C, S , V , Z, T , H and I respectively denote the initial values of the carry, sign, the two’s complement overflow,
the zero, transfer, half-carry and the global interrupt flag. The primed versions have the obvious interpretation. With the
eigth status flags, the formula has 2 · 8 + 8 = 24 input variables and 24 outputs. Note that EOR does not update the carry
flag, the transfer flag, the half-carry flag and the interrupt flag, which is reflected by the respective bi-implications in the
propositional formula. We then proceed by putting the above formula JEOR r sK into conjunctive normal form (CNF),
which introduces fresh, existentially quantified variables [56, 75]. Introducing fresh variables during CNF conversion
ensures that an equisatisfiable formula is constructed with only a linear increase in size.

Once the formula is in CNF, the so-called congruent closure [45] can be applied to derive a system of congruence
equations that express the relationship between the input and output variables (and those alone). The algorithm proceeds
by repeatedly calling a SAT solver, thus suppose the solver has produced the following model:

s1 =



r[0] 7→ 0, r[1] 7→ 1, r[2] 7→ 0, r[3] 7→ 1, r[4] 7→ 0, r[5] 7→ 1, r[6] 7→ 0, r[7] 7→ 1,
s[0] 7→ 1, s[1] 7→ 1, s[2] 7→ 1, s[3] 7→ 1, s[4] 7→ 1, s[5] 7→ 1, s[6] 7→ 1, s[7] 7→ 1,

r′[0] 7→ 1, r′[1] 7→ 0, r′[2] 7→ 1, r′[3] 7→ 0, r′[4] 7→ 1, r′[5] 7→ 0, r′[6] 7→ 1, r′[7] 7→ 0,
s′[0] 7→ 1, s′[1] 7→ 1, s′[2] 7→ 1, s′[3] 7→ 1, s′[4] 7→ 1, s′[5] 7→ 1, s′[6] 7→ 1, s′[7] 7→ 1,

C 7→ 1, H 7→ 1, I 7→ 1, N 7→ 1, S 7→ 0, T 7→ 1, V 7→ 1, Z 7→ 1,
C′ 7→ 1, H′ 7→ 1, I′ 7→ 1, N′ 7→ 1, S ′ 7→ 0, T ′ 7→ 1, V ′ 7→ 0, Z′ 7→ 0


The algorithm hinges on observing that s1 can also be represented as the 0/1 solution to a system of congruences:

m1 =


r[0] ≡256 0, r[1] ≡256 1, r[2] ≡256 0, r[3] ≡256 1, r[4] ≡256 0, r[5] ≡256 1, r[6] ≡256 0, r[7] ≡256 1,

...
...

...
...

...
...

...
...

C′ ≡256 1, H′ ≡256 1, I′ ≡256 1, N′ ≡256 1, S ′ ≡256 0, T ′ ≡256 1, V ′ ≡256 0, Z′ ≡256 0


where a modulo of 256 is chosen because it coincides with the size of a single item of data (byte) on the ATMEL
ATmega16 [1]. In the next step, we add a disequality constraint induced by the last congruence equation of m1 and
construct the augmented formula JEOR r sK ∧ (Jr[0] .256 0K ∨ . . . ∨ JZ′ .256 0K) [44] where Jr[0] .256 0K denotes the
propositional encoding of the disequality constraint r[0] .256 0 etc. These additional constraints (which can actually be
simplified [45]) ensure that the SAT solver finds a model that is not described by m1 if such a model exists. Passing
this formula to a SAT solver yields a new model s2 which is distinct from the previous solution. As with s1, s2 is
then represented as a congruence system m′2. Next we compute a single congruence system m2 that describes both
m1 and m′2, namely m2 = m1 tCong m′2 where tCong is the least upper bound operation for systems of congruences
[45, 55]. Following this strategy we construct a chain of congruence systems m1, m2, . . . where each system has strictly
more solutions that the previous one. The algorithm terminates when the additional constraints make the formula
unsatisfiable, at which point the very last system in the chain is as follows:

αCong(JEOR r sK) =


∧7

i=0(128r′[i] ≡256 128r[i] + 128s[i]) ∧
∧7

i=0(s′[i] ≡256 s[i]) ∧ C′ ≡256 C ∧

128S ′ ≡256 128N + 128V ∧ V ′ ≡256 0 ∧ N′ ≡256 r[7] ∧

H′ ≡256 H ∧ T ′ ≡256 T ∧ I′ ≡256 I

where αCong denotes the best abstraction of a formula with a system of congruences with a fixed modulo of 256. This
derivation requires 18 iterations in all and takes 0.21s in our prototype that is integrated into the [mc]square [18, 65, 66]
tool running on a 2.6GHz MacBook Pro. Note that a congruence equation such as 128r′[i] ≡256 128r[i] + 128s[i]
is equivalent to r′[i] ≡2 r[i] + s[i] which, in turn, expresses the desired exclusive-or relationship. This relationship
is necessary (and sufficient) for proving that the sequence EOR R0, R1; EOR R1, R0; EOR R0, R1 swaps the
contents of R0 and R1. Note too that the zero flag relationship Z′ ↔

∧7
i=0 ¬r′[i] is not preserved since this cannot be

expressed with congruences.
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4.2. Synthesising Transfer Functions for Intervals
Providing transfer functions for intervals is almost as much of a burden as that of providing congruence relations for

each of the microcontroller instructions. Techniques for synthesising transfer functions for whole blocks of instructions
have recently been proposed [14, 15] in which transfer functions are realised as systems of guarded updates. Each
instruction in the block is modelled as one of at most three Boolean formulae, according to whether it overflows,
underflows, or does neither. The guards are derived which, if satisfied, ensure that each instruction within the block
can only operate in one of its three modes. An update operation is coupled with each guard which details how input
intervals are transformed to output intervals by the act of applying the code block. Our aspirations in this paper are
more modest, namely to derive transfer functions for single instructions. This is simpler because it does not require
reasoning about the overflow and underflow interactions between the instructions that constitute a block. In fact, a
method can be deployed that is similar in spirit to the best transformer construction of Reps et al. [62], though based on
dichotomic search [11, 15, 21].

To illustrate, consider the instruction COM r that computes the one’s complement value of r and stores the result in
r, where r is a generic register. Given bounds on the values of r, namely r` and ru, the objective of the transfer function
is to compute tight bounds on the possible values of r′, namely r′` and r′u. The propositional formula JCOM rK required
to synthesise the congruence relations, can be reused for this very purpose:

JCOM rK =


∧7

i=0(r′[i] ⊕ r[i]) ∧ S ′ ↔ N ⊕ V ∧ V ′ ↔ 0 ∧

N′ ↔ r′[7] ∧ C′ ↔ 1 ∧ Z′ ↔
∧7

i=0(¬r′[i]) ∧

H′ ↔ H ∧ T ′ ↔ T ∧ I′ ↔ I

Suppose r` = 17 and ru = 39. Then r′` can be found by calling a SAT solver 8 times on the propositional formula
ψ = JCOM rK ∧ J17 ≤ rK ∧ Jr ≤ 39K in the following fashion. First, ψ ∧ ¬r′[7] is tested for satisfiability so as to
minimise the value of r′ (recall that we interpret the values of a register as unsigned here). Since it is unsatisfiable,
we conclude that r′[7] is always set, hence r′`[7] = 1. Second, ψ ∧ r′[7] ∧ ¬r′[6] is tested for satisfiability. Since this
instance is unsatisfiable, we conclude that r′[6] is always set, hence r′`[6] = 1. Third, ψ ∧ r′[7] ∧ r′[6] ∧ ¬r′[5] is
checked for satisfiability. Since this is satisfiable, we conclude r′`[5] = 0. Fourth, ψ ∧ r′[7] ∧ r′[6] ∧ ¬r′[5] ∧ ¬r′[4] is
tested for satisfiability. Since this is unsatisfiable, we conclude r′`[4] = 1. Continuing in this manner we infer:

r′` = 1 · 27 + 1 · 26 + 0 · 25 + 1 · 24 + 1 · 23 + 0 · 22 + 0 · 21 + 0 · 20 = 216

With an analogous chain of reasoning (where we instantiate each bit with 1 rather than 0), We infer r′u = 238. Unlike
[14, 15], this approach does not finesse the need to call a solver when the transfer function is evaluated, but it is tractable
for microcontroller code by virtue of the fact that registers are just 8 bits wide.

4.3. Synthesising Branching Predicates for Intervals
Thus far, we have seen how microcontroller instructions can be encoded propositionally to derive congruence

systems and compute transfer functions for intervals. Yet these encodings have greater value than this. In particular
they can be used to recover branching predicates from assembly code. To see this, consider the conditional jump BRNE
at location 0x5A of code given in Fig. 1. This branch depends on the instructions at locations 0x58 and 0x59. CPI R30
69 subtracts 69 from R30 [1]; the register is not affected but C is updated to reflect the difference. In particular, C is set
if R30 is less or greater than 69. Then the instruction CPC R31 R17 sums R17 with C, and subtracts the result from
R31, updating the status flags accordingly. This will set the zero flag Z if R1 equals the sum of R17 and C. BRNE -5
then moves control to location 0x5B if Z is set, and to 0x56 otherwise.

For precise interval analysis, it is necessary to synthesise predicates that express the values registers can assume
following the branch. To this end, we describe a method that can infer that R30, for instance, takes a value that exceeds
68 if the branch is taken. As a first step, we apply a form of constant propagation (which is actually a degenerate form
of interval analysis) to infer that R17 stores the value 0 at location 0x59. (The validity of this step is explained in
Sect. 4.5.) Next, a sequence of instructions (a slice) is found that leads up to the conditional jump and influences its
outcome. Such a sequence can be found by considering the control flags: BRNE depends on Z hence we include CPC
R31 R17 in the sequence since it effects Z. Yet CPC R31 R17 is itself dependent on C, hence we include CPI R30 69
since the latter instruction effects C. The behaviour of this instruction is fully determined by R30 thus the construction
terminates with the sequence CPI R30 69; CPC R31 R17.
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This sequence is then modelling as a whole by using:

JCPC r sK =



∧7
i=0((r′[i]↔ r[i]) ∧ (s′[i]↔ s[i])) ∧∧7
i=0 r[i]↔ (d[i] ⊕ s[i] ⊕ c[i]) ∧

c[0]↔ C ∧∧6
i=0 c[i + 1]↔ ((d[i] ∧ s[i]) ∨ (d[i] ∧ c[i]) ∨ (s[i] ∧ c[i])) ∧

H′ ↔ ((¬r[3] ∧ s[3]) ∨ (s[3] ∧ d[3]) ∨ (d[3] ∨ ¬r[3])) ∧

S ′ ↔ (N′ ⊕ V ′) ∧

V ′ ↔ ((r[7] ∧ ¬s[7] ∧ ¬d[7]) ∨ (¬r[7] ∧ s[7] ∧ d[7])) ∧

N′ ↔ d[7] ∧

Z′ ↔ ∧7
i=0¬d[i] ∧

C′ ↔ ((¬s[7] ∧ s[7]) ∨ (s[7] ∧ d[7]) ∨ (d[7] ∧ ¬r[7])) ∧

T ′ ↔ T ∧

I′ ↔ I

where d is a bit-vector of intermediate variables that store the difference between r and (s + C) and c is a bit-vector of
carrys. We omit the details for JCPI r cK, where c is a constant, since this formula is very similar to that given above.

Renaming can be applied to construct a single formula that expresses the semantics of the sequence. The registers r
and s and the constant c are instantiated to obtain encodings for CPC R30 69 and CPI R31 R17 which, without loss
of generality, can be renamed apart so they only share the variables H, . . . , I and H′, . . . , I′. Renaming is also applied
to construct the formula ψ = ρ1(JCPC R30 69K) ∧ ρ2(JCPI R31 R17K) where ρ1 = {H′ 7→ H′′, . . . , I′ 7→ I′′} and
ρ2 = {H 7→ H′′, . . . , I 7→ I′′}. Then ψ is augmented with constraints that encode any invariants found through constant
propagation, thereby obtaining ψ′ = ψ ∧ (∧7

i=0¬R17[i]). The force of construction is that it reduces the problem of
synthesising branching predicates to that of dichotomic search [11, 15, 21]. In particular, maximal and minimal values
can be found for R30 and R31 which are consistent with the formula ψ′ ∧ Z′. By applying dichotomic search 4 times,
we conclude that if the success branch is taken R30 ∈ [69, 255] and R31 ∈ [0, 0]. Conversely, by considering ψ′ ∧ ¬Z′,
we infer that if the fail branch is selected then R30 ∈ [0, 68] and R31 ∈ [0, 0].

4.4. Refining Ranges using Congruences
Interval analysis can be refined using the branching predicates derived in the previous section. However, relational

information, expressed with congruences can improve the quality of range information further. To illustrate this,
suppose the code fragment given in Fig. 1 is entered with R8 ∈ [100, 103] and R9 ∈ [0, 0]. Then an interval analysis,
using branching predicate information, can infer that the following ranges bound the values that the registers take
immediately before instruction at 0x5A is executed:

R8 ∈ [100, 103], R9 ∈ [0, 0], R26 ∈ [0, 255], R27 ∈ [0, 255], R30 ∈ [66, 69], R31 ∈ [0, 0]

so that no useful information is inferred for R26 and R27. (Note that since the ranges are small, widening need not be
applied, hence there is no scope for improving over these results by, for example, delaying the application of widening.)
However, by inferring congruence relationships between R26 and other variables which are bounded, and likewise for
R27, useful ranges can be derived for both R26 and R27.

To derive the congruence relationships, we follow [45] and express the behaviour of the fragment in terms of a
flowchart program 〈P,V, p0,T〉, where P denotes the set of program locations, V is the set of program variables,
p0 ∈ P is the initial program location, and the transition relation T ⊆ P × P defines the possible execution of the
instructions as given by the control flow graph. Consequently, for the program in Fig. 1, we have:

P = {0x50, . . . , 0x5B}
V = {R8, R9, R17, R26, R27, R30, R31}
p0 = 0x50
T = {〈0x50, 0x51〉, 〈0x51, 0x52〉, 〈0x52, 0x53〉, 〈0x53, 0x54〉, 〈0x54, 0x55〉, 〈0x55, 0x58〉,

〈0x58, 0x59〉, 〈0x59, 0x5A〉, 〈0x5A, 0x5B〉, 〈0x5A, 0x56〉, 〈0x56, 0x57〉, 〈0x57, 0x58〉}

Moreover, let ci, j denote a congruence relation which decorates the edge 〈pi, p j〉 ∈ T and describes the concrete
instruction between these two locations, as explained in Sect. 4.1.
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As with conventional interval analysis, invariants are expressed as a least fixed point of a system of recursive
equations. For interval analysis, such invariants express the range of values that a register can assume at a given program
location. However, with congruence analysis, it is possible to derive invariants which express how the values stored in
registers at a given location relate to those held in the registers at location p0. Such an analysis can be formulated [45]
as the least solution to the following recursive equations:

inv(p0) =
∧
v∈V

 7∧
i=0

v′[i] ≡256 v[i]

 inv(p j) = tCong

{
inv(pi) ◦ ci, j

∣∣∣〈pi, p j〉 ∈ T
}

where inv(pi) denotes the relationship between the initial values of registers and their values at pi. Recall that tCong

denotes the join operator over systems of bit-wise congruences whereas ◦ denotes the composition of two congruence
systems, as detailed in [45]. Applying the first equation gives:

inv(0x50) =


∧7

i=0 r8′[i] ≡256 r8[i] ∧
∧7

i=0 r9′[i] ≡256 r9[i] ∧∧7
i=0 r17′[i] ≡256 r17[i] ∧

∧7
i=0 r26′[i] ≡256 r26[i] ∧∧7

i=0 r27′[i] ≡256 r27[i] ∧
∧7

i=0 r30′[i] ≡256 r30[i] ∧∧7
i=0 r31′[i] ≡256 r31[i]

Note that details of the flags have been omitted for purposes of presentation (to reduce the number of iterates required to
reach the fixpoint). Then, the congruence system c〈0x50,0x51〉, which describes the effects of the instruction LDI R17 0,
is applied to inv(0x50) to give:

inv(0x51) =


∧7

i=0 r8′[i] ≡256 r8[i] ∧
∧7

i=0 r9′[i] ≡256 r9[i] ∧∧7
i=0 r17′[i] ≡256 0 ∧

∧7
i=0 r26′[i] ≡256 r26[i] ∧∧7

i=0 r27′[i] ≡256 r27[i] ∧
∧7

i=0 r30′[i] ≡256 r30[i] ∧∧7
i=0 r31′[i] ≡256 r31[i]

Thereafter, the congruence system for this program point is stable. Likewise, the invariants inv(0x52), inv(0x53),
inv(0x54) and inv(0x55) are computed, the latter being:

inv(0x55) =


∧7

i=0 r8′[i] ≡256 r8[i] ∧
∧7

i=0 r9′[i] ≡256 r9[i] ∧∧7
i=0 r17′[i] ≡256 0 ∧

∧7
i=0 r26′[i] ≡256 r8′[i] ∧∧7

i=0 r27′[i] ≡256 r9′[i] ∧
∑7

i=0 2ir30′[i] ≡256 66 ∧∧7
i=0 r31′[i] ≡256 0

Then, incrementing the 16-bit registers Z in location 0x56, we obtain:

inv(0x57) =


∧7

i=0 r8′[i] ≡256 r8[i] ∧
∧7

i=0 r9′[i] ≡256 r9[i] ∧∧7
i=0 r17′[i] ≡256 0 ∧

∧7
i=0 r26′[i] ≡256 r8′[i] ∧∧7

i=0 r27′[i] ≡256 r9′[i] ∧
∑7

i=0 2ir30′[i] −
∑7

i=0 2ir26′[i] +
∑7

i=0 2ir8′[i] ≡256 67 ∧∧7
i=0 r31′[i] ≡256 0

In the next step, X is incremented, so as to obtain:

inv(0x58) =


∧7

i=0 r8′[i] ≡256 r8[i] ∧
∧7

i=0 r9′[i] ≡256 r9[i] ∧∧7
i=0 r17′[i] ≡256 0 ∧

∧7
i=0 r27′[i] ≡256 r9′[i] ∧∑7

i=0 2ir30′[i] −
∑7

i=0 2ir26′[i] +
∑7

i=0 2ir8′[i] ≡256 66 ∧
∧7

i=0 r31′[i] ≡256 0

A further iteration is required to detect that inv(0x58) is stable and hence genuinely describes a relationship between the
registers at location 0x58 and those held at p0. Note that the chain length of bit-wise linear congruences constraining n
registers, hence wn propositional variables, is w2n [55] where w is the bit-width and 2w the modulo. Thus, in general,
widening is not needed to ensure termination.
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The system, however, does not specify ranges on the values of R26 and R27 which constitute the X register.
Improved bounds on these registers can be found, yet again, with dichotomic search. The invariant inv(0x58) is
translated into a Boolean formula denoted ψ. Then ψ is augmented with range constraints that hold at 0x58 to obtain:

ψ′ = ψ ∧ J100 ≤ r8′ ≤ 103K ∧ Jr9′ = 0K ∧ J66 ≤ r30 ≤ 99K ∧ Jr31′ = 0K

By applying the same strategy as described in Sect. 3.3, we derive minima and maxima for r26′ subject to ψ′, to
conclude R26 ∈ [100, 107]. Repeating this chain of reasoning for r27′ we infer R27 ∈ [0, 0] thereby showing that X
never coincides with the address of a register.

4.5. Closing the loop

Recall that the verification problem which motivated the analysis was that of showing that no indirect write
operations can ever have a register as its target. The astute reader may therefore be perplexed as to why the store
operation at location 0x57 has, thus far, not been discussed. In particular, the correctness of the interval analysis, and
even the constant propagation analysis that precedes it, depends on the indirect write operation not perturbing any
register. Hence there is a dependency between using analysis to argue the correctness of the indirect write and using the
indirect write to argue the correctness of the analysis.

To close this loop, recall that Kleene iteration is classically applied to compute a least fixed point in which iteration
commences with an under-approximation that is successively relaxed until the least fixpoint is found. Thus one
can assume that the indirect write is safe until shown otherwise (by way of contrast, indirect loads are modelled as
nondeterministic assignments). The interval and congruence analyses are applied under this assumption, in effect,
ignoring the indirect write. This results an under-approximation. Yet, the under-approximation coincides with an
upper-approximation if every target falls within a range which ensures that no register is mutated. This follows because
the set of memory locations, which are written indirectly, is disjoint from the read memory locations characterised by
the approximation [13, 68]. This argument is not dissimilar to that used to resolve other so-called chicken-and-egg
dependencies in binary analysis [43]. Of course, if a suitable range cannot be inferred for an indirect write, then a fault
has possibly been found.

5. Transfer functions as Congruence relations

In his seminal paper on abstract interpretation using linear congruences, Granger [37] lamented the difficulty of
handcrafting transformers for the congruence domain. For microcontroller code, the problem is particularly acute since
there are 131 different instructions for the ATMEL ATmega16 [1] alone which need to be separately abstracted. This
suggests applying techniques for computing the best transformers for congruences [45].

These automatic techniques were proposed because of the desire to simulate a whole block of instructions with
a single transfer function. Since blocks are program dependent, the transfer functions can only be derived once the
program is itself known, necessitating automation [14, 15, 45]. The motivation is somewhat different when deriving
congruences for individual instructions; the instruction set is known up-front. The problem is simply the number and
the complexity of the instructions themselves, particularly in regard to how they side-effect status flags. We do not
offer any novelty with regard to the abstraction process itself over [45]; the contribution of this section is in detailing
transfer functions themselves and pointing out which microcontroller operations are amenable to accurate description
with bit-level congruences and which are not. Note that the transfer functions are fully detailed below so as to save the
reader from the need to apply automated abstraction themselves [45].

5.1. Load and move instructions

Instructions for the ATmega series of microcontrollers have either zero, one or two operands. Apart from indirect
store operations with side-effects (such as pushing a register onto the stack using PUSH R0, which implicitly decrements
the stack pointer), all instructions alter a single memory location or register.

The instruction MOV r s, with parameterised registers r and s, copies the contents of the source register s into
a target register r; the value stored in s is not modified. Similarly, for fixed value c ∈ Z256, the instruction LDI r c
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loads the constant c into r. These semantics of these two operations can be expressed in an analogous way to the EOR
example of Sect. 4.1 and then abstracted to obtain:

αCong(JLDI r cK) =


(
∧7

i=0r′[i] ≡256 c[i]
)
∧

S ′ ≡256 S ∧ V ′ ≡256 V ∧ N′ ≡256 N ∧ Z′ ≡256 Z∧
C′ ≡256 C ∧ H′ ≡256 H ∧ T ′ ≡256 T ∧ I′ ≡256 I

αCong(JMOV r sK) =


(
∧7

i=0r′[i] ≡256 s[i]
)
∧

(
∧7

i=0s′[i] ≡256 s[i]
)
∧

S ′ ≡256 S ∧ V ′ ≡256 V ∧ N′ ≡256 N ∧ Z′ ≡256 Z∧
C′ ≡256 C ∧ H′ ≡256 H ∧ T ′ ≡256 T ∧ I′ ≡256 I

The ATmega series also features operations which set or clear a given bit of a register deterministically, namely SBR
and CBR, and these operations can be encoded and abstracted in a way that is similar to the above. One may be forgiven
for wondering why these congruence transfer functions are derived with a modulus of 256 since a modulus of 2 is
sufficient for copy and load (and several other) instructions. This is not always so, as we will see in Sect. 5.4. However,
doubling the modulus only adds to the expressiveness to the relations, hence choosing the modulus to match the
register length is a safe and natural choice [55]. Apart from such considerations, one should note that bit-wise linear
congruences are not canonical (even when triangularisation is applied [45]). For example, the set of 0/1 solutions of∑7

i=0 2ir′[i] ≡256
∑7

i=0 2ic[i] is the same as that of ∧7
i=0r′[i] ≡256 c[i] yet the former is expressed within a single equation

whereas the latter requires a system of eight congruence equations.

5.2. Logical instructions
In terms of logical bit-wise instructions, as well as exclusive-or, the ATmega16 supports bit-wise and (AND),

bit-wise and with a constant/immediate value (ANDI), bit-wise complement (COM), bit-wise or (OR) and bit-wise or
with a constant value (ORI). Such instructions are frequently used, since the peripherals of the microcontroller are
typically addressed in a bit-wise fashion to control their mode of operation; also, instruction such as EOR R0 R0 are
frequently used to set the value in R0 to 0 whilst simultaneously setting the status flags. By modelling the effects of
these operations propositionally and by applying abstraction we obtain the following:

αCong(JAND r sK) =


128S ′ ≡256 128N + 128V ∧

V ′ ≡256 0 ∧

N′ ≡256 r[7] ∧

C′ ≡256 C ∧ H′ ≡256 H ∧ T ′ ≡256 T ∧ I′ ≡256 I

αCong(JANDI r cK) =



∧7
i=0(if c[i] = 1 then r′[i] ≡256 r[i] else r′[i] ≡256 0) ∧

128S ′ ≡256 128N + 128V ∧

V ′ ≡256 0 ∧

N′ ≡256 r[7] ∧

C′ ≡256 C ∧ H′ ≡256 H ∧ T ′ ≡256 T ∧ I′ ≡256 I

αCong(JOR r sK) =


128S ′ ≡256 128N + 128V ∧

V ′ ≡256 0 ∧

N′ ≡256 r[7] ∧

C′ ≡256 C ∧ H′ ≡256 H ∧ T ′ ≡256 T ∧ I′ ≡256 I

αCong(JORI r cK) =



∧7
i=0(if c[i] = 1 then r′[i] ≡256 1 else r′[i] ≡256 r[i]) ∧

128S ′ ≡256 128N + 128V ∧

V ′ ≡256 0 ∧

N′ ≡256 r[7] ∧

C′ ≡256 C ∧ H′ ≡256 H ∧ T ′ ≡256 T ∧ I′ ≡256 I

αCong(JCOM rK) =



∧7
i=0(128r′[i] ≡256 128r[i] + 128) ∧

S ′ ≡256 128N + 128V ∧

V ′ ≡256 0 ∧

N′ ≡256 r′[7] ∧

C′ ≡256 1 ∧

H′ ≡256 H ∧ T ′ ≡256 T ∧ I′ ≡256 I
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Note that the constant c in an instruction such as ANDI r c is known statically, hence it is feasible to include a
conditional within the definition of a congruence relation. This formulation summarises 256 different congruence
relations, one for each constant c ∈ Z256, each of which needs to be synthesised separately. In actuality, it is only
necessary to derive congruence relations for those instructions that occur in the program, so this replication of effort
is not a problem. Observe that for AND and OR congruences are too weak to express any relationship between the
bit-vectors r′, r and s. Nevertheless, the domain is sufficiently expressive to capture other key relations, notably those
of COM and exclusive-or relationships on the status flags.

5.3. Shifting instructions

In binary code, bit-shifts are classically used to implement multiplication or division on integers by a power of two.
The ATmega16 supports five different shifts, namely arithmetic shift right (ASR), logical shift left (LSL), logical shift
right (LSR), rotate left through carry (ROL) and rotate right through carry (ROR). All these operations shift the value of
the source register into the specified direction by a single position; shifts by a variable number of positions are not
directly supported (such operations are realised with a loop whose body performs shift operations). ASR r shifts all
bits in r to the right, the most significant bit (MSB) is held constant and the least significant bit (LSB) is shifted into the
carry flag C. When the register r is interpreted as a signed integer, the instruction ASR r effectively divides r by two
without changing its sign. The instruction LSR r behaves analogously for unsigned values. In a similar fashion, LSL r
multiplies r by two; it shifts the MSB into the carry flag and clears the LSB. The rotate instructions ROL r and ROR r
are used to multiply and divide multi-byte signed and unsigned values by two (if two 8-bit registers are interpreted as
representing a single 16-bit integer). They copy the carry flag into the LSB/MSB and shift the value of the MSB/LSB
into the carry flag. The semantics of these five instructions can straightforwardly be expressed in propositional logic,
from which the following systems of congruences can be derived:

αCong(JASR ~rK) =



∧6
i=0(r′[i] ≡256 r[i + 1]) ∧

r′[7] ≡256 r[7] ∧

128S ′ ≡256 128N + 128V ∧

128V ′ ≡256 128N′ + 128C′ ∧
N′ ≡256 r′[7] ∧

C′ ≡256 r[0] ∧

H′ ≡256 H ∧

T ′ ≡256 T ∧ I′ ≡256 I

αCong(JLSL ~rK) =



∧6
i=0(r′[i + 1] ≡256 r[i]) ∧

r′[0] ≡256 0 ∧

128S ′ ≡256 128N + 128V ∧

128V ′ ≡256 128N′ + 128C′ ∧
N′ ≡256 r′[7] ∧

C′ ≡256 r[7] ∧

H′ ≡256 r[3] ∧

T ′ ≡256 T ∧ I′ ≡256 I

αCong(JLSR ~rK) =



∧6
i=0(r′[i] ≡256 r[i + 1]) ∧

r′[7] ≡256 0 ∧

128S ′ ≡256 128N + 128V ∧

128V ′ ≡256 128N′ + 128C′ ∧
N′ ≡256 0 ∧

C′ ≡256 r[0] ∧

H′ ≡256 H ∧

T ′ ≡256 T ∧ I′ ≡256 I

αCong(JROL ~rK) =



∧7
i=1(r′[i] ≡256 r[i − 1]) ∧

r′[0] ≡256 C ∧

128S ′ ≡256 128N + 128V ∧

128V ′ ≡256 128N′ + 128C′ ∧
N′ ≡256 r′[7] ∧

C′ ≡256 r[7] ∧

H′ ≡256 r[3] ∧

T ′ ≡256 T ∧ I′ ≡256 I

αCong(JROR ~rK) =



∧6
i=0(r′[i] ≡256 r[i + 1]) ∧

r′[7] ≡256 C ∧

128S ′ ≡256 128N + 128V ∧

128V ′ ≡256 128N′ + 128C′ ∧
N′ ≡256 r′[7] ∧

C′ ≡256 r[0] ∧

H′ ≡256 H ∧

T ′ ≡256 T ∧ I′ ≡256 I

Note these bit-level congruences are expressive enough to capture all these shift relationships, even those through the
carry flag, only dropping information for the zero flag.
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5.4. Arithmetic instructions
Let us now consider the arithmetic instructions: incrementing a register by 1 (INC), summing two registers (ADD)

and summing up two registers and the carry flag (ADC). Formulae for INC r, ADD r s and ADC r s can be derived by
expressing addition using a cascade of full-adders defined using a bit-vector of auxiliary carry bits. Importantly, the
actual formulation is incidental (as long as it faithfully models addition) since the same congruence system will be
generated for different but equisatisfiable formulae [45].

αCong(JINC ~rK) =


∑7

i=0 2i(r′[i] − r[i]) ≡256 1 ∧

S ′ ≡256 128N + 128V ∧

N′ ≡256 r′[7] ∧

H′ ≡256 H ∧ T ′ ≡256 T ∧ I′ ≡256 I

αCong(JADD ~r ~sK) =


∑7

i=0 2i(r′[i] − r[i] − s[i]) ≡256 0 ∧
S ′ ≡256 128N + 128V ∧

N′ ≡256 r′[7] ∧

T ′ ≡256 T ∧ I′ ≡256 I

αCong(JADC ~r ~sK) =


∑7

i=0 2i(r′[i] − r[i] − s[i]) ≡256 C ∧
S ′ ≡256 128N + 128V ∧

N′ ≡256 r′[7] ∧

T ′ ≡256 T ∧ I′ ≡256 I

Moreover, subtraction can be expressed using the same technique by merely observing that
∑7

i=0 2ir′[i] =
∑7

i=0 2ir[i] −∑7
i=0 2is[i] iff

∑7
i=0 2ir[i] =

∑7
i=0 2ir′[i] +

∑7
i=0 2is[i]. This provides a propositional encoding for decrement (DEC),

substract (SUB) and subtract with carry (SBC), by way of which the following abstractions can be derived:

αCong(JDEC ~rK) =


∑7

i=0 2i(r[i] − r′[i]) ≡256 1 ∧

S ′ ≡256 128N + 128V ∧

N′ ≡256 r′[7] ∧

H′ ≡256 H ∧ T ′ ≡256 T ∧ I′ ≡256 I

αCong(JSUB ~r ~sK) =


∑7

i=0 2i(r′[i] − r[i] + s[i]) ≡256 0 ∧
S ′ ≡256 128N + 128V ∧

N′ ≡256 r′[7] ∧

T ′ ≡256 T ∧ I′ ≡256 I

αCong(JSBC ~r ~sK) =


∑7

i=0 2i(r[i] − r′[i] − s[i]) ≡256 C ∧
S ′ ≡256 128N + 128V ∧

N′ ≡256 r′[7] ∧

T ′ ≡256 T ∧ I′ ≡256 I

The above systems are rearranged for brevity, but importantly note how the power of two multipliers on the coefficients
are derived automatically from the propositional encodings which make no explicit reference to these values.

5.5. Conditional branching
On the ATmega series of microcontrollers, conditional branching is typically implemented by a series of compare

instructions, followed by a conditional jump which selects a jump target based on the values of the status flags. Compare
instructions take two arguments and subtract the second argument from the first; in contrast to the subtract instructions,
they not store the results in a register, yet set the status flags according to the value of the difference. The ATmega16
supports three kinds of compare instructions: compare two registers (CP r s), compare register with constant (CPI r
c) and compare two registers with carry (CPC r s). The sequence CP R0 R2; CPC R1 R3, for example, is then used
to compare the values of R0 and R1, when interpreted as a single 16-bit value, against the values of R2 and R3, likewise
interpreted as a 16-bit value.

Conditional branching instructions such as branch-if-not-equal (BRNE k) only alter the program counter, which
is modelled by a transition across the edge of the CFG that is traversed when calculating invariants (see Sect. 4.4).
Branching instructions increment the program counter by k + 1 iff the branching condition is satisfied, and do not
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0x94: LDI R24 1 ; x := 1
0x96: RJMP 1 ; jump to 0x98
0x97: ADD R24 R24 ; x := x * 2
0x98: DEC R18 ; c := c-1
0x99: BRPL -3 ; branch if positive
0x9a: COM R24 ; x := ~x

Figure 2: Assembly code corresponding to the assignment x = ~(1 << c)

mutate any registers or status flags. In case of BRNE k, the program counter is incremented by k + 1 iff the zero flag
in the status register is cleared; otherwise, it is incremented by 1. Hence, congruent transfer functions for branching
instructions are given as a set of identity constraints. However, the need to precisely model the branching semantics of
binary code to derive accurate invariants further motivates the automatic recovery of branching conditions (see Sect. 6)
and the combination of congruences with intervals (see Sect. 7).

5.6. Experimental Results

It is worth noting that generating these transfer functions requires surprisingly few SAT instances. For example,
INC r requires 11 SAT instances and takes 0.16s to compute the resulting congruence system. The runtime for ADD r
s is slightly higher, requiring an overall runtime of 0.23s for 18 SAT instances; the runtimes for ADC r s, SUB r s
and SBC vary only slightly. For ORI r 13, the abstraction requires 0.12s and 10 SAT instances. The results for the
other instructions are all in the same order.

6. Recovering Branching Conditions

As discussed previously, branching predicates in a high-level programming language such as C are often compiled
into a sequence of instructions; the successor instruction then depends on a Boolean combination of status flags. While
it is possible to cover most standard predicates using pattern matching [18], some assignments are compiled into a loop
due to the lack of adequate instructions that coincide with the respective assignment. As an example, consider the C
statement x = ~(1 << c). Since the ATmega16 does not support shifts by a variable number of bits, this statement
is compiled into the code given in Fig. 2. Here, the conditional jump BRPL at location 0x99 depends on the status
flags set by DEC r18 at location 0x98. The code fragment thus deviates from more commonly used patterns, which
demonstrates the necessity for a generalised method for recovering branching predicates. This section describes such
an algorithm based on linear template constraints [64], though it is illustrated for intervals.

6.1. Approach

The key idea of our approach is to reuse the propositional semantics discussed so far and to adapt a technique
we have developed for block-wise transfer function synthesis in the domain of affine equalities [14, 15]. To make
affine relations amenable to program analysis over finite bit-vectors, it is then necessary to distinguish wrapping from
non-wrapping behaviour. Since affine relations cannot directly express wrap-around arithmetic [55, Sect. 1], each
instruction in a block is then modelled by at least one, and at most three Boolean functions, according to whether it
overflows, underflows, or does neither (called exact). The modes of each instruction can be extracted from the AVR
instruction set specification. One mode from one instruction can then be combined with a mode from another, providing
it is co-satisfiable, to give mode combination. In general the modes from a sequence of instructions can be combined in
this way to find all the mode combinations that are mutually satisfiable. Each mode combination — of which there
exist exponentially many in the worst case — is then analysed on its own.

The techniques proposed previously in [14, 15] determine guards on the inputs of the block. The guards express
properties of the input registers which must hold for the block to operate in the selected mode combination. Such
guards expressed over linear template constraints can be computed using incremental SAT solving [15]. We adapt this
idea to the setting of branching predicate recovery and use SAT solving to compute guards on the outputs of a sequence
of instructions [11, 21], which either take the success or the fail branch.
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6.2. Recovering Branching Predicates by Example
Consider recovering a branching predicate for the following implementation of conditional branching:

0x94: CP R0 R1
0x95: BRNE 3

The semantics of this block is to branch to instruction 0x99 iff R0 , R1. To do so, a compare instruction in location
0x94 first computes R0 − R1 and alters the status flags accordingly. The instruction BRNE 3 then tests the zero flag and
branches relatively to 0x95 iff the zero flag is cleared. Note that the operation CP R0 R1 has three modes of operation,
whereas the branching instruction only alters the program counter. We thus derive one guard for each of the three
modes. Let ψ(X) = JCP R0 R1K encode the compare instruction over bit-vectors X = {r0, r1, a, I, . . . ,C, I′, . . . ,C′}
(including the effects on the status word). Suppose that a stores the result of the subtraction. The semantics of the three
modes can be expressed as three Boolean formulae:

(1) ϕU(X) = ψ(X) ∧ (r0[7] ∧ ¬r1[7] ∧ ¬a[7])
(2) ϕO(X) = ψ(X) ∧ (¬r0[7] ∧ r1[7] ∧ a[7])
(3) ϕE(X) = ψ(X) ∧ (¬r0[7] ∨ r1[7] ∨ a[7]) ∧ (r0[7] ∨ ¬r1[7] ∨ ¬a[7])

In what follows, we study the case where CP R0 R1 overflows, and BRNE 3 takes the fail branch, i.e. we consider
ϕO(X) ∧ ¬Z′. The guards we aim to compute characterise those values of R0 and R1 which satisfy this path. To
represent these values, we turn again to intervals. We search for the least c`, cu ∈ Z such that c` ≤ R0 ≤ cu on output of
the branching instruction; likewise for R1. Clearly, we have: −128 ≤ c` ≤ cu ≤ 127. We can now systematically explore
the space that contains c` and cu, respectively. To do so, we divide the interval [−128, 127] into two equally-sized
halves, and then perform binary dichotomic search to discover which half contains the constant. We first transform the
constraint −128 ≤ cu ≤ 127 into the equivalent form:

(−128 ≤ cu ≤ −1) ∨ (0 ≤ cu ≤ 127)

Since cu is uniquely determined, testing the formula

ψ′(X) = (ϕO(X) ∧ Z′) ∧ (0 ≤ R0 ≤ 127)

for satisfiability suffices to determine which of the two disjuncts holds. Satisfiability of ψ(′X) shows that 0 ≤ cu ≤ 127.
Then put:

ψ′′(X) = ψ′(X) ∧ (64 ≤ R0 ≤ 127)

Again, satisfiability of ψ′′(X) refines the range of cu, in this iteration to 64 ≤ cu ≤ 127. Repeating this step 6 more
times yields only satisfiable formulae, and thus cu = 127. By performing this form of binary search for the remaining
inequalities so as to compute c` as well as lower and upper bounds for R1, we obtain the following interval constraints
that describe the values of R0 and R1 on output of the fail branch if CP R0 R1 overflows:

0 ≤ R0 ≤ 127 ∧

−128 ≤ R1 ≤ −1 ∧

This form of abstraction is performed for every possible combination of modes of CP and BRNE, giving 3 · 2 = 6 systems
of constraints overall. However, some of the composed formulae, e.g. ϕO(X) ∧ Z′, are unsatisfiable. This shows that
the mode combination is inconsistent, i.e. there are no inputs to the block so that CP R0 R1 overflows and BRNE 3
takes the success branch.

6.3. Computing extremal values using dichotomic search
Given a formula ϕ that constrains a register v in some way, Alg. 2 presents an algorithm for computing the maximal

value of v. The register v is assumed to be signed and lines 2–8 provide special treatment for the most significant bit.
Lines 11–20 represent the heart of the algorithm. Since the goal is maximisation, the algorithm instantiates each bit
v[i] with 1, starting with v[k − 2], and then checks for satisfiability. If satisfiable, the bit v[i] is fixed at 1, and then the
next lower bit is examined. If unsatisfiable, the bit v[i] can only take the value of 0, and the algorithm moves on to
maximise the next bit. Minimisation can likewise be implemented by instantiating bits the other way round. Variants of
this algorithm have been reported elsewhere [11, 21]. It has also been further extended to linear templates in [15].
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Algorithm 2 Compute the least value d of v = 〈v[k − 1], . . . , v[0]〉 constrained by a Boolean formulae ϕ using binary
search where v is interpreted as a signed bit-vector
Input: ϕ

1: {check the sign}
2: if ϕ ∧ ¬v[k − 1] is satisfiable then
3: d ← 0
4: ϕ← ϕ ∧ ¬v[k − 1]
5: else
6: d ← −2k−1

7: ϕ← ϕ ∧ v[k − 1]
8: end if
9: {iterate over bits k − 2, . . . 0}

10: for i = k − 2→ 0 do
11: if ϕ ∧ v[i] is satisfiable then
12: d ← d + 2i

13: ϕ← ϕ ∧ v[i]
14: else
15: ϕ← ϕ ∧ ¬v[i]
16: end if
17: end for
18: return d

6.4. Algorithm
We conclude by discussing the key steps of the algorithm, which is presented in Alg. 3. In essence, given a

conditional branching instruction pbranch, the algorithm consists of two key steps:

Step 1: Determine dependencies We determine those instructions and registers which influence the outcome of the
branching condition pbranch. A def-use chain π is determined using a backward search [66, Sect. 5.4] using an
auxiliary method revDefUseChain(pbranch) in line 1. The chain is terminated once an instruction depends only
on the values of registers, but not on status flags. In the previous example, instruction BRNE 3 depends on the
zero flag, which is altered by CP R0 R1. This instruction, in turn, does not depend on status flags; the chain thus
ends.

Step 2: Abstract mode combination For the success and fail branches, we generate two formulae JπK ∧ µ(true) and
JπK ∧ µ(false), respectively, where µ is a predicate that denotes the branching condition. Further, JπK encodes
the semantics of the reverse def-use path π. These two formulae describe the relations for the case that the
program counter is incremented by k + 1 or 1, respectively. Each mode combination is then analysed once for
each possible branching target in lines 3–8. For the abstraction, constraints that describe the respective mode are
first encoded as a formula JcK. All registers which are accessed in the relevant path π are then abstracted in line 6,
say, using dichotomic search for intervals as presented in Alg. 2.

Algorithm 3 Recovering the branching conditions from a branching instruction pbranch

1: π← revDefUseChain(pbranch)
2: µ← JpbranchK
3: for b ∈ {true, false} do
4: for each mode combination c ∈ π do
5: ψ← JcK
6: abstract(JπK ∧ µ(b) ∧ ψ, accessedRegs(π))
7: end for
8: end for
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Algorithm 4 Refine an interval [v`, vu] of a bit-vector v with a system Ax ≡m b of congruences
Input: ϕ, v, [v`, vu], Ax ≡m b

1: κ ← Jv` ≤ v ≤ vuK
2: µ← JAx ≡m bK
3: v′` ← minimise(ϕ ∧ κ ∧ µ, v)
4: v′u ← maximise(ϕ ∧ κ ∧ µ, v)
5: return [v′`, v

′
u]

7. Reducing Abstract Descriptions

Thus far, we have described two techniques that affect two different abstract domains: (1) synthesising transformers
from propositional Boolean formulae allows us to derive invariants in the domain of bit-wise congruences; (2)
automatically recovering conditions for conditional branching from the program under scrutiny provides us with a
technique which allows for increased precision in interval analysis of binary code. The remaining step is thus to
combine congruences and intervals more tightly so as to derive more precise abstract descriptions in both domains.

7.1. Refining intervals with congruences

To make the discussion tangible we shall consider a congruence system Ax ≡16 b that describes equality relations
between the bits of two unsigned 4-bit registers:

A =


1 0 0 0 −1 0 0 0
0 1 0 0 0 −1 0 0
0 0 1 0 0 0 −1 0
0 0 0 1 0 0 0 −1

 b =


0
0
0
0


To refer to the registers individually let u = 〈x[0], x[1], x[2], x[3]〉 and let v = 〈x[4], x[5], x[6], x[7]〉. Observe that the
congruence system asserts that u[i] = v[i] for all 0 ≤ i < 4. Now suppose the congruence system is paired with the
range constraints:

2 ≤
3∑

i=0

2iu[i] ≤ 15 0 ≤
3∑

i=0

2iv[i] ≤ 7

The range refinement problem is that of maximally tightening the bounds on u and v given these congruence and range
constraints. Dichotomic search is the natural candidate for computing such extrema and therefore we render Ax ≡16 b
as a Boolean formula as follows:

µ = JAx ≡16 bK
= (u[0]↔ v[0]) ∧ (u[1]↔ v[1]) ∧ (u[2]↔ v[2]) ∧ (u[3]↔ v[3])

In addition, the range constraints are also reduced to a propositional system:

κ = J2 ≤
∑3

i=0 2iu[i] ≤ 15K ∧ J0 ≤
∑3

i=0 2iv[i] ≤ 7K
= (u[3] ∨ u[2] ∨ u[1]) ∧ ¬v[3]

Applying dichotomic search to maximise u subject to µ ∧ κ′ we infer that
∑3

i=0 2iu[i] ≤ 7. Conversely dichotomic
minimisation infers 2 ≤

∑3
i=0 2iu[i]. Minimisation and maximisation of v derives the same bounds. The overall

algorithm is presented in Alg. 4.

7.2. Refining congruences with intervals

These tightened bounds can then, in turn, be used to constrain the congruence system Ax ≡16 b. To do so let,

κ′ = J2 ≤
∑3

i=0 2iu[i] ≤ 3K ∧ J2 ≤
∑3

i=0 2iv[i] ≤ 3K
= (¬u[3] ∧ ¬u[2] ∧ u[1]) ∧ (¬v[3] ∧ ¬v[2] ∧ v[1])
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Then each row of the system Ax ≡16 b is separately rendered as a propositional formula to be abstracted in conjunction
with the propositional constraint κ′ as follows:

αCong(κ′ ∧ Ju[0] ≡16 v[0]K) = (u[0] ≡16 v[0])
αCong(κ′ ∧ Ju[1] ≡16 v[1]K) = (u[1] ≡16 1 ∧ v[1] ≡16 1)
αCong(κ′ ∧ Ju[2] ≡16 v[2]K) = (u[2] ≡16 0 ∧ v[2] ≡16 0)
αCong(κ′ ∧ Ju[3] ≡16 v[3]K) = (u[3] ≡16 0 ∧ v[3] ≡16 0)

A new congruence system A′x ≡16 b′ can then be reassembled from these equations like so:

A′ =



1 0 0 0 −1 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1


b′ =



0
1
1
0
0
0
0


to give a system A′x ≡16 b′ that confers strictly less solutions than Ax ≡16 b. Alg. 5 presents the generalised algorithm.
Here, row(i, Ax ≡m b) is an auxiliary function that delivers the ith row of a congruence system Ax ≡m b. This row
is then encoded in a formula JrK and the congruence closure of JrK in conjunction with the interval constraints is
computed. The resulting system is eventually put into upper triangular form. Observe that a different, straightforward
tactic for refinement would be to recompute αCong based on ϕ ∧ κ. However, this is computationally more expensive: it
is as expensive as computing the congruence closure of the original block augmented with interval constraints.

Algorithm 5 Refine a congruence sytem Ax ≡m b with a set [vi,`, vi,u] of interval constraints
Input: {[v1,`, v1,u], . . . , [vn,`, vn,u]}, Ax ≡m b

1: A′x ≡m b′ ← >
2: κ ←

∧n
i=1Jvi,` ≤ vi ≤ vi,uK

3: for i = 1→ numRows(Ax ≡m b) do
4: r ← row(i, Ax ≡m b)
5: r′ ← αCong(κ ∧ JrK)
6: A′x ≡m b′ ← A′x ≡m b′ ∧ r′

7: end for
8: return triangular(A′x ≡m b′)

7.3. Refining intervals with strides
As a final point on refinement, it is interesting to observe that congruences can be applied to refine a range to

include stride information, that is, the greatest common divisor of the difference between consecutive elements of an
ordered set of integers. For example, the stride of { 1, 3, 7, 9 } is 2. Stride information is pertinent to the analysis of
binaries since it has been applied to reason about memory alignment [6]. To illustrate how stride information can be
extracted, let w = 4 and n = 2 and suppose Ax ≡16 b is defined as

A =



1 0 0 0 −1 0 0 0
0 1 0 0 0 −1 0 0
0 0 1 0 0 0 −1 0
0 0 0 1 0 0 0 −1
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0


b =



0
0
0
0
1
0


Furthermore, let u = 〈x[0], x[1], x[2], x[3]〉 and v = 〈x[4], x[5], x[6], x[7]〉 as before, but now assume that the ranges
are prescribed as follows:

0 ≤
3∑

i=0

2iu[i] ≤ 15 0 ≤
3∑

i=0

2iv[i] ≤ 15
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Observe that the congruence system contains equations v[0] ≡16 1 and v[1] ≡16 0. Thus the bottom two bits of v are
fixed, hence

∑3
i=0 2iv[i] must draw values from the set {1, 5, 9, 13} and therefore have a stride of 4.

8. Related Work

Defining and computing transformers for (relational) abstract domains has been a field of active research for thirty
years. Classically, transfer functions have been designed by hand, though the design principles that shape transformers
can be tracked back to the seminal works that founded the field [23]. The process of designing transfer functions
manually, however, is not straightforward; something that has been noted in the past. As examples, consider the
discussion by Cousot and Halbwachs [26] on different ways to model multiplication in the polyhedral domain, or the
comments of Granger [37] on the complexity of handcrafting transformers for congruences. The difficulty of designing
transfer functions can be explained by the fact that the descriptions that constitute the abstract domain are typically
high-level geometric concepts, which contrasts with the low-level nature of the concrete data objects themselves; this
motivates the desire to synthesise transfer functions automatically from the concrete semantics of the programming
language under consideration.

8.1. Automatic abstraction

It took several decades until Reps and his colleagues [62] observed that transformers of optimal precision can
be derived for any abstract domain that satisfies the finite ascending chain condition. The key idea of their work
is to replace the application of an abstract transformer by a series of successive calls to a decision procedure; they
employ an automatic theorem prover for this purpose. Since these calls are executed at runtime, during the analysis
itself, this approach does not achieve the desired level of efficiency. Yet, their work demonstrates the existence of
a procedure that generates transfer functions in a fully automatic way. Contemporaneously, the need for automated
transfer function synthesis in binary code analysis was investigated by Regehr and Reid [57], following the observation
that the imprecision of abstract interpretation of binary code stems, in part, from the omni-presence of both logical
and arithmetic operations. They infer transfer functions for interval analysis using BDD-based Boolean encodings,
though the time required to synthesise a single instruction typically exceeds 24 hours. Only recently has automatic
abstraction [14, 15, 44, 45, 51, 52] become a practical proposition, due to the emergence of robust decision procedures
and efficient quantifier elimination techniques [17, 47, 53]. The domain of bit-wise linear congruences [45], and the
closure algorithm that is used to construct transfer functions, is an example of an analysis that particularly benefits from
the efficiency of state-of-the-art SAT solvers. This algorithm is used in this paper to derive transfer functions for the
instruction set of the microcontroller; it has been used elsewhere to derive relationships that hold at the word-level [14,
Sect. 3.2]. The step beyond the automatic abstraction of individual instructions and straight line blocks is that of
abstracting whole control structures such as loops. This is known as colloquially as loop leaping [8] or loop leaping [46]
and recent advances suggest that compositionally, hence scalability, can be obtained by composing Boolean formulae
in a bottom-up fashion [12].

8.2. Abstract interpretation of machine arithmetic

Over- and underflows, which are natural to programs whose semantics is defined over bit-vectors, inevitably
manifest themselves within analysis. A classical approach in abstract interpretation is to perform the analysis on
unbounded integers, and then check that no wraps can possibly occur, otherwise a warning message is emitted. The
Astree static analyser follows this strategy [24]. However, it is important to note that Astree verifies code for a different
architecture than the ATmega16 on the level of ANSI-C. In their setting, over- and underflows are undesirable (or
rather disallowed). By way of comparison, wrap-arounds are commonplace in microcontroller code where many 16-bit
integer operations are implemented as a composition of 8-bit operations. One approach is to deploy congruences where
the modulus is 28 so as to precisely model the wrapping behaviour of machine arithmetic. This can be realised either
on the level of words [54], where an entire register is abstracted as a whole [55], or on the level of bits [16, 44, 45].
Recently, the relative precision of these approaches has been compared [31], observing that the expressiveness of
these two classes of abstract domains is strictly incomparable. Another approach is to reformulate the concretisation
map for polyhedra [71] so that the most frequently occurring operations, such as evaluating a linear expression, need
not require any additional machinery to support wrapping. Nevertheless, some operations, notably guards need to
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be revised to reflect the effects of overflow arithmetic. A tactic that has been more recently proposed is to formulate
transfer functions as guarded updates [14, 15] so that different wrapping modes can be considered in the synthesis of
the transfer function and supported during its evaluation.

8.3. Static analysis of binary code

In recent years, there has been increasing interest in developing and implementing abstract interpreters that operate
directly on the binary code (or an equivalent intermediate representation). Only recently, however, has infrastructure
emerged to represent binary programs in interchangeable formats [9, 19, 50, 69]. These approaches, decouple the
dependencies between the hardware platform and the analysed binary, at least to some extent. The most prominent
representative of this class of binary code analysers is CodeSurfer/x86 [4–7] for x86 binaries. This analyser uses
congruences to track strides in the value-set abstract domain, in much the same way that Astree uses congruences for
ANSI-C verification [24, 25]. For example, an interval [40, 44] augmented with a congruence value of 4 corresponds
to the value-set {40, 44}. Congruences are also used by Debray et al. [28] who approximate addresses by sets of
congruence values and thereby construct an alias analysis. However, this combination of domains is not necessarily
well-suited for all applications. For example, this approach produces insufficiently precise results when applied to
control-flow recovery [10, 33, 43, 59]. This is because “there is no reason why all valid targets of a dynamic jump
should follow a nice regular pattern” [10, p. 45], hence, in this context, sets are more suitable abstractions than strided
intervals [10, 59].

Model checking has also been investigated for binary code [74], based on directed proof generation [38]. The
McVeto checker [74] starts with a coarse initial abstraction of the state space, which is gradually refined in parallel
to disassembly. Their approach, however, is based on a possibly infinite graph representation of the state space.
Furthermore, weighted pushdown automata are used, rather than classical abstraction interpretation techniques, which
contrasts to the philosophy of our work. Interpolant-based approaches are also applicable to microcontroller code and
for a discussion of their relationship to abstract interpretation, the reader is referred to [77].

8.4. Recovery of branching conditions

To the best of our knowledge, our approach presented in Sect. 6 is the first technique to automatically recover
branching conditions from binary code. The method is influenced by our previous work on transfer function synthesis
for weakly relational domains [14, 15], yet applies backwards search for a relevant path by reasoning about def-use
chains. There is no reason why these techniques could not be integrated with others proposed techniques for binary
code analysis, such as the work on control-flow reconstruction by Flexeder et al. [33], or the control-flow splitting
method of Simon [70]. The problem of recovering branching conditions is not dissimilar to that of recovering relational
information, which has been studied by Sepp et al. [69] in the context of reverse engineering.

9. Concluding Discussion

9.1. Synopsis

This paper advocates using pre-synthesised transformers for microcontroller instructions. A synthesis algorithm
can be realised thanks to the bit-level semantics of the instruction set and the SAT-based congruent closure algorithm
of King and Søndergaard [45]. Branching conditions are also recovered from binary code by adapting an abstraction
technique originally proposed for weakly relational domains [14, 15]. This improves the precision of interval analysis.
A distinguishing feature of our analysis, however, is the combination of congruences and intervals beyond the integration
of branching conditions. To do so, we propose an algorithm that passes information between both components of
the domains. This algorithm is based on triangularisation for refining the congruence equations and SAT solving for
pruning the intervals. In summary, this combination of techniques allows us to prove memory safety for many examples
of microcontroller code. Although we have described the technique for the ATmega16 microcontroller instruction set,
the approach is not bound to this specific platform. We have recently ported the same technique to the programming
language Instruction List for programmable logic controllers, which are frequently used in safety-critical systems. The
only significant difference in the implementation is the propositional encoding of the instructions.
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9.2. Experiments
Timing results for generating congruence transformers with respect to runtime and precision have been reported

in [16, Sect.7]. These numbers were obtained from the [mc]square framework, which is written in Java, using the
Sat4J solver [49]. We have applied the techniques discussed in this article to six different programs for the ATMEL
ATmega16 microcontroller, ranging from 148 to 383 instructions. Details of these programs are described in [66,
Sect. 7]. The technique for recovering branching conditions is an adaptation of our work presented in [15]. The runtime
requirements for this step are comparable to those reported in [15, Sect. 5], being below 0.5s for all our benchmarks.
The reverse def-use chains, which are determined prior for bit-blasting, are very short, i.e. no more than 5 instructions
are involved in any of our benchmarks. Range analysis [18] by itself is frequently not sufficient to show that indirect
stores are safe, as is illustrated in the example given in Sect. 1.2. However, when coupled with linear congruences and
branch recovery, range analysis was able to show that no indirect store accesses could affect any register for any of our
benchmarks [18, Sect. 7]. Range analysis with congruences was able to show that all indirect read accesses to program
memory (e.g. to access constants), too.

9.3. Future Work
An issue that calls for future research is the handling of indirect stores. Although our analysis can effectively

predict the target range (or set) of an indirect store operation, the effects of such operations are modelled as weak
updates. Consequently, the invariants that express the contents of various target memory locations are merged with a
commensurate loss of precision. It is more desirable to apply a strong update, which completely replaces the invariant
that expresses the contents of a target with a new information. Yet it is interesting to observe that with relational
domains it is possible, at least in principle, to derive a relationship between indirectly written memory locations and
their contents. For instance, suppose an invariant was established between the address X and the contents of R0 for
the indirect store operation ST X R0. Then, providing the memory cell is not over-written, it follows that there is a
relationship between an address and its contents, at least for some range of address values, namely those written by the
store operation. More generally, we believe that recent work by Gulwani et al. [39] on lifting abstract interpreters to
quantified abstract domains could serve as a general basis for this type of reasoning.

It is also interesting to note that even though bit-wise congruences cannot capture the precise semantics of logical
or, they can be augmented with fresh variables to do so. Observe r0[i] ∨ r1[i] = (1 + r0[i] + r1[i]) � 1, hence by
introducing two fresh propositional variables to represent (1 + r0[i] + r1[i]), it is possible to derive a congruence
system that precisely captures disjunction, albeit at the cost of increasing the dimension of the congruence system. It
will be interesting to further study the effects of such transformations and the additional expressiveness they bring. A
comparable transformation, though introduced to capture range information, has been introduced in [45, Sect. 6] using
so-called witness variables that monitor whether range constraints hold or not. Similar ideas can also be found in the
work of Laviron and Logozzo [48], who introduced auxiliary slack variables in the domain of subpolyhedra.
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