Interpreting the Object Constraint Language

Ali Hamie, John Howse and Stuart Kent
Division of Computing,
University of Brighton, Lewes Rd., Brighton, UK.
e-mail: A.A.Hamie@brighton.ac.uk

Abstract under the auspices of the Object Management Group. As a
result it is likely to get much greater exposure and use than

The Object Constraint Language (OCL), which forms part previously proposed formal specification languages such as
of the UML 1.1. set of modelling notations is a precise, VDM [7] and Z [8], and work invested in ensuring that it is
textual language for expressing constraints that cannot becorrect and appropriate for its purpose is therefore more
shown in the standard diagrammatic notation used in likely to reap a dividend than work on the aforementioned
UML. A semantics for OCL lays the foundation for languages.
building CASE tools that support integrity checking of The purpose of this paper is to provide a semantics to
whole UML models, not just the component expressedcheck that OCL is unambiguous and to improve OCL [9].
using OCL. This paper provides a semantics for OCL, atAs OCL does not exist in a vacuum, but instead depends on
the same time providing a semantics for classes,some parts of a model to be defined already in diagrams,
associations, attributes and states this necessitates a semantics for a kernel of the UML dia-
grammatic notation, specifically: class diagrams. Thus
OCL provides a focus for integrating the semantics of the
diagrammatic notations. We present one such integrated
semantics, which we hope lays the foundation for building
)] .) CASE tools that support integrity checking of whole UML
The Object Constraint Languagg [1][2] is a precise teﬂ@'models, not just the component expressed using OCL.
language to complement graphical languages in modelling Semantics work [10][11] for OO modelling notations
object-oriented systems. It allows constraints on'the modekp, widespread use, such as OMT or UML, is generally
to be expressed, that can not be expressed using standafgstricted to capturing the meaning of those notations, so
diagrammatic notations. Specifically, OCL supports the accompanying precise textual languages have yet to be
expression of invariants and pre/post conditions, allowingconsidered, as languages such as OCL have only very
the modellgr to specify precisg and deta?led constrgints'or}ecenﬂy been incorporated. Exceptions to this are the work
the behaviour of a model, without getting embroiled in f Bicarregui et al. [12][13] which uses the Object Calculus

1: Introduction

implemen?ation detai!. . . [14] to develop a semantics for Syntropy [3], and our own
OCL is the culmination of recent work in OO model- \york [15][16][17][18][19].
ling [3][4] which has selected ideas from formal methods We have chosen to use Larch [20]. This choice is

to combine with diagrammatic, object-oriented modelling motivated in part by the desire not to be engaged in the
resulting in a more precise, robust and expressive notationdesign of logics and reasoning systems, but instead to focus
Syntropy [3] extended OMT [5] with a Z-like textual lan- o glaborating the meaning of the modelling notations
guage for adding invariants to class diagrams and annotathemselves. Larch is a stable language with a well-devel-
ing transitions on state diagrams with pre/post conditions.oped supporting toolset. It uses first-order predicate logic,
OCL adopts a simple non-symbolic syntax and restrictsyather than temporal logic, so is accessible to a wider audi-
itself to a small set of core of concepts. ence, which includes, hopefully, some commercial tool
One of the most important aspects of OCL is that it is gevelopers. It is also close to technologies most likely to
part of the Unified Modelling Language [6], which has |eyerage the sophisticated CASE tools that should result
recently becomehe global standard modelling language, from increasing the precision and expressiveness of model-

5 January 1999 1

Interpreting the Object Constraint Language

ling notations. This is illustrated by the inclusion of an

automated proof assistant in its accompanying toolset. We

have also been using our Larch-based semantics as a stal SeminarScheduling

ing and subsequent reference point for developing check- ! System 1

ing and animation tools in Prolog.
The paper is organised as follows. Section 2 is an * *

informal introduction of using OCL, in combination with a Presenter Seminar

kernel of the UML diagrammatic notation (class diagrams), [Tame: string * qualifiedFor |~e—simg

in writing navigation expressions in object-oriented model- qualified *

. . . - . 0.1 1

ling. Section 3 establishes the semantic framework by giv-

ing a semantics to class diagrams. Section 4 defines the * * |tordered)

semantics of OCL expressions. A key aspect of this is a - -

. L Attendee Offering
semantics for navigation expressions, including navigation — JomaAead Boolean
over collections other than sets, such as sequences an fame >Tm date: Date
bags, and the semantics of filters. Section 5 deals with sys
tem states. Section 6 summarises the semantics of invari- _) i i
ants and pre/post conditions (expressed in OCL). Section 7 19ure 1. Class diagram for a seminar scheduling
summarises the general mapping of the UML/OCL ele- system
ments considered. Section 8 concludes with an overview of
future work in semantics and elsewhere. value of the attributditle for the object represented by

An OCL expression can also use the naeléto refer to a

2. Navigation in OO Modelling contextual instance. In the following exampdelf refers
to an instance afeminar:

*

Navigation in OO modelling means following links from Seminar

one object to locate another object or a collection of self title

objects. It is possible to navigate across many links, andyayigating from an object via an association role can result
hence to navigate from a collection to a collection. Naviga- i, 5 single object or a collection, depending on the cardi-

tion is at the core of OCL. OCL expressions allow us 10 pajity annotations of the association role. For example,
write constraints on the behaviour of objects identified by given the declaratiop : Presenter, the expressiop.qual-

navigating from the object or objects which are the focus ofjfieqror results in a set of seminags is qualified to
the constraint. At the specification level, the expressionsy egent,

appear in invariants, preconditions and postconditions. The association betweeBeminar and Offering has
) the annotationdrdered} on the offering role. As a result,
2.1: Example model the expressios.offering, wheres is a seminar, results in a

sequence. Notice that this means that the operator “.” is

Flgurg 1 presents a _smaII, contrived example of a class ,d'abverloaded, because it can map an object o a set, to a bag,
gram in UML for a simple system that supports schedulmgOr to a sequence

of offerings of seminars to a collection of attendees by pre-
senters who must be qualified for the seminars theys 3. Navigating from collections
present. A full description of the notation can be found in

[6][21]. Assume we have the following declaratipriPresenter.
The navigation expressigmqualifiedFor.title (also writ-
ten p.qualifiedFor->collect(title) in OCL) involves navi-

L .) . i gating first from a single object and then from a collection,
Navigation expressions start with an object, which can benamely the set of seminars for which presepté quali-

epricitIy declared_or given by a c_ontext. .For example, @fied. This is because the expression parses as
declaratiors : Seminar means thas is a variable that can , o jalifiedFor).itle. The result of this expression is a bag
refer to an object taken from the set of objects Conform'”gobtained by applyingitie to each member of the set
to typeSeminar. Here, the type name is used to represent, o ajifiedFor. The OCL operatiomsSet can be used to

the set of objects in the model that conform to the type. convert this bag to a set. Similarly, navigating from a bag

A navigation expression is written using an attribute yields a bag and navigating from a sequence yields a
or role name, and an optional parameter list. Given the earx

. . S sequence.
lier declaration, the OCL expressisttitle represents the

2.2: Navigating from single objects

5 January 1999 2

Interpreting the Object Constraint Language

2.4: Invariants 3.1: Object types

Navigation expressions can be part of an invariant on aAn object type is a description of a set of objects in terms
type which must be true for all instances of that type at anyof properties and behaviour they all share. In our formalisa-
time. For example, an invariant for the seminar schedulingtion, an object type is associated with an LSL basic sort
system would be: consisting of elements that uniquely represent objects

Presenter (instances) of the type, which can be thought of as object
identifiers. The attributes of an object type are formalised

self.qualifiedFor->includesAll(self.offering.seminar) as functions on the sort representing this type

which says t.hat a presenter must be qualified for all semi- The object typePresenter in Figure 1 is interpreted

nars he/she is assigned to present. as a basic sort denoted Byesenter , namely a sort of
. o . presenter identifiers. The attributame is interpreted as a

2.5 Preconditions and postconditions function name with signature

An OCL expression can also be used as a precondition of'@me : Presenter String » which is added to the

postcondition, which are used to specify the behaviour ofSPecification for object typBresenter. The typeString is

an operation or method. The nasef can also be used in interpreted as the sort of stringsring which is avail-

the expression referring to the object on which the opera-able in the Larch HandBook of specification modules [20].
tion was called. Expressions occurring in a postconditionIn a very similar way we interpret the other object types for
can refer to two sets of values for each property of anthe seminar scheduling system.

object:

« the value of a property at the start of the operation or 3.2: Associations

method
« the value of a property upon completion of the opera- We now extend the interpretation of object types and
tion or method attributes given in the previous section to include binary

associations. Associations are basically relationships
between objects. Each association in a class diagram has
two role names which can be used to navigate the associa-
tion from a specific object to refer to other objects and their

Figure 2 gives the specification of an operation " For inst th i ot
markAsAbsent in terms ofpre/postconditions. This oper- properties. or instance, the associalion betwess
enter andSeminar (Figure 1) has two role namgsali-

ation marks a presenter as absent by cancelling his/her pr%

sentations within specific dates. ed andquallfle_dFor. . .
We formalise associations between object types as

two related functions that map an object of one type to the

In OCL the value of a property at the start of the oper-
ation is denoted by postfixing the property name with the
commercial sign @, followed by the keywqoce.

SeminarschedulingSystem set of associated objects of another (or the same) type.
markAsAbsent(p : Presenter, from, to : Date) These mappings are specified in a way that is independent
pre: true of the structure of types they associate. Thus we have a

. generic Larch theory for associations that can be renamed
post: p.offering@pre->forAll(o | to specify each particular association in the model. For
o.date >= from and o.date <=to implies example, the association betwdnesenter andSeminar

o.presenter = Set{}) would be represented as two functionsalified and

qualifiedFor with the signatures:

Figure 2.Specification of operation markAsAbsent

qualified : Set Seminar] - Set [Presenter]
. . ualifiedFor : Set [Presente r] - Set[Seminar
3: Semantics: Class Diagrams K _ [] []
where Set [Seminar | andSet [Presenter] are the
We shall use théarch Shared Languagé SL) [20] to power sorts ofSeminar artesenter respectively.

provide the semantics of OCL expressions. This isBY choosing power sorts for the domains and ranges of
achieved by first providing the semantics of object types, thése mappings, we have a uniform treatment of associa-
attributes, and associations. LSL uses specification moglions which simplifies the formalisation and provides

ules, calledraits, to describe abstract data types and theo-9€neric theory for associations. In the case of an optional
fies. association (0..1 cardinality), this is especially useful to

5 January 1999 3

Interpreting the Object Constraint Language

check whether there is an object or not when navigating theBag, andSequence) can be specified in LSL as abstract
association, namely whether the resulting set is empty odata types with the familiar operations. For example, LSL
not. The case where navigation is from a single object isprovides traits (available in the Larch HandBook) for spec-
subsumed with the general case where the set is a singletdfying these mathematical abstractions. The additional
containing that object. The corresponding functions thatoperations provided by OCL will be dealt with in the next
map single objects can be defined in terms of those thasubsection.

map sets of objects (see later). The Larch Shared Language does not support subsort-
The two functions qualified and ing. So in order to assert th&tet [T] is a subtype of

qualifiedFor satisfy the axioms: Collection T [] we use the function
qualified ()= § toCollection :Set[I'] - Collection T [] that

maps a set into a collection representing it. The assertion

qualifiedFor ({})= {} that Bag[T] and Sequence[T] are subtypes o€ollec-

qualified s (sOd ")== ' tion[T] can be handled in a similar way by overloading the
qualified s () U qualified s () function toCollection . For bags we have
qualifiedFor s s [J ') == toCollection : Bag[T] - Collection T []. The

qualifiedFor s () O qualifiedFor s (")

The operatiori] is the union operation on sets. Note that,Slze opergﬂon has. to be specified Set [] by includ-
these axioms imply that these functions are completely'n,g the Slgnaturesme :Set [T] - Intege 1 together
determined by their values at singleton sets. with the axiom:

In order to represent the association, these functions size {)= size tpCollection s ())

are related by the following axiom: similarly, we specifisize for bags and sequences.

s OqualifiedFor p ({ })==p Oqualified s({ }) There are many operations defined on collection types
in OCL. These operations transform existing collections
into new ones. Here we consider the more interesting ones,
namelyselect, reject, collect, forAll, exists anditerate.

Intuitively, this axiom asserts that if instructoris quali-
fied to present seminar thenp must be included in the set
of presenters qualified to present

The corresponding functions that operate on single
objects may be constructed from those whose domains aré'l'
power sorts as follows:

Select and reject operations

Theselect andreject operations provide a way of specify-
qualified s () == qualified s({ }) ing a subset of a collection. A select is an operation on a
qualifiedFor p () == qualifiedFor p ({ }) collection and is specified using the ->-syntax:

Semantically, navigating from a single object is equivalent collection -> select(v : T | b-expr-v)
to navigating from a singleton set containing that object. \yhere the variable is called the iterator arlg-expr-v is a
For further details and for the generic traits of object hoglean expression. This expression is evaluated by using
types and associations the reader is referred to [15][17]. vy to iterate overcollection and evaluatingd-expr-v for
eachv. Thev is a reference that refers to the objects from
4: Collections and their operations thecollection.
The meaning ofelect expressions can be obtained by
Collection as defined in OCL is an abstract type, with con- defining two functionselect b and with the signa-
crete Co!lection .types as.its subtypsf, Se'quen'ce'), and. tures select : Collection [T] - Collection [T]
Bag. This type is not strictly necessary since it is defined p
as an abstract supertype. andp : T - Bool respectively. The functign is defined
The Collection type can be specified in LSL by asort asp(v) ==b-expr-v . That is each boolean expression
Collection and including the signatures of the com- induces a function. Theelect operation applied to a set
mon operations shared between its subtypes and some efiways results in a set, and the same applies for bags and
their axioms. LetCollection T [] be the sort of collec- sequences. Hence, the meaning of the operation has to be
tions of typeT . For example, the size operation which specified for sets, bags and sequences.
common to all collection types has the signature For sets we define a functiarelect | with the sig-

size :Collection T [] - Integer and is specified in patureselect o Setll] - Set[r] and satisfies the axi-

terms of the operatioiterate. The collection typesSEt,
oms:

5 January 1999 4

Interpreting the Object Constraint Language

Select p({})=={} toCollection collect p(s)) ==
select p(insert v(s,))==if p(v)then (collect p(toCoIIection s ()
insert v (select (s)) else select ,(s) However, if it is required thatollect on a set should result
wherep is a boolean function defined as above. In addi-n & Sét rather than a bag, then we can make a set from the
tion we have the axiom: bag by using the functiorasSet :Bag[T] - Set [T]
) which satisfies the axioms:
toCollection seléct I:,(s)): o) 0
; asSet ==

select p(tOCO”eCtlon s () asSet (nsert v (,b)) ==insert v(@sSet (b))

For example,p.offering->select(goingAhead) is inter- For bags we defineollect ; :Bag[T] — Bag[S] ~ which

reted asselect . offerin , Where - - .
P goingAhead (gp () satisfies similar axioms as the one for sets. For sequences,

goingAhead is interpreted as a function with the signature we definecollect ¢ 1Seq[T] - Seq[S] which also sat-
goingAhead :Offering Bool . _ isfies similar axioms as the one for sets, where the only dif-
For bags and sequences similar functions can begrance is that the result is a sequence.
defined with similar axioms, the only difference is the sig-
natures of these functions. 4.3: Navigation expressions
Thereject operation is similar to theelect operation,
but with reject we get the subset of all the elements for |n 00 modelling navigating from a collection of objects is

which the boolean expression evaluates-atse. In fact yery common. For this reason OCL provides a shorthand
reject can be interpreted in terms sélect because the notation for the operatiorcollect. Instead of writing

expressioncollection->reject(v:T | b-expr-v) is equiva- self qualifiedFor->collect(title) we can writeself.quali-
lent tocollection->select(v : T | not(b-expr-v)). fiedFor.title. In OCL applying a property to a collection of

. objects is interpreted ascallect over the members of the
4.2 Collect operation collection with the specified property.

So, for anypropertyname of objects in a collection,

The select andreject operations always yield a sub-col- o following expressions are identical

lection of the original one. However, it is often required to

specify a collection which is derived from some other col- collection.propertyname

lection, but which contains different objects from the origi- collection->collect(propertyname)

nal collection. The collect operation provides such |n OCL, a collection of collections is automatically flat-

construct in OCL. The syntax @bllect is written as fol- tened. Such a view is easy to teach to modellers, but hard to

lows: define without falling into traps. In related work we have
collection -> collect(v : T | expr-v) shown that flattening is not necessary. More information

The value of the collect operation is the collection of the about this can be found in 3]

results of all the evaluations expr-v.

The meaning otollect expressions can be obtained 4.4: Quantifications

by defining two functionseollect ¢ antwith the Sig- 5| provides two operations for quantificatidosAll and
natures exists operationsThe forAll operation in OCL allows the
collect ¢ :Collection T [] - Collection S [] specification of a boolean expression, which must hold for
f:T_S all objects in a collection. Its syntax is given by:
respectively. The functioh is defined as ¢) =expr-v . collection -> forAll(v : T | b-expr-v)

In OCL the result of theollect operation on a setisa The value of dorAll expression is boolean. The result is
bag rather than a set. So we define true if the boolean expressitmexpr-v is true for all ele-
collect :Set[l'] - Bag[S] which satisfies the axi- ments ofcollection. The result is false ih-expr-v evalu-

ates to false for one or moven collection.

oms: The semantics oforAll can be given by using LSL
collect (({})=={ universal quantification denoted By . So theAll expres-
collect ¢ (insertv(s,))== sion is interpreted as:

i t (f , collect
nsert (¢), collect ¢(s)) (Ov : T)(v Ocollection bO -expr-v)

5 January 1999 5

Interpreting the Object Constraint Language

The semantics adxists can be given in a similar way. For example, the attributéle is now interpreted as a func-

_ tion title : Seminar ,% - String . And similarly for
4.5: Iterate operation associations.

OCL also has thigerate operation which is very generic in 6:
the sense that the operati®wect, reject, forall, exists, ’
and collect can all be described in terms itdrate. The
syntax ofiterate is:

Invariants, preconditions and
postconditions

We interpret invariants by interpreting each expression
occurring in it and adding universal quantifications. For

Theiterate operation is evaluated by usingo iterate over example, for the invariant given earlier, thef.qualified-
the collection and thexpr-v-acc is evaluated for each

collection->iterate(v : T, acc:S = expr | expr-v-acc)

; h uati . e i i For is interpreted asqualifiedFor sel{ ,0) , and

After eac eva uation crExpr-v-acc,. its value is a§3|gned self.offering.seminar is interpreted as

to acc. In this way the value dadcc is built up during the)
seminar dffering self(,0),0). So the invariant is

iteration of the collection.

The meaning ofterate expressions can be obtained interpreted as the following assertion:

by defining iterate ; .. :CollectionT []-S Up :Presenter ,0:X
EXp (seminar dffering self(,0),0))0
andf : T,S - S ,wherd ¢ acc) ==expr-v-acc . qualifiedFor self ,0)

satisfies the axioms: That is, the invariant must hold in every system siate
We interpret pre/post conditions by interpreting each

For sets the functioiterate ¢

iterate ¢ o, (1) ==expr expression occurring in them. For example, the postcondi-
i terate £ expr (insertv(s,)) == tion of the operatiormarkAsAbsent is interpreted by
fo iterate ¢ o, (delete v(s,))) interpretingp.seminar@pre as seminar f , o) , and the
predicate part of forAll as

wheredelete is the operation for removing an element
from a set. These axioms are only valid for functidéns
that satisfy the properties:

fefvz)N=Ffyfxz) (O(o : Offering , 0,0 :%))(o OOffering (o)
Without this axiom we can have two equal sets sfd Opred ¢ ,0) 0 presenter p(,0)= {})
whereiterate s (1) is not equal taerate s (2) . This whereg andc' are the states before and after the opera-

is clearly not consistent with the notion of substituting tion is executed respectively.
equals for equals. Soff does not satisfy these properties,
the operation iterate is not deterministic. For bags and7: Summary of mapping

sequences we can define similar functions which satisfy
similar axioms. In this section we summarise the mappings between OCL

types and expressions and the sorts and expressions of
LSL.

For each typd in a class diagram we associate with it
) L , . a sort of all possible object identities that conform to the
So far we have ignored system state, which is required N se denoted by A We define a Maobin
the presence of dynamic behaviour, as specified for examYP®: y ')) ppIng
ple through preconditions and postconditions on opera-T:OclType -IsiSor t byt(A) =A.Thatisz(A) is the
tions. Thus we enrich the semantic model with a sort ofSOrt associated with the type. For example, we have
system stat& . Given this, we introduce, for each object'(S€MINAN =geSeminar . _
type T, a functionT : £ - Set [T] which returns the set of The basic value types in OCL are mapped directly to

redefined sorts in LSL. The t olean is mapped to
existing objects of typ& (i.e. those that have been created P yHED PP

4 : . oo the sortBool , i.e.1(Boolean) =4 Bool , which is speci-
and not destroyed) in a given stateThis function is used _. L -
. . fied as a trait in the Larch HandBook of specifications. The
to interpret theallinstances feature of an object type,

which returns the set of all instances of the type. For exam-type Integer is also mapped to a predefined sort in LSL

o namelyinteger , i.et(Integer) =4 Integer . Similarly
ple, T.allinstances is interpreted as the s€&{o) S .
. . . . we haver(String) =4 String . Enumerated types are also
Attributes of a given object type are interpreted as

functions with additional argument for the system states.mapped directly to LSL enumerated sorts.

pred ¢ ,0) ==date ¢ ,0)=from Odate ¢ ,0)<to .
The whole postcondition is interpreted as:

5: System state

5 January 1999 6

Interpreting the Object Constraint Language

For collection types such as sets, bags and sequenceEjgure 4. The interpretation of an OCL expression as given
LSL provides basic traits that specify basic operations onby | is given at a moment in time corresponding to a sys-

these structures. However, these traits need to be extendadm stateo

. In this definition, variables in OCL are

can be constructed by including the traits that specify oper
ations likeselect, reject, iterate, etc.. For the moment we
map the typesset(T), Bag(T), and Sequence(T) to the
sortsSet[T] , Bag[T] , andSeq[T] respectively.

For each attributatt of typeT of an object typ& we
associate with it a function symbol denotedaty . For
this we define a mappirg, which maps an attribute sym-
bol to a function symbol in LSL, byia(att:T) =qef

att : Az - T. Operations or queries on typesuch as
op(S):T of type T, are mapped asoi4(0p(S):T) =gef
op:ASZ-T.

OCL LSL

A (objecttype) | A (sort of object identities)
T (valuetype) |T (sortof values)
Boolean Bool

String String

Integer Integer
Collection(T) Collection[T]

Set(T) Set[T]

Bag(T) Bag[T]
Sequence(T) Seq[T]

att:T (attribute) | att :AZ - T
op(S) T op:ASZ-T

r:set[B] (role)

r (S) : set[B] (role)
r:B (role)
r(S): B (role)

r:SetA],~Z - SetB]

r :SetA],S,Z - SetB]

r:SetA],~ - SetB]

r:SetA],S,Z - SetB]

Figure 3. Mappings of types, attributes and
associations

For each association ral€at the right) of an associa-
tion between two typeé andB we associate a function
symbol in LSL. For this we define a mappipg, by
pa(r:set[B]) =qef r :set A], Z - set B]. Parameterised
(qualified) association roles are dealt with in a similar way.
The table in Figure 3 summarizes the above mappings

We now define a mappingwith signature

M : OclExpression IslExpression

that maps OCL expressions to LSL expressions based o
the above mappings. The definition @f is given in

5 January 1

‘the formv.att are mapped tatt ,o0) . Expressions of the
form c->collect(v : T | expr-v), wherec is a collection and
expr-v is an expression involving, are mapped to
collect ¢ (c,0), wherep(c) =c is the interpretation of

¢, andf(v) = p(expr-v). The only exception is where the
expression is a role name, in which casecollect(r) is
interpreted asr ¢ , o)

Value expressionsue andfalse are mapped toue
and false respectively. Set expressions such Sa(},
Set{1,2} are mapped t§ and{ 1,2 }, syntactic sugar for
insert(1,insert(2,{}) , respectively. Other value
expressions are mapped in a similar way.

OCL expressions LSL expressions

v (variable) v (variable)

v.att att(v, o)

v.op(V") op(v,v', 0)

v.r (r role name) rv, o)

c->select(v | b-expr-v) | select p(c, o), where

p(v, 0)= p(b-expr-v)
c->reject(v | b-expr-v) | reject (¢, o) where
p(v, 0)=p(b-exp-v)
c->collect(v | exp-v) collect ¢(c, o), where
flv, 0)= u(exp-v)

c->iteate(v;acc=exp |
expr-v-acc)

iterate fexp (C, O), where
f(v ,acc ,0)= p(expr-v-acc)

0), (W(c)=c)

c.r (c collection, r role) | r(c,

Figure 4. Definition of the mapping

8: Conclusions

A precise semantics for a subset of OCL expressions
together with the semantics for a kernel of the UML dia-
grammatic notation — class (type) diagrams, has been
defined in terms of Larch. We have achieved nearly com-
plete coverage of the OCL, although details have been
omitted in some cases. Through this semantics, we have
established that there is no need for flattening collection of
collections when navigating from collections.

We have not considered meta level features in OCL, such
as type casting and interrogation queries on objects. How-
ever, it is relatively a simple matter to formalise these in
Darch.

Future semantics work includes:

999

Interpreting the Object Constraint Language

* Semantics for constraint diagrams [18][19], a diagram- [8] M. Spivey,The Z notatior(2nd ed.), Prentice Hall, UK, 1992.

matic notation that allows most, if not all, OCL [9] A. Hamie, F. Civello, J. Howse, S. Kent, and R. Mitchell,
expressions to be given a diagrammatic characterisa- “Reflections on the Object Constraint Languag®ioc. of
tion. UML'98 International WorkshgpP. Muller and J. Bezivin, ed.,

_ _ _ Mulhouse, France, June 3-4, 1998, pp. 137-145.
* The use of this kernel to give the semantics of other 14 4 Bourdeau, and B. Cheng, “A Formal Semantics for Object
aspects of UML. In particular state diagrams may be Model Diagrams”|EEE Transactions on Software Engineering
mapped to class diagrams with additional constraints Vol. 21, No. 10, 1995, pp. 799-821.

expressed in OCL. [11] R. France, J. Bruel, M. Larrondo-Petrie, and M. Shroff,

Iso bei ked onis th . f . “Exploring The Semantics of UML Type Structures with Z”,
* Also being worked on is the semantics of extensions t0 proc. nt| Workshop on Formal Methods for Object-Based Dis-

UML suggested by Catalysis [4]. We are using the tributed System¢FMOODS’97, Chapman and Hall, London,
Larch trait inclusion mechanism to define the seman- 1997, pp. 247-260.

tics of framework composition; and are working out [12] J. Bicarregui, K. Lano, and T. Maibaum, “Towards a Compo-
the proof obligations for establishing conformance sitional Interpretation of Object DiagramsRroc. IFIP TC2
relationships between models, in particular between Working conference on Algorithmic Languages and Calculi

the specification and design in a refinement. Chapman and Hall, 1997.
—_ . [13] J. Bicarregui, K. Lano, and T.S.E Maibaum, “Objects, Asso-
Apart from establishing precise, core concepts and checkzjations and Subsystems: a hierarchical approach to encapsula-

ing the integrity and well-definedness of modelling nota- tion”, Proc. European Conf. of Object-Oriented Programming
tions, the semantics effort is also aimed at establishing dECOOP'97) LNCS 1241, Springer-Verlag, 1997, pp. 324-343.
foundation for building CASE tools. We are currently [14] J. Fiadeiro, and T. Maibaum, “Temporal Theories and Mod-
experimenting with checking and animation tools written ularisation Units for Concurrent System Specificatidhymal

in Prolog, where the mapping from model to Prolog has'z“ggezfi?t; of Computingpringer-Verlag, Vol. 4, No. 3, 1992, pp.

benefited considerably from the work in Larch.
[15] A. Hamie, and J. Howse, “Interpreting Syntropy in Larch”,
Tech. Report ITCM97/C1, Computing Division, University of
ACknOWledgementS Brighton, Brighton, UK, 1997.
[16] A. Hamie, J. Howse, and S. Kent, “Navigation Expressions
Thanks for comments are due to colleagues on the BIRGOn Object-Oriented Modelling”,Proc. of FASE in ETAPS98
project at Brighton, in particular Franco Civello and Rich- LNCS, 1382, Springer-Verlag, 1998, pp. 123-137.
ard Mitchell. This research is partially funded by the UK [17] A. Hamie, J. Howse, and S. Kent, “Modular Semantics of
EPSRC under grant number GR/K67304. Object-Oriented Models”, to be published in the proceedings of
theThird Northern Formal Methods WorkShdpK, 1998.

[18] S. Kent, “Constraint Diagrams: Visualising Invariants in

References Object-Oriented Models”Proc. of OOPSLA97ACM Press,
1997.

[1] Rational Software Corporatio@bject Constraint Language [19] S. Kent, “ Visualising Contracts in Object-Oriented Models”,

Specification Version 1.1, http://www.rational.com, 1997. Proc. VISUAL98 in ETAPS'9&.isbon, Portugal, 1998.

(2] A. Kleppe, J. Warmer, and S. Cook, “Informal Formality? The [20] J. Guttag, and J. Horningarch: Languages and Tools for
Object Constraint Language and its application in the meta-Formal SpecificationsSpringer-Verlag, 1993.

model”, Proc. of UML'98 International Worksho®. Muller and L .
J. Bezivin, ed., Mulhouse, France, June 3-4, 19@8, pp. 127-136. [129137'\/" Flo7w9Ier, and K. Scott)ML Distilled, Addison-Wesley,
[3] S. Cook, and J. Daniel®esigning Object Systems: Object- P '

Oriented Modelling with Syntropyrentice-Hall, Hemel Hemp-
stead, UK, 1994, p. 389.

[4] D. D'Souza, and A. WillsPbjects, Components and Frame-
works with UML: The Catalysis Approachook submitted for
publication by Addison-Wesley, UK, 1998, also available at http:/
/www.trireme.com/catalysis.

[5] J. Rumbaugh, M. Blaha, W. Premerali, F. Eddy, and W.
LorensenObject-Oriented Modelling and DesigRrentice-Hall,
Emglewood Cliffs, New Jersy, 1991, p. 500.

[6] Rational Software Corporatiomhe Unified Modeling Lan-
guage Version 1.1, http://www.rational.com, 1997.

[7] C. JonesSystematic Software Development using Vit
edition), Prentice-Hall, Hemel Hempstead, UK, 1990, p. 333.

5 January 1999 8

