
Type-syntax and Token-syntax in Diagrammatic Systems

John Howse
School of Computing & Mathematics
University of Brighton, Brighton, UK

John.Howse@brighton.ac.uk

Fernando Molina
School of Computing & Mathematics
University of Brighton, Brighton, UK

F.Molina@brighton.ac.uk

Sun-Joo Shin
Department of Philosophy
University of Notre Dame,
Notre Dame, Indiana, USA

Sun-Joo.Shin.3@nd.edu

John Taylor
School of Computing & Mathematics
University of Brighton, Brighton, UK

John.Taylor@brighton.ac.uk

Abstract

The uptake in the software industry of notations for design-
ing systems visually has been accelerated with the standard-
ization of the Unified Modeling Language (UML). The for-
malization of diagrammatic notations is important for the
development of essential tool support and to allow reason-
ing to take place at the diagrammatic level. Focusing on
an extended version of Venn and Euler diagrams (which
was developed to complement UML in the specification of
software systems), this paper presents two levels of syntax
for this system: type-syntax and token-syntax. Token-syntax
is about particular diagrams instantiated on some physical
medium, and type-syntax provides a formal definition with
which a concrete representation of a diagram must comply.
While these two levels of syntax are closely related to each
other, the domains of type-syntax and token-syntax are on-
tologically independent from each other, that is, one is ab-
stract and the other concrete. We discuss the roles of type-
syntax and token-syntax in diagrammatic systems and show
that it is important to consider both levels of syntax in di-
agrammatic reasoning systems and in developing software
tools to support such systems.
Keywords Visual formalisms, software specification, for-
mal methods, concrete and abstract syntax, diagrammatic
reasoning.

1 Introduction

Circles or closed curves, which we call contours, have been
in use for the representation of classical syllogisms since at
least the Middle Ages [16]. Euler introduced the notation
we now callEuler circles(or Euler diagrams) [1] to illus-
trate relations between sets. This notation uses the topo-
logical properties of enclosure, exclusion and intersection
to represent the set-theoretic notions of subset, disjointness,

A B

C

Fig. 1: An Euler diagram.

A B

C

Fig. 2: A Venn diagram.

and intersection, respectively.
The logician John Venn used contours to represent log-

ical propositions [23]. In Venn diagrams all contours must
intersect. Moreover, for each non-empty subset of the con-
tours, there must be a connected region of the diagram, such
that the regions enclosed by the contours in this subset in-
tersect at exactly that region. Shading is then used to show
that a particular region of the resulting map is empty. The
Euler diagram in Fig. 1 denotes thatA andB are disjoint
andC ⊆ A. A Venn diagram showing the same informa-
tion is given in Fig. 2.

The logician Charles Peirce augmented Venn diagrams
by adding X-sequencesas a means for denoting ele-
ments [20]. An X-sequence connecting a number of “min-
imal regions” of a Venn diagram, indicates that their union

1

A B

C

U

Fig. 3: A Spider diagram.

Reservation Car Specification

Car
assigned

reserved

better

spec

Fig. 4: A constraint diagram.

is not empty. Full semantics and sound and complete in-
ference rules have been developed for Venn-Peirce dia-
grams [22] and Euler circles [9].

Spider diagrams[3] are a natural extension of Venn-
Peirce and Euler diagrams; they are based on Euler dia-
grams, so the topological properties of the diagrams are
important, but they also containspiders, a generalization
of Peirce’s X-sequences, and shading. The spider diagram
in Fig. 3 denotes thatA andB are disjoint, there are no ele-
ments inC that are not inA or B, there is an element inA
and there are exactly two elements inB that are not inA
or C.

Spider diagrams emerged from work onconstraint dia-
grams[15], introduced as a visual technique intended to be
used in conjunction with the Unified Modeling Language
(UML) [19] for object-oriented modelling. The constraint
diagram in Fig. 4 expresses, among other constraints, an in-
variant on a model of a car-hire business:The specification
of the car assigned to a reservation must be the same or
better than the specification reserved.

∀r ∈ Reservations, r.assigned.spec = r.reserved

∨ r.assigned.spec ∈ r.reserved.better.

Currently in UML, such constraints can only be expressed
using the Object Constraint Language (OCL) [24], essen-
tially a stylized, textual version of first-order predicate
logic.

Focusing on a subset of spider diagram notation, this
paper presents two levels of syntax for this system:type-

syntaxand token-syntax. Token-syntax is about particular
diagrams instantiated on some physical medium, and type-
syntax provides a formal definition with which a concrete
representation of a diagram must comply. While these two
levels of syntax are closely related to each other, the do-
mains of type-syntax and token-syntax are ontologically in-
dependent from each other, that is, one is abstract and the
other concrete. This paper isnot concerned with the se-
mantics of the notation, although occasionally semantic as-
pects will arise. A concise informal description of spider
diagrams is given in§2. In §3 we explore ontological issues
of diagrammatic languages to argue for the necessity of two
levels of syntax for a diagrammatic system. In§4 we give
formal definitions of the type-syntax and token-syntax of
spider diagrams and the mappings between them and con-
sider equivalent diagrams. In§5 we discuss the utility of
a two-tiered syntax, including diagrammatic reasoning and
the use of software tools.§6 summarizes the paper and dis-
cusses further work.

2 Spider diagrams

In this section we give a concise informal description of spi-
der diagrams. Acontour is a simple closed plane curve. A
boundary rectangleproperly contains all other contours, al-
though we do not always represent it in concrete diagrams;
its existence is implicit. Adistrict (or basic region) is the
bounded area of the plane enclosed by a contour or by the
boundary rectangle. Aregion is defined, recursively, as fol-
lows: any district is a region; ifr1 andr2 are regions, then
the union, intersection, or difference, ofr1 andr2 are re-
gions provided these are non-empty. Azone(or minimal
region) is a region having no other region contained within
it. Contours and regions denote sets.

A spider is a tree with nodes (calledfeet) placed in dif-
ferent zones; the connecting edges (calledlegs) are straight
lines; a spider with legs is said to bearticulated. A spider
touchesa zone if one of its feet appears in that zone. A
spider may touch a zone at most once. A spider is said to
inhabit the region which is the union of the zones it touches.
For any spiders, thehabitatof s, denotedη(s), is the region
inhabited bys. A spider corresponds to existential quantifi-
cation. Two distinct spiders denote distinct elements.

Every region is a union of zones. A region isshadedif
each of its component zones is shaded. The semantics of a
shaded zoneis that the set it denotes may not contain ele-
ments other than those indicated by the spiders which touch
that zone. Hence, a shaded region denotes the empty set if
it is not touched by any spider. Spiders can be used to place
a lower bound on the number of elements in a set; shading
a zone which includes spiders has the effect of placing an
upper bound on the cardinality of the set denoted by that
zone. Each contour must be labelled and no two contours
can have the same label.

2

U
A B

U
A

B

U
B A

Fig. 5: Equivalent diagrams.

U
A B

U
B

A

Fig. 6: Semantically-equivalent diagrams.

The spider diagram in Fig. 3 has a boundary rectangle
and three contours and hence four labels; six zones, two of
which are shaded, and hence 63 regions and three shaded
regions; and three spiders, one of which is articulated.

In this paper, we consider only a subset of the full no-
tation. Spider diagrams also contain notation to represent
given and optional elements and for saying that two ele-
ments can or must be equal. For more details see [3]. Spi-
der diagrams include the idea ofprojections, which remove
clutter and focus attention in the diagram appropriately; for
details see [4, 5, 6]. Conjunctive and disjunctive systems of
spider diagrams have been developed and sound and com-
plete diagrammatic inference rules have been developed for
several systems of spider diagrams [10, 11, 12, 13, 14, 17].

3 Two-tiered ontology

In this section, we explore ontological issues of diagram-
matic languages to argue for the necessity of two levels of
syntax for a diagrammatic system. Consider the three dia-
grams in Fig. 5. These are three different diagrams whose
appearances are clearly distinguishable from one another.
In the first diagram the contour labeled as “A” is to the left
of the contour labeled as “B,” in the second the location of
these two contours is switched, and in the third one the “B”
contour is placed below the contour “A.” Also, all of the

three diagrams exhibit different positions of their spiders’
legs. Hence, if the spatial arrangements of contours and
spiders’ legs were representing facts, these diagrams would
represent different facts. However, in the the spider dia-
gram system, neither the location of contours nor the con-
figuration of spiders has a representing import. Therefore,
we would like to say that these diagrams are the “same” in
somesense.

On the other hand, we do not want say that the two spider
diagrams in Fig. 6 are the same even though they represent
the same fact. The semantics of the spider diagram system
tells us that these two diagrams represent the same fact. But,
there is a clear syntactic distinction between two diagrams:
among other differences, there is shading in the one dia-
gram, but not in the other. That is, the difference and same-
ness in the case of Fig. 6 can be seen to reflect a distinction
between syntactic difference and semantic equivalence.

An interesting task is how to capture our intuition about
the diagrams in Fig. 5: They are different from one another
in one sense, but the same in another sense. One way to ap-
proach this case is not to make a distinction between Fig. 5
and Fig. 6 and to conclude that the diagrams in Fig. 5 are
syntactically different from one another but semantically
the same. A problem with this method is that the syntax
would became so fine-grained that almost any pair of dia-
grams cannot be said to be syntactically the same. That is,
any burden for differentiation among diagrams is postponed
to a semantic level. At an opposite extreme direction from
this approach, another way to explain the relation among
diagrams in Fig. 5 is to say that that these diagrams are all
syntactically equivalent to one another. A problem with this
explanation is that the syntax would become too coarse to
accommodate differences among obviously present visual
properties.

We present a middle ground solution between the two
above alternatives, by bringing in a time-honored distinc-
tion between type and token [8, 20]: The diagrams in Fig. 5
are different tokens, but of thesame type. Depending on
whether we talk about a diagram as a token or as a type,
we may attribute different properties to a diagram or dif-
ferent relations among diagrams. Therefore, it is crucial
to disambiguate which ontological status of a diagram is
in question, either a concrete token-diagram or an abstract
type-diagram. We suggest that the syntax of a diagram-
matic system consist of two different levels, that is, a token-
level and a type-level. At the token-level the syntax is fine-
grained enough to respect our intuition that the diagrams
in Fig. 5 aredifferent, while the other level of syntax, i.e.
type-syntax, lets us say that these diagrams are thesame.
Furthermore, we claim that a fine-grained two-tiered syn-
tax is not only desirable but also almost necessary for a
diagrammatic system because failure to recognize two dif-
ferent ontological statuses of diagrammatic language, i.e.

3

token and type, could cause a significant ambiguity in our
investigation of the system.

Quite interestingly, a similar confusion between type and
token does not cause much trouble for symbolic systems.
The conventions of linear symbolic systems are so uni-
form that we may safely ignore token-level syntax. That is,
when two tokens belong to the same type, visual differences
among these two tokens are trivial. Hence, an ambiguity be-
tween sentence-token (or symbol-token) and sentence-type
(or symbol-type), if any, is negligible. For example, in the
following example, sentence (1) and sentence (2) are two
different sentence-tokens but are of the same type, while
sentence (2) and sentence (3) are not only different tokens
but belong to different types:

(1) ∀xP(x) ∨ ∃yP(y)

(2)∀xP (x) ∨ ∃yP (y)
(3)∃yP (y) ∨ ∀xP (x)

In this case, the related conventions are clear: Neither the
size nor the font of a symbol is a representing fact, while
linear order is. Therefore, the first two sentences belong to
the same type, while (3) does not. These conventions are
so ingrained that we almost do not see a visual difference
between (1) and (2).

On the other hand, we need more detailed knowledge
of the spider diagram system to find out whether diagrams
in Fig. 5 are of the same type. At the same time, visual
differences among the three diagrams are clear enough to
think intuitively that they are different in some sense. In the
next section, we develop two-tiered syntax for the spider di-
agram system to take care of a type-token distinction which
is unique to diagrammatic systems.

4 Type-syntax and token-syntax

The type-syntax(or abstractsyntax) of a spider diagramd
is a formal definition that is independent of any concrete
visual representation. A concreteinstantiation of d is a di-
agram presented on some physical medium (e.g., a sheet of
paper, a computer monitor, etc) thatcomplieswith the ab-
stract definition; we call this thetoken-syntax. In this sec-
tion we give the type-syntax of spider diagrams and a formal
definition of the token-syntax. We also give conditions for
a concrete diagram to be an instantiation of an abstract di-
agram and for an abstract diagram to be an abstraction of a
concrete diagram.

4.1 Type-syntax

An abstract spider diagramis a tuple

d = 〈C, β,Z,Z∗,L, `,S, η〉

whose components are defined as follows:

(i) C is a finite set whose members are calledcontours.
The elementβ, which is not a member ofC, is called
theboundary rectangle.

(ii) The setZ ⊆ 2C is the set ofzones, whileZ∗ ⊆ Z is
the set ofshaded zones. A zonez ∈ Z is incidenton
a contourc ∈ C if c ∈ z. LetR = 2Z−∅ be the set of
regions, andR∗ = 2Z

∗
be the set of shaded regions.

(iii) L is the set of contourlabels. The bijection` :
C ∪ {β} → L returns the label of a contour or the
boundary rectangle.

(iv) S is a set ofspiders.

(v) The functionη : S → R returns thehabitat of a
spider.

A zone is defined by the contours that contain it and is thus
represented as a set of contours. Not all possible zones need
appear on a spider diagram as the underlying diagram is an
Euler diagram; if they all do appear, then the diagram is in
Venn form. A region is just a non-empty set of zones.

4.2 Token-syntax

A concrete spider diagram̂d is a tuple

d̂ = 〈Ĉ, β̂, Ẑ, Ẑ∗, L̂, ˆ̀, Ŝ, η̂〉

whose components are defined as follows:

(i) Ĉ is a finite set of simple closed (Jordan) curves in the
plane, R2, calledcontours. Theboundary rectangle,
β̂, is also a simple closed curve, usually in the form of
a rectangle, but not a member ofĈ. For any contour̂c
(including β̂) we denote byι(ĉ) andε(ĉ) the interior
(bounded) and the exterior (unbounded) components
of R2− ĉ respectively; such components exist by the
Jordan Curve Theorem. Each contour lies within, and
does not touch, the boundary rectangle:ĉ ⊂ ι(β̂).
The setĈ forms anEuler diagramwhich has the fol-
lowing properties:

1. Contours intersect transversely.

2. Each contour intersects with every other con-
tour an even number of times. This can, of
course, be zero times.

3. No two contours have a point in common with-
out crossing at that point.

4. Each component ofR2 − ⋃
ĉ∈Ĉ

ĉ is the intersec-

tion of ι(ĉ) for all contourŝc in some subsetX
of Ĉ andε(ĉ) for all contoursĉ in the comple-
ment ofX:

⋂

ĉ∈X

ι(ĉ) ∩
⋂

ĉ∈Ĉ−X

ε(ĉ).

4

A B

Fig. 7: Touching contours.

A B
C

Fig. 8: A disconnected zone.

(ii) A zoneis the intersection of a component ofR2 −⋃
ĉ∈Ĉ

ĉ with ι(β̂). Ẑ is the set of zones. Ẑ∗ is the

set of shaded zones. Let̂R = 2Ẑ − ∅ be the set of
regions, andR̂∗ = 2Ẑ

∗
be the set of shaded regions.

(iii) L̂ is the set of contour labels. The bijection̂` :
Ĉ ∪ {β̂} → L̂ returns the label of a contour or the
boundary rectangle.

(iv) Ŝ is a finite set of plane trees, calledspiders, whose
nodes, called feet and represented by filled-in circles,
lie within Ẑ and satisfy the following properties:

1. each spider has at most one foot in each zone;

2. the edges of each spider are straight line seg-
ments;

3. no two spiders have a foot in common.

(v) η̂ : Ŝ → R̂, η̂(ŝ) = {ẑ ∈ Ẑ|ŝ has a foot in̂z}.

Hammer [9] defines an Euler diagram as ‘any finite num-
ber of closed curves drawn on the page in any arrangement’.
This is, of course, a very liberal definition. We have chosen
to ban some possible Euler diagrams for the sake of intuitive
clarity. For example the diagram in Fig. 7 in which two
contours touch but do not cross is not well-formed as are
diagrams with disconnected zones, an example of which is
given in Fig. 8, which is attempting to show thatC ⊆ A∪B,
the zone{A,B}, i.e., that part of the diagram withinA
andB, but outsideC, is disconnected. Allowing discon-
nected zones could cause intuitive problems in interpreting
the diagram; it would also allow all sorts of strange dia-
grams.

An alternative way to representC ⊆ A ∪ B is given in
Fig. 9. In this diagram three contours intersect at a point,
but all zones are connected.

4.3 Mappings between diagram types and tokens

Let d̂ = 〈Ĉ, β̂, Ẑ, Ẑ∗, L̂, ˆ̀, Ŝ, η̂〉 be a concrete diagram
and let d = 〈C, β,Z,Z∗,L, `,S, η〉 be an abstract dia-

A B
C

Fig. 9: A triple point.

A B
C

U

Fig. 10: A concrete spider diagram.

gram. Thend is an abstraction of d̂ if there is a map-
pingµ : d̂ → d such that component mappingsµ : Ĉ → C,
µ : Ẑ → Z, µ : L̂ → L, µ : Ŝ → S are each bijections
and satisfy the following conditions:

1. ∀ĉ ∈ Ĉ ∀c ∈ C • µ(ĉ) = c ⇔ µ(ˆ̀(ĉ)) = `(c).

2. ∀ẑ ∈ Ẑ • µ(ẑ) = {µ(ĉ) | ẑ ⊆ ι(ĉ)}.
3. ∀ẑ ∈ Ẑ • µ(ẑ) ∈ Z∗ ⇔ ẑ ∈ Ẑ∗.
4. ∀ŝ ∈ Ŝ • µ(η̂(ŝ)) = η(µ(ŝ)).

Such a mappingµ is said to be anabstractionmapping.
Similarly, d̂ is a (concrete)instantiation of d if there is a

mappingζ : d → d̂ such that component mappingsζ : C →
Ĉ, ζ : Z → Ẑ, ζ : L → L̂, ζ : S → Ŝ are each bijections
and satisfy the following conditions:

1. ∀ĉ ∈ Ĉ ∀c ∈ C • ζ(c) = ĉ ⇔ ζ(`(c)) = ˆ̀(ĉ).

2. ∀z ∈ Z•

ζ(z) =
⋂
c∈z

ι(ζ(c)) ∩
⋂

c∈C−z

ε(ζ(c)) ∩ ι(β̂).

3. ∀z ∈ Z • ζ(z) ∈ Ẑ∗ ⇔ z ∈ Z∗.
4. ∀s ∈ S • ζ(η(s)) = η̂(ζ(s)).

Such a mappingζ is said to be aninstantiationmapping.
The spider diagram in Fig. 10 is an instantiation of the

abstract diagram

d = 〈C, β,Z,Z∗,L, `,S, η〉

where

C = {c1, c2, c3}

Z = {∅, {c1}, {c1, c2}, {c2}, {c2, c3}, {c3}}

5

U
A B

U
A

B

Fig. 11: Equivalent concrete diagrams.

Z∗ = {{c1}, {c3}}
L = {A,B, C}
`(β) = U, `(c1) = A, `(c2) = B, `(c3) = C

S = {s1, s2, s3}
η(s1) = {{c1}, {c1, c2}, {c2}},
η(s2) = {{c2}, {c2, c3}}, η(s3) = {{c3}}.

Theorem 1 Let d̂ be a concrete diagram andd be an ab-
stract diagram. Letµ : d̂ → d be an abstraction mapping
andζ : d → d̂ be an instantiation mapping. Thenµ−1 is an
instantiation mapping andζ−1 is an abstraction mapping.

The proof is omitted. We say that a concrete diagram
complieswith any of its abstractions and, equivalently, any
instantiation of an abstract diagram complies with the ab-
stract diagram.

4.4 Equivalent diagrams

For each abstract diagram there are many concrete instanti-
ations. For example, the diagrams in Fig. 11 are both con-
crete representations of the abstract diagram

d1 = 〈C1, β1,Z1,Z∗1 ,L1, `1,S1, η1〉

where

C1 = {c1, c2}

Z1 = {∅, {c1}, {c1, c2}, {c2}}
Z∗1 = ∅
L1 = {A,B}
`(β1) = U, `1(c1) = A, `1(c2) = B

S1 = {s1}
η1(s1) = {{c1}, {c1, c2}, {c2}}.

More surprisingly, a concrete diagram can have many
abstractions. For example, each diagram in Fig. 11 is also a
concrete instantiation of the abstract diagram

d2 = 〈C2, β2,Z2,Z∗2 ,L2, `2,S2, η2〉

where

C2 = {c3, c4}

Z2 = {∅, {c3}, {c3, c4}, {c4}}
Z∗ = ∅
L2 = {A, B}
`(β2) = U, `2(c3) = A, `(c4) = B

S2 = {s2}
η2(s2) = {{c3}, {c3, c4}, {c4}}.

Clearly, the two abstractionsd1 andd2 are ‘isomorphic’ in
some sense. We now make this notion more precise.

Two abstract diagrams

d1 = 〈C1, β1,Z1,Z∗1 ,L1, `1,S1, η1〉

and

d2 = 〈C2, β2,Z2,Z∗2 ,L2, `2,S2, η2〉

are isomorphic if there is a mappingθ : d1 → d2 such
that component mappingsθ : C1 → C2, θ : Z1 → Z2,
θ : L1 → L2, θ : S1 → S2 are each bijections and satisfy
the following conditions:

1. ∀c ∈ C1 • θ(`1(c)) = `2(θ(c)) and θ(`1(β1)) =
`2(θ(β2)).

2. ∀z ∈ Z1 • z ∈ Z∗1 ⇔ θ(z) ∈ Z∗2 .

3. ∀s ∈ S1 • θ(η1(s)) = η2(θ(s)).

In fact, this is precisely the algebraic notion of isomorphism
whend1 andd2 are regarded as many-sorted algebras.

Two abstract diagramsd1 andd2 are token-equivalent
if there exists a concrete diagram̂d that complies with both.

Isomorphism of abstract diagrams is an algebraic notion,
while token-equivalence is a syntactic notion; however, the
two notions are related by the following theorem.

Theorem 2 Two abstract diagrams are isomorphic if they
are token-equivalent.

Proof: (Sketch of proof) Let d̂ be a concrete diagram
that complies with abstract diagramsd1 andd2 and letµ1 :
d̂ → d1 andµ2 : d̂ → d2 be abstraction mappings. Then
the mappingθ = µ2µ1

−1 is an isomorphism betweend1

andd2.

Theorem 3 For each concrete diagram there is an abstract
diagram to which it complies.

6

A B U

Fig. 12: An illegal diagram representingA = B.

A B
U

Fig. 13: A legal diagram representingA = B.

The proof is omitted. However, the converse is false.
There are abstract diagrams that have no concrete instantia-
tions. For example, the abstract diagram

d = 〈C, β,Z,Z∗,L, `,S, η〉

where

C = {c1, c2}

Z = {∅, {c1, c2}}
Z∗ = ∅
L = {A,B}
`(c1) = A, `(c2) = B

S = ∅
has no concrete instantiation. The only zones in the
diagram are the zone outside all the contours (which must
occur in all diagrams) and the zone{c1, c2} which is
within both c1 andc2. The only way of representing this
concretely is by equating the two contours as illustrated
in Fig. 12; this is illegal under (i) of the definition of a
concrete diagram. Of course, the semantic information
in this diagram can be represented as a concrete spider
diagram, for instance, as in Fig. 13, but this diagram does
not comply withd.

Two concrete diagrams

d̂1 = 〈Ĉ1, β̂1, Ẑ1, Ẑ∗1 , L̂1, ˆ̀
1, Ŝ1, η̂1〉

and

d̂2 = 〈Ĉ2, β̂2, Ẑ2, Ẑ∗2 , L̂2, ˆ̀
2, Ŝ2, η̂2〉

A B

C

A B

C

U U

Fig. 14. Diagrammatically-equivalent diagrams with non-
isomorphic spiders.

arediagrammatically-equivalent if there is a mappingφ :
d̂1 → d̂2 that comprises a homeomorphismφ : R2 → R2

which induces bijectionsφ : Ĉ1 → Ĉ2, φ : Ẑ1 → Ẑ2,
φ : F (Ŝ1) → F (Ŝ2), where F (Ŝ) ⊆ R2 is the set of
spiders feet ind̂, and a bijectionφ : L̂1 → L̂2. These
mappings satisfy the following conditions:

1. ∀ĉ ∈ Ĉ1 • ˆ̀
2(φ(ĉ)) = φ(ˆ̀1(ĉ)).

2. ∀ẑ ∈ Ẑ1 • ẑ ∈ Ẑ∗1 ⇔ φ(ẑ) ∈ Ẑ∗2 .

3. ∀f̂ , f̂ ′ ∈ F (Ŝ1) • f̂ andf̂ ′ are feet of the same spider
in Ŝ1 if and only if φ(f̂) andφ(f̂ ′) are feet of the same
spider inŜ2.

4. ∀f̂ ∈ F (Ŝ1)∀ẑ ∈ Ẑ1 • f̂ ∈ Ẑ ⇔ φ(f̂) ∈ φ(ẑ).

We only need to mapF (Ŝ) because each spider is a tree and
we only need to know the zones it touches, not its graph-
theoretic isomorphism class. This is illustrated by the two
diagrammatically equivalent spider diagrams in Fig. 14 in
which the spiders are not graph-theoretically isomorphic,
but do have equivalent habitats. This example also shows
why the homeomorphismφ : R2 → R2 need not extend to
spiders. The habitat of spiderŝ is given by

η̂(ŝ) = {ẑ ∈ Ẑ|∃f̂ ∈ F (ŝ) • f̂ ∈ ẑ}.

Two concrete diagramŝd1 and d̂2 are type-equivalent
if there exists an abstract diagramd of which each is an
instantiation.

Diagrammatic equivalence of concrete diagrams is a
topological notion, while type-equivalence is a syntactic no-
tion; however, the two notions are equivalent.

Theorem 4 Two concrete diagrams are diagrammatically
equivalent if and only if they are type-equivalent.

5 Utility of two-tiered syntax

In this section we discuss the use of two-tiered syntax in
diagrammatic reasoning and in the development of software
tools to support such reasoning.

7

A B

C

BA
U U

A B U

Fig. 15: Erasing a contour.

5.1 Diagrammatic reasoning

Diagrammatic reasoning is carried out by transforming di-
agrams, just as we manipulate sentences in order to make
inferences in symbolic systems. As we discussed in§3, in
the case of symbolic systems, it does not matter whether
we mean to manipulate sentence-types or sentence-tokens,
since making a type-token distinction does not have impor-
tant consequences. On the other hand, in the case of dia-
grammatic systems, we need to make it clear whether trans-
formation rules are being applied to diagram-tokens or to
diagram-types.

It is natural to think that diagrammatic reasoning oc-
curs at the token level, since what the user actually ma-
nipulates are concrete diagram-tokens not abstract diagram-
types. However, we present several cases to illustrate that
the relationship between type-syntax and token-syntax can
be used to our advantage in carrying out the diagrammatic
reasoning process. Thus, we argue that diagrammatic rea-
soning rules can be stated in terms of token-syntax but for-
malized and proved valid using type-syntax.

As a simple case, consider again the diagrams in Fig. 11.
For example, we would like to allow the user to redraw
the second diagram as a copy of the first diagram, or vice
versa. Thecopy ruleor thereiteration rulecan be stated at
the token-level, but with the help of the type-equivalence
relation which is defined in the previous section.

Copy Rule: We may transform a concrete diagram̂d to
another concrete diagram̂d′ if and only if d̂ and d̂′ are
type-equivalent.

A more interesting case is when we consider the reason-
ing rule,contour erasure. Erasing a contour can cause syn-

A B

C
B

C

U U

D

A

Fig. 16: Problem with erasing a contour.

tactic difficulties at the token level. In Fig. 14 erasing con-
tourC results in two of the feet of the spider residing in the
same zone. This is a not a well-formed diagram. To en-
sure that the resulting diagram is well-formed, the two feet
in the same zone must be replaced with a single foot. A
similar problem occurs with shading.

The reasoning rule can be formulated at the token-syntax
level in such a way that these difficulties are overcome:

Contour Erasure Rule (token-level): Let d̂ be a concrete
diagram with at least one contour and letd̂′ be the diagram
obtained fromd̂ after erasing a contour as follows:

1. any shading remaining in only a part of a zone is also
erased;

2. if a spider has feet in two zones which combine to form
a single zone with the erasure of the contour, then these
feet are replaced with a single foot connected to the
rest of the spider.

Thend̂ can be replaced bŷd′.

However, a more serious problem can occur. In Fig. 16
removing a contour results in a non-well-formed diagram
because we get disconnected zones in the resulting dia-
gram. This problem was first noticed by Scotto [21] as a
flaw in Shin’s Venn I system [22]. His solution involves
combining the original diagram with the diagram composed
just of a boundary contour. From a construction proved by
More [18], we can produce a Venn diagram with at least one
contour whose erasure would result in a well-formed dia-
gram, this solution permits him to rearrange the contours so
that the contour to be removed is this well-behaved contour.

We can offer a different solution. An alternative way
of formulating the contour erasure rule is to consider an
abstractiond of the concrete diagram̂d and to obtain the
abstract diagramd′ by removing a contour fromd. Thend̂
can be replaced by any instantiation ofd′. The resulting
diagram will be well-formed. The rule at the type level can
be stated as follows.

8

Contour Erasure Rule (type-level): Let

d = 〈C, β,Z,Z∗,L, `,S, η〉

be an abstract diagram withc ∈ C and let

d′ = 〈C′, β′,Z ′,Z ′∗,L′, `′,S ′, η′〉

be the abstract diagram defined by:

1. C′ = C − {c} andβ′ = β.

2. There exists a surjectionσ : Z → Z ′ defined
by σ(z) = z − {c}. Furthermore,z′ ∈ Z ′∗ ⇔ ∀z ∈
Z • σ(z) = z′ ⇒ z ∈ Z∗.

3. L′ = L − {`(c)} and`′ = `− {c 7→ `(c)}.
4. There is a bijectionσ : S → S ′ satisfyingη′(σ(s)) =

σ(η(s)) (where we are using the natural extension ofσ
to regions).

Thend can be replaced byd′.

Any token-based solution is problematic in that compli-
cated details of concrete syntax have to be considered, re-
sulting in some very arcane conditions within the rule. The
solution that we propose has the advantage of always pro-
ducing a well-formed diagram in a natural way, because it
is an instantiation of a diagram-type which has the required
properties.

We suggest that this process extends to all diagrammatic
reasoning rules. Therefore, we argue that diagrammatic
reasoning takes place at the type-level of the system, even
though we are operating on diagram-tokens. This way, we
may take advantage of different kinds of flexibility each
syntax-level has. At the same time, the mechanisms we de-
veloped in the previous section – instantiation, abstraction,
type-equivalence, and token-equivalence – provide us with
a guide to how to communicate between these two different
levels. The following commutative diagram illustrates
a general traffic rule: to transform concrete diagram̂d1

under a diagrammatic reasoning rule, we can transform an
abstractiond1 of d̂1 into abstract diagramd2 and then any
instantiationd̂2 of d2 is the required transformation of̂d1.

d1 −−−−→ d2

µ

x
yζ

d̂1 −−−−→ d̂2

We will return to this discussion in the following section.

5.2 Software tools

For diagrammatic notations to be used on a large scale in the
software development process, appropriate software tools

A

B

C

U

Fig. 17: Label ambiguity.

must be developed. The process of diagrammatic reason-
ing by hand is difficult; however, with automated support
the process becomes much easier and potentially very valu-
able. Our two-level syntax will play an important role in
developing efficient software tools to aid the diagrammatic
reasoning process. We claim that each level of ontology
has its own merits, and moreover, that the close relationship
between them will provide us with a more natural way to
implement a diagrammatic system.

Note that the formalization of token-syntax we have
given is a mapping to the plane,R2, and that this map-
ping itself is an abstraction. Hence, the formalization of
token-syntax properly depends on the medium of the instan-
tiation. For a computer instantiation, this would most likely
be in terms of pixels. Because of the multiplicity of possible
forms of instantiation, it is vital that we have a macro-level
of syntax, i.e., the type-syntax, which provides us not only
with the basic definition of a diagram but with the relation
among different forms of instantiation.

In a concrete instantiation of a diagram presented on a
sheet of paper, say, it can be difficult to determine an al-
gorithm that gives the proper label for a contour. Is it the
label closest to the contour? In Fig. 17, this is certainly
not the case; on a global level the labelling can be disam-
biguated (by a human), but at a local level there are possible
ambiguities (labelB is not the closest label to any contour).
However, in a computer instantiation of a diagram, it is easy
to imagine an interactive process in which one clicks on a
contour and its label is highlighted.

More importantly, in a given system, the communication
established between two levels of syntax (illustrated at the
end of the previous subsection) will help us to implement
diagrammatic reasoning rules in an efficient way. Continu-
ing the discussion of the contour erasure rule from the last
section, it is easy to imagine a computer system in which
the most appropriate instantiation of a diagram with a con-
tour erased is produced automatically. In this case, the al-
gorithm for this process must rely on the type-syntax of the
diagram. At the same time, our abstraction and instantia-
tion functions do an important part of the work so that a
diagram-token on a computer monitor is transformed to an-
other diagram-token.

9

6 Summary and further work

We have focused on a subset of the spider diagram notation
and defined the type-syntax and token-syntax of the nota-
tion and the mappings between them. We have defined type-
equivalent and token-equivalent diagrams and discussed the
ontological issues involved. We have shown that it is nec-
essary to consider both forms of syntax in developing dia-
grammatic inference systems and in their software imple-
mentation.

The general aim of this work is to provide the necessary
mathematical underpinning for the development of software
tools to aid reasoning with diagrams. In particular, we aim
to develop the tools that will enable diagrammatic reason-
ing to become part of the software development process. In
order for this to happen we need to be able to develop and
implement an algorithm that takes a diagram-type and in-
stantiates it as a diagram-token. Work is already underway
on this [2].

Acknowledgements We would like to thank Jean Flower
for comments on earlier drafts of this paper. We acknowl-
edge Yan Sorkin, the creator of theCDEditor [7], the auto-
matic tool that was used to generate most of the diagrams
presented here.

References

[1] L. Euler. Lettres a Une Princesse d’Allemagne, volume 2.
1761. Letters No. 102–108.

[2] J. Flower.Generating Constraint Diagrams. MSc disserta-
tion, University of Brighton, 2000.

[3] J. Gil, J. Howse, S. Kent. Formalising Spider Diagrams,
Proc. IEEE Symposium on Visual Languages (VL99), Tokyo,
Sept 1999. IEEE Computer Society Press, 130-137.

[4] J. Gil, J. Howse, S. Kent, J. Taylor. Projections in Venn-
Euler diagrams. Proc. IEEE Symposium on Visual Lan-
guages(VL2000), Seattle, Sept 2000. IEEE Computer So-
ciety Press, 119-126.

[5] J. Gil, J. Howse, E. Tulchinsky. Positive semantics of pro-
jections in Venn-Euler diagrams.Proc. Diagrams 2000, Ed-
inburgh, Sept 2000. LNAI 1889, Springer-Verlag, 7-25.

[6] J. Gil, J. Howse, E. Tulchinsky. Positive semantics of pro-
jections. Accepted for the Journal of Visual Languages and
Computing. To appear, 2001.

[7] J. Gil, Y. Sorkin. Ensuring Constraint Diagram Consistency:
theCDEditor user-friendly approach. Manuscript available
from second author. A copy of the editor is available at
http::/www.geocities.com/ysorkin/cdeditor/. Apr. 2001.

[8] N. Goodman.Languages of Art: An approach to a theory of
symbols. Hackett Publishing Company, INC. 1976.

[9] E. Hammer.Logic and Visual Information. CSLI Publica-
tions, 1995.

[10] J. Howse, F. Molina, J. Taylor, S. Kent. Reasoning with Spi-
der Diagrams.Proc. IEEE Symposium on Visual Languages
(VL99), Tokyo, Sept 1999. IEEE Computer Society Press,
138-147.

[11] J. Howse, F. Molina, J. Taylor. SD2: A sound and complete
diagrammatic reasoning system.Proc. Artificial Intelligence
and Soft Computing(ASC 2000), Banff, July 2000. 402-408.

[12] J. Howse, F. Molina, J. Taylor. On the completeness and
expressiveness of spider diagram systems.Proc. Diagrams
2000, Edinburgh, Sept 2000. LNAI 1889, Springer-Verlag,
26-41.

[13] J. Howse, F. Molina, J. Taylor. A sound and complete di-
agrammatic reasoning system.Proceedings of IEEE Sym-
posium on Visual Languages(VL2000), Seattle, Sept 2000.
IEEE Computer Society Press, 127-136.

[14] J. Howse, F. Molina, J. Taylor, S. Kent, J. Gil. Spider Di-
agrams: A Diagrammatic Reasoning System. Accepted for
the Journal of Visual Languages and Computing. To appear,
2001.

[15] S. Kent. Constraint diagrams: Visualising invariants in ob-
ject oriented models.In Proceedings of OOPSLA97, ACM
SIGPLAN Notices 32, 1997.

[16] R. Lull. Ars Magma. Lyons, 1517.
[17] F. Molina. Reasoning with extended Venn-Peirce diagram-

matic Systems. PhD Thesis, University of Brighton, 2001.
[18] T. More. On the construction of Venn diagrams. Journal of

Symbolic Logic, 24, 303-304, 1959.
[19] Object Management Group. Unified Modeling Language

Specification, Version 1.3. Available from www.omg.org.
[20] C. Peirce. Collected PapersVol. 4. Harvard Univ. Press,

1933.
[21] P. Scotto di Luzio. Patching up a logic of Venn diagrams.

Selected papers from the sixth CSLI Workshop on Logic,
Language and Computation. CSLI Publications, Stanford,
2000.

[22] S.-J. Shin.The Logical Status of Diagrams. CUP, 1994.
[23] J. Venn. On the diagrammatic and mechanical representation

of propositions and reasonings.Phil.Mag., 1880. 123.
[24] J. Warmer and A. Kleppe.The Object Constraint Language:

Precise Modeling with UML. Addison-Wesley, 1998.

10

