Drawing Graphs in Euler Diagrams

Paul Mutton!, Peter Rodgers', and Jean Flower?

! Computing Laboratory, University of Kent, Canterbury, Kent, CT2 7NF, UK
{pjm2, P.J.Rodgers}e@kent.ac.uk
http://www.cs.kent.ac.uk/people/rpg/pjm2/
2 School of Computing, Mathematical and Information Sciences,
Watts Building, University of Brighton,
Lewes Road, Brighton, BN2 4GJ, UK
J.A.Flower@bton.ac.uk
http://www.cmis.brighton.ac.uk/research/vmg/people.htm

Abstract. We describe a method for drawing graph enhanced Euler diagrams
using a three stage method. The first stage is to lay out the underlying Euler dia-
gram using a multicriteria optimizing system. The second stage is to find
suitable locations for nodes in the zones of the Euler diagram using a force
based method. The third stage is to minimize edge crossings and total edge
length by swapping the location of nodes that are in the same zone with a mul-
ticriteria hill climbing method. We show a working version of the software that
draws spider diagrams. Spider diagrams represent logical expressions by super-
imposing graphs upon an Euler diagram. This application requires an extra step
in the drawing process because the embedded graphs only convey information
about the connectedness of nodes and so a spanning tree must be chosen for
each maximally connected component. Similar notations to Euler diagrams en-
hanced with graphs are common in many applications and our method is gener-
alizable to drawing Hypergraphs represented in the subset standard, or to draw-
ing Higraphs where edges are restricted to connecting with only atomic nodes.

1 Introduction

The system described here links graph drawing and Euler diagram drawing into a
system for drawing graph-enhanced Euler diagrams. In this sort of representation the
nodes of the graph are required to appear in certain zones of the Euler diagram. Our
approach is to draw the Euler diagram first, and later add the graph in a way that

minimizes edge crossing and edge length.

There are various application areas which can be visualized by such structures and
so benefit from the work described here such as databases [3] and file system organi-
zation [2]. However, we show our system being used with a form of constraint dia-
gram, the spider diagram [7]. This application area is in particular need of automatic
layout for the diagrams because automatic reasoning algorithms produce abstract

diagrams that have no physical layout.

An Euler diagram is a collection of contours (drawn as simple closed curves), ar-
ranged with specific overlaps. The parts of the plane distinguished by being contained

=

jaf28
take out the /people.htm at the end of this url

DONE

jaf28
In a graph-enhanced Euler diagram, we have a graph, an underlying Euler diagram, and a mapping from the graph nodes to the zones of the Euler diagram. In any drawing, the nodes are required to be included in the corresponding zone. We are, in effect, embedding graphs in Euler diagrams.
DONE

jaf28
In this sort of representation the
nodes of the graph are required to appear in certain zones of the Euler diagram.

jaf28
minimise the number of edge crossings in the graph

DONE

jaf28
John Taylor, who read a draft for us, says
(i) is it obvious what graph-enhanced Euler diagrams are?
(ii) Could you talk about embedding graphs in Euler diagrams and say, very early on, why you want to do this?
(iii) are they always trees you are embedding?

My response to (i) is in the 9:29:37 postit note above.
I can't think of anything extra to say about "why", beyond the applications described. Any thoughts?
We know the answer to (iii) is "no", but we must be more explicit about this.

jaf28
be consistent about whether we write "graph-enhanced" or "graph enhanced"

(I prefer the version with the dash)

DONE

within some contours and excluded from other contours are called zones. The essential
structure of an Euler diagram is encapsulated by an abstract Euler diagram. An ab-
stract Euler diagram is made up of information about contours and zones. Contours at
the abstract level are not drawn, but have distinguishing contour labels. Zones are not
parts of the plane, but a partition of the contour set into containing contours and ex-
cluding contours. To clarify these concepts, Figure 1 shows, first, an abstract Euler
diagram, and, second, a drawn representation of the same Euler diagram. The shaded
zone in the drawn diagram corresponds to the abstract zone ({a},{b}).

Contours : {a, b }
Zones: {({},{a, b}),({a},(b}).({b},{a 1)} Q

Fig. 1. The distinction between an abstract Euler diagram and a corresponding drawn Euler
diagram.

The task of drawing an Euler diagram - taking an abstract diagram and producing a
corresponding drawn Euler diagram is analogous to the field of graph drawing. Previ-
ous research has addressed some initial issues concerning the drawing of Euler dia-
grams. The paper [5] outlined well-formedness conditions on drawn diagrams and
presented an algorithm to identify whether an abstract diagram was drawable subject
to those conditions. If a diagram was diagnosed as drawable, then a drawing was pro-
duced. Later work, [6], sought to enhance the layout of a drawn Euler diagram using a
hill-climbing approach in combination with a range of layout metrics to assess the
quality of a drawing.

There has been some previous work in drawing extended graph systems. Clustered
graph visualization systems are common (e.g. [4,10]), but in such structures the re-
gions only nest and cannot intersect, hence they are not as expressive as Euler dia-
grams. There are a limited amount of drawing methods for more complex graph-like
structures such as hypergraphs and higraphs. Hypergraphs are similar to standard
graphs, but with hyperedges rather than edges. Hyperedges connect to several nodes,
in contrast with standard edges which are binary as they always connect to two nodes.
Hypergraphs are commonly represented in two ways: by the edge standard and the
subset standard [12]. The edge standard draws hyperedges as lines, effectively adding
a dummy node for each hyperedge, where the lines connecting to each node meet.
Visualizing this representation reduces to a graph drawing problem. The subset stan-
dard is a representation closer to enhanced Euler diagrams, where the hyperedges are
indicated by closed curves surrounding the grouped nodes. However, there are still
significant differences as hypergraph closed curves that intersect have no extra mean-
ing, and current hypergraph drawing methods [1] emphasize node groupings, putting
little emphasis on the layout of the curves. Hypergraphs with binary edges are repre-

jaf28
amount ->number

DONE

jaf28
So we don't have self-loops in these graphs? I don't know the answer to this question. Maybe we should say that the edges connect at most two nodes?

DONE

jaf28
Labels on contours please
DONE?

sented with the edge standard and with non binary edges represented with the subset
standard are similar to commonly applied subsets of higraphs [9,11].

Fig. 2. Two equivalent hypergraph drawings which are different when interpreted as Euler
diagrams.

In graph-enhanced Euler diagrams, the absence of a zone from the second diagram
in Figure 2 would convey extra information, whereas, considered as hypergraphs,
these two Figures convey the same information

Inspired by the widespread use of diagrammatic notations for modeling and speci-
fying software systems, there has been much work recently about giving diagrammatic
notations formal semantics. The analysis of a diagrammatic specification can be done
using diagrammatic reasoning rules - rules to transform one diagrammatic assertion
into a new diagram that represents equivalent or a weaker semantic statement.

One such notation, and reasoning system, is that of constraint diagrams [11]Jean,
this reference is not right, what should it be? Plus, need refs for formal semantics. A
simple subset of constraint diagrams, with a restricted notation and restricted rule
system, is that of spider diagrams. Spider diagrams are Euler diagrams with extra
notation comprising shading in zones and a graph superimposed on the diagram. The
components of the superimposed graph are trees (called spiders). Contours represent
sets and zones represent subsets of those sets, built from intersection and exclusion.
The absence of a zone from the diagram indicates that the set corresponding to that
zone is empty. Each spider drawn on the diagram has a habitat: the collection of zones
that contain nodes of the graph. The spiders assert semantically the existence of an
element in the set corresponding to its habitat. Spiders place lower bounds on the
cardinality of sets. Shading in a zone (or collection of zones) indicates that the set
corresponding to that zone (or zones) contains only elements for the spiders, and no
more. Shading places an upper limit on the cardinality of sets. See Figure 3 for an
example of a spider diagram.

Contours : {a, b }

Zones: {({},1a, b}),({1a},{b}),({b},{a })}
Shading: {({},{a, b})}

Spiders : {{({},{a,b}),({b},{a})},{({a},{b})} } @(@

Semantics:
lA|=1and AN B ={} and |[U-A| > 1

jaf28
Spider diagrams ...
->
(Unitary) spider diagrams... and italicise it because we're defining it here.

DONE

jaf28
refs:
formal semantics in [FS] and constraint diagrams in [CD]

(see end)

DONE

jaf28
Labels on contours please

DONE?

Fig. 3. An abstract spider diagram and a corresponding drawn spider diagram.

The semantics of spider diagrams provide a foundation upon which we build rea-
soning rules. In the case of spider diagrams, there are seven rules which transform a
spider diagram into another. For example, one rule transforms a diagram with an ab-
sent zone into the equivalent diagram which contains the zone and it is shaded. This
reasoning rule changes the structure of the underlying Euler diagram and necessitates
reconstruction of a drawn diagram. A sequence of reasoning rules, applied to a prem-
ise diagram, gives a proof which ends with a conclusion diagram. An example of such
a proof is shown, drawn by hand, in Figure 4.

Fig. 4. An example of a proof in the spider diagram reasoning system

The full spider diagram reasoning system allows for the manipulation and interpre-
tation of compound spider diagrams: that is, expressions built up from spider diagrams
using the propositional logic connectives “and” and “or”. This extension leads to
many more reasoning rules, giving a sound and complete reasoning system, equivalent
in its expressiveness to monadic first order predicate logic with equality. Detailed
descriptions of the system, its rules and its expressiveness can be found in [12]Is this
reference right?.

We have developed a tool to assist users with the application of reasoning rules to
transform diagrams. At the heart of this must be an algorithm to generate diagrams for
presentation to the user as the outcome of a rule application.

2 Drawing Euler Diagrams Enhanced With Graphs

In this section we describe our three stage generic method for laying out graphs on
Euler diagrams. The software system has been implemented in Java.

2.1 Stage 1: Euler Diagram Smoothing

The basic process of drawing Euler diagrams in stage 1 has been detailed previously
[6]. In outline, firstly we produce an initial diagram based on the zone specification as
described in [5]. This results in a structurally correct, but not very well laid out dia-
gram. We then apply a multicriteria optimizer, which attempts to improve a weighted

jaf28
No

Change this to "more details on the system, its rules and it expressiveness can be found in [Heur, Exp]"

DONE

jaf28
tool [GenPf, Heur]

DONE

sum of various diagram layout criteria using a hill climbing method. This adjusts the
contours by both moving them and moving the individual points of the polygons that
are used to represent them. It assesses the layout formed on each single move for the
presence of the correct zones and to see if the change has improved the weighted sum.
We use several criteria for measuring diagram features, such as contour smoothness,
contour size, zone area and contour closeness. The criteria and the hill climber are
described in [6].

This system has since been extended to deal with nested diagrams. Nested Euler
diagrams have subdiagrams entirely enclosed in a zone of a containing diagram. To
draw a nested diagram, assuming we have a mechanism for drawing each atomic (non-
nested) part independently, the first step is to identify, in the abstract diagram, which
are the atomic components and which zones of containing diagrams each nested part
belongs to. Each atomic component can be drawn and this tree-structure of drawn
atomic components is combined into a single diagram as follows. For each zone which
contains sub-diagrams, find its bounding box and consider sequences of sub-boxes

within the bounding box. The sub-boxes occupy a fraction /l/; of the bounding box,

and are placed sequentially at (j—i)? positions scanning the whole bounding box
(starting centrally). As j gets larger, the subboxes shrink and eventually one will be
found which fits inside the zone. This sub-box is partitioned into disjoint boxes, within
which the nested diagrams are inserted. This process is illustrated in Figure 5.

S

op

Fig. 5. Nesting Euler diagrams.

Once the nested diagram has been built in this way, the next step is to improve its
appearance by smoothing. As the nesting can be arbitrarily deep the amount of move-
ment of polygons and polygon corners could be too large for very small nested con-
tours. Hence, the amount of movement has been scaled to be proportional to the size
of the contour (in fact the bounding box of the contour) against the size of the whole
diagram.

jaf28
nested diagrams [Nesting].

DONE

jaf28
Use a different fraction :
i / j (flatter)

Also shrink font size to match surrounding text.

DONE

jaf28
Labels on all contours please. Bring labels to the front over the grey grid.

DONE?

The result of Stage 1 is normally a well laid out Euler diagram. The graph can then
be superimposed as described in the following sections.

2.2 Stage 2: Finding Locations for Nodes

A node belonging to a particular zone must be placed such that the node is con-
tained within the region defined by the drawn zone. Each concrete zone is defined by
a sequence of line segments. We do not concern ourselves with disconnected zone
areas, as these are not present in a well-formed [5] Euler diagram, however, for nested
diagrams, at least one zone fails to be simply-connected (i.e. it’s ring-shaped, or
worse; see Figure 6). Zones which are simply connected (i.e. disc-like) have one poly-
gon as their boundary, but non-simply connected zones have multiple polygons
bounding them.

Jean, can you do this bit, I’'m not sure what you want to f=beled!

v

Fig. 6. Three examples of non-simply-connected zones

A variety of possible strategies exist for the initial placement of a node inside its
containing zone. We use a fast and simple method that is primarily concerned with
ensuring that the node is contained inside the zone, regardless of how bad that place-
ment is. Subsequent application of a force model refines the placement so that the
node is not too close to any of the boundaries of the zone. The force model also en-
sures that all nodes sharing the same zone are reasonably spaced.

The initial placement of a node requires a line to be drawn through the containing
zone. For simplicity of implementation, this line is horizontal and passes through the
bounding box of the concrete zone. The y-coordinate of the horizontal line is chosen
randomly between the range of the bounding box in order to give a scattering effect
when there is more than one node present in a zone. By intersecting the bounding box
horizontally, we can be certain that there is at least one subinterval of the line that is
contained by the area of the concrete zone.

jaf28
OK It's in cvs as "non-simply-connected-diagram.doc"

DONE

<4 | >

Fig. 7. Candidate locations for a new spider foot in zone a excluding b,c. The horizontal line is
placed such that it intersects the bounding box of zone @ at a random height. This diagram
shows two subintervals where it is valid to place the new spider foot.

An ordered set is built up from the intersection points of the horizontal line and the
line segments which make up the boundary of the zone. This set must contain at least
two points, and any location between the 2n-1" and 2n™ intersection point must be-
long to the zone.

The Stage 1 method for placing nested diagrams described in Section 2.1 could
have been used for the initial placement of nodes. However this node placement
method is faster as we are placing a point rather than a shape with a bounding area and
we are unconcerned about a central placing of the point, anticipating the refinement
which is described next.

After initial placement, refinement of node locations is achieved by applying a
force model to the set F' of nodes in the zone. We introduce a repulsive force acting
between each pair of nodes in the zone, causing them to become evenly distributed.
This repulsive force is inversely proportional to the separation d, and proportional to
the number of nodes, |F], in the zone. A constant ¢ is used to affect the desired separa-
tion between pairs of nodes. This repulsive force is based on the force model by
Fruchterman and Reingold [15] and is commonly used in force directed graph layout.

. c
Repulsive force between two nodes = !F | X'd- .

To prevent nodes from escaping from a zone or getting undesirably close to the
boundary of a zone, we make each line segment in the zone exert a repulsive force on
each contained node. It is desirable to let the set of nodes spread about a reasonably
large area of the zone, however it is still essential to keep each nodes away from the
boundaries of the zone. For this reason, we depart from the previously used force
model and make the repulsive force acting on a node proportional to the inverse
square of the distance from the line segment. This encourages nodes to spread over a
reasonable area with very little chance of getting too close to a boundary due to the
prohibitively high resultant forces.

jaf28
John said

"I think this (yellow para) could benefit from a diagram". Could we use this empty space to illustrate more?

DONE

jaf28
Adjust font size to match

DONE

jaf28
in the boundary of the zone

(I'm sure I asked for this before? Do you disagree?)

DONE

jaf28

jaf28
NB I just realised!!
 this will only work f the horizontal line is not tangetnt to bounding contours. In the implementation, this is just very unlikely to happen, but if it did, it would create nodes in the wrong zone (see pen drawing.)

jaf28

jaf28

jaf28

jaf28

jaf28

jaf28

jaf28

jaf28
please check that all tables used to hold figures have tabular lines in white, or unthickened or something to stop them showing up.

DONE?

Fig. 8. Initial placement of spider feet (left) and refinement under the force model (right).

The repulsive force is proportional to |F, as this helps to contain larger sets of
nodes. As the zone may consist of an arbitrary number of line segments of arbitrary
lengths, the repulsive force is also proportional to each length.

le

. : 2
Repulsive force between a line segment and a node = !F ! X

We have observed that better results can be obtained when there are more line
segments bounding a zone. We use a method that breaks a zone boundary into more
line segments without affecting the region contained; typically so there become more
than a hundred new line segments. This is done by dividing each existing line segment
into two new line segments of equal length. The process is repeated until it yields
enough new line segments. This reduces the chance of a node escaping from a corner
of the zone when the force model is applied.

The simulation of the force model is an iterative process. For each iteration, the re-
sultant force acting on each node is the sum of all repulsive forces from the line seg-
ments of the containing zone and the repulsive forces from all other nodes in the same
zone. After calculating all of the resultant forces, the location of each node is updated
by moving it a small distance in the direction of the force. The distance of the move-
ment is proportional to the magnitude of the force. After a number of iterations, the
system nears an equilibrium and the nodes occupy their new locations.

2.3 Stage 3: Placing Nodes in Node Locations

The previous stage calculates locations for nodes. We can think of these locations as
being candidate locations for the set of nodes in the zone, and we are free to swap the
location of pairs of nodes, within a zone, without changing the meaning of the diagram
(see Figure 11). We use a simple hill climbing approach on this with two metrics to
improve the quality of the diagram.

jaf28
Shrink font size to match text

DONE

One desirable feature of a diagram is to have a minimal number of edge crossings.
Our first metric returns the number of edge crossings in the current diagram, so values
closer to zero will represent a better quality of layout in terms of edge crossings. To
further enhance the understandability of the diagram, we introduce a second metric,
which is based on the total length of all edges in the diagram. Shorter edges make
graphs easier to navigate and identify, so the value returned by this metric will repre-
sent an improvement in the layout if the value is closer to zero.

In our current system, we are only concerned with simple straight-line edges, al-
though it is worth noting that our software can deal with non-simple edges. For exam-
ple, some notations use curves or shapes to represent special edges and our system is
able to detect intersections with these more nonlinear edges.

b

=

Fig. 9. A diagram demonstrating the different types of edges that are supported by our system.
Intersections with the more complicated types of edges can still be computed.

As the value returned by the edge length metric is based on the sum of edge lengths
in the diagram, we make this value dimensionless by dividing it by the square root of
the area of the diagram. This makes the metric return the same value for a particular
diagram, regardless of the scaling.

The two metrics are combined as a weighted sum to work out the current quality of
a diagram. As we have determined minimization of edge crossings to be the most
important factor, we apply a much higher weighting to this metric. That is, we are
unlikely to reduce the total edge length in a diagram at the expense of introducing a
new edge crossing.

In our implementation of the system, we use a weighting of 1 for the edge crossing
metric. The weighting of the edge length metric is relative to this and is chosen such
that when the returned value is multiplied by the weighting, the value is typically less
than 1. Larger values may allow total edge length to be reduced at the expense of
introducing new edge crossings. Our implementation uses a weighting of 0.01 for the
edge length metric weighting.

jaf28
can we use this space for anything? It's wasted here

jaf28
more - delete this word

An edge can't be "more nonlinear"

DONE

a a b a b a b

0.0000 1.0102 0.0086 0.0110

Fig. 10. Total quality metrics for some graph enhanced diagrams.

The hill climber is also an iterative process and runs for either a fixed number of it-
erations, or a user may interact with the process and apply more iterations if it is
deemed necessary. Each iteration begins with selecting a random zone that contains
more than one node. A random pair of nodes is selected from this zone and their loca-
tions are swapped. This does not alter the meaning of the diagram, as they both lie
within the same zone. If the new quality of the diagram is worse than before, the nodes
are swapped back to their original locations; otherwise, the change is kept. After a
number of iterations, the quality of the diagram according to the metrics improves.

b b

a a @

Fig. 11. A diagram with 4 edge crossings (left) and the same diagram produced us-
ing the hill climber, with no edge crossings (right). Notice the common locations for
all nodes. The right hand diagram has had 3 pairs of nodes swapped, in zones b, ab

and abc. @

3 Drawing Spider Diagrams Enhanced With Graphs

In this section we describe how we apply our method to spider diagrams. The
method is essentially that described in Section 2, except that spider diagrams do not
@: arbitrary graphs connecting nodes, instead nodes are connected in spanning trees,

7 the manner in which the nodes are connected in the spanning tree is not signifi-
cant. The abstract syntax of spider diagrams expresses spiders purely in terms of their
habitat. A spider whose habitat comprises three zones, z;, z,, z3 can be drawn with a

jaf28
They're only spanning tress in the sense that they connect their feet - but in this sense all tress are spanning trees. Cut the wods "spanning" here. Trees are always connected, so all the feet will be included.

DONE

jaf28
spanning

jaf28
Emphasise here that the work, in general, draws graphs on Euler diagrams, but in section 3 we start to specialise and draw trees (actually, forests) on Euler diagrams, because of the chosen application syntax.

DONE

Paul
use some non-spiders in these graphs.

DONE

Paul

graph edges (the spider’s leg) drawn between graph nodes (the spider’s feet) in z; and
z, and a second leg between graph nodes (the spider’s fee?) in z, and z3. An alternative
drawing might draw legs between z; and z, and between z; and z;. Only once a spider
is drawn do we know which of its feet have a leg between them. As we only have the
information about which sets of nodes are connected, our drawing method needs an
additional process that develops a spanning tree between the nodes.

Once the feet for each spider have been placed, it is possible to use Prim’s or
Kruskal’s algorithm to form a minimal spanning tree. This completes the concrete
representation of the spider with the smallest total edge length, but does not take into
account edge crossings. As our hill climbing method gives preference to changes that
reduce edge crossings, we do not create a minimal spanning tree, but trivially form a
chain of spider legs that connect each spider foot.

A proof in the spider diagram reasoning system can be elicited from a user, with a
software tool assisting in the application of reasoning rules, or, proofs can be auto-
matically generated between given premise and conclusion diagrams [two refs here].
A proof is essentially a sequence of diagrams with descriptions of rule applications
obtainable between adjacent diagrams. An example is shown in Figures n, n+1 and
n+2, where the rules “Add Shaded Zone” and “Add Spider Foot” have been applied.
The first rule changes the underlying Euler diagram, and the second rule changes the
superimposed graph. Without any results on drawing spider diagrams, the proof can
only be presented in its abstract form (Figure n). The preliminary work on drawing
can present the proof with correct but unappealing diagrams (Figure n+1). After ap-
plying the algorithm described in this paper, the proof is presented in a most readable
fashion (Figure n+2). Jean, I’m not too sure what diagrams you wanted me to use for
the figures mentioned in this paragraph. Let me know and I’ll make them (paul).

Initial Euler diagram Initial node placement Refined node placement
and crossing reduction

Fig. 12. Embedding graphs into an Euler diagram that has been drawn automatically.

jaf28
spanning

jaf28
This final occurrence of "spanning tree" is OK.

DONE

jaf28
Move fig 12,13,14 nearer where they are cited (where's this?)

jaf28
The diagrams I wanted were...
n: a textual (JTree) view of the proof in fig 4,

n+1: and unsmoothed but drawn view

n+2 a smoothed view.

If the proof is too long, just show 2 steps. Correct the text to say "Remove shaded zone" and "add spider foot".

Using the same proof as fig 4 gives a nice circularity to the paper.

I don't like the fig 15 example - the Euler diags are too simple- almost trivial to draw.

Initial Euler diagram Initial node placement Refined node placement
and crossing reduction

Fig. 13. Embedding the previous graphs into the same Euler diagram laid out with the smooth-
ing system. It is easier to distinguish between the curved contours and the straight edges.

Manual layout (good) Automatic layout (good) Automatic layout (bad)

Fig. 14. Different layouts for the same graphs in an Euler diagram. The bad automatic layout
occurs when both nodes in zone a are initially placed close to each other and reach a local
minima while the force model is being simulated. In this case, it is not possible to reduce edge
crossings without moving nodes — a task that could be performed by simulated annealing.

Y proof with 2 steps |;H‘§|E|

=3 name: d1° "1 name: ‘outcome’] name: d2'

outcome

rwd.rules: delete spider applied to (subjdiagram. outcome applied in case: [Z(h,)]

Fig. 15. Using our system to draw each step of an automated proof.

4 Conclusions and Further Work

The example of a proof shown in Figure n was chosen well, to ensure that all the
component diagrams are drawable (as described in [5]). More work needs to be done
to resolve, and draw, diagrams that are currently diagnosed as “undrawable”.

Another question raised by the proof-presentation application is that of “continuity
of proofs”. When one small change is made (a new zone or a new spider foot), the
proof would be best understood if the drawn diagram closely resembles the preceding
diagram, except for a “local change”. This task generalises to that of drawing one
diagram given a “context” - another diagram which is structurally similar, or even

jaf28
n

given a context which is a library of already drawn examples. If all of a set of dia-
grams are provided only in their abstract form, how can the diagrams be generated to
maximise the likelihood that readers can see similarities between the diagrams?

At the moment, the optimization of the graph layout relies on swapping nodes that
are in the same zone. A further addition to this for spider diagrams is to change the
spanning tree of a spider as a move in the hill climber, in an attempt to improve edge
crossings and edge length of the final graph. We feel that this can improve the layout
of spiders.

It would be desirable when drawing diagrams such as proof sequences to maintain
the mental map between the dynamic visualizations of each proof step. There are
several possible ways to achieve this. One method is to include a mental map criteria
across all diagrams when performing hill climbing at both the Euler Diagram and node
location stages. Another method is to draw the first diagram nicely, and then attempt
to draw subsequent diagrams incrementally to remain as close to previous ones as

possible.

References

1. Frangois Bertault, Peter Eades. Drawing Hypergraphs in the Subset Standard. GD 2000.
LNCS 1984.164-169.

2. R. De Chiara, U Erra and V. Scarano. VENNFS: A Venn-Diagram File Manager. Proc.
IEEE Information Visualization (IV03). pp. 120-126. 2003.

3. M.P. Consens and A.O. Mendelzon. Hy+: A Hygraph-based Query and Visualization Sys-
tem. In Proc. of the ACM SIGMOD Intl. Conf. on Management of Data, pages 511-516,
1993.

4. Peter Eades, Qingwen Feng. Multilevel Visualization of Clustered Graphs. GD96. LNCS
1190. pp. 101-112.

5. J. Flower and J. Howse. Generating Euler Diagrams, Proc. Diagrams 2002, Springer Verlag,
pp. 61-75. 2002.

6. J. Flower, P. Rodgers and P. Mutton. Layout Metrics for Euler Diagrams. Proc. IEEE
Information Visualization (IV03). pp. 272-280. 2003.

7. J. Flower and G. Stapleton. Automated Theorem Proving with Spider Diagrams, submitted
to Computing Australasian Theory Symposium (CATS04).

8. J. Flower, J. Masthoff and G. Stapleton. Generating Readable Proofs : A Heuristic Approach
to Theorem Proving With Spider Diagrams, submitted to Diagrams *04.

9. David Harel. On Visual Formalisms. Communications of the ACM. 31(5). pp. 514-530.
1988.

10. David Harel, Gregory Yashchin. An Algorithm for Blob Hierarchy Layout. Working
Conference on Advanced Visual Interfaces. pp. 29-40, May 2000.

11. Higraph web page: http://db.uwaterloo.ca /~gweddell/higraph/higraph.html.

12. Erkki Mékinen, How to draw a hypergraph. International Journal of Computer
Mathematics 34 (1990), 177-185

13. Higraph web page: http://db.uwaterloo.ca /~gweddell/higraph/higraph.html.

14. Erkki Mékinen, How to draw a hypergraph. International Journal of Computer
Mathematics 34 (1990), 177-185

15. T.M.J. Fruchterman, E.M. Reingold. Graph Drawing by Force-directed Placement.

Software — Practice and Experience Vol 21(11). pp. 1129-1164. 1991.

=

jaf28
GD 1996. To match GD 2000 above

DONE

jaf28
New refs:

[Heur] - this one's already there - just needs citation
J. Flower, J Masthoff and G. Stapleton, Generating Readable Proofs: A Heuristic Approach to Theorem Proving with Spider Diagrams. Submitted to Diagrams '04.

[GenPf] - this one's already there - just needs citation
J. Flower and G. Stapleton. Automated Theorem-proving with Spider Diagrams, submitted to Computing : Australasian Theory Symposium (CATS '04)

[Exp]
G. Stapleton, J. Howse, J. Taylor and S. Thompson, What Can Spider Diagrams Say? submitted to Diagrams 2004.

[FS]
J. Howse, F. Molina, J. Taylor, S. Kent. Reasoning with Spider Diagrams,
Proc. IEEE Symposium on Visual Languages 1999 (VL99), IEEE Press, 138-147.
A. Fish, J. Flower, and J. Howse. A Reading Algorithm for Constraint Dia-
grams. To appear in Proceedings of HCC `03
A. Fish, and J. Howse Computing Reading Trees for Constraint Diagrams.
To appear in Proceedings of AGTIVE `03.

[CD]
G. Stapleton, J. Howse and J. Taylor. A Constraint Diagram Reasoning System. Proc Visual Languages and Computing '03, pp. 263-270.

[Nesting] J. Flower, J. Howse and J. Taylor. Nesting in Euler Diagrams, Syntax, Semantics and Construction. To appear in the journal of Software and Systems Modelling (SoSyM).

Lots of these "submitted to" should become accepted or refused by the time this paper gets its final polishing. And the "accpeted for" ones can get publisher and page numbers soon, too.

jaf28
Ref 12 = ref 14

DONE (deleted)

jaf28
Please play with the tabbing so that refs 1-9 are indented the same as refs 10-

DONE?

jaf28
It would be desirable when drawing diagrams such as proof sequences to maintain
the mental map between the dynamic visualizations of each proof step. There are
several possible ways to achieve this. One method is to include a mental map criteria
across all diagrams when performing hill climbing at both the Euler Diagram and node
location stages. Another method is to draw the first diagram nicely, and then attempt
to draw subsequent diagrams incrementally to remain as close to previous ones as
possible.

jaf28
These two paras are saying very similar things.
Either merge them, or at least bring them to be adjacent. Needs some work.

DONE

jaf28
Add : Thanks to John Taylor at Brighton for helpful comments on early versions of this paper.

DONE

	Untitled
	Untitled
	Untitled

