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Abstract. Spider diagram systems provide a visual language that extends the
popular and intuitive Venn diagrams and Euler circles. Designed to
complement object-oriented modelling notations in the specification of large
software systems they can be used to reason diagrammatically about sets, their
cardinalities and their relationships with other sets. A set of reasoning rules for
a spider diagram system is shown to be sound and complete. We discuss the
extension of this result to diagrammatically richer notations and also consider
their expressiveness. Finally, we show that for a rich enough system we can
diagrammatically express the negation of any diagram.
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1. Introduction

Euler circles [2] is a graphical notation for representing relations between classes.
This notation is based on the correspondence between the topological properties of
enclosure, exclusion and intersection and the set-theoretic notions of subset, disjoint
sets, and set intersection, respectively. Venn [14] modified this notation to illustrate
all possible relations between classes by showing all possible intersections of contours
and by introducing shading in a region to denote the empty set. However a
disadvantage of this system is its inability to represent existential statements. Peirce
[11] modified and extended the Venn system by introducing notation to represent
empty and non-empty sets and disjunctive information. Recently, full formal
semantics and inference rules have been developed for Venn-Peirce diagrams [13]
and Euler diagrams [6]; see also [1, 5] for related work. Shin [13] proves soundness
and completeness results for two systems of Venn-Peirce diagrams.

Spider diagrams [3, 7, 8, 9] emerged from work on constraint diagrams [4, 10] and
extend the system of Venn-Peirce diagrams investigated by Shin. Constraint diagrams
are a visual diagrammatic notation for expressing constraints such as invariants,
preconditions and postconditions that can be used in conjunction with the Unified
Modelling Language (UML) [12] for the development of object-oriented systems.

In [8] we considered a system of spider diagrams called SD2 that extended the
diagrammatic rules and enhanced the semantics of the second Venn-Peirce system
that Shin investigated (i.e., Venn-II, see [13] Chapter 4) to include upper and lower
bounds for the cardinality of represented sets. In the proof of completeness of SD2 we



opted for a strategy in which the diagram that results from combining a set of
diagrams and the diagram that is the consequence of that set are expanded in a way
similar to the disjunctive normal form in symbolic logic. This strategy extends to
other similar systems, including the one considered in this paper. In this paper, we
extend SD2 by introducing new notation and extending the inference rules to cover
this notation. This extended system is shown to be sound and complete.

A discussion of the system SD2 is conducted in section 2, where the main syntax
and semantics of the notation is introduced and soundness and completeness results
are given. In section 3 we introduce new notation into the SD2 system, extend the
inference rules described in section 2 to include the new notation and show that the
extended system is sound and complete. We also enrich the system by providing
additional results for reasoning with more expressive diagrams. In section 4, we show
that we can express diagammatically the negation of every extended SD2 diagram.
Section 5 states the conclusions of this paper and details related, ongoing and future
work. Throughout this paper, for space reasons, we omit most proofs.

2. Spider Diagrams: SD2

This section introduces the main syntax and semantics of SD2, a system of spider
diagrams. For further details see [8].

2.1. Syntactic elements of unitary SD2 diagrams

A contour is a simple closed plane curve. A boundary rectangle properly contains all
other contours. A district (or basic region) is the bounded subset of the plane enclosed
by a contour or by the boundary rectangle. A region is defined, recursively, as
follows: any district is a region; if r1 and r2 are regions, then the union, intersection, or
difference, of r1 and r2 are regions provided these are non-empty. A zone (or minimal
region) is a region having no other region contained within it; a zone is uniquely
defined by the contours containing it and the contours not containing it. Contours and
regions denote sets.

A spider is a tree with nodes (called feet) placed in different zones; the connecting
edges (called legs) are straight lines. A spider touches a zone if one of its feet appears
in that region. A spider may touch a zone at most once. A spider is said to inhabit the
region which is the union of the zones it touches. For any spider s, the habitat of s,
denoted η(s), is the region inhabited by s. The set of complete spiders within region r
is denoted by S(r). The set of spiders touching region r is denoted by T(r). A spider
denotes the existence of an element in the set denoted by the habitat of the spider.
Two distinct spiders denote distinct elements.

Every region is a union of zones. A region is shaded if each of its component zones
is shaded. A shaded region denotes the empty set if it is not touched by any spider. A
unitary SD2 diagram is a single boundary rectangle together with a finite collection of
contours (all possible intersections of contours must occur, i.e., the underlying
diagram is a Venn diagram), spiders and shaded regions. Each contour must be



labelled and no two contours in the same unitary diagram can have the same label.
The labelling of spiders is optional. For any unitary diagram D, we use C = C(D),
Z = Z(D), Z* = Z* (D), R = R(D), R* = R*(D),  L = L(D) and S = S(D) to denote the
sets of contours, zones, shaded zones, regions, shaded regions, contour labels and
spiders of D, respectively.
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Figure 1 
The SD2 diagram D in Figure 1 can be interpreted as:
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2.2. Semantics of unitary SD2 diagrams

A model for a unitary SD2 diagram D is a pair m = (U, Ψ) where U is a set and
Ψ : C → Set U, where Set U denotes the power set of U, is a function mapping
contours to subsets of U. The boundary rectangle U is interpreted as U,  Ψ(U) = U.

The intuitive interpretation of a zone is the intersection of the sets denoted by
those contours containing it and the complements of the sets denoted by those
contours not containing it. We extend the domain of Ψ to interpret regions as subsets
of U. First define Ψ : Z → Set U by
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where C+(z) is the set of contours containing the zone z, C–(z) is the set of contours
not containing z and )()( cc Ψ−=Ψ U , the complement of Ψ(c). Since any region is a
union of zones, we may define Ψ : R → Set U by
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where, for any region r, Z(r) is the set of zones contained in r.
The semantics predicate PD(m) of a unitary diagram D is the conjunction of the

following two conditions:

Distinct Spiders Condition: The cardinality of the set denoted by region r of unitary
diagram D is greater than or equal to the number of complete spiders in r:
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Shading Condition: The cardinality of the set denoted by a shaded region r of unitary
diagram D is less than or equal to the number of spiders touching r:
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2.3. Compound diagrams and multi-diagrams

Given two unitary diagrams D1 and D2, we can connect D1 and D2 with a straight
line to produce a diagram D = D1–D2. If a diagram has more than one rectangle, then
it is a compound diagram. The ‘connection operation’ is commutative, D1–D2 =
D2–D1. Hence, if a diagram has n unitary components, then these components can be
placed in any order.
The semantics predicate of a compound diagram D is the disjunction of the semantics
predicates of its component unitary diagrams; the boundary rectangles of the
component unitary diagrams are interpreted as the same set U.
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Figure 2 
The compound diagram D = D1–D2 in Figure 2 asserts that:
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A spider multi-diagram is a finite collection ∆ of spider diagrams. The semantics
predicate of a multi-diagram is the conjunction of the semantics predicates of the
individual diagrams; the boundary rectangles of all diagrams are interpreted as the
same set U. Contours with the same labels in different individual diagrams of a multi-
diagram ∆ are interpreted as the same set.

In [8] we describe how to compare regions across diagrams. This formalizes the
intuitively clear notion of ‘corresponding regions’ in different diagrams. For example,
in figure 3, the region 21 zzz ∪=  in D corresponds to the zone z′ in D′ since both
represent the set B – A.
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2.4. Compliance and Consistency

A model m = (U,=Ψ) complies with diagram D if it satisfies its semantic predicate
PD(m). We write m ⊨ D. That is, m ⊨ D ⇔ PD(m). Similarly, a model m complies
with multi-diagram ∆ if it satisfies its semantic predicate P∆(m). That is,  m ⊨ ∆  ⇔
P∆(m). A diagram is consistent if and only if it has a compliant model. All SD2
diagrams are consistent. However, there exist inconsistent SD2 multi-diagrams [8].

2.5. Rules of transformation for SD2

In [8], we introduced rules that allow us to obtain one unitary diagram from a
given unitary diagram by removing, adding or modifying diagrammatic elements.
These rules are summarised below; they are based on the rules given by Shin in [13],
which developed earlier work of Peirce [11].

Rule 1: Erasure of shading.  We may erase the shading in an entire zone.

Rule 2: Erasure of a spider.  We may erase a complete spider on any non-shaded
region.

Rule 3: Erasure of a contour.  We may erase a contour. When a contour is erased:
• any shading remaining in only a part of a zone should also be erased.
• if a spider has feet in two regions which combine to form a single zone with the

erasure of the contour, then these feet are replaced with a single foot connected to
the rest of the spider.

Rule 4: Spreading the feet of a spider.  If a diagram has a spider s, then we may
draw a node in any non-shaded zone z that does not contain a foot of s and connect it
to s.

Rule 5: Introduction of a contour.  A new contour may be drawn interior to the
bounding rectangle observing the partial-overlapping rule: each zone splits into two
zones with the introduction of the new contour. Each foot of a spider is replaced with
a connected pair of feet, one in each new zone. Shaded zones become corresponding
shaded regions.

Rule 6: Splitting spiders.  If a unitary diagram D has a spider s whose habitat is
formed by n zones, then we may replace D with a connection of n unitary diagrams
D1– … –Dn where each foot of the spider s touches a different corresponding zone in
each diagram Di.

Rule 7: Rule of excluded middle. If a unitary diagram D has a non-shaded zone z
where |S(z)| = n, then we may replace D with D1–D2, where D1 and D2 are unitary and
one of the corresponding zones of z is shaded with |S(z)| = n  and the other is not
shaded with  |S(z)| = n +1.

Rule 8: The rule of connecting a diagram. For a given diagram D, we may connect
any diagram D′ to D.



Rule 9: The rule of construction. Given a diagram D1– … –Dn, we may transform it
into D if each D1 ,…, Dn may be transformed into D by a sequence of the first eight
transformation rules.

2.6. Consistency of a multi-diagram and combining diagrams

Definition: An α diagram is a diagram in which no spider’s legs appear; that is, the
habitat of any spider is a zone.

Any SD2 diagram D can be transformed into an α diagram by repeated application
of rule 6, splitting spiders.

Two unitary α diagrams with the same contour set are consistent if and only if for all
zones

(i) corresponding shaded zones contain the same number of spiders;

(ii) when a shaded zone in one diagram corresponds to a non-shaded zone in the other,
the shaded zone contains at least as many spiders as the non-shaded zone.

Two diagrams D1 and D2 are consistent if they can be transformed into α diagrams
with the same number of contours D1a and D2b (by rules 5 and 6) and there exist
unitary components Di

1a of D1a and Dj
2b of D2b such that Di

1a and Dj
2b are consistent.

See [8] for details.
Intuitively, the diagrammatic conditions (i) and (ii) would prevent the case in

which two corresponding zones denote two sets whose cardinalities are inconsistent;
this is the only case in which a pair of unitary α diagrams can be inconsistent.

Given two consistent diagrams, D1 and D2, we can combine them to produce a
diagram D = D1 ∗ D2, losing no semantic information in the process. Given D1 and
D2, first transform them into α diagrams D1a and D2b with the same number of
contours (using rules 5 and 6). Then the combined diagram D = D1 ∗ D2 is the
compound diagram formed by combining each component Di

1a of D1a with each
component Dj

2b of D2b; where two components are inconsistent, we do not obtain a
corresponding component in D. In forming Di

1a ∗ Dj
2b, the number of spiders in a

zone z is equal to the maximum of the numbers of spiders in the corresponding zones
of Di

1a and Dj
2b, and z is shaded if and only if at least one of the corresponding zones

in Di
1a or Dj

2b is shaded – see [8] for details.
The associativity of ∗ allows us to define the combination of the components of a

multi-diagram ∆ = {D1, D2, …, Dn} unambiguously as D* = D1 ∗ D2 ∗ … ∗ Dn. If ∆ is
inconsistent, the result will be no diagram; D* is only defined when ∆ is consistent. A
test for the consistency of ∆ is to try to evaluate D*. Note that there exist inconsistent
multi-diagrams each of whose proper subsets are consistent.

Rule 10: The rule of inconsistency.  Given an inconsistent multi-diagram ∆, we may
replace ∆ with any multi-diagram.

Rule 11: The rule of combining diagrams.  A consistent multi-diagram ∆ = {D1, D2,
…, Dn} may be replaced by the combined diagram D* = D1 ∗ D2 ∗ … ∗ Dn.



2.7. Soundness and completeness

D′ is a consequence of D, denoted by D ⊨ D′, if every compliant model for D is
also a compliant model for D′. A rule is valid if, whenever a diagram D′ is obtained
from a diagram D by a single application of the rule then D ⊨ D′. We write ∆ ⊢ D′ to
denote that diagram D′ is obtained from multi-diagram ∆ by applying a sequence of
transformations. We write D ⊢ D′ to mean {D} ⊢ D′, etc.

For space reasons, we omit the proofs of the validity of rules 1 to 11. These rules
are similar to those of the Venn-II system given in [13] and the proofs are fairly
straightforward. It can be noted that rules 5, introduction of a contour, 6, splitting
spiders, 7, excluded middle, and 11, combining diagrams do not lose any semantic
information; this is useful for the proof completeness.

Theorem 1 Soundness Theorem  Let ∆ be a multi-diagram and D′ a diagram.
Then  ∆ ⊢ D′ ⇒ ∆ ⊨ D′.

The result follows by induction from the validity of the rules. To prove
completeness we show that if diagram D′ is a consequence of multi-diagram ∆, then ∆
can be transformed into D′ by a finite sequence of applications of the rules. That is,
∆ ⊨ D′ ⇒ ∆ ⊢ D′. The proof of the completeness theorem, together with an
explanation of the strategy of the proof, can be found in [8].

Theorem 2 Completeness Theorem Let ∆ be a multi-diagram and let D′ be a
diagram. Then ∆ ⊨ D′ ⇒ ∆ ⊢ D′.

3. Extending the notation

In this section we introduce new notation into the SD2 system, extend the
transformation rules to include the new notation and show that the extended system is
sound and complete.

In fact the new syntactic elements we introduce do not increase the formal
expressiveness of the system as a whole. However, they do increase the expressive
power of unitary diagrams so that information can be represented more compactly and
naturally using the extended notation.

3.1. Extending the notation

The notion of a strand was introduced into spider diagrams (see [3]) to provide a
means for denoting that spiders may represent the same element should they occur in
the same zone. A strand is a wavy line connecting two nodes, from different spiders,
placed in the same zone. The web of spiders s and t, written ζ(s, t), is the union of
zones z having the property that there is a sequence of spiders s = s0, s1, s2, … , sn = t
such that, for  i = 0, … , n−1,  si  and  si+1 are connected by a strand in z. Two spiders



with a non-empty web are referred to as friends. Two spiders s and t may (but not
necessarily must) denote the same element if that element is in the set denoted by the
web of s and t. In Figure 4, it is possible that if the elements denoted by s and t
happen to be in A ∩ B then they may be the same element.
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Figure 4 
A Schrödinger spider is a spider each of whose feet is represented by a small open

circle. A Schrödinger spider denotes a set whose size is zero or one: rather like
Schrödinger’s cat, one is not sure whether the element represented by a Schrödinger
spider exists or not. Because of this, a Schrödinger spider in a non-shaded region does
not assert anything; however, in shaded regions they are useful for specifying bounds
for the cardinality of the set denoted by the region. They are also useful in
representing the negation of a diagram (see next section). The set of Schrödinger
spiders in diagram D is denoted by S* = S*(D). We also let T*(r) denote the set of
Schrödinger spiders touching region r and S*(r) denote the set of complete
Schrödinger spiders in r. From Figure 5, we can deduce |A – B| ≤ 1,  1 ≤ |A ∩ B| ≤ 2,
1 ≤ |A| ≤ 2  and  |B – A| ≤ 1.
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Figure 5 
SD2 is based on Venn diagrams; that is, all possible intersection of districts must

occur. In general, spider diagrams are based on Euler diagrams, in which information
regarding set containment and disjointness is given visually (in terms of enclosure and
exclusion). A spider diagram based on a Venn diagram is said to be in Venn form;
otherwise, it is in Euler form. Figure 6 shows a spider diagram in Euler form.
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Figure 6 



Extending SD2 by including strands and Schrödinger spiders and basing it on
Euler diagrams we can express the system’s semantics as the conjunction of the
following conditions.

Spiders Condition: A non-Schrödinger spider denotes the existence of an element in
the set denoted by its habitat and the elements denoted by two distinct non-
Schrödinger spiders are distinct unless they fall within the set denoted by the zone in
the spiders’ web:
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where S = {s1, ..., sn}.

Plane Tiling Condition: All elements fall within sets denoted by zones:

Ψ( )z
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Shading Condition: The set denoted by a shaded region contains no elements other
than those denoted by spiders (including Schrödinger spiders):
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3.2. Rules of transformation for extended notation

We can adapt and extend the rules of transformation given in section 2.6 to include
rules involving the extended notation.

Adapted Rule 6: Splitting spiders. If a unitary diagram D has a spider s formed by
two or more feet then we may remove a leg of this spider and replace D with a
connection of two unitary diagrams D1–D2, each containing a different component of
the split spider. If splitting a spider disconnects any component of the ‘strand graph’
in a zone, then the components so formed should be reconnected using one or more
strands to restore the original component. The rule is reversible: if a compound
diagrams contains diagram D1 and D2 as just described, then D1 and D2 can be
replaced by diagram D.
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Rule 12: The rule of strand equivalence. A unitary α diagram D (that is, a unitary
diagram in which each spider is single-footed) containing a strand in a zone can be
replaced by a pair of connected unitary diagrams D1 and D2 which are copies of D. In
D1 the strand is deleted and in D2 the two spiders connected by the strand are deleted
and replaced by a single-footed spider in the zone originally containing the strand.
Again, the rule is reversible.
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Figure 8 

Rule 13: The rule of Schrödinger spider equivalence. A unitary diagram D
containing a Schrödinger spider strand can be replaced by a pair of connected unitary
diagrams D1 and D2 which are copies of D. In D1 the Schrödinger spider is deleted
and in D2 the Schrödinger spider is deleted and replaced by non-Schrödinger spider.
Again, the rule is reversible.
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Rule 14: The rule of equivalence of Venn and Euler forms. For a given unitary
diagram in Euler form there is an equivalent unitary diagram in Venn form.

Figure 10 shows equivalent diagrams in Euler (left) and Venn form.
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Figure 10 

3.3. Soundness and completeness of extended system

The validity of the rules stated above is given in Theorem 3.

Theorem 3 If D′ is derived from D by a sequence of applications of adapted rule 6
or rule 12 or rule 13 or rule 14, then D ⊨ D′ and D′ ⊨ D.



The proof is omitted for space reasons. The soundness of the extended SD2 system is
derived by induction from the validity of each of the rules.

Theorem 4 Completeness Theorem for extended SD2 system. Let ∆ be an
extended SD2 multi-diagram and let D′ be an extended SD2 diagram. Then
∆ ⊨ D′ ⇒ ∆ ⊢ D′.

Proof. Assume that ∆ ⊨ D′. We apply rule 14 to each component of each diagram in
∆, so that each diagram is in Venn form. Next, we apply adapted rule 6 repeatedly
to each diagram until all the spiders are single footed. We then apply rule 12
repeatedly until we have removed all strands and then rule 13 repeatedly to
remove all Schrödinger spiders. The resulting multi-diagram 2SD∆  is a set of SD2
diagrams. We apply the same strategy to D′ to produce 2SDD′ an SD2 diagram.

By Theorem 3 2SD∆  ⊨ ∆, and D′ ⊨ 2SDD′ . Hence by transitivity, 2SD∆  ⊨
2SDD′ . So, by Theorem 2 (completeness of SD2), 2SD∆  ⊢ 2SDD′ . For each

diagram 2SDD  in 2SD∆ there is a diagram D in ∆ such that D ⊢ 2SDD , so we
have, ∆ ⊢ 2SDD′ . Each of the rules adapted rule 6, 12, 13, 14 is reversible, so

2SDD′ ⊢ D′. Hence, by transitivity, ∆ ⊢ D′.

3.4. Derived reasoning results

In this section we enrich the system by providing additional results for reasoning
with diagrams containing strands or Schrödinger spiders. Several of the results are
extensions of the given rules to include diagrams with strands. Each lemma is
illustrated in a figure immediately following the lemma. Their proofs are omitted.

Lemma 1 (Rule 2): Erasure of a spider. We may erase a complete spider on any
non-shaded region and any strand connected to it. If removing a spider disconnects
any component of the ‘strand graph’ in a zone, then the components so formed should
be reconnected using one or more strands to restore the original component.
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Figure 11 
Lemma 2 (Rule 5): Introduction of a contour. A new contour may be drawn
interior to the bounding rectangle observing the partial-overlapping rule: each zone
splits into two zones with the introduction of the new contour. Each foot of a spider is
replaced with a connected pair of feet, one in each new zone. Likewise, each strand
bifurcates and becomes a pair of strands, one in each new zone. Shaded zones become
corresponding shaded regions.
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Lemma 3 (Rule 7): Rule of excluded middle. If a unitary diagram D has a non-
shaded zone z, then we may replace D with D1–D2. D1 is copy of D where zone z is
shaded and D2 is copy of D where zone z contains an extra single-footed non-
Schrödinger spider.
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Figure 13 

Lemma 4: Elimination of a strand I. Let D be a unitary diagram containing a
single-footed non-Schrödinger spider s in an unshaded zone z connected by a strand to
a non-Schrödinger spider t whose habitat is unshaded. Then D is equivalent to a
diagram D′ in which the spider t has been deleted.
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Figure 14 

Lemma 5: Elimination of a strand II. Let D be a unitary diagram containing a
single-footed non-Schrödinger spider s in an unshaded zone z connected by a strand to
a non-Schrödinger spider t. Then D is equivalent to a diagram D′ in which the part of t
lying in an unshaded region is deleted and that part of t lying in a shaded region is
replaced by a Schrödinger spider.
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Figure 15 



Example. In this example we give a diagrammatic proof that the combination of D1
and D2 is equivalent to D.

*
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A UBA
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First, transform D1 into its equivalent α SD2 diagram by lemma 5, elimination of a
strand, rule 14, Venn-Euler equivalence, and rule 13, Schrödinger spider equivalence,
as follows

D1b
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BA

D1a
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BA U

BA U
BA

D1c

Combining D1c and D2 by rule 11 we obtain D′.

UBA UBA

D'

Again, by rule 13, Schrödinger spider equivalence, we obtain a unitary diagram D′′.

UBA

D''

Finally, since we can transform the Euler form D into the Venn form D′′ above, we
can complete proof and obtain D  from  D′′.

It is worth noting that, given an SD2 diagram in Euler form, the transformation to
its corresponding Venn form is algorithmic. However, in general transforming from
Venn to Euler forms is not mechanical.



4. Negation

One of the important properties of the SD2 system is that it is syntactically rich
enough to express the negation of any diagram D in a reasonably natural manner. We
describe the construction of the negation of D, a diagram which may include
Schrödinger spiders, in several stages as follows.

(i) D is an α unitary diagram with n zones which are shaded or contain spiders. The
negation of D gives a (compound) diagram with m components (m ≥ n). Any
non-shaded zone z with p spiders gives a unitary component where its
corresponding zone z1 is shaded and contains p − 1 Schrödinger spiders. Any
shaded zone z with q Schrödinger spiders and r (r ≥ 1) non-Schrödinger spiders
gives two unitary components where its corresponding zones z1 and z2 contain
q + r + 1 non-Schrödinger spiders and r − 1 Schrödinger spiders respectively and
z2 is shaded. (When r = 0 we obtain a single unitary component whose
corresponding zone z1 contains q + 1 non-Schrödinger spiders). If D is an α
unitary diagram where no zone is shaded or contains spiders, its negation is any
inconsistent multi-diagram.

(ii) D is a compound diagram with n α unitary components. The negation of D gives
a multi-diagram formed by n (compound) diagrams being each member of the
collection the negation of each α unitary component as in case (i)

(iii) D is any (compound) diagram. We transform it into its α diagram Dα and negate
Dα as in (ii).

(iv) D is any multi-diagram. The negation of D is equivalent to negate D*, the result
of combining the components of D, as in (ii).

Figure 16 illustrates the negation of an α unitary diagram. We use the diagrammatic
notation  D   to denote the negation of  D.
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Figure 16 

5.  Conclusion and related work

We have extended the syntax and inference rules of the system of spider diagrams
we call SD2 and have shown that this extended system is sound and complete. We
have given a number of derived reasoning rules to aid reasoning in the extended
notation and shown that we can syntactically give the inverse of any diagram in this
system. This extended system contains most of the syntactic elements of spider
diagrams given in [3].



Our longer term aim is to prove similar results for constraint diagrams, and to
provide the necessary mathematical underpinning for the development of software
tools to aid the diagrammatic reasoning process.

References

[1] Allwein, G, Barwise, J (1996) Logical Reasoning with Diagrams, OUP.
[2] Euler, L (1761) Lettres a Une Princesse d’Allemagne. Vol. 2, Letters No. 102-

108.
[3] Gil, Y., Howse, J., Kent, S. (1999) Formalizing Spider Diagrams, Proceedings

of IEEE Symposium on Visual Languages (VL99), IEEE Computer Society
Press.

[4] Gil, Y., Howse, J., Kent, S. (1999) Constraint Diagrams: a step beyond UML,
Proceedings of TOOLS USA 1999, IEEE Computer Society Press.

[5] Glasgow, J, Narayanan, N, Chandrasekaran, B (1995) Diagrammatic Reasoning,
MIT Press.

[6] Hammer, E.M. (1995) Logic and Visual Information, CSLI Publications.
[7] Howse, J., Molina, F., Taylor, J., (2000) A Sound and Complete Diagrammatic

Reasoning System, accepted for ASC 2000, IASTED Conference on Artificial
Intelligence and Soft Computing.

[8] Howse, J., Molina, F., Taylor, J., (2000) SD2: A Sound and Complete
Diagrammatic Reasoning System, accepted for VL2000, IEEE Symposium on
Visual Languages.

[9] Howse, J., Molina, F., Taylor, J., Kent, S. (1999) Reasoning with Spider
Diagrams, Proceedings of IEEE Symposium on Visual Languages (VL99), IEEE
Computer Society Press.

[10] Kent, S. (1997) Constraint Diagrams: Visualising Invariants in Object Oriented
Models.  Proceedings of OOPSLA 97

[11] Peirce, C (1933) Collected Papers. Vol. 4. Harvard University Press.
[12] Rumbaugh, J., Jacobson, I., Booch, G. (1999) Unified Modeling Language

Reference Manual. Addison-Wesley.
[13] Shin, S-J (1994) The Logical Status of Diagrams. CUP.
[14] Venn, J (1880) On the Diagrammatic and Mechanical Representation of

Propositions and Reasonings, Phil. Mag. 123.


