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Some things need fixing in UML…
S Needs rearchitecting

¤a family of languages, profiles

¤distinction between concrete/abstract syntax, semantics

S Needs a precise definition
¤to unify concepts and integrate notations

¤to remove ambiguity

S Needs richer model management constructs
¤package composition and merging

¤patterns

S Needs better tool support
¤eXtreme modeling
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This tutorial…
S NOT about fixing UML, but looking at what might

succeed it in terms of notations and tools

S Focus on visualvisual notations and tools to support them
¤expressivity

¤intuitiveness

¤coherence

S Focus on specifying behavioral constraints, not model
management

S Aware of need for precision and to unify and integrate
concepts underpinning the various notations
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Outline
PART I: Static Behaviour

¤ From UML to sets and spiders
¤ Spider diagrams - the details
¤ Constraint diagrams - the details
¤ Constraint trees
¤ Theoretical foundations

PART II: Dynamic Behaviour
¤ 3D filmstrips & 3D sequence diagrams

¤ Contract boxes
¤ Other 3D diagram ideas

PART III: Tools
¤ Extreme modeling - a tools manifesto
¤ Tools architecture and interchange
¤ Tools available now
¤ Plans for the future
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Current Notations: Class diagrams
Provide:

¤vocabulary

¤cardinality constraints
Library

*

User

Publication Copy

Loan

Reservation

catalog

*

*
* *

*

* *

*

*

0..1

0..1

availableTo1

1

1

1

1

registered

available

onHoldFor

held

library

1

collection

1
*

class

association

rolename

cardinality
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Current Notations: Object diagrams
Examples/instances/snapshots of system state

:Library

:User

:Reservation

:Copy

b01a4:Publication

held

catalog

registered

collection
onHoldFor

object

link

class of
object

identity
of object
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Class diagrams are not enough
Is the snapshot:

¤a valid instance of the class diagram?

¤valid for the domain?

:Library

:User

:Reservation

:Copy
:Publication

b01a4:Publication

heldcatalog

catalog

registered

collection
onHoldFor

Library

*

User

Publication Copy

Loan

Reservation

catalog

*

*
* *

*

* *

*

*

0..1

0..1

availableTo1

1

1

1

1

registered

available

onHoldFor

held

library

1

collection

1
*
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Current Notations: State diagrams
Shows useful abstractions of:

¤state

¤changes in state
(transitions)

Available

OnHold

OnShelf

Out

library.checkOut(self,u
)

return

return

Copy

composite &
nested state

nested
state

composite state

initial state

transition



5

© 2002 Yossi Gil, John Howse, Stuart Kent 9

States & class diagrams
What are the values of the association links from any

c:Copy, when c is OnHold / OnShelf / Out ?

Available

OnHold

OnShelf

Out

return

return

Copy

library.c
heckO

ut(se
lf,u

)

Library

*
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*

*
* *
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1
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available

onHoldFor
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1

collection

1
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Pros (+) and Cons (-)
S Class diagrams

+ concise

+ defines language & cardinalities

– poor at showing relationships between associations and navigation
routes

S Object Diagrams
+ examples are always informative

+ can show navigation routes and relationships between
associations…

– but only for specific examples

S States
+ useful abstractions of state space

– relationship with data not clear
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What’s missing?
S A notation for expressing

¤constraints involving navigation routes, and

¤relationships between navigation routes

S Mapping between state and class diagrams
¤depends on your interpretation of state diagrams
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Existing Solutions
S A notation for expressing

¤constraints involving navigation routes, and

¤relationships between navigation routes

The object constraint language (OCL): a (textual) variant of (1st
order predicate logic) FOPL for expressing constraints
¤ textual not visual

(ok, if you think UML is as about as visual as you’ll ever get)

S Mapping between state and class diagrams
¤depends on your interpretation of state diagrams

states as Boolean attributes

states as dynamic classes

...
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Our approach
Step 1: States are classes

Step 2: Classes are sets

Step 3: “Venn” diagrams show relationships between sets

Step 4: Arrows for navigation routes

Step 5: Quantified elements

S Steps 1-3 unify state and class diagrams

S Steps 3-5 allow navigational constraints to be expressed

S The solution is entirely visualvisual
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Spider/Constraint diagrams
S Described in a series of papers

¤ description of notation

¤ applications

¤ formal semantics

¤ mathematical support for tools

S Tool support now available

S Tried out in various applications
¤ industrial: telecomms, business rules

¤ meta-modeling

S Used in teaching OO modeling
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Step 1: States are classes

Copy

Out Available

OnHold OnShelf

<<dynamic>>

<<dynamic>>

<<dynamic>>
<<dynamic>>

Available

OnHold

OnShelf

Out

return

return

Copy

library.c
heckO

ut(se
lf,u

)
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Step 1: States are classes

Copy

Out Available

OnHold OnShelf

Available

OnHold

OnShelf

Out

return

return

Copy

library.c
heckO

ut(se
lf,u

)
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Step 2: Classes are sets; Step 3 Venn diagrams

Copy

Out

Available

OnHold OnShelf

Copy

Out Available

OnHold OnShelf

A Venn diagram?
A state diagram?
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Step 2: Classes are sets; Step 3 Venn diagrams

User

Staff Student

Staff&Student

User

Staff

Student

Staff&student
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Step 4: Arrows for navigation

all copies associated
with Ongoing loans

are out
all copies OnShelf or
Out are not on hold
for any reservations
(onHoldFor maps to

the empty set)
those users who have

reservations with copies on
hold

Loan

Copy
Reservation

User

Ongoing

Out

Onshelf

Onhold

user
onholdfor

onholdfor

onholdforcopy
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Step 5: Quantification

:Library

:User

:Reservation

:Copy
:Publication

b01a4:Publication

heldcatalog

catalog

registered

collection
onHoldFor

Remember this?

In OCL (Object Constraint Language of UML)

contextcontext r:Reservation  r:Reservation invinv: r.held.publication = r.publication: r.held.publication = r.publication

The constraint diagram...

Informally…
“The publication reserved is the publication
of the copy put on hold”

Publication Copy

Reservation
held

publication

publication
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Step 5: Quantification
One for later...

“In any library, a copy which is on the shelf is available to all
registered users; a copy which is on hold is available only to the
user who made the reservation.”
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Intuitive? Another example…

Object Class

Link Role

Snapshot Package

1..**

instances of

1*

instances of

**

instances of

*

*

snapshots

objects

*

* snapshots

links

defining
1

1

* targetOf

target 1

* sourceOf

source 1

* sourceOf

source 1

* targetOf

target

*

* packages

roles

*

*
packages

classes

A fragment of a UML meta-model
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Understanding an OCL constraint

p01:Package

p02:Package

s01:Snapshot

s02:Snapshot

of

of

of

c01:Class

c02:Class

c03:Class

classes

classes

classes
classes

classes classes
o02:Object

o03:Object

o01:Object

objects

objects

objects

of
of

of

c04:Class

o04:Object

of
objects

context s:Snapshot: s.of -> forAll(p | p.classes->includesAll(s.objects.of))
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The equivalent constraint diagram

Snapshot Package

ClassObject
objects

of

of

classes
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Outline
PART I: Static Behaviour

¤ From UML to sets and spiders
¤ Spider diagrams - the details
¤ Constraint diagrams - the details
¤ Constraint trees
¤ Theoretical foundations

PART II: Dynamic Behaviour
¤ 3D filmstrips & 3D sequence diagrams

¤ Contract boxes
¤ Other 3D diagram ideas

PART III: Tools
¤ Extreme modeling - a tools manifesto
¤ Tools architecture and interchange
¤ Tools available now
¤ Plans for the future
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What are spider/constraint diagrams?

S A visual language for first order logic.
¤Intuitive: replaces textual based OCL and other mathematical

symbolic languages

¤Familiar: based on Venn diagrams and Euler Circles
¤Expressive: extends the above notations

àElegantly solve many of the topological restrictions and clunkiness of
Venn diagrams

S Scope
¤Anywhere where first order logic constraints are required
¤Specifically, an alternative syntax for OCL in UML

àsystem and class invariants
àpre and post conditions
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A simple example
S Participants: sets A, B, and C.
S Diagram asserts:

¤There is at least one element
which is either contained in
one of these sets but in none
of the others, or which is
contained in all of them

¤There is at least one
element, different than the first
which is in a but not in c.

¤Other than these, there are no other elements contained
in A but in none of the others.

( )
)(

,

yzxzCBAzz

CBCABACBACBAyCAxyxyx

=∨=⇒−−∈•∀
∧∩−∩−∩−∩∩∪∪∪∈∧−∈∧≠•∃

(A-C)->exists(x | (A->union(B)->…)->exists y | x <> y and A-B-C->(A-C)->exists(x | (A->union(B)->…)->exists y | x <> y and A-B-C->forAllforAll(z | …))(z | …))

A B

C

x
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Virtues of the notation
S Concise and Precise

¤compare to English text description

S Familiar and Intuitive
¤based on concepts introduced in elementary school
¤compare to mathematical notation.
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A B

C

x

Key terminology

spider

leg

foot

region

contour

label

shading ~
‘region-elements={}’

Kinds of region:
• connected
• unconnected
• zone
• district

habitat for
spider x
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Contours & regions (sets)
S Contours denote sets.

¤Contours may intersect, dividing the plane into minimal regions
also called zones which correspond to set intersection.

¤A region is any non-empty collection of zones.

àThis collection is not necessarily connected.
¤A basic region or district is the region that consists of all zones

bounded by a contour.

A B
C
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Spiders (elements)
S Spiders denote elements

¤Spiders may span more than one zone. They may have a foot in
each zone, which means that the element may be contained in the
region that is the union of those zones

¤A shaded zone has no elements other than those designated by the
spiders in it.

S A spider resides in a region, sometimes called its habitat.
A B

C

x
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Spiders (cont.)
S Spiders can be given or existentially quantified

Kingsxx ∈•∃

Kingsviiihenry ∈_

Kings->exists(x | true)Kings->exists(x | true)

Kings->includes(henry_viii)Kings->includes(henry_viii)

Kings

x

Kings

henry_viii
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A meta-modeling example

The diagram specifies all spider diagrams (including empty): they
must have at least one connected region which can be either basic or
minimal or both. All spider diagrams have a boundary contour (we
don’t usually bother to draw it).

Regions

Connected_regions Disconnected_regions

Districts Zones
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Labels

S Alternative labeling schemes could be invented
¤and are admitted by our tool

Myregion

Myclass

Mystate

Myad-hoc

myspider
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Spider diagrams and OOM?

S Sets can be either classes, states, or “ad-hoc”, with
different kinds of contours to distinguish between them:
¤Class: rectangle

¤State: rounded corner rectangle

¤Ad-hoc: ellipse

S Elements are just objects

S Inheritance is just set containment

Constructs in OCL:Constructs in OCL:
¤classes & states

¤sets & their relationships

¤existential quantification
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Specification of a hi-tech company

S Classes Manager, Engineer and Secretary inherit from abstract
class Employee

S There is only one manager who is also an engineer
Note: the spider notation is more expressive than ordinary inheritance

structure in which we would have needed to introduce a singleton
class inheriting from both Engineer and Manager.

Employee

Manager

Engineer

Secretary
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States and sets

S A state (as in Harel statecharts) is identified with the set of all
objects which are in that state.
¤ The state Empty is the set of all stacks which are empty

S We see from the diagram that all stacks are either empty, full, or
part-filled.

Stack

Empty Part-filled Full
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Sociable spiders: friends & strands
S Spiders connected by a strand are

called friends.
¤ This notation means that the two elements

may be equal.

S Strands actually connect feet, which
must be in the same zone.
¤ Thus, two spiders may be connected more

than once.

¤ This gives rise to very expressive and
interesting semantics.

¤ In the example, the two elements may be
equal only if they occur in
A − (B ∪  C), or in B − (A ∪  C).

A B

C

A
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What does this diagram say?

A
B
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Ties - mates
S Spiders connected by a tie are called

mates.
S This notation means that the two

elements must be equal within the zone
in which the tie appears.

S In the example, the two elements b & c
are the same if they both belong to
region (C − A) − B, otherwise they are
distinct.

A B

C

a

c

b
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Specifying set cardinalities

|A|
A->sizeA->size

|A|
A->sizeA->size

|A|
A->sizeA->size

|A|
A->sizeA->size

A A

A A
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How many elements?

|A|
A->sizeA->size

|A|
A->sizeA->size
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Schrödinger spiders

Denotes a set with zero or one element. Like a
Schrödinger cat - existence (of element) is in question!
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Projections (1)
S Projections: used to denote a set taken in a specific

context.
¤Metaphor: set is projected into the plane of interest.

¤Notation: dotted contours

Clubs in the St. James area of London!

=
X

Members

( Women )
X

Members
Women
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Projections (2)

S Projections save having
to introduce
unnecessary regions

S Unnecessary regions
mean
¤ more to consider

¤ more clutter

=

King
Queen

Royalty

( Executed )henry_viii married

King
Queen

Executed

Royalty

henry_viii
married
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Outline
PART I: Static Behaviour

¤ From UML to sets and spiders
¤ Spider diagrams - the details
¤ Constraint diagrams - the details
¤ Constraint trees
¤ Theoretical foundations

PART II: Dynamic Behaviour
¤ 3D filmstrips & 3D sequence diagrams

¤ Contract boxes
¤ Other 3D diagram ideas

PART III: Tools
¤ Extreme modeling - a tools manifesto
¤ Tools architecture and interchange
¤ Tools available now
¤ Plans for the future
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Constraint diagrams
S Spider Diagrams: set theoretical expressions

S Constraint Diagrams: relations between sets
¤New Notations: Arrows and Wildcards
¤Expressive power:

àarrows represent navigation of relations between sets

àgeneralize commutative diagrams

• Commutative diagrams: result of taking two paths is exactly the same.

• Constraint diagrams:  result of taking two paths are sets which can be related
by venn/euler diagrams

àuniversal quantification

Constructs in OCL:Constructs in OCL:
¤navigation expressions

¤existential quantification
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One-arrow example

S Asserts
¤ The class King has an object named Henry VIII in it.

¤ All women that Henry VIII married were queens.

¤ There was at least one women he married who was executed.

King->includes(henry_viii) andKing->includes(henry_viii) and
Queen->Queen->includesAllincludesAll(henry_viii.married->(henry_viii.married->asSetasSet) and) and
henry_viii.married->henry_viii.married->asSetasSet->intersection(Executed)->exists(x | true)->intersection(Executed)->exists(x | true)

King
Queen

Royalty

( Executed )henry_viii married
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Universal vs. existential quantification

There exists an x in A, such that the sets
x.f and x.g are disjoint.

For all x in A , the sets x.f  and  x.g  are

disjoint.

x.f is a shorthand for the set {y | (x,y)∈f}

or just x.f->x.f->asSetasSet  in OCL

A

f

g

A

f

g
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What’s in an arrow?
S Label: the name of the relationship
S Source: a set or an element from which navigation (the

relationship computation) begins:
¤Wildcard (universal spider)
¤Existential spider
¤Given spider
¤Contour
¤Schroedinger (optional set) or derived spider (singleton set)
¤Zone

¤Collection of zones (a region!)

S Target: the map of the source. If the source consists of
more than one element, then the target is the set formed by
the union of the maps of all elements in the source.
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Arrow source: examples

{}. =∧∈•∃ fxAxx ( ) {}. =∩ fBA

{}. =∧∈•∀ fxAxx ( ) ( )( ) {}. =−∪− fABBA

A->exists(x | x.f->A->exists(x | x.f->isEmptyisEmpty))

A->A->forAllforAll(x | x.f->(x | x.f->isEmptyisEmpty))

A->intersection(B).f->A->intersection(B).f->isEmptyisEmpty))

(A-B)->union(B-A).f->(A-B)->union(B-A).f->isEmptyisEmpty))

A B
f

A B
f

A B
f

A B
f
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More on targets
S The target of an arrow is a set.

¤Given contour (class/state/ad-hoc or regions defined by them):
arrow reads as set equality, e.g. Branch.manages->Branch.manages->asSetasSet = Account = Account

¤Derived contour: the arrow defines the set (most common case).
àEllipse that is not target of arrow is ad-hoc.

¤Derived spider: Treated as derived, singleton sets (not
existentially quantified). No wildcards.

¤Schroedinger spider: Treated as derived, optional set

all accounts are managed
by some branch

should really be
Account.Account.AllInstancesAllInstances

Branch Account

manages
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Different kinds of spider/contour
S Spiders

¤Wildcard (universal spider):

¤Existential spider:

¤Given spider:

¤Schroedinger spider (= optional ad-hoc/derived set):

¤Derived spider (= singleton, derived set):

S Contours
¤Given contour

àclass - rectangle

àstate - rounded rectangle

àad-hoc - ellipse

¤Derived contour - ellipse (at target of an arrow)
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Syntactic sugar
S An arrow ending in an electrical ground symbol

S Arrow sourced on leg rather than foot

= A B
f

A B
f
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Exercise: remember this...

“In any library, a copy which is on the shelf is available to all
registered users; a copy which is on hold is available only to the
user who made the reservation.”
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Outline
PART I: Static Behaviour

¤ From UML to sets and spiders
¤ Spider diagrams - the details
¤ Constraint diagrams - the details
¤ Constraint trees
¤ Theoretical foundations

PART II: Dynamic Behaviour (3D modeling)
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PART III: Tools
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¤ Existing Tools
¤ Plans for the future
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Motivation
S There is difficulty expressing some things on a CD

¤sophisticated constraints on set cardinalities

¤select and reject in OCL (there are work arounds in some cases)

¤negation and disjunction (again, some work arounds)

¤some orderings of quantifers (∃∀ or ∀∃)

¤familiar types such as numbers etc.
àcan be clumsy e.g. try visualising n<=m<=r

S Mixing diagrams with text means they can be used to
partially express a constraint - no longer binary choice

S Mixing mechanism pulls on the idea of a syntax tree
¤allows diagrams to be nested - fixes ordering of quantifiers

¤allows industrial-sized constraints to be organised into multiple,
related diagrams
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Case study (thanks to Nortel)
S IP network needs to be configured to deliver services at different

levels

S Two models
¤ models of services over a virtual network

¤ model of IP network

¤ realise one onto the other

:Service
Level:Virtual

Network

:Service
Level

:Ip Network

:Router

:Q

:Packet
Q

:Packet
Q

:Packet
Q

4:Integer

2:Integer

0:Integer

codepoint

codepoint

codepoint

first

last

next

next

\/ Ip Network

routers

q

\/ codepoint

\/ codepoint

1:Integer

2:Integer

priority

priority

service level

service level
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Service levels to codepoints

Virtual Network Service Level

Integer

0

\/ codepoint
\/ codepoint

service levels
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Service levels to Q’s

Would also like to say that ElsEls->size = ->size = SlsSls->size+1->size+1

Virtual Network Service Level

Ip Network Router

Q

Sls

Packet Q

Els

q

\/ ip network

service levels

routers

q

\/ pqs

elements
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Solution - constraint trees

ElsEls->size =->size = Sls Sls->size+1->size+1

Virtual Network Service Level

Ip Network Router

Q

Sls

Packet Q

Els

q

\/ ip network

service levels

routers

q

\/ pqs

elements
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More generally…

ElsEls->size =->size = Sls Sls->size+1->size+1

andand

oror11 oror22

Virtual Network Service Level

Ip Network Router

Q

Sls

Packet Q

Els

q

\/ ip network

service levels

routers

q

\/ pqs

elements
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no last or codepoint of last is 0

oror11

Q Packet Q Integer

q 0codepoint
last

Q Packet Q
q last
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Packet Q ordering

oror22

Packet Q
Els

Service Level

next

/\ service level
Packet Q

Els

Service Level Integer

next

priority

priority

/\ service level

/\ service level
<
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Outline
PART I: Static Behaviour

¤ From UML to sets and spiders
¤ Spider diagrams - the details
¤ Constraint diagrams - the details
¤ Constraint trees
¤ Theoretical foundations

PART II: Dynamic Behaviour (3D modeling)
¤ Why 3D

¤ 3D filmstrips & 3D sequence diagrams
¤ Contract boxes
¤ Other 3D diagram ideas

PART III: Tools
¤ Extreme modeling - a tools manifesto
¤ Existing Tools
¤ Plans for the future
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Theoretical Foundations
S Spider diagrams

S Constraint diagrams

S Constraint trees

S Subtleties in semantics
¤projections

¤quantifiers
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Spider Diagram Theory
ü Semantics

¤ m is a model of a spider diagram d if it satisfies the semantics predicate Pd

¤ projections are non-trivial

¤ Result: spider diagrams are always consistent

ü Reasoning Rules
¤ Result: rules are sound and complete with respect to semantics

S Algorithms
¤ checking that a diagram is well-formed (based on definition of syntax)
¤ translating a diagram into a first order logic formula (based on Pd)

¤ translating a diagram into OCL (abstract syntax) when used in OO context

? Reasoning rules for projections
? Compaction of the logical formulae
? Exact characterization of expressive power
? The inverse translation problem, from formula to diagram
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Constraint Diagram Theory
S Semantics

¤ m is a model of a constraint diagram d if it satisfies the semantics predicate Pd

¤ default ordering of quantifiers is non-trivial

? constraint diagrams are always consistent

S Algorithms
¤ checking that a diagram is well-formed (based on definition of syntax)

¤ translating a diagram into a first order logic formula (based on Pd)
¤ translating a diagram into OCL (abstract syntax) when used in OO context

? Reasoning Rules
? Compaction of the logical formulae
? Exact characterization of expressive power
? The inverse translation problem, from formula to diagram
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Constraint tree theory
S Semantics

¤ m is a model of a constraint tree t if it satisfies the semantics predicate Pt

¤ syntax tree says how to compose predicates derived from sub-diagrams

S Algorithms
¤ checking that a tree is well-formed (based on definition of syntax)
¤ translating a tree into a first order logic formula (based on Pt)

¤ translating a tree into OCL (abstract syntax) when used in OO context
àallows OCL to be interchanged with diagrams

S Reasoning Rules
¤ we note that constraint trees are required to support reasoning rules for spider

diagrams
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The subtleties of projections

S What’s the semantics of the projections X and Y?
S Can be found by a Gaussian elimination procedure on a system of set

equations:

S Turns out there is a simpler semantics (phew!)
)(

)(

DXBY

CYAX

∪∩=
∪∩=

X Y

C D

( A ) ( B )
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The subtleties of quantifiers

A->A->forAllforAll(x | x.b->(x | x.b->forAllforAll(y | y.a->includes(x)))(y | y.a->includes(x)))
or

B->B->forAllforAll(y | y.a->(y | y.a->forAllforAll(x | x.b->includes(y)))(x | x.b->includes(y)))

A->exists(y | (A-{y})->A->exists(y | (A-{y})->forAllforAll(x | x.b=y.b))(x | x.b=y.b))
or

A->A->forAllforAll(x | (A-{x})->exists(y | x.b=y.b))(x | (A-{x})->exists(y | x.b=y.b))

A

yx

b b

A B

x y
b

a
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Motivation - Why 3D Modelling?
S Technology: Java3D, VRML, ...

S Experience: a lot of work on utilization of 3D
¤3D Software Visualization

¤3D Debugging

¤3D Visual Programming Languages

S Need: Complexity of Software Modeling
¤Only a small amount of information can be displayed in any

diagram.

¤Every little bit can help.

3D Modeling seems to be most useful to give a high level overview + zooming3D Modeling seems to be most useful to give a high level overview + zooming

2½D may be more useful than true 3D2½D may be more useful than true 3D

3rd dimension can be time (and other things)3rd dimension can be time (and other things)
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2D Diagrams and Graphs
S Examples: E-R, Call-graph, UML

S Recurring theme: graph metaphor
¤Partially ordered sets (procedures)

¤More expressive than sequential text
à~O(n lg n) bits to represent linear ordering of n elements

à~O(n2) bits to represent a graph of n elements

In other words, there are 2O(n lg n)  possible linear orderings, which is much
smaller than 2O(n2) different possible graphs of n nodes.

S 2D: Visual clue to lack of order of nodes

S 3D: Virtually useless for rendering graphs
¤Mostly useful for avoiding intersections,

but this advantage is lost in any 2D rendering.

Does this mean that we should not use 3D?
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Document
Data

Direct access
storage Paper tape

Display
Manual

operation
Loop limit

(start or end) Stored data

Graph Theme: Variations

S Problem: Mathematical notion of simple graphs is
not expressive enough. We need nodes and edges of
different kinds.

S Kinds of nodes
¤Booch Object Diagram: 7 kinds of nodes

¤Booch Module Diagram: 10 kinds of nodes

S Problem: 2D limits the variety of edges which can
be distinguished iconically
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3D Edges
S In 2D: edges can use different texture or thickness,

to designate different types of edges, but the range of
shapes is limited (wavy, straight, curved).

S In 3D: range of shapes is greater...

S Edges with a Z coordinate have different semantics

S Use the third dimension to show a variety of edges:
¤Lightning bolt

¤Helix

¤…

S Connect two graphs together
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More 3D Techniques
S Port = connection point between edge and node.

¤2D diagrams: ports are 1D entities

¤3D diagrams: ports are 2D entities
àRich semantics can be drawn on face of a port of connection of an edge to

a 3D shape.

S Nesting: more degrees of freedom in depicting nested
objects

S Projections: retrieve 2D diagrams

Don’t confuse with
projections in SDs and CDs

3D also provides a better grip on the recalcitrant “combined3D also provides a better grip on the recalcitrant “combined
semantics” problem, that is how to tie together the semantics ofsemantics” problem, that is how to tie together the semantics of
diagrams of different kinds.diagrams of different kinds.
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Filmstrip
S Sequence of snapshots of state

S Accompanied by a script

S Shows state change as script is played out
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checkOut(c1,u1)[…

:Library
u1:User

name()="Jerome"

c1:Copy
:Available

:Publication
name()="UML

Distilled"

collection

catalog

registered

c

u

availableTo
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checkOut(c1,u1)[Loan(u,c,self)[…

:Library
u1:User

name()="Jerome"

c1:Copy
:Available

:Publication
name()="UML

Distilled"

collection

catalog

registered

c

u

:Loan

c

u
availableTo
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checkOut(c1,u1)[…]

:Library
u1:User

name()="Jerome"

c1:Copy
:Out

:Publication
name()="UML

Distilled"
:Loan

:Ongoing

collection

catalog

registered

availableTo

loans



42

© 2002 Yossi Gil, John Howse, Stuart Kent 83

Sequence diagrams
S Life Lines

S Arrows: calls

S Box overlaps:
¤Procedure nesting

takeOut (se l f )

:L ibrary c 1 : C o p y

c h e c k O u t ( c 1 , u 1 )
Loan(c ,u ,se l f ) : Loan

a d d U s e r ( u )

addLoan(se l f )
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Collaboration diagrams

:Library

c1:Copy

:Loan
{new}

1.1.2 :addUser(u)

u1:User
avai lab leTo

available

collection
«parameter»c

registered
«parameter»u

«parameter»u

ch
ec

kO
ut

(c
,u

)

1.1:Loan(c,u,self)

«parameter» l

«local»loan

1.1.1:addLoan(self)

«parameter»c

1.1.3:takeO
ut(self)

S Nodes: Objects

S Edges: Calls

S Dewey Numbering System:
¤Call ordering

S Arrows:
¤Invocation

¤Return
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Collaboration vs. Sequence Diagram

S Collaboration:
¤Relations: shown

¤Ordering: not shown

¤Participants in an operation:
àmust be read from text

¤Nesting: not shown

¤Arrows: both time and
relations

¤Change of state: partial
àshown by annotation (e.g.

{new})

S Sequence:
¤Relations: not shown

¤Ordering: shown

¤Participants in an operation:
àPartial representation

¤Nesting: shown

¤Arrows:
àX-direction: message send

àY-direction: time flow

¤Change of state: not shown
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registered

:Copy

:Library

:User
checkOut

registered

registered

:Loan

availableTo

registered

collection

loans

user

user

copy

loans

loans

:Copy

:Library

:User

:Loan

:Copy

:Library

:User

registered addLoan

:Loan

:Library

:User

addUser

:Loan

:Copy

:Library

:User

:Loan

:User

:Copy

:Library

:Copy

takeOut

availableTo

availableTo

availableTo

availableTo

availableTo

registered

collection

collection

collection

collection

collection

3D Sequence diagrams (filmstrip mode)

S Combine filmstrips with sequence
diagrams

S 3D Effects:
¤Lightning bolt: message send

¤Blue connectors: parameters

¤Barrel nesting: call nesting

S Projection:
¤Sequence diagrams (instance mode)

¤Snapshots and filmstrips

¤Collaboration diagrams (instance
mode)
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Contracts

S Example contract
checkOut(c:Copy, u:User)
pre

--c is available for loan to u
c.availableTo->includes(u)

post
--a new, ongoing loan is created which is linked to c and u
--and c is marked as Out and unavailable for lending
loans->exists(l | l.isNew & l.copy=c & l.user=u & l.ongoing)
& c.availableTo->isEmpty & c.oclIsKindOf(Out)

S Transitions on state diagram are abstractions of pre/post
¤they can be translated into pre/post
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Contract box

Copy

Copy

Library

User

Available

availableTo

collection

Available

Library

Loan

User

collection

Ongoing

Out

availableTo

checkOut

Out

S Show: pre- and post-
conditions

S Main Idea:
¤ Z-edges show life line

S Spider symbols:
¤      = parameter

¤      = new object
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State diagram: projection of contract box(es)

Copy

Out

library.checkOut(self,u)

Available

Loan

Ongoing

H
Copy

Copy

Library

User

Available

availableTo

collection

Available

Library

Loan

User

collection

Ongoing

O u t

availableTo

c h e c k O u t

O u t
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Copy

Available

Library

User

Loan

availableTo

checkOut

collection

addLoan

addUser

takeOut

3D Sequence Diagrams (spec. mode)

S Combine constraint diagrams with
sequence diagrams

S 3D Effects:
¤Lightning bolt: message send

¤Blue connectors: parameters

¤Barrel nesting: call nesting

S Projection:
¤Sequence diagrams (spec. mode)

¤Constraint diagrams

¤Generalised collaboration diagrams
àa combination of collaboration &

constraint diagrams
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Nested box diagrams
S Provides an alternative

approach to nesting

S More suitable for zooming in
and out
¤ exploding boxes!

S Boxes are contract boxes
¤ changes are in relation to top of

box, not previous plane

S Example in VRML
¤ thanks to Jonathan Roberts from

UKC

Copy

AvailableOut

Library

User

Copy

AvailableOut

Library

Loan

OngoingUser

collection
availableTo

Copy

AvailableOut

Library

Loan

User

collection
availableTo

availableTo

checkOut

collection

Copy

AvailableOut

Library

Loan
User

collection
availableTo

Copy

AvailableOut

Library

Loan

OngoingUser

collection
availableTo

Copy

AvailableOut

Library

Loan

OngoingUser

collection
availableTo

addUser

Copy

AvailableOut

Library

Loan

Ongoing
User

collection
availableTo

Copy

AvailableOut

Library

Loan

OngoingUser

collection
availableTo

Copy

AvailableOut

Library

Loan

OngoingUser

collection
availableTo

Copy

AvailableOut

Library

Loan

OngoingUser

collection
availableTo

takeOut

addLoan
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Need - eXtreme modeling (1)
S eXtreme Programming (XP)

¤automated testing

¤testing supports refactoring, maintenance etc.

¤good tools essential
àtesting

àediting

àdebugging

àrefactoring

àorganisation of code, version control, working in teams etc.
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Need - eXtreme modeling (2)
S XM

¤testing models = setting up scenarios (filmstrips etc.) and keeping
these in sync. with models

¤good tools essential
àtesting:

• filmstrips, checking filmstrips against model, etc.

• internal integrity of model itself

àediting: good visual editors

àdebugging: give feedback through diagrams

àrefactoring: as for programs; tests can be be refactored as well

àorganisation:

• model management (patterns, templates, packages, tests)

• 3D to see whole picture

model size

to
ol

 
be

ne
fit

s
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Filmstrip
Checker

Filmstrip
Editor

Constraint
Diagram
Editor

Class
Diagram
Editor

3D Sequence
Diagram
Editor

Contract
Box

Editor

Tool Architecture

=  l a y o u t  i n f o r m a t i o n

=  ( a b s r r a c t )  m o d e l  i n f o r m a t i o n

=  ( a b s t r a c t )  i n s t a n c e  i n f o r m a t i o n

Key

federated
repository

tool components which
can be configured to

support profiles
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Existing Tools
S Constraint Diagrams Editor

¤Developed by students @ Technion

¤Download via http://www.ukc.ac.uk/people/staff/sjhk/cds.html

S USE tool, BoldSoft tool (instance versus model, OCL)

S …
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Editors - Where to next?
S Focus on visualization

S Filmstrip editor
¤using time

¤3D sequence diagram - overview with zoom

S Contract box editor

S 3D sequence diagram editor (spec. mode)
¤overview with zoom

S Box diagram editor
¤overview with zoom

S Model management and pattern editors
¤some exciting work ahead
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Semantics tools - Where to next?
S wff and type checking

S model/instance consistency (USE tool etc.)

S model -> instance generation

S instance -> model generation

S consistency of models
¤model checking?

S theorem proving
¤main challenge is to allow reasoning and provide error

information in notations being used to model - raw logic is not an
option!

S etc.
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1 ≤ |B  – C |  ∧  |A  ∩  C|  = 1   ∨∨ 1 ≤ |B  |   ∧   |A  –  (B  ∪  C )| = 2

Compound diagrams

A B

C

U A B

C

U

1D 2D

D 1 – D2 represents disjunction
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  1  ≤ |B  – C |  ∧  |A  ∩  C|  = 1 ∧∧  1  ≤ |B  |   ∧   |A  – (B  ∪  C)| = 2

Multi-diagrams

A B

C

U A B

C

U

1D 2D

∆ = {D 1 , D 2 , …, Dn} represents conjunction
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Erasure of shading We may erase shading in an entire region

Reasoning rules

A B A BU U
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Erasure of spider
We may erase a complete spider on any non-shaded region.

Reasoning rules

A B A BU U

A B A BU U
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Erasure of contour

We may erase a contour provided

• remove ‘partial’ shading

• combine spider’s feet as necessary

Reasoning rules

A B

C

U A B U
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Spreading feet

Given a spider  s,  draw a foot in any ‘new’ zone and connect it to  s

Reasoning rules

A B UA B U
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Introduce contour

Introduce new contour so that

• each zone bifurcates

• each spider’s foot bifurcates

Reasoning rules

A B U A B

C

U
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Splitting spiders

Spider  s  has  n-zone habitat

→→ disjunction of  n  diagrams each containing a single-footed

spider in one of the zones

Reasoning rules

A B U A B U A B U
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Excluded middle

Non-shaded zone z touched by n spiders

→→ disjunction of two unitary diagrams

•  z  shaded in one component touched by n spiders

•  z  not shaded in other component touched by n + 1 spiders

Reasoning rules

A B U A B U A B U
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D 1                            D 2                              D1  ∗ D2

§ a zone is shaded in  D1  ∗ D2   ⇔  it  is shaded in at least one of  D 1  or  D2

§ number of spiders in a zone of  D 1  ∗ D 2  equals the maximum number of spiders in

the zone in  D1   and  D2

A B

C

U A B

C

U A B

C

U

* =

Combining diagrams

Unitary αα-diagrams with same contour labels
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Combining diagrams
A B

C

U A B U

A B

C

U

G

A B

C

U A B U

G

C

A B U A B U A B UA B

C

U

G

C CC
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Inconsistency

Given an inconsistent multi-diagram  ∆,  we may replace  ∆  with any

other multi-diagram.

Combining

Given a consistent multi-diagram   ∆ = {D1, D2, …, Dn}   we may

replace  ∆  with the combined diagram   D1 ∗ D2 ∗ … ∗ Dn.

Reasoning rules
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Obtainability

∆ � D  D    can be obtained from  ∆  by applying a sequence of transformations.

Consequence Relation

∆ � D every compliant model for  ∆  is also a compliant model for  D .

Soundness and Completeness

Soundness Theorem
If   ∆ � D  then   ∆ � D

Completeness Theorem

If   ∆ � D,   then   ∆ � D
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Negation

A B U A B
U

≡
A B U AB U
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Outline

For more info see:

http://www.it.bton.ac.uk/Research/vmg

http://www.cs.ukc.ac.uk/constraintdiagrams
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Exercise: solution...

contextcontext l:Library  l:Library invinv::
l.collection->l.collection->forAllforAll(c | (c.(c | (c.oclIsKindOfoclIsKindOf((OnShelfOnShelf) implies c.) implies c.availableToavailableTo=l.registered)=l.registered)

and (c.and (c.oclIsKindOfoclIsKindOf((OnHoldOnHold) implies c.) implies c.onHoldForonHoldFor.user=c..user=c.availableToavailableTo))))

“In any library, a copy which is on the shelf is available to all registered users; a copy
which is on hold is available only to the user who made the reservation.”

Library

User

Copy

Reservation

( On Shelf )

( On Hold )

collection

registered available to

on hold for
user

available to


