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Abstract This paper considers the notion of nesting in Euler diagrams,

and how nesting affects the interpretation and construction of such dia-

grams. After setting up the necessary definitions for concrete Euler diagrams

(drawn in the plane) and abstract diagrams (having just formal structure),

the notion of nestedness is defined at both concrete and abstract levels.

The concept of a dual graph is used to give an alternative condition for a

drawable abstract Euler diagram to be nested. The notions of nesting at the

two levels are shown to be equivalent for drawable abstract diagrams under

the morphism from concrete to abstract diagrams. The natural progression

to the diagram semantics is explored and we present a “nested form” for
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diagram semantics. We describe how this work supports tool-building for

diagrams, and how effective we might expect this support to be in terms of

the proportion of nested diagrams.

1 Introduction

Euler diagrams [3] illustrate relations between sets. This notation uses topo-

logical properties of enclosure, exclusion and intersection to represent the

set-theoretic notions of subset, disjoint sets and intersection, respectively.

Euler diagrams form the basis of more expressive diagrammatic notations

such as Higraphs [7], constraint diagrams [6] and some of the notations of

UML [10]. A concrete Euler diagram is one which is drawn in the plane.

We can abstract away from any irrelevant geometric and topological in-

formation to produce an abstract diagram which has only formal structure.

The distinction between concrete diagrams and abstract diagrams was high-

lighted in [8]. The problem of converting an abstract Euler diagram into a

concrete representative, necessary for the development of software tools us-

ing notations based on Euler diagrams, was addressed in [4]. This paper

extends work on Euler diagrams by incorporating the notion of a nested

diagram. Informally, an Euler diagram is nested if the (concrete) diagram

contains disjoint components (other choices of name for this concept could

have been disconnected or separated). Section 2 begins with the necessary

background notation and definitions for Euler diagrams. Depending on the
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well-formedness conditions of concrete Euler diagrams, some abstract dia-

grams are not drawable.

The concept of nesting is most obvious, visually, for concrete diagrams.

However, the notion extends to abstract diagrams. In section 3 we define

the notion of nesting in concrete and abstract Euler diagrams. We use the

powerful notion of a dual graph to give an alternative condition for a draw-

able abstract Euler diagram to be nested. The two notions of nesting are

shown to be equivalent for drawable abstract diagrams under the morphism

from concrete to abstract diagrams (theorems 3, 4). Nesting in diagrams

gives rise to different ways of presenting the semantics of diagrams, and in

section 4 we establish a “nested form” for diagram semantics.

One application of this work is in diagram generation algorithms which

are used to drive software tools, particularly those involved with software

system modelling, for example [9]. This application of the nesting concept is

discussed in section 5. Finally, in section 6, some data are presented to show

how much leverage can be gained from making use of nesting in abstract

diagrams.

2 The context: Euler diagrams

Work in this section is largely based upon work from [4]. An abstract Euler

diagram comprises a set whose elements are called contours and a set of

zones which are subsets of the contour set. An abstract Euler diagram

encapsulates some of the information conveyed in a diagram, encompassing
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enough information to create a semantic interpretation of the diagram but

discarding some topological details.

Definition 1 An abstract Euler diagram is a pair: d = 〈C(d),Z(d)〉

where

(i) C(d) is a finite set whose members are called contours

(ii) Z(d) ⊆ PC(d) is the set of zones of d, so z ∈ Z(d) is z ⊆ C(d)

(iii) ∅ ∈ Z(d)

(iv)
⋃

z∈Z(d)

z = C(d)

The set of abstract diagrams is denoted D.

Example 1 The abstract diagram 〈{a, b, c} , {{} , {a} , {a, b} , {b} , {c}} 〉 ∈ D

has three contours and five zones.

Abstract diagrams can easily be given semantic interpretations (see sec-

tion 4) and each abstract diagram may have many concrete representations,

with differing topological details.

A concrete Euler diagram is a set of labelled contours (simple closed

curves) in the plane, each with a unique label. A zone is a connected com-

ponent of the complement of the contour set.

Definition 2 A concrete Euler diagram is a triple d̂ = 〈L̂(d̂), Ĉ(d̂), Ẑ(d̂)〉

such that:

(i) Ĉ(d̂) is a finite set of simple closed curves, contours, in the plane R
2.

Each contour has a unique label from the set L̂(d̂), so that the labelling

mapping Ĉ(d̂) → L̂(d̂) is a bijection.
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(ii) contours meet transversely.

(iii) each component ẑ ∈ R
2 −

⋃
ĉ∈Ĉ(d̂)

ĉ is a zone. These make up the set

Ẑ(d̂).

(iv) each zone ẑ is uniquely identified by a set of contours Ĉ(ẑ) ⊂ Ĉ(d̂)

with ẑ =
⋂

ĉ∈Ĉ(ẑ)

interior (ĉ) ∩
⋂

ĉ∈Ĉ(d̂)−Ĉ(ẑ)

exterior (ĉ). The mapping from

contours to labels gives unique label sets for each zone, Ĉ(ẑ) mapping to

L̂(ẑ). This defines L̂(ẑ).

The set of concrete diagrams is denoted D̂.

Part (ii) of this definition prohibits examples with concurrent contours or

tangential contours. This restriction is justifiable from the point of view of

the usability of the diagrams as a representation of information, or as a rea-

soning tool. The decision could be seen as arbitrary. However the condition

that contours cross transversely (which prohibits tangential contours and

concurrent contours) is necessary to ensure the consistent definition of nest-

edness at the concrete and abstract levels. The use of tangential contours

would be counter to our intuition of nestedness at the concrete level.

Figure 1 shows examples of diagrams which include concurrent or tan-

gential contours, and are thus not examples of concrete Euler diagrams.

b

a

a

b

a

b

Fig. 1 Diagrams which include concurrent or tangential contours
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Parts (iii) and (iv) of definition 2 combine to prohibit diagrams with

disconnected zones, such as those illustrated in figure 2.

b

a
a

b

c

Fig. 2 Diagrams with disconnected zones

Diagrams that satisfy definition 2 are well-formed Euler diagrams. They

exclude diagrams with concurrent or tangential contours and those with

disconnected zones. Figure 3 shows examples of (well-formed) concrete Euler

diagrams.

b

a

a

b

b

a
c

Fig. 3 Well-formed concrete Euler diagrams

Example 2 Let d̂ be the first concrete diagram given in figure 3. Ĉ(d̂) has

two elements (the two contours shown), L̂(d̂) = {a, b} and Ẑ(d̂) has four

elements, uniquely determined by the label sets {}, {a}, {b} and {a, b}.

For each concrete Euler diagram, there is an abstract Euler diagram

which has the same structural information as the concrete diagram but

loses some geometric and topological details. The mapping from a concrete

diagram to its abstract diagram is defined next.

Definition 3 The mapping ab : D̂ → D (“ab” for “abstraction”) forgets the

positioning of the contours. It is defined by
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ab : 〈L̂(d̂), Ĉ(d̂), Ẑ(d̂)〉 7→ 〈L̂(d̂), {L̂(ẑ) : ẑ ∈ Ẑ(d̂)}〉

When mapping from concrete diagrams to abstract diagrams, identify

contours and their labels. This identification reduces a three-tuple for a

concrete diagram to a pair defining the abstract diagram.

Example 3 Let d̂ be the concrete diagram given in figure 4. Its abstract

diagram has:

C(ab(d̂)) = {a, b, c, d}

Z(ab(d̂)) = {{} , {a} , {b} , {a, b} , {a, c} , {a, d} , {a, c, d}}

a

b
c

d

Fig. 4 A concrete diagram

Definition 4 A concrete diagram d̂ represents or complies with an ab-

stract diagram d if and only if d = ab(d̂). An abstract diagram which has a

compliant well-formed concrete representation is drawable.

An abstract Euler diagram is either undrawable, or it has many concrete

representations. One example of an undrawable abstract diagram has two

contours and two zones: C(d) = {a, b} and Z(d) = {{} , {a, b}}. A concrete

representation of this must have the two contours running concurrently as

the shared boundary between the two zones, giving a concrete diagram

which is not well-formed. Adding one more abstract zone to d gives an ab-

stract diagram which has many concrete representations: for example, the
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diagram d = 〈{a, b}, {{} , {a} , {a, b}}〉 has concrete representations illus-

trated in figure 5.

ba

a

b

a

b

Fig. 5 Different concrete representations of the same abstract Euler diagram

A powerful idea for the analysis of concrete and abstract Euler diagrams

is that of the dual graph. The dual graph of an abstract Euler diagram is a

particular kind of abstract labelled graph, defined next.

Definition 5 An abstract labelled graph is a triple 〈L(G),V(G), E(G)〉

where the components are defined as follows.

(i) L(G) is a set of labels.

(ii) V(G)is a set of vertices. Each vertex v is labelled with L(v) ⊆ L(G).

(iii) E(G) is a set of edges. Each edge is a pair of vertices in V(G) where

the vertex labels must have a singleton symmetric difference; that is, one

set exceeds the other by a single additional element. This element can be

used to label the edge.

The set of abstract labelled graphs is denoted LG.

Definition 6 The map dual : D → LG is defined by

〈C(d),Z(d)〉 7→ 〈C(d),Z(d), E(G)〉

where the edges include all possible e = (v1, v2) where v1 and v2 have sin-

gleton symmetric difference.
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The dual graph of an abstract diagram is illustrated in figure 6.

{ a }

{ a , c }

{ b }
{ }

{ a , b }

{ a , b , c }

a
a
b

b

b c
ca b

c

Fig. 6 A diagram and its dual graph

This map assigns an abstract labelled graph to each abstract Euler di-

agram. The diagram with C(d) = {a, b} and Z(d) = {{} , {a} , {a, b}} maps

to a graph with two labels (one for each abstract contour), three vertices

(one for each abstract zone) and two edges:

L(dual(d)) = {a, b} ,

V(dual(d)) = {{} , {a} , {a, b}} ,

E(dual(d)) = {{{}, {a}}, {{a}, {a, b}}} .

This definition of the dual graph of an abstract diagram extends to a

definition of the dual graph of a concrete diagram.

Definition 7 The map dual : D̂ → LG is defined by

〈L̂(d̂), Ĉ(d̂), Ẑ(d̂)〉 7→ dual(ab(〈L̂(d̂), Ĉ(d̂), Ẑ(d̂)〉)).

Note that this dual graph is not a topological construction. It is possible

for two zones which are not topologically adjacent in d̂ to correspond to

adjacent vertices in the dual (the simplest example is any representation of
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a Venn diagram with four contours: see figure 7). However, if two zones are

adjacent in d̂ then the vertices are necessarily adjacent in the dual.

a
b

c
d

{ a , d }

{ d }

Fig. 7 The topological dual graph of the Venn diagram on four contours has

fewer edges than the abstract dual graph

Definition 8 (The connectivity conditions) An abstract labelled graph

〈L(G),V(G), E(G)〉 satisfies the connectivity conditions if it is connected

and, for all labels l ∈ L(G), the subgraphs G+ (l) generated by vertices whose

labels include l, and G− (l) generated by vertices whose labels exclude l are

connected.

Theorem 1 (The connectivity theorem) Let d̂ be a concrete diagram.

Then dual(d̂) satisfies the connectivity conditions. Hence, if an abstract di-

agram d is drawable then dual(d) satisfies the connectivity conditions.

This theorem is proved in [4] and can be used to prove that the abstract

diagram d = 〈{a, b}, {{} , {a, b}}〉 is indeed undrawable. Its dual graph

dual(d) has two labels {a, b}, two vertices labelled {} and {a, b} and no

edges. The dual is disconnected, so the diagram is not drawable.

This completes the framework we need to discuss the main points of

this paper. The next section focusses on the concepts of nested and atomic

diagrams.
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3 Defining atomic and nested diagrams

In this section we identify nesting within a diagram. Initially we will define

nesting as a property of concrete diagrams and later extend the concept to

abstract diagrams.

3.1 Nesting in concrete diagrams

Definition 9 A concrete diagram d̂ is nested if there exist n ≥ 2 sub-

diagrams d̂1, ..., d̂n such that

1. for each i, the contour set of d̂i is non-empty

2. for each i 6= j no contour in Ĉ(d̂i) meets any contour in Ĉ(d̂j)

A diagram which is not nested is called atomic.

Proposition 1 Let d̂ be a concrete Euler diagram. The following four con-

ditions are equivalent:

1. d̂ is nested;

2. the union of the contours of d̂ is a disconnected subset of the plane;

3. there exists a simple closed curve γ which does not meet any of the

contours of d̂, and splits the plane into two parts, each of which includes

at least one contour of d̂;

4. there exist subdiagrams d̂1 and d̂2 of d̂, each of which has a non-empty

contour set, and there is a zone ẑ ∈ Ẑ(d̂1) such that all contours in

Ĉ(d̂2) are contained within ẑ.
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Figure 8 illustrates these equivalent approaches to nesting in concrete Euler

diagrams. Two examples are shown from three different points of view.

The first point of view partitions the contours (shown here as solid con-

tours and dashed contours). This partition supports the definition of nesting

(partitioning into sub-diagrams) and the notion that the set comprising the

contour points is a disconnected set (one component is solid, the other is

dashed).

The second point of view adds a path which is not a contour of the

diagram, the path γ in proposition 1(3).

The final point of view shows two diagrams, d̂1 shown as solid lines and

d̂2 shown as dashed lines. One zone of d̂1 is shaded, and that zone contains

all contours in d̂2. This illustrates proposition 1 (4).

 

Fig. 8 Criteria for nesting in a Euler diagrams

3.2 Nesting in abstract diagrams

The notions of crossing contours, topological connectedness or topological

containment are unavailable to us when we define the notion of nesting in
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the abstract case. However, we can identify the abstract diagram equivalent

of condition 4 of proposition 1.

Definition 10 An abstract diagram d is nested if there exist abstract dia-

grams d1 = 〈C1,Z1〉 and d2 = 〈C2,Z2〉 and a zone z? ∈ Z(d1) such that

(i) {C1, C2} is a partition of C(d)

(ii) Z(d) = Z1 ∪Z?
2 and Z1 ∩Z?

2 = {z?} where Z?
2 = {z? ∪ z2 : z2 ∈ Z2}.

We say that d2 is embedded in the zone z? of d1, and write d = d2
z?

−→

d1.

Example 4 The diagram d whose concrete representation is given (on the

left) in figure 9 has C(d) = {a, b, c, e} and Z(d) = {{}, {a}, {a, b}, {b}, {a, c},

{a, c, e}, {a, e}}.

a

b
c

e
a

b
c

e
a=

Fig. 9 Embedding d2 in d1

Here d2 = 〈{c, e}, {{}, {c}, {c, e}, {e}}〉 is embedded in the zone {a}

of d1 = 〈{a, b}, {{}, {a}, {a, b}, {b}}〉. The contour set C(d) partitions as

C1 ∪ C2 = {a, b} ∪ {c, e} and the zone set Z(d) = Z1 ∪ Z?
2 where Z1 =

{{}, {a}, {a, b}, {b}},Z?
2 = {{a}, {a, c}, {a, c, e}, {a, e}} and Z1 ∩ Z?

2 = {a}.

Example 5 Although the definition of nesting in abstract Euler diagrams is

motivated by the concrete nesting criterion given in proposition 1 (4), it is

still meaningful for undrawable diagrams.
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Let d = 〈{a, b, c, d}, {{}, {a}, {b}, {a, b}, {a, b, c, e}}〉. Then C(d) = {a, b}∪

{c, e} and Z(d) = {{}, {a}, {b}, {a, b}}∪{{a, b}, {a, b, c, e}} where {{}, {a}, {b}, {a, b}}∩

{{a, b}, {a, b, c, e}} = {a, b}. Hence d2 = 〈{c, e}, {{}, {c, e}}〉 is embedded in

zone {a, b} of d1 = 〈{a, b}, {{}, {a}, {b}, {a, b}}〉. In this example, d1 is draw-

able but d and d2 are undrawable. Figure 10 attempts to represent d as a

(non-well-formed) concrete diagram which has coincident contours labelled

c and d (violating condition 2 of definition 2).

a b
c e

Fig. 10 An undrawable nested diagram

Example 6 The diagram d whose concrete representation is given in fig-

ure 11 is 〈C(d),Z(d)〉 = 〈{a, b, c, e}, {{}, {a}, {a, b}, {c}, {c, e}, {e}}〉. Let

d1 = 〈{a, b}, {{}, {a}, {a, b}}〉 and d2 = 〈{c, e}, {{}, {c}, {c, e}, {e}}〉. Then

d is obtained by embedding d2 in the zone z? = {} of d1. Since the embed-

ding zone z? is the empty set of contours, we could also regard d as being

obtained by embedding d1 in d2.

a
b

c e

Fig. 11 Independently embedded diagrams

When the embedding zone is z? = ∅, we say that diagrams d1 and d2 are

independently embedded. (The motivation for this terminology comes
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from concrete diagrams: if d̂ is a concrete representation of d, then there

exist disjoint, simply-connected regions of the plane R
2 containing d̂1 and

d̂2 respectively.)

In this example, since d1 is itself a nested diagram, we may also describe

d in several additional ways, as follows:

(i)

(
d1,1

{a}
−−→ d1,2

)
{}
−→ d2 where d1,1 = 〈{b}, {{}, {b}}〉 and d1,2 =

〈{a}, {{}, {a}}〉,

(ii) d1,1
{a}
−−→

(
d1,2

{}
−→ d2

)
(with d1,1 and d1,2 as in (i)),

(iii) d1,1
{a}
−−→ d3 where d3 = 〈{a, c, e}, {{}, {a}, {c}, {c, e}, {e}}〉.

Motivated by example 6, the following proposition identifies the elemen-

tary properties of the ‘embedding relation’
�

−−−→.

Proposition 2 The embedding relation satisfies the following.

(i) d1
∅

−→ d2 = d2
∅

−→ d1

(ii)
(
d1

za−→ d2

)
zb−→ d3 = d1

za∪zb−−−−→
(
d2

zb−→ d3

)

ut

An abstract drawable diagram is nested if and only if its dual graph has a

cut vertex. In order to prove this result we need to develop some terminology

and prove a lemma. Let d be an abstract drawable diagram. The dual of

d has n > 1 subgraphs S1, ..., Sn, called cut components, obtained by

removing the cut vertex and replacing it back into each component in turn:

see figure 12. For each 1 ≤ i ≤ n, let Ci ⊆ C(d) be the set of contour labels

appearing as edge labels of cut component Si.
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S 1

S 2 S 3

Fig. 12 The cut components of a graph with cut vertex

Lemma 1 Let d be an abstract drawable diagram whose dual graph dual(d)

contains a cut vertex. Then the sets C1, ..., Cn of edge labels of the cut

components of dual(d) partition the contour set C(d)

Proof Every contour in C(d) appears in one of the sets C1, ..., Cn. We will

show that the sets C1, ..., Cn are disjoint, by contradiction.

Let c ∈ Ci ∩ Cj where i 6= j. There are edges of ei in Si, ej in Sj which

are both labelled c. Let ei have ends vi, wi and ej have ends vj , wj where

c ∈ vi, vj and c 6∈ wi, wj .

Let v? be a cut vertex of dual(d). Assume first that c 6∈ v? so that

vi ∈ Si − v?, vj ∈ Sj − v?. Any path from vi to vj must pass through the

cut vertex v?, but the drawability of d tells us that the dual satisfies the

connectivity conditions, including the fact that the subgraph restricted to

those vertices which contain c is connected. This is a contradiction.

If, on the other hand, c ∈ v? then follow a similar line of argument using

wi and wj , and the contradiction comes from the connectivity condition

that the subgraph of S built from vertices which exclude c is connected.

Thus C1, ..., Cn partition the contour set. ut
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Theorem 2 Let d be an abstract drawable diagram. Then d is nested if and

only if the dual graph dual(d) contains a cut vertex.

Proof Let d be an abstract nested drawable diagram. Then there exist ab-

stract diagrams d1 = 〈C1,Z1〉 and d2 = 〈C2,Z2〉 and a zone z? ∈ Z(d1)

such that {C1, C2} is a partition of C(d) and Z(d) = Z1 ∪ Z?
2 and Z(d) =

Z1 ∩ Z?
2 = {z?}, where Z?

2 = {z2 ∪ z
? : z2 ∈ Z2}. Then Z(d) is partitioned

by Z(d) = (Z1 − {z?}) ∪ {z?} ∪ (Z?
2 − {z?}).

Let M denote set symmetric difference. Then

z ∈ Z1 − {z?} ⇒ z M z? ⊆ C(d1) ∧ z M z? 6= ∅

z ∈ Z?
2 − {z?} ⇒ z M z? ⊆ C(d2) ∧ z M z? 6= ∅

z1 ∈ Z1 − {z?} ∧ z2 ∈ Z?
2 − {z?} ⇒ z1 M z2 = (z1 M z?) ∪ (z2 M z?) .

The symmetric difference of abstract zones in sets Z1 − {z?} and Z?
2 −

{z?} contains at least two elements, so no two are adjacent. The zone z?

acts as a pathway in the dual graph from Z1 − {z?} to Z?
2 − {z?}, and is a

cut vertex of the dual graph.

Conversely, let z? be a cut vertex in dual(d). The dual has n > 1 cut

components S1, ..., Sn. By construction of the Si we have, for distinct i and

j, V(Si) ∩ V(Sj) = {z?}.

For each 1 ≤ i ≤ n, let Ci ⊆ C(d) be the set of contour labels appearing

as edge labels of Si. By lemma 1, the Ci partition C(d). Without loss of

generality, S1 contains a vertex labelled by the empty set (possibly other

cut components do too, if the cutvertex is the null vertex). Then choose



18 Jean Flower et al.

d1 = 〈C1,V(S1)〉 and d2 = 〈
⋃

i6=1 Ci, {v − z? : v ∈
⋃

i6=1 V(Si)}〉. Then

{C(d1), C(d2)} is a partition of C(d) and Z(d) = Z1∪Z
?
2 and Z1∩Z

?
2 = {z?},

where Z?
2 =

⋃
i6=1 V(Si) = {z2 ∪ z

? : z2 ∈ Z2}. Hence d is nested. ut

Example 7 Let d1 = 〈C(d) = {a, b},Z(d) = {{} , {a} , {a, b}}〉. Then d1 is

nested by embedding 〈{b}, {{}, {b}}〉 in the zone {a} of 〈{a}, {{}, {a}}〉. The

dual graph of d1, which has cut vertex labelled {a} is given in figure 13. A

more interesting example can be seen by building the dual graph of the sec-

ond example in figure 8. Let d2 = 〈{a, b, c, d}, {{} , {a} , {b} , {a, b} , {c} , {d} , {c, d}}〉.

In this case the diagrams 〈{a, b}, {{}, {a}, {b}, {a, b}}〉 and 〈{a, b}, {{}, {a}, {b}, {a, b}}〉

are independently embedded in d2. In the dual graph, the cutvertex is la-

belled {} – see figure 13.

The addition of a single abstract zone {a, c} turns the nested diagram

d2 into an atomic diagram d3 – the third dual graph in figure 13 has no cut

vertex.

{ a }  

{  }  { a , b }  

{ a }  

{  }  { a , b }  

{ b }  

{ c }  
{ c , d }  

{ d }  

{ a }  

{  }  { a , b }  

{ b }  

{ c }  
{ c , d }  

{ d }  

{ a , c }  

d u a l ( d 1 )  d u a l ( d 2 )  d u a l ( d 3 )  

Fig. 13 Cut vertices in dual graphs

Example 8 The condition in theorem 2 that the diagram d is drawable is

necessary. Consider the diagrams d1 = 〈{a, b, c}, {{}, {a, b}, {a, c}}〉 and

d2 = 〈{a, b, c, d}, {{}, {a, b}, {a, b, c, d}}〉. The dual graphs of d1 and d2
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are isomorphic. Each dual graph comprises three isolated vertices and no

edges, hence neither diagram is drawable. However the diagram d1 is atomic

whereas d2 is nested. Figure 14 gives the dual graphs and non-well-formed

concrete representations of d1 and d2.

a

cb
d 1

{ a , c }  {  }  { a , b }  
d u a l ( d 1 )  d u a l ( d 2 )  

{ a , b , c , d }  {  }  { a , b }  

ba
dc

d 2

Fig. 14 Atomic and nested undrawable diagrams with isomorphic dual graphs

In the examples shown, the abstract diagram of a nested (atomic) con-

crete diagram is itself nested (atomic). In the next section, we generalise

this observation to show that the definitions of nestedness at the concrete

and abstract levels are consistent with the abstraction mapping given in

definition 3.

3.3 Consistency between abstract and concrete nesting

Figure 13 illustrates the relationship between nested drawable diagrams and

the presence of a cut vertex in the dual graph. We will now show two results:

if a concrete diagram is nested, then its abstract diagram is also nested, and

if an abstract diagram is nested, then all concrete representations of it will

be nested.
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Theorem 3 Given an abstract diagram d which is nested, let d̂ be any well-

formed concrete representation. Then d̂ must be nested.

Proof Let v? be a cut vertex of dual(d). By lemma 1, the cut components

of dual(d) induce a partition C1, C2..., Cn of the contour set C(d). There

is a bijection from C(d) → Ĉ(d̂) which induces a partition Ĉ1, ..., Ĉn of the

concrete contour set.

It will be sufficient to show that a contour ĉi ∈ Ĉi can never cross a

contour ĉj ∈ Ĉj . If ĉi meets ĉj and the diagram has transverse crossings,

then there must be zones z, z ∪{ci},z ∪{cj} and z ∪{ci, cj} in the abstract

diagram d. The dual edges between z and z∪{ci} and between z∪{cj} and

z ∪ {ci, cj} lie in subgraph Si, and the dual edges between z and z ∪ {cj}

and between z ∪ {ci} and z ∪ {ci, cj} lie in subgraph Sj . But the subgraphs

Si and Sj share only one vertex, the cut vertex v?. This is a contradiction,

so the partition of the contour set shows that the concrete diagram d̂ is

nested. ut

The following result only holds in the presence of the well-formedness rules.

(For example, A ⊆ B can be represented by a non-nested concrete diagram

if we allow tangential contours: see figure 1.)

Theorem 4 Given a concrete diagram d̂ which is nested, then its abstract

diagram ab(d̂) is nested.

Recall that topological adjacency implies dual adjacency but the converse

does not hold.
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Proof Let d̂ be nested, and let Ĉ2 be the contours in an innermost connected

component of the union of contours of d̂. Let Ĉ1 be Ĉ(d̂) − Ĉ2. Think of

contours in Ĉ2 as being inside some simple closed curve, γ, and contours

in Ĉ1 being outside γ (see proposition 1 which equates alternative concrete

approaches to nestedness to understand the path γ).

This enables us to partition Ẑ(d̂) = Ẑin t {ẑγ} t Ẑout where the zones

in Ẑin have boundaries made up of contours from Ĉ2, the zones in Ẑout

have boundaries made up of contours from Ĉ1 and the zone which has a

boundary meeting both contours from Ĉ1 and Ĉ2 is called ẑγ :

ẑ ∈ Ẑin ∧ ĉ ∈ Ĉ1 ⇒ ∂ẑ ∩ ĉ = ∅

ẑ ∈ Ẑout ∧ ĉ ∈ Ĉ2 ⇒ ∂ẑ ∩ ĉ = ∅

∃ĉ1 ∈ Ĉ1 ∧ ĉ2 ∈ Ĉ2 such that ∂ẑγ ∩ ĉ1 6= ∅ ∧ ∂ẑγ ∩ ĉ2 6= ∅

Given any zone ẑ ∈ Ẑin, there is a path α inside γ from a point in ẑ to a

point in ẑγ . The symmetric difference between the abstract zones z ∈ Zin

and zγ consists of contours in C2. The partition of concrete zones induces

a partition of abstract zones Z(d) = Zin t {zγ} t Zout with the following

symmetric difference properties).

z ∈ Zin ⇒ z M zγ ⊆ C1 ∧ z M zγ 6= ∅

z ∈ Zout ⇒ z M zγ ⊆ C2 ∧ z M zγ 6= ∅

z1 ∈ Zin ∧ z2 ∈ Zout ⇒ z1 M z2 = (z1 M zγ) t (z2 M zγ) .

The symmetric difference of abstract zones in sets Zin and Zout contains at

least two elements, so no two are adjacent. The zone zγ acts as a pathway
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in the dual graph from Zin to Zout, and is a cut vertex of the dual graph.

ut

4 The semantics of nested diagrams

The contours and zones of an Euler diagram represent sets and topologi-

cal containment (for concrete diagrams) represents the subset relation. For

example, the diagram in figure 15 denotes (C ⊆ A ∩ B) ∧ (D ⊆ A ∩ B)

where an uppercase letter denotes the set represented by the contour with

the corresponding lowercase label. We begin by formalising this intuitive

‘semantic reading’ of diagrams.

Definition 11 A set assignment to contours for diagram d is a pair

(U,ψ) where U is some universal set and ψ : C(d) −→ PU . The mapping ψ

extends to ψ : PC(d) → PU defined by

z 7→
⋂

c∈z

ψ(c) ∩
⋂

c∈C(d)−z

ψ(c)

for any z ⊆ C(d).

The overline used here means set complement in the context of the

universal set U , ψ(c) = U −ψ(c). The extension of ψ to PC(d) ensures that

two different zones correspond to disjoint sets.

Definition 12 A set assignment to contours (U,ψ) is a model for diagram

d if the plane tiling condition is satisfied:

⋃

z∈Z(d)

ψ(z) = U.
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The plane tiling condition simply asserts that the union of the sets rep-

resented by all the zones is the universal set.

Example 9 Consider the diagram d given in figure 15. Let the universal set be

U = {1, 2, 3, 4, 5}. Define ψ : C(d) → U by a 7→ {1, 2, 3, 4}; b 7→ {4, 5}; c 7→

{1, 2}; e 7→ {2, 3}.

a

b
c

e

Fig. 15 Diagram for examples 9 and 10

This extends to the mapping on zones ψ : Z(d) → PU where:

{a} 7→ {}, {b} 7→ {5},

{a, b} 7→ {4}, {a, c} 7→ {1},

{a, e} 7→ {3}, {a, c, e} 7→ {2},

{} 7→ {}.

This defines a model of d since the plane tiling condition is satisfied:

⋃

z∈Z(d)

ψ(z) = {} ∪ {5} ∪ {4} ∪ {1} ∪ {3} ∪ {2} ∪ {} = {1, 2, 3, 4, 5} = U.

Example 10 With the same diagram d given in figure 15 and again taking

U = {1, 2, 3, 4, 5}, define ψ : {a, b, c, d} → PU by a 7→ {1, 2, 3, 4}; b 7→

{3, 4, 5}; c 7→ {1, 2}; e 7→ {2, 3}. This extends to the mapping of zones ψ :
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Z(d) → PU where:

{a} 7→ {}, {b} 7→ {},

{a, b} 7→ {4}, {a, c} 7→ {1},

{a, e} 7→ {}, {a, c, e} 7→ {2}.

{} 7→ {}.

The union of the sets representing zones is {1, 2, 4} 6= U so the plane

tiling condition is not satisfied. Hence the set assignment does not define a

model of d.

An alternative semantic condition asserts that each of the sets repre-

senting those ‘zones’ not present in the diagram is empty. For any diagram

d, we say that an element of PC(d) − Z(d) is a missing zone of d. The

following theorem formalises the alternative semantics.

Theorem 5 Let (U,ψ) be a set assignment to contours for a diagram d. The

plane tiling condition for d is equivalent to the following missing zones

condition.

⋃

z∈PC(d)−Z(d)

ψ(z) = ∅.

Example 11 Consider the diagram whose concrete representation is given in

figure 16. Let ψ : C(d) −→ U given by ψ(a) = A,ψ(b) = B,ψ(c) = C.

a b
c

Fig. 16 Diagram for example 11
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The set of zones of d is Z(d) = {{}, {a}, {a, c}, {a, b}, {b}}. Therefore

the plane tiling condition is:

(A∩B ∩C)∪ (A∩B ∩C)∪ (A∩B ∩C)∪ (A∩B ∩C)∪ (A∩ B ∩C) = U.

It is easier to use the missing zones condition if we wish to obtain a

simpler and more natural semantic expression. The zones missing from d

are {c}, {b, c} and {a, b, c}. Hence the missing zones condition is:

(A ∩B ∩ C) ∪ (A ∩B ∩ C) ∪ (A ∩B ∩ C) = ∅.

From this we may deduce A ∩ C = ∅ and B ∩ C = ∅. Hence C ⊆ A

and C ⊆ B or, more simply, C ⊆ A ∩ B which is the ‘natural’ reading of

figure 16.

In the case of nested diagrams, we can exploit the nesting to simplify the

semantics predicate. In the previous example, the diagram d represented by

figure 16 is nested: we can regard it as being formed by embedding d2 =

〈{c}, {{}, {c}}〉 in the zone z? = {a} of d1 = 〈{a, b}, {{}, {a}, {b}, {a, b}}〉.

In this case, the diagrams d1 and d2 give no semantic information – their

semantics predicates are both true. The natural reading of the diagram,

C ⊆ A ∩B comes from the embedding.

Lemma 2 Let d be a diagram such that C(d) has a partition {C1, C2}. Let

(U,ψ) be a set assignment to contours for d. Let z ⊆ C(d). Then z = z1∪z2

where z1 ⊆ C(d1), z2 ⊆ C(d2). Further,

ψ(z1 ∪ z2) = ψ1(z1) ∩ ψ2(z2)
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where, for i = 1, 2, ψi is the extension to PC(di) of the restriction of ψ to

C(di):

ψi(zi) =
⋂

c∈zi

ψ(c) ∩
⋂

c∈C(di)−zi

ψ(c).

ut

Theorem 6 Let d be a nested diagram formed by embedding d2 in zone z?

of d1: d = d2
z?

−→ d1. Let (U,ψ) be a set assignment to contours for d and let

SP (d) denote the semantics predicate of diagram d (which, by theorem 5,

could be either the plane tiling condition or the missing zones condition).

Then

SP (d) = SP (d1) ∧ SP (d2) ∧
∧

c∈C2

ψ(c) ⊆ ψ1(z
?).

The condition
∧

c∈C2

ψ(c) ⊆ ψ1(z
?) is called the embedding condition.

The situation in theorem 6 is illustrated in figure 17.

z *
d 1

d 2

Fig. 17 Embedding d2 in zone z
? of d1

Proof We use the missing zones condition. The strategy of the proof is to

show that the zones missing from d are missing because either they are

missing from d1 or they are missing from d2 or they are missing as a result

of the embedding. Recall that the set of zones of d is the union Z(d1) ∪Z?
2



Nesting in Euler Diagrams: syntax, semantics and construction 27

where Z?
2 = {z? ∪ z2 : z2 ∈ Z(d2)}. We may rewrite this as

Z(d) = {z1 ∪ z2 : (z1 = z? ∧ z2 ∈ Z(d2)) ∨ (z1 ∈ Z(d1) ∧ z2 = ∅)}.

Now

PC(d) = {z1 ∪ z2 : z1 ∈ PC(d1) ∧ z2 ∈ PC(d2) −Z(d2)}

∪{z1 ∪ z2 : z1 ∈ PC(d1) −Z(d1) ∧ z2 ∈ PC(d2)}

∪{z1 ∪ z2 : z1 ∈ Z(d1) ∧ z2 ∈ Z(d2)}.

Therefore the missing zones in d are

{z1 ∪ z2 : z1 ∈ PC(d1) ∧ z2 ∈ PC(d2) −Z(d2)}

∪ {z1 ∪ z2 : z1 ∈ PC(d1) −Z(d1) ∧ z2 ∈ PC(d2)}

∪ {z1 ∪ z2 : z1 ∈ PC(d1) ∧ z1 6= z? ∧ z2 ∈ PC(d2) ∧ z2 6= ∅}.

The missing zones condition for d can therefore be expressed as

SP (d) =
∧

z1∈PC(d1)−Z(d1)
z2∈PC(d2)

ψ(z1 ∪ z2) = ∅

∧
∧

z1∈PC(d1)
z2∈PC(d2)−Z(d2)

ψ(z1 ∪ z2) = ∅

∧
∧

z1∈PC(d1)∧z1 6=z?

z2∈PC(d2)∧z2 6=∅

ψ(z1 ∪ z2) = ∅.

Using lemma 2, we may rewrite this as

SP (d) =
∧

z1∈PC(d1)−Z(d1)
z2∈PC(d2)

ψ1(z1) ∩ ψ2(z2) = ∅ (1)

∧
∧

z1∈PC(d1)
z2∈PC(d2)−Z(d2)

ψ1(z1) ∩ ψ2(z2) = ∅ (2)
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∧
∧

z1∈PC(d1)∧z1 6=z?

z2∈PC(d2)∧z2 6=∅

ψ1(z1) ∩ ψ2(z2) = ∅. (3)

Consider (1). For any z1 ∈ PC(d1) −Z(d1), we have

⋃

z2∈Z(d2)

ψ1(z1) ∩ ψ2(z2) = ∅ ⇒ ψ1(z1) ∩
⋃

z2∈Z(d2)

ψ2(z2) = ∅

⇒ ψ1(z1) = ∅,

since
⋃

z2∈Z(d2)
ψ2(z2) = U , by the plane tiling condition for d2. Therefore

(1) reduces to the missing zones condition for d1. By interchanging the roles

of d1 and d2 it is clear that (2) reduces to the missing zones condition for

d2. Therefore

SP (d) = SP (d1) ∧ SP (d2) ∧
∧

z1∈PC(d1)∧z1 6=z?

z2∈PC(d2)∧z2 6=∅

ψ1(z1) ∩ ψ2(z2) = ∅

= SP (d1) ∧ SP (d2) ∧
∧

z2∈PC(d2)
z2 6=∅




⋃

z1∈PC(d1)
z1 6=z?

ψ1(z1)


 ∩ ψ2(z2) = ∅.

By the plane tiling condition for d1 and the fact that distinct zones represent

disjoint sets, we have

⋃

z1∈PC(d1)
z1 6=z?

ψ1(z1) = U − ψ1(z
?) = ψ1(z?).

Hence, finally,

SP (d) = SP (d1) ∧ SP (d2) ∧
∧

z2∈PC(d2)
z2 6=∅

ψ2(z2) ∩ ψ1(z?) = ∅

= SP (d1) ∧ SP (d2) ∧
∧

c∈C(d2)

ψ(c) ∩ ψ1(z?) = ∅

= SP (d1) ∧ SP (d2) ∧
∧

c∈C(d2)

ψ(c) ⊆ ψ1(z
?),

which completes the proof. ut
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Corollary 1 Let d = d1
∅

−→ d2 and let (ψ,U) be a set assignment to con-

tours for d. Then

SP (d) = SP (d1) ∧ SP (d2) ∧
∧

c1∈C1

c2∈C2

ψ(c1) ∩ ψ(c2) = ∅

where SP (d) again denotes the semantic predicate for d (either the plane

tiling condition or the missing zones condition). ut

Example 12 Let d be the diagram represented by figure 18 and let d1 =

〈{a, b, c}, {{}, {a}, {b}, {a, b}, {a, c}, {a, b, c}}〉 and d2 = 〈{e, f}, {{}, {e}, {f}}〉.

Then d is formed by embedding d2 in zone {b} of d1.

a b
c f

e

Fig. 18 Using the ‘nested semantics’ of theorem 6

Let ψ : C(d) → U be a set assignment to contours given by ψ(a) =

A,ψ(b) = B,ψ(c) = C,ψ(e) = E,ψ(f) = F . The missing zones of d1 are {c}

and {b, c} so the missing zones condition for d1 is (A∩B∩C)∪(A∩B∩C) =

∅. This gives A ∩ C = ∅ or C ⊆ A.

The diagram d2 has missing zone {e, f} so the missing zone condition

for d2 is E ∩ F = ∅.

The embedding condition is (E ⊆ A ∩B ∩ C) ∧ (F ⊆ A ∩B ∩ C).

Therefore the semantics predicate of d is:

(C ⊆ A) ∧ (E ∩ F = ∅) ∧ (E ⊆ A ∩B ∩ C) ∧ (F ⊆ A ∩B ∩ C).
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Since A ⊆ C, this simplifies to

(C ⊆ A) ∧ (E ∩ F = ∅) ∧ (E ⊆ A ∩B) ∧ (F ⊆ A ∩B)

which, again, is the ‘natural’ reading of d.

5 Constructing atomic and nested diagrams

An algorithm has been devised and implemented to create drawings of draw-

able Euler diagrams [4]. To enhance the efficiency of the algorithm and the

readability of its output, we describe here an approach to make use of nest-

ing in the abstract Euler diagrams.

Given an abstract Euler diagram d whose dual has a cut vertex, let

S1, ..., Sn be the cut components of the dual(d) (obtained by removing the

cut vertex and replacing it, in turn, to each component). Without loss of

generality, S1 contains a vertex labelled by the empty set. (Possibly other

subgraphs do too, if the cutvertex is the null vertex). Draw a concrete

representation for the diagram whose dual is S1, and add to it places to

insert n−1 other diagrams inside the zone corresponding to the cut-vertex.

We can think of the diagram as a template, as in [5].

The other n − 1 subgraphs of the dual have vertex labels which are all

supersets of the cut vertex. Replace each abstract zone z with z− v?. Then

each of subgraph can be represented by a concrete diagram. These concrete

diagrams are inserted into the template, to make up d̂.

Figure 19 shows an example where two cut vertices are identified in

the dual graph, {} and {a}. These are used to split the dual graph into
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d

b
c a

d

a
b

c

d
ba

c

{ a }
{ a , c }

{ a , b } { d }
{ b }

{ }
{ a }

{ a , c }

{ a , b }
{ d }{ b }

{ }
{ }

{ a }

{ a , c }

{ a , b }
{ d }{ b }

{ }
{ }

{ a }

Fig. 19 Cut vertices and diagram construction

three components, and each component is used to draw a concrete Euler

diagram. Information about the cut vertices is then used to combine the

three concrete Euler diagrams into a single concrete representation.

Figure 20 shows the same example where one diagram component is

interpreted as a containing diagram, and is used as template. The other

components are inserted into two different zones of the containing diagram.

The implementation challenges here are to be able to identify rectangles in

the concrete zones, rectangles within which to insert other diagrams.

d d

c

c
b

a a

b

Fig. 20 Constructing concrete nested diagrams using templates



32 Jean Flower et al.

One implementation of this template application uses information about

containment of sub-diagrams to enlarge zones. Output from this implemen-

tation is shown in figure 21. Some smoothing work can be done to improve

the appearance of the output, but the nesting has been used to create con-

taining diagram and contained diagram independently before insertion.

Fig. 21 Output from a java implementation using nesting

6 Counting atomic and nested diagrams

To see the leverage gained by using the nesting concept in semantics or

drawing problems, consider how the numbers of abstract diagrams grow

with the number of contours. The following table shows how many well-

formed diagrams there are with a given number of contours (by row) and

a given number of zones (by column). The number of diagrams is seen to

grow quickly, but the number of atomic diagrams, shown in brackets, grows

much less quickly. Drawing nested diagrams using templates as described in

the previous section can handle the vast majority of diagrams, leaving just

a few atomic examples to be drawn without using a template.
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number of zones

nested:atomic 3z 4z 5z 6z 7z 8z

2c 2:0 0:1 0:0 0:0 0:0 0:0

number of contours 3c 0:0 4:0 4:0 0:3 0:3 0:1

4c 0:0 0:0 9:0 15:0 20:0 16:14

5c 0:0 0:0 0:0 20:0 50:0 101:0

7 Summary

In this paper we extended work on Euler diagrams by considering the no-

tion of a nested diagram. The concept of nesting is most obvious, visually,

for concrete diagrams; however we showed that the concept extends to ab-

stract diagrams. We defined the notion of nesting for both concrete and

abstract Euler diagrams. We showed further that a drawable abstract dia-

gram diagram is nested if and only if its dual graph contains a cut vertex.

The notions of nesting at the concrete and abstract levels are shown to be

equivalent for drawable abstract diagrams under the morphism from con-

crete to abstract diagrams. Nesting in diagrams gives rise to different ways

of writing down diagram semantics, and we developed a “nested form” for

diagram semantics.

Most Euler diagrams are nested. The table in section 6 is interesting in

that in almost all entries at least one of the numbers is zero. This can be

explained by the fact that any Euler diagram with n contours containing

fewer than 2n zones is nested and any Euler diagram with n contours con-
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taining greater than 2n−1 + 1 zones is atomic. Research into methods for

counting the diagrams is ongoing; we can use, for example, tree-counting [2]

or Polya’s Counting Theorem [1] to count some classes of Euler diagrams.

One of the aims of the work presented in this paper is to provide the

necessary mathematical underpinning for the development of software tools

to aid reasoning with diagrams. In particular, we aim to develop the tools

that will enable diagrammatic reasoning to become part of the software

development process.
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