
Dynamic Euler Diagram Drawing
Peter Rodgers

Computing Laboratory
University of Kent, UK

+44 1227 827913

P.J.Rodgers@kent.ac.uk

Paul Mutton
Computing Laboratory
University of Kent, UK

+44 1227 762811

pjm2@kent.ac.uk

Jean Flower
Visual Modelling Group

University of Brighton, UK
+44 1273 642410

J.A.Flower@brighton.ac.uk

ABSTRACT

In this paper we describe a strategy to lay out a graph-enhanced
Euler diagra
graph-enhan
underlying
structural ch
enables the
to the user'
from an abs
close to th
measures f
optimiser, a
maintain the
dynamic g
developed b

We apply
reasoning
diagrams c
embedding.
these new d
diagram pre

Keyword
Euler Diagr

1. INTR
Euler diag
drawn as s
or exclud
distinguish
excluded f
are two V
Venn diag

A gr
underlying
nodes of
zones. Tw
Euler diag

Graph
immediate
powerful
diagrams.
graph synt
are groupe
represente

applications the graph and grouping is liable to change,
because of changes to the underlying data structure, or
because a user has edited the diagram.

m so that it looks similar to an already existing drawn
ced Euler diagram. This task is non-trivial when the
structures of the diagrams differ. In particular, if a
ange is made to an existing drawn diagram, our work

presentation of the new diagram with minor disruption
s mental map. As the new diagram is often generated
tract representation, its initial embedding may not be

at of the original, so we have developed similarity
or Euler diagrams integrated into a multi-criteria
nd a force model for associated graphs that attempts to
 original layout. This work extends the two stage non-
raph-enhanced Euler diagram drawing method
y the investigators.

the dynamic drawing method to diagrammatic
proof sequences, an application area where new
an be generated automatically, without any known
 However, dynamic layout methods can be applied to
iagrams because they are modifications of an original
sented by the user.

s
am; Graph Drawing; Dynamic Layout; Hypergraph.

ODUCTION
rams generalise Venn diagrams, having contours
imple closed curves which can intersect, contain
e other contours. The parts of the plane
ed by being contained in some contours but
rom all others are called zones. In Figure 2 there
enn diagrams shown and in Figure 3 we have a
ram and an Euler diagram.

aph-enhanced Euler diagram comprises an
 Euler diagram with a graph super-imposed. The
the graph are associated with Euler diagram
o different drawings of the same graph-enhanced
ram are shown in Figure 1.

 enhanced Euler diagrams combine the
 associative readability of graphs with the
grouping and set intersection features of Euler
Many diagrammatic applications have extended
ax such as higraphs or hypergraphs, where nodes
d in intersecting regions. These structures can be
d as enhanced Euler diagrams and in most of the

Figure 1. Two drawings of a graph-enhanced Euler diagram

The dynamic diagram application presented in this
paper is that of laying out a sequence of diagrams that
represents a diagram proof, where the reasoning steps give
structural changes in the diagram. To maximise the
readability of the proof, consecutive diagrams should
appear similar apart from changes made by the reasoning
steps.

Dynamic diagram drawing deals with the automatic
layout of diagrams when the underlying structure of an
original diagram has changed to give a new diagram.
Because of the wide variety of changes possible and
reasons for the changes, the task of dynamic drawing is
demanding. Techniques for dynamic graph drawing have
been explored (see Section 2 for a summary), however no
previous work has been performed in dynamic Euler
diagram drawing, or dynamic drawing of Euler diagrams
enhanced with graphs.

Figure 2. Contour addition / removal

1

Figure 3. Zone ab is present in only one diagram

Possible changes to an Euler diagram include the
addition or removal of contours (see Figure 2), or changes
to

th
n
d

d
b
h
to
s
c
th
n
n
th
F

d
d
m

the application area of diagrammatic reasoning with Euler
diagrams; Section 5 details cases where drawing go wrong
and suggests possible solutions; and finally, Section 6 gives
our conclusions.

2. BACKGROUND
There is a well-established existing body of work on
drawing Venn diagrams (which have all possible zones),
for a comprehensive review see [16]. The task of drawing
Euler diagrams is more difficult than that of drawing Venn
diagrams (because there are many more possible
configurations) and more useful (because a Venn diagram

 the zone set (see Figure 3).

In addition to changes to the underlying Euler diagram,
e graph associated with the diagram may change with

ode or edges being deleted or added. Often, both Euler
iagram and graph change at the same time.

We have implemented a two stage system for dynamic
rawing of Euler diagrams enhanced with graphs that
uilds on the static drawing method described in [15],
owever the method described in this paper can be applied
 any initial layout, either hand drawn or drawn with a

tatic method. Examples in Section 4 show both of these
ases. Firstly we lay out the underlying Euler structure in
e new diagram, using information about the layout in the

ew diagram. This is followed by drawing the graph in the
ew diagram, again using information about the layout in
e existing diagram. These two stages are illustrated in
igure 4.

The original diagram

The new diagram before

layout

New diagram after Stage 1

New diagram after Stage 2

Figure 4. Illustrating the two-stage dynamic drawing process

The rest of the paper is organised as follows: Section 2
iscusses the background work to this paper; Section 3
etails the graph-enhanced Euler diagram dynamic drawing
ethod; Section 4 describes how the method is applied to

with many contours becomes difficult to interpret).

Only recently have we seen the publication of papers
addressing the specific problem of drawing Euler diagrams
(e.g.[3][6][7][8]). The general task of drawing Euler
diagrams can be reduced to the simpler task of drawing
atomic Euler diagrams and recombining to build a nested
Euler diagram [7]. In practical applications this is a useful
step which often reduces the number of contours in
drawing task.

The embeddings obtainable from algorithms given in
[6][7] were correct, but not aesthetically pleasing and could
be hard to visually decipher. In [8] this problem was
addressed by taking an embedded diagram, subject to some
aesthetic criteria, and applying a hill climbing algorithm to
lay out the diagram. The hill climbing process was guided
by the use of various metrics to assess the quality of a
drawing. In [15] graphs were superimposed upon the Euler
diagrams, combining aesthetic-based hill climbing and
force-based iteration to place graph nodes. Drawing graph-
enhanced Euler diagrams widens the number of potential
application areas for the work. Apart from diagrammatic
reasoning systems, graph-enhanced Euler diagrams have
been used to visualise information in file systems [2] and
are applicable where graphs are extended in higraph or
hypergraph systems such as software modelling [18], the
visualization of networks [11], and database visualization
[4].

The recent results in Euler diagram drawing form the
basis of the work presented in this paper, but they all
addressed the problem of drawing an Euler diagram as an
isolated artefact (static drawing). In contrast, the work in
this paper considers the problem of drawing a graph-
enhanced Euler diagram in the context of other drawings
(dynamic drawing).

The field of dynamic graph drawing investigates the
process of changing the drawing of a graph as changes are
made to the underlying structure of the graph. Current
dynamic graph drawing techniques, see [1] and [14] for
surveys, are usually based on dynamic variations of current
graph drawing methods. This work informs our choice of
title for this paper, where we imagine a drawn graph-

2

enhanced Euler diagram as a context for the task of
drawing a second diagram, related to the first but with
altered contours, zones and/or graph.

New diagram before layout

New diagram drawn

statically

The original diagram

the new diagram after

dynamic drawing

A major issue when dynamically drawing a graph is to
avoid disturbing the users mental map of the graph [5], a
concept which relates to minimising the disruption to the
current drawing, because the user has invested time in
understanding the current structure. Similarly, in dynamic
Euler diagram drawing we strive to present the new
drawing so that it looks similar to the other diagram, to
maximise the chances that a user could transfer their
understanding of one diagram in interpreting the other. Any
differences between the diagrams should become visually
obvious and commonalities should be clearly comparable.

Figure 5 contrasts between static and dynamic graph
drawing. In this figure, the static drawing approach
successfully changes the new diagram into an
approximation of the original. It lays the contours our
nicely whilst maintaining the Euler diagram structure (the
same zone set). Also the graphs are drawn to separate
graph nodes, to keep nodes away from contours and to
minimise edge crossings. Figure 5. Static and dynamic diagram drawing

 The third diagram in the figure is a different,
contextual diagram, for illustrating dynamic drawing. It has
fewer zones and fewer graph components. The fourth
diagram is an attempt to draw the “new diagram” to look
similar to the “original diagram”. It, again, maintains the
correct zone set and lays out the contours. We can see that
the intersection zone in the dynamically drawn diagram is
smaller than in the statically drawn diagram, because that
zone is missing from the context. There are conflicting
aims – to draw similar graph components in similar places,
and to minimise edge-crossings. In this case, the task of
highlighting commonality between the graph components
has resulted in a drawing which has edge-crossings.
Different weightings can be specified to achieve a balance
between such conflicting aims.

This work on dynamic graph-enhanced Euler diagram
drawing has been applied to spider diagrams [12]. Inspired
by the widespread use of diagrammatic notations for
modelling and specifying software systems, there has been
much work recently about giving diagrammatic notations
formal semantics. The analysis of a diagrammatic
specification can be done using diagrammatic reasoning
rules - rules to transform one diagrammatic assertion into a
new diagram that represents equivalent or a weaker
semantic statement.

Figure 6. Two equivalent hypergraph drawings which are

different when interpreted as spider diagrams.

Spider diagrams are a subset of constraint diagrams
[17], with a restricted notation and restricted rule system.
Unitary spider diagrams are Euler diagrams with extra
notation comprising shading in zones and a graph
superimposed on the diagram. The components of the

 3

superimposed graph are trees (called spiders). Contours
represent sets and zones represent subsets of those sets,
built from intersection and exclusion. The absence of a
zone from the diagram indicates that the set corresponding
to that zone is empty. Thus the absence of a zone from the
diagram conveys information, and the two diagrams in
Figure 6 have different semantics.

The seven reasoning rules each make a small change to
a diagram, and they have each been proven to be valid: if a
rule transforms diagram d1 into diagram d2 then d2
represents a semantic consequence of d1. Other rules could
be devised which are valid, and in any logic system, the
choice of rules is to some extent arbitrary.

premise

conclusion

b ba a Each spider drawn on a spider diagram diagram has a
habitat: the collection of zones that contain nodes of the
graph. The spiders assert semantically the existence of an
element in the set corresponding to its habitat. Spiders
place lower bounds on the cardinality of sets. Shading in a
zone (or collection of zones) indicates that the set
corresponding to that zone (or zones) contains only
elements for the spiders that are in it, and no more. Shading
places an upper limit on the cardinality of sets. See Figure
7 for an example of a spider diagram with its abstract
syntax and semantics.

c c

b ba a

c c

Abstract syntax:
Contours : {a, b}
Zones: {{},{a},{b}}
Shading:{{a}}
Spiders : {{{},{b}},{{a}}}

Semantics:

|A| = 1 and and |U-A| ≥
1

{}=∩BA

Figure 8. An example of a proof in the spider diagram
reasoning system

The spider diagram reasoning system provides an ideal
application for the dynamic drawing of diagrams, because
we have a software tool which generates proofs of spider
diagram theorems, but only generates the underlying
abstract diagram sequence. Each diagram in the proof
needs to be laid out for the user so that the changes that
have been applied by the reasoning rules are visually clear.
The first diagram can be laid out statically and the
remaining diagrams dynamically drawn with the preceding
diagram as context.

a
b

3. DYNAMIC DRAWING METHOD
We have implemented a two stage system for dynamic

drawing of Euler diagrams enhanced with graphs that
builds on the static drawing method described in [15].
Firstly we lay out the underlying Euler structure in the new
diagram, using information about the layout in the original
diagram. This is followed by drawing the graph in the new
diagram, again using information about the layout in the
original diagram. These two stages were illustrated in
Figure 4.

Figure 7. An abstract spider diagram and a corresponding
drawn spider diagram.

The semantics of spider diagrams provide a foundation
upon which we build reasoning rules. In the case of spider
diagrams, it is standard to allow seven rules to transform a
spider diagram into another (these rules are given in e.g.
[9]). For example, one rule transforms a diagram with an
absent zone into the equivalent diagram which contains the
zone, shaded. This reasoning rule changes the structure of
the underlying Euler diagram and necessitates
reconstruction of a drawn diagram. A sequence of
reasoning rules, applied to a premise diagram, gives a proof
which ends with a conclusion diagram. An example of such
a proof is shown, drawn by hand, in Figure 8. The same
proof is shown again later in Figure 20, Figure 21 and
Figure 22.

Our strategy for dynamic layout is to draw a new
diagram in a similar manner to an existing diagram, but to
also include some notion of aesthetics into the new layout.
There are three issues we deal with: mapping diagram
items in one diagram to items in the other another, which is
relatively easy for the contours and zones of an Euler
diagram, as the contours in both diagrams must be uniquely
labelled, but is harder for the embedded graph as it is
unlabelled; the second issue is to lay out the items in the
new diagram in a similar way to mapped items of the

 4

existing diagram; the third issue is to include aesthetics into
the layout of the new diagram, so that unmapped items are
not drawn badly, and so that mapped items are not forced
into bad layouts because of changes in the vicinity of the
item.

3.1 Dynamic Euler Diagram Layout
The layout of the Euler Diagram uses a multi-criteria
optimiser that integrates two specialist dynamic metrics
with existing metrics that improve the general aesthetics of
a diagram. These general metrics are used in addition to the
dynamic metrics because of the incomplete nature of the
mapping between the original and new diagrams. Where
contours are not present, simply following the current
layout is not possible. Where zones have been altered it
may also be that the best possible match for the current
layout results in a very poorly laid out diagram. The
optimiser is a hill-climber, which attempts to minimise a
weighted sum of the metrics.

The existing static diagram metrics are taken from the
static Euler diagram layout method described in [8]. As
with the previous work, contours are represented as
polygons with an arbitrary number of points. This allows
the use of standard algorithms to produce the metrics.
There are seven single diagram metrics used. Two improve
the roundness of contours: ContourRoundnessAngles,
which balances out the angles at the points of polygons and
ContourRoundnessEdgeLength, which balances out the
length of the line segments of contours. DiagramArea
measures the total area occupied by the diagram, and so
prevents disconnected contours from moving too far apart.
ContourArea balances out the areas of contours. ZoneArea
balances out the areas of zones. Two metrics measure the
closeness of contours: ContourClosenessPts uses
distances between points on the contours and
ContourClosenessEdgePt, measures the closeness of points
in one contour to the line segments in the other. All of
these metrics except DiagramArea are invariant under
scaling.

To lay out static diagrams, these metrics are used in a
hill climber. This moves the points of contours, and checks
if the weighted sum of the metrics had been improved. If
there is an improvement, the move is kept, otherwise it is
discarded. As well as single points entire contours were
also moved. A cooling schedule is applied in order to
reduce the amount of movement as the iterations continued.

The hill climber was modified for the drawing of
dynamic Euler diagrams. In particular it was clear that the
dynamic metrics were each affected by either point
movement or contour movement, but not both. To take
advantage of this, and improve the time taken to get to a
minima, the dynamic metrics were designed so that they
could register for a particular movement type. This did not

have an impact on the static diagram metrics, as they are all
affected by both types of movement

This change has a significant consequence on
measuring fitness. It means that there cannot be a global
fitness function, only local fitness functions for point
movement and contour movement. It is conceivable that
one movement may reduce one fitness measure but in
doing so increase another, however, because the functions
share many metrics (all the single diagram metrics), the net
overall effect is a downwards movement of both fitness
functions. It is likely that having competing fitness
functions would become problematic if the sets of metrics
used in each have fewer metrics in common.

The motivation for the new dynamic metrics is to
ensure that the new diagram looks as close as possible to
the original. There are two components to this. Firstly, the
position of contours that appear in both diagrams should be
similar. This is implemented by the
ContourPositionComparison metric. Secondly, the shape
of two contours that appear in both diagrams should be
similar. This is implemented by the
ContourPointsDifferenceComparision metric.

ContourPositionComparison sums the square of the
position differences between mapped contours. To ensure
the metric does not change when the diagrams are scaled, it
is divided by a value based on the area of the original
diagram (as this diagram does not change, this value is a
constant throughout the drawing process). There are
various possible scaling values, but we use the sum of the
areas of the contours in the still diagram, which relates
directly to the scale of the original diagram (and so the new
diagram, as it will be drawn similarly to the original) and is
fairly simple to calculate. More precisely the formulae for
this metric is

()

S

CCdist
Ccontour

neworiginal∑ 2),(

where is the distance between the
centres of the bounding box of contour C in the original
and new diagrams. S is the scaling value calculated from
the original diagram. This metric is largely concerned with
the position of contours. The movement of points has only
a minimal impact on its value, and so the metric is only
registered for the contour movement element of the hill
climber.

),(neworiginal CCdist

ContourPointsDifferenceComparision is designed to
make the shape of the contour in the new diagram similar
to the shape of the mapped contour in the original diagram.
It works by initially finding a shift factor to lay one contour
on top of another, equalising the centres of the bounding

 5

boxes. The metric penalises points of the new contour that
are distant from the mapped point in the existing contour.
The output is the sum of squared differences of the mapped
points of each mapped contour.

More precisely ContourPointsDifferenceComparision
is:

()

S

EEdist
Ccontour

CnewinEnew
CoriginalinEoriginal

neworiginal∑ ∑
















,

2),(

To calculate this value, the point sequences of the two
contours that are to be compared need to be mapped.
Consider three aspects in turn.

1 1 2 2 1 1

where is the distance between the
mapped points in the original and new contours in the new
diagrams. S is the same scaling value as used for
ContourPositionComparison. This metric is concerned
with the shape of contours, and the movement of contours
does not change its value, hence is it only registered for the
point movement element of the hill climber.

),(neworiginal EEdist
2 2

3 3
3 3 4 4

Figure 9 Contours with unequal number of points

Initially, to allow for proper points comparison the
number of points in each contour need to be equalized. The
number of points in the polygons representing each contour
may vary in both automatically generated contours or
manually created ones, see Figure 9. The numbers of points
are equalized by placing new points half way along line
segments of the contour with least points.

There is an alternative measure of the difference in
contour shape, and that is to find the difference between the
polygons that represent the two contours, and attempt to
minimise the area of the difference. The difficultly with
this is that very thin polygons have little area, and are
difficult to reduce, but have a very noticeable impact on the
drawing. When this metric was tried, the optimiser tended
to reduce the difference between the polygons by making
these thin polygons, rather than exactly equalizing the
contours.

1 1

2 2 3 3

3.2 Dynamic Embedded Graph Layout Figure 10. Contours winding in opposite orientations
The work in the previous section on Dynamic Euler
Diagram Layout results in a pair of drawn Euler diagrams
which look similar. Work described in [15] allow us to
place the graph superimposed upon the Euler diagram so
that each graph node belongs to the correct Euler diagram
zone. If we use this algorithm to draw the graphs, they are
nicely drawn, but a graph that is identical in the new and
original diagrams can appear very differently in each.
Hence, to create a dynamic drawing, we use the placing of
the graph nodes in the original diagram to inform the
placing of the graph nodes in the new diagram.

Next, require that the point sequences of the contours
need to be winding in the same direction - either clockwise
or counter-clockwise, see Figure 10, else the contour would
need to be inverted by the optimising process. To deal with
this a test is made, and if they are in different directions,
one point sequence is inverted.

2

1

2
3 3

1
3.2.1 Mapping
To work out which original nodes’ positions should affect
which new nodes’ placing, we have to find a mapping (a
partial injective function) from the nodes of the original
diagram to nodes in the new diagram. For some nodes in
the new graph, the mapping associates (unique) nodes in
the original graph. If the two graphs are identical, the
mapping will be a one-to-one mapping between the graph
nodes, but in general there will be some nodes in the
original graph unmapped and some modes in the new graph
unmapped.

Figure 11. Contours with rotated points

Finally, the points in the sequences are aligned so that
the mapped points are close together, otherwise the
optimiser would need to rotate the points, see Figure 11.
This is done by finding the two closest points of each
contour, and translating each point labelling to start the
point sequence with the closest points.

 6

The simplest mapping considers connected
components of the graphs in the two diagrams. For each
component in the original graph, an isomorphic graph is
sought which shares the same habitat (in practise, the graph
components are simple and the search for isomorphic
components is assisted by node assignment to zones). If
such an isomorphic graph is found, then its nodes are
mapped with the nodes in the new graph. An example is
shown in Figure 12, where the mapping is shown using
node labels. In this figure the unlabelled nodes do not
participate in the mapping.

C

AD D A
B

C BE

Figure 14. Problems in mapping between graph nodes

The mapping between nodes of the graphs is used to
determine some of the forces exerted on graph nodes, as
described in the next section. Nodes which are associated
under the mapping are encouraged to be drawn in similar
positions (relative to the zone they are in) but are also
subject to other forces.

A B B
A

C
D C D

3.2.2 Force model
The force model for laying out the nodes in the new
diagram is based on the version used for laying out static
embedded graphs as described in [15]. The forces are
adjusted so that nodes which have a mapped node in the
original diagram are encouraged to move closer to the
corresponding position in the original diagram. However,
changes to the structure of the Euler diagram may mean
that the corresponding position is undesirable, or worse, it
is outside the correct zone. Hence, the force system uses
the forces from the static method to ensure that the layout
does not have very poor aesthetics and that the diagram
retains its structure. Nodes that do not have a mapped node
in the original diagram are, in effect, placed with the
standard static method.

Figure 12. Simple mapping between graph nodes

A more sophisticated mapping would seek components
which are “nearly” isomorphic – perhaps components
which differ by a single node. This sort of partial matching
involves a difficult problem of choosing which components
to map if there are multiple “similar” graph components.
Some examples are purely symmetrical, and an arbitrary
decision could be made. In Figure 13, we could equally
map A1, B1 to A and B, or we could equally map A2 and
B2 to A and B.

A2 A1 A
A node belonging to a particular zone must first be

placed such that it is contained within the region defined by
the zone in the new diagram. As with the static method we
place nodes randomly by first drawing a horizontal line
through the containing zone that meets the zone at a
random point. The node is then placed on this line. This
strategy is designed for quick placements of nodes in the
correct zone. The application of the force model which
then follows will place nodes in aesthetically pleasing
positions, and if a node has a corresponding mapped node,
it will be placed close to the relevant location found from
the original diagram.

B2
B

B1

Figure 13. Symmetry and mapping graph nodes

In other cases choices would have to be made more
carefully to maximise the mapping’s ability to draw similar
diagrams. In Figure 14, simple pairwise consideration
between the CDE component on the left and the AB
component on the right may lead to a mapping between D
and A and between E and B. However, this would miss the
opportunity to use the other component, CD, in the right
hand diagram. In this way, seemingly arbitrary decisions
about mapping components may have wider repercussions
about mapping choices elsewhere in the diagrams. For this
reason, we have avoided implementing anything more
sophisticated than the simple node mapper illustrated in
Figure 12.

After initial placement, refinement of node locations is
achieved by applying a force model to the set M of nodes
in the zone. As with the static method we have a repulsive
force acting between each pair of nodes in the zone, which
separates nodes evenly and a repulsive force between
nodes and line segments, which prevent nodes escaping
from a zone or getting undesirably close to the boundary of
a zone. In addition, the dynamic method includes a force
that attracts nodes to the location of nodes they are mapped

 7

to in the original diagram, so encouraging the layout to be
similar to the original where appropriate.

The repulsive force between nodes is based on that of
force model by Fruchterman and Reingold [10] and is
inversely proportional to the separation d, and proportional
to the number of nodes, |M|, in the zone. A constant c is
used to affect the desired separation between pairs of
nodes. The repulsive force between two nodes is given by

d
cM × .

The repulsive force between nodes and line segments
acts on the nodes only; it does not move the line segments.
It is proportional to |M|2, as this helps to contain larger sets
of nodes where there will be more node-node repulsions.
As the zone may consist of an arbitrary number of line
segments of arbitrary lengths, the repulsive force is also
proportional to the length of the line segment l. The
repulsive force between a line segment and a node is given

by 2
2

d
lcM × .

The attractive force is applied to each node that has a
mapping to a node in the original diagram. The force acts
towards the position of the mapped node, encouraging the
graph in the new diagram to be laid out similarly to the
graph in the original diagram. The magnitude of the force
applied to the node is directly proportional to the distance
to the mapped node squared. k represents a constant that
can be used to adjust this attractive force in relation to the
two repulsive forces. The attractive force towards mapped

node position is given by
c

kd 2
.

The application of the force model is an iterative
process. For each iteration, the resultant force acting on
each node is the sum of all repulsive forces from the line
segments of the containing zone, the repulsive forces from
all other nodes in the same zone and possibly the force
towards the corresponding node in the still diagram. After
calculating all of the resultant forces, the location of each
node is updated by moving it a small distance in the
direction of the force. The distance of the movement is
proportional to the magnitude of the force, however we cap
the maximum value of the movement to prevent very
strong forces from moving nodes a long way and therefore
possibly breaking the structure of the diagram. After a
number of iterations, the system nears an equilibrium and
the nodes occupy their new locations.

With three different types of forces acting
simultaneously, some care must be taken to choose suitable
values for each parameter. Our experimental framework
uses c = 2 and k = 5x10-6. The purpose of the repulsive
force exerted on nodes by line segments is to prevent nodes

escaping from their containing zone. If the attractive force
towards a node’s position in the original diagram is made
too strong, the resultant force acting on the node could
cause it to escape from the zone. For this reason, it is
important to choose a suitable value for k, which typically
leads to a compromise between preserving structural
correctness (which is essential) and preserving the mental
map of the user.

4. EXAMPLE – DIAGRAM PROOF
SEQUENCES
In the section we demonstrate the dynamic drawing as
applied to some spider diagram proofs: sequences of spider
diagrams. Firstly we discuss the alterations needed to adapt
our method to this specific application area and then we
give some detailed examples.

4.1 Extra steps used for this application
As discussed in [15], the graphs for spider diagrams are
unusual in that the abstract syntax specifies only the
connected components of the graph (the habitats of the
spiders). The graph edges serve only to link together
connected components into trees, and any tree would
suffice to convey the same diagram semantics. When
drawing a static diagram, we collected together relevant
graph nodes and drew an arbitrary spanning tree for that
node set.

When drawing spider diagrams dynamically, the node
mapping described in section 3.2.1 may associate a spider
in the original diagram with one (sharing the same habitat)
in the new diagram. The force model will strive to present
the nodes of these two spiders in similar positions so that
the spiders are recognisably “the same” spider. However,
unless attention is paid to the chosen edges, two spiders
could still end up looking different, as illustrated in Figure
15.

Figure 15. The importance of relocating edges in spider

diagrams

The mapping between nodes of one spider and nodes
of another can be used to choose which edges should be
chosen to build the spanning tree in the new diagram, and
this step is taken before the force model is applied. An
example of reallocation of edges is illustrated in Figure 16.

 8

The original diagram

New diagram, before layout

New diagram drawn

statically

the new diagram after

dynamic drawing

Original diagram

New diagram before layout

new diagram drawn

dynamically

new diagram drawn statically

Figure 17 Exchanging node positions

If the underlying Euler diagram changes its contour
set, then the zones become different abstract zones (the
abstract zones are identified by the set of containing
contours and the set of excluding contours). If a contour is
removed from a diagram, even if it seems to leave part of
the diagram unaffected, the graph components will not be
mapped across, and the graphs will be drawn independently
(see, e.g. Figure 18). This failing to match graph
components could be fixed by using the notion of
corresponding regions in Euler diagrams, see [13].

Figure 16. Reassigning edges using the contextual diagram

Another change is the position-exchanging step that
was used in the static case. To recap, if a diagram had n
nodes in zone z, the static drawing algorithm first identified
n suitable node positions, then allocated nodes to different
positions, using metrics to determine whether exchanging
positions gave an improvement or not. The metrics
penalised diagrams with edge-crossings and diagrams
whose total edge-length was large. In the dynamic case, it
would be a backwards step to change the position of a node
whose position had been moved using the force model to
match the position of a partner node in the original
diagram. The position-exchanging algorithm is still used
but only nodes which weren’t in the mapping between
diagrams participate. This is illustrated in Figure 17. In the
static drawn diagram, the three positions have been
distributed within the zones, then positions exchanged to
minimise edge crossings. However, in the dynamically
drawn diagram, an attempt has been made to mimic the
context diagram, and we would expect two of the diagram
components to include an edge-crossing. The third diagram
component also involves edge-crossings but it has no other
(non-mapped) node positions to exchange places with to
reduce the complexity of the diagram.

 9

Original diagram

New diagram before layout

new diagram drawn

dynamically relative to the
original (without contour c)

new diagram drawn

dynamically relative to the
original (including contour c)

Figure 19. Criteria weights in the control window

Figure 18. The effects of changing the contour set on graph

component matching The metrics and their weights for the Euler diagram
optimiser are given in Figure 19, which also shows the
control window for the dynamic drawing. As with most
multi-criteria systems the weights serve two purposes, to
define the importance of the metrics and to normalize the
values of the metrics, which may return values in very
different ranges. In this

4.2 Examples
In this section we show the method working on some
example proof sequences. The first example shows several
different layouts for the same proof. The following two
examples are briefer, and compare the original undrawn lay
out of the proofs against the drawn version.

For the diagram at the top of Figure 24 the values for
these metrics, including the above weights is:

To make the examples consistent they have all been
drawn with the same parameters for Euler diagram multi-
criteria optimiser and for the graph force algorithm. This
inevitably produces a compromise, and better results for
individual examples could have been improved by tuning
the numbers.

ContourPositionComparison 634.8

ContourPointsDifferenceCompariso
n 82592

ContourRoundness 0.00031

ContourEdgeLength 0.00028

ContourArea 18.02

ZoneArea 5.337

ContourClosenessPts 2148.7

ContourClosenessEdgePt 52.15

DiagramArea 0.02296

It can be seen that the two dynamic metrics at the top
are given much higher priorities than the standard static
metrics. This is to ensure diagrams are drawn similarly.
The next highest importance is given to the closeness
metrics, to counter the tendency of the similarity metrics to

 10

push contours against the border of other contours when
the mapped contour is not in a position that can be closely
copied. The other metrics are quite low in this diagram.
This is normal, but a metric will spike highly, and thereby
become more important if the drawing is very poor with
regard to it.

Figure 20. A proof sequence that has not been laid out, only
placed with the standard embedder. The diagram on the right
is the same as the diagram on the left, except for rounding of

edges using a Bezier method.

Figure 20, Figure 21 and Figure 22 show an extended
example of drawing a diagram proof sequence with the
dynamic method. This sequence is that shown in Figure 8,
and allows the reader to compare the automatic dynamic
approach described in Section 3 against an “ideal” hand
drawn layout. The right hand side of each of these figures

show the same diagram layout as the left hand side, but
with a Bezier rounding method applied to the edges. Each
of the two figures that use the dynamic method, Figure 21
and Figure 22 use a different starting mechanism.

Figure 20 shows the simple initial layout with no
attempt at drawing the diagrams nicely. These Euler
diagrams are drawn with the method described in [6], and
the graphs are laid out randomly, using the method
described in Section 3.2.2. This is the initial position for all
the diagrams in this paper (except for those which are hand
drawn). The layout method then alters this initial position
to a more aesthetically pleasing one.

Figure 21. A proof sequence for which the initial diagram has
been hand drawn, and subsequent diagrams have been drawn

by the dynamic method. The diagrams on the right are the
same as on the left, but improved with a Beziering method

 11

Figure 21 shows a dynamic sequence for which the
initial diagram is hand drawn subsequent diagrams are laid
out using the dynamic drawing method, as with the
following examples, the dynamic drawing method is
applied by taking the previous diagram in the sequence as
the original, rather than always using the first diagram.
Both the Euler contours and graphs are maintained in
relatively similar positions to the previous diagram, even
after structural changes are made, we regard the layout of
this sequence as successful.

Figure 22. A proof sequence for which the initial diagram has
been drawn with the static drawing method, and subsequent

diagrams have been drawn by the dynamic method. The
diagrams on the right are the same as on the left, but

improved with a Beziering method

Figure 22 shows a proof sequence where the first
diagram is laid out using the static drawing method

described in [15]. This sequence is still aesthetically
acceptable, but minor problems in early layout are
compounded in later diagrams. In particular the high
weightings given to the contour separation Euler criteria
are not appropriate for this example. A set of weightings
used in a static context would be more appropriate here.

Figure 23. A proof sequence with the no layout method

applied to the diagram on the left. The static drawing method
has been applied on the first diagram on the right, with the

dynamic method applied subsequently.

Figure 23 shows a more dynamic sequence, in each
diagram varied changes are being made to both the Euler
diagram and graph. The initial layout is shown on the left.
This changes the layout of the diagram radically for each
step in the sequence. The right hand side shows an
automatically laid out diagram at the top, followed by
applications of the dynamic method below it. The contours
retain approximately their correct positions, although some
difference in graph layout can be discerned. The graph
from the first to the second diagram is particularly distinct,
because our simple mapping method does not connect the
two graphs, and they are laid out independently.

 12

The original diagram

New diagram before layout

new diagram drawn

dynamically with success

new diagram drawn

dynamically but from an
initial node layout that

resulted in “trapped” nodes

Figure 25. An example of conflict between three forces

Three different forces are applied during the
simulation of the force model. More often than not, these
interact to produce desirable results. However, there are
some cases where these forces can be seen to conflict with
each other. The example in Figure 25 illustrates one such
problem. The bottom right diagram has had the force model
applied to it from a random initial layout of nodes. The
lone node has become trapped on the wrong side of the
node it is nearest to. Both nodes are relatively close to the
zone boundaries that form a valley along which the nodes
prefer to move. The two nodes are unable to pass each
other along this valley because the repulsive force between
these two nodes is countering the attractive force towards
their partnering nodes in the original diagram. This type of
problem can usually be solved by reapplying the initial
random layout and force model. An alternative would be to
use the mapping information about nodes to find a more
suitable initial layout for the parts of the graph which have
this information available.

Figure 24. A proof sequence with the no layout method
applied to the diagram on the left. The static drawing method

has been applied on the first diagram on the right, with the
dynamic method applied subsequently.

Figure 24 shows a good example of a graph structure
being maintained by the method. The graph layout on the
right hand side is clearly repeated. The initial layout for the
lower two diagrams on the left has a fortuitously good
embedding in this case. On the right, the changes in Euler
diagram structure do not completely break the relationship,
between the Euler diagrams in the first and second of the
sequence, with the shape of the square in the top being
reflected below.

5. FURTHER WORK
Whilst our method is usually effective, there are some

problematic cases of diagram. In this section we comment
on some of the situations where the current drawing system
can reach poor layouts and discuss possible solutions.

 13

Original diagram

New diagram
6. In the new diagram, contour a cannot movFigure 2 e to the
desired position on the other side of b and c

 some heuristic, or to
move larger collections of contours.

6.

t being applied to
visu

eveloping a difference measurement
between diagrams.

timiser, and
wei

st part be variations on those used in the
current system.

ted by EPSRC grants
GR/R63509/01 and GR/R63516/01.

[1]
s for the Visualisation of Graphs.

[2]
EE Information

[3]
appear in Proccedings of GD2003.

[4]
OD

[5]
of Visual

[6]
ms 2002 LNAI 2317, Springer Verlag, pp. 61-75.

[7]

[8]
IEEE Information Visualization

(IV03). pp. 272-280. 2003.

The hill climber used as our optimiser can reach local
minima, particularly when placing contours that are far
away from their desired position, with other contours in the
path between current and desired position, see Figure 26.
Other more sophisticated optimisers, such as simulated
annealing or genetic algorithms, could be applied, but
would take longer to run. Another approach to solving
problems of this sort is to modify the movement method.
At the moment there are two sorts of movement, contour
points and the contours themselves, neither of which are
not moved very far in a single step. It would be possible to
make wider movements, directed by

CONCLUSIONS
We have developed a dynamic drawing method for

Euler diagrams enhanced with graphs, which builds on a
static drawing method. It firstly draws the Euler diagram of
the new diagram like the Euler diagram of the original
using a multi-criteria approach. The embedded graph of the
new diagram is then drawn like the original with a force
based method. The drawing method also incorporates
aesthetic notions so that where parts of the new diagram are
different they can be drawn nicely. The method works
effectively and we have shown i

alizing diagram proof sequences.

We consider this work to be extendable beyond
dynamic drawing to general example based drawing. Users
could teach a tool how to automatically lay out diagrams. A
library of existing diagrams would be consulted before a
new diagram is drawn. A challenge for this method
includes deciding which diagram would be chosen to form
the pattern, by d

We use aesthetic criteria to draw the Euler diagram.
This method is flexible, allowing changes in weights and
different criteria according to user preference. The force
model used to draw the graph also allows for tuning of
different layout preferences to a lesser extent. However,

some weaknesses of our method could be addressed. Firstly
we have a two stage process which firstly changes the
Euler diagram and then the contained graph. In many
applications it would be more desirable to combine the
drawing so that there is a compromise between the layout
of the Euler diagram and the graph. This could be
achieved, at the cost of execution time, by laying out the
graph using a multi-critieria optimiser. This could then be
directly integrated into the Euler diagram op

ghts assigned for the desired compromise.

The method presented here lays out one diagram based
on the current layout of another. For applications such as
user exploration of proofs this is the best strategy, as the
user has a mental map of the first diagram. However, to get
best compromise for all drawings in a sequence of
diagrams which are already generated, alternative methods
might be employed. An example application is presenting
proofs where all the diagrams in a sequence have already
been generated. To achieve this a set of metrics measuring
the fitness of the drawings across all diagrams could be
developed, and employed on the sequence. The metrics
could for the mo

7. ACKNOWLEDGMENTS
This work has been partially suppor

8. REFERENCES
Battista G., Eades P., Tamassia R. and Tollis I.. Graph
Drawing: Algorithm
Prentice Hall. 1999.
De Chiara R., Erra U. and Scarano V. VENNFS: A Venn-
Diagram File Manager. Proc. IE
Visualization (IV03). pp. 120-126. 2003.
Chow S. and Ruskey F. Drawing Area-Proportional Venn
and Euler Diagrams. To
LNCS. Springer Verlag.
Consens M.P. and Mendelzon A.O. Hy+: A Hygraph-based
Query and Visualization System. In Proc. ACM SIGM
Intl. Conf. on Management of Data, pp. 511-516, 1993.
Eades P., Wei Lai, Misue K., and Sugiyama K. Layout
Adjustment and the Mental Map, Journal
Languages and Computing 6, (1995), 183 - 210.
Flower J., and Howse J. Generating Euler Diagrams, Proc.
Diagra
2002.
Flower J., Howse J. and Taylor J. Nesting in Euler Diagrams:
syntax, semantics and construction. Journal of Software and
Systems modelling, issue 1, article 7, Springer Verlag. 2003.
Flower J., Rodgers P. and Mutton P. Layout Metrics for
Euler Diagrams. Proc. 7th

 14

[14] Kaufmann M. and Wagner D.. Drawing Graphs: Methods
and Models, LNCS 2025. 2001.

[9] Flower J., and Stapleton G.. Automated Theorem Proving
with Spider Diagrams. To appear in proc. Computing
Australasian Theory Symposium (CATS04). [15] Mutton, P.J., Rodgers P.J., and Flower, J.A. Drawing Graphs

in Euler Diagrams. To appear in Diagrams 2004. LNAI,
Springer-Verlag.

[10] Fruchterman T.M.J. and Reingold E.M. Graph Drawing by
Force-directed Placement. Software – Practice and
Experience Vol 21(11). pp. 1129-1164. 1991. [16] Ruskey F. A Survey of Venn Diagrams. The Electronic

Journal of Combinatorics. March 2001. [11] GXL web page: http://www.gupro.de/GXL/examples/
hypergraphNav.html. [17] Stapleton G., Howse J. and Taylor J. A constraint diagram

reasoning system. Proc. Distributed Multimedia Systems,
International Conference on Visual Languages and
Computing (VLC '03). pp. 263-270, Miami, USA, 2003.

[12] Howse J., Molina F., Taylor J., Kent S. and Gil J. Spider
Diagrams: A Diagrammatic Reasoning System, Journal of
Visual Languages and Computing 12, 299-324. 2001

[18] Storey M.-A. D. and Mueller H.. Manipulating and
documenting software structures using SHriMP views. In Int.
Conf. in Software Maintenance, pp. 275-285. IEEE. 1995.

[13] Howse J., Stapleton G., Flower J. and Taylor J.
Corresponding regions in Euler diagrams, Proc. Diagrams
2002 LNAI 2317, Springer Verlag, pp. 146-160. 2002.

 15

	INTRODUCTION
	BACKGROUND
	DYNAMIC DRAWING METHOD
	Dynamic Euler Diagram Layout
	Dynamic Embedded Graph Layout
	Mapping
	Force model

	EXAMPLE – DIAGRAM PROOF SEQUENCES
	Extra steps used for this application
	Examples

	FURTHER WORK
	CONCLUSIONS
	ACKNOWLEDGMENTS
	REFERENCES

