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Abstract
SD2 is a system of Venn-type diagrams that can be used
to reason diagrammatically about sets, their cardinalities
and their relationships. They augment the systems of
Venn-Peirce diagrams investigated by Shin to include
lower and upper bounds for the cardinalities of the sets
represented by regions of diagrams. This paper
summarises their syntax and semantics and introduces
inference rules for reasoning with the system. We discuss
the soundness of the system and develop a proof strategy
for completeness simpler than that adopted by Shin. We
expect this strategy to extend to other, richer spider
diagram systems and to constraint diagrams, the visual
notation that has been used in conjunction with object-
oriented modelling notations such as the Unified
Modelling Language.

1. Introduction
Euler circles [2] are generally accepted as the first

graphical notation for representing relations between
classes and solving syllogisms. This notation is based on
the correspondence between the topological properties of
enclosure, exclusion and intersection and the set-theoretic
notions of subset, disjoint sets, and set intersection,
respectively. Venn [13] modified this notation to illustrate
all possible relations between classes by showing all
possible intersections of contours and by introducing
shading in a region to denote the empty set. However a
disadvantage of this system is its inability to represent
existential statements. Peirce [10] modified and extended
the Venn system by introducing the character ‘x’ to
denote a non-empty set, the character ‘o’ to denote the
empty set and a line between these marks to represent
disjunctive information. Recently, full formal semantics
and inference rules have been developed for Venn-Peirce
diagrams [12] and Euler diagrams [6]; see also [1, 5] for
related work. Shin proves soundness and completeness
results for two systems of Venn-Peirce diagrams.

Spider diagrams [3, 7, 8] emerged from work on
constraint diagrams [4, 9] and extend the system of Venn-
Peirce diagrams investigated by Shin. Constraint
diagrams are a visual diagrammatic notation for
expressing constraints that can be used in conjunction

with the Unified Modelling Language (UML) [11] and the
Object Constraint Language (OCL) [14]. OCL is
essentially a textual form of first-order predicate logic,
which is part of the UML standard and used to express
constraints, such as invariants, preconditions and
postconditions.

In this paper we extend the diagrammatic rules and
enhance the semantics of the second Venn-Peirce system
that Shin investigated (i.e., Venn-II, see [12] Chapter 4) to
express more information about the cardinality of
represented sets. Shin introduced the notion of maximal
diagram in the proof of completeness of her systems; the
basic idea here is to construct a diagram that explicitly
contains all the logical consequences of a given one. This
approach is not easy to adapt to spider diagrams. We opt
for a strategy in which the diagram that results from
combining a set of diagrams and the diagram which is a
consequence of that set are expanded in a way similar to
disjunctive normal form in symbolic logic. This proof
strategy should extend to most spider/constraint diagram
systems.

A discussion of the system is conducted in section 2,
where the main syntax and semantics of the notation is
introduced. Section 3 introduces the inference rules for
reasoning with spider diagrams and for combining
diagrams and considers consistency and the validity of the
inference rules. Section 4 gives the strategy for proving
completeness and proves the completeness theorem.
Section 5 states the conclusions of this paper and details
related, ongoing and future work.

Throughout this paper, for space reasons, we omit
most proofs and focus on the strategy for showing
completeness of this and other spider diagram systems.

2. Spider Diagrams: SD2
This section introduces the main syntax and semantics

of SD2, a subset of spider diagrams. In SD1 or simple
spider diagrams, as defined in [7], we extended the
diagrammatic rules and enhanced the semantics of Venn-
II to give lower bounds for the cardinality of the sets
represented by the diagrams and proved the soundness
and completeness of the system. SD2 extends this system
so that we can infer lower and upper bounds for the



2

cardinalities of the sets represented by the diagrams.
Spider diagrams contain other syntactic elements which
enable the expression of relations between elements and
form the basis of constraint diagrams, a rich notation
allowing relations between sets to be expressed, see [3, 4,
8, 9] for more details.

2.1. Syntactic elements of unitary SD2 diagrams
A contour is a simple closed plane curve. A boundary

rectangle properly contains all other contours. A district
(or basic region) is the bounded area of the plane
enclosed by a contour or by the boundary rectangle. A
region is defined, recursively, as follows: any district is a
region; if r1 and r2 are regions, then the union,
intersection, or difference, of r1 and r2 are regions
provided these are non-empty. A zone (or minimal region)
is a region having no other region contained within it.
Contours and regions denote sets.

A spider is a tree with nodes (called feet) placed in
different zones; the connecting edges (called legs) are
straight lines. A spider touches a zone if one of its feet
appears in that region. A spider may touch a zone at most
once. A spider is said to inhabit the region which is the
union of the zones it touches. For any spider s, the habitat
of s, denoted η(s), is the region inhabited by s. The set of
complete spiders within region r is denoted by S(r). The
set of spiders touching region r is denoted by T(r). A
spider denotes the existence of an element in the set
denoted by the habitat of the spider. Two distinct spiders
denote distinct elements.

Every region is a union of zones. A region is shaded if
each of its component zones is shaded. A shaded region
denotes the empty set if it is not touched by any spider. A
unitary SD2 diagram is a single boundary rectangle
together with a finite collection of contours (all possible
intersections of contours must occur, i.e., the underlying
diagram is a Venn diagram), spiders and shaded regions.
Each contour must be labelled and no two contours in the
same unitary diagram can have the same label. The
labelling of spiders is optional. For any unitary diagram
D, we use C = C(D), Z = Z(D), Z* = Z*(D), R = R(D),
R* = R*(D),  L = L(D) and S = S(D) to denote the sets of
contours, zones, shaded zones, regions, shaded regions,
contour labels and spiders of D, respectively.

U

D

A

C

B

Figure 1

The SD2 diagram D in Figure 1 can be interpreted as:
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2.2. Semantics of unitary SD2 diagrams
A model for a unitary SD2 diagram D is a pair m = (U,

Ψ) where U is a set and Ψ : C → Set U, where Set U
denotes the power set of U, is a function mapping
contours to subsets of U. The boundary rectangle U is
interpreted as U.

A zone is uniquely defined by the contours containing
it and the contours not containing it; its interpretation is
the intersection of the sets denoted by the contours
containing it and the complements of the sets denoted by
those contours not containing it. We extend the domain of
Ψ to interpret regions as subsets of U. First define
Ψ : Z → Set U by

��
)()(

)()()(
zCczCc

ccz
−+ ∈∈

Ψ∩Ψ=Ψ

where C+(z) is the set of contours containing the zone z,
C–(z) is the set of contours not containing z and

)()( cc Ψ−=Ψ U , the complement of Ψ(c). Since any
region is a union of zones, we may define Ψ : R → Set U
by

�
)(

)()(
rZz

zr
∈

Ψ=Ψ

where, for any region r, Z(r) is the set of zones contained
in r.

The semantics predicate PD(m) of a unitary diagram D
is the conjunction of the following two conditions:

Distinct Spiders Condition: The cardinality of the set
denoted by region r of unitary diagram D is greater than
or equal to the number of complete spiders in r:

)()( rSr
Rr

≥Ψ∧
∈

Shading Condition: The cardinality of the set denoted by
a shaded region r of unitary diagram D is less than or
equal to the number of spiders touching r:

)()( rTr
Rr

≤Ψ∧
∗∈

2.3. Compound diagrams and multi-diagrams
Given two unitary diagrams D1 and D2, we can

connect D1 and D2 with a straight line to produce a
diagram 21 DDD −= . If a diagram has more than one
rectangle, then it is a compound diagram. The ‘connection
operation’ is commutative, D1–D2 = D2–D1. Hence, if a
diagram has n unitary components, then these components
can be placed in any order.
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The semantics predicate of a compound diagram D is
the disjunction of the semantics predicates of its
component unitary diagrams; the boundary rectangles of
the component unitary diagrams are interpreted as the
same set U. That is,

)()(
1

mPmP
iD

n

iD =
∨=

where D = D1–D2– … – Dn.
Contours with the same labels in different unitary

components of a compound diagram D are interpreted as
the same set:

)()()(, 2121 ccDCcc λλ =•∈∀  ⇒ )()( 21 cc Ψ=Ψ

where )(cλ  is the label of contour c.
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Figure 2
The compound diagram D in Figure 2 asserts that:

.1||))(,(
)1||,(
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A spider multi-diagram is a finite collection ∆ of
spider diagrams. The semantics predicate of a multi-
diagram is the conjunction of the semantics predicates of
the individual diagrams; the boundary rectangles of all
diagrams are interpreted as the same set U.  That is,

)()( Ψ=Ψ
∆∈∆ ∧ DD

PP .

Contours with the same labels in different individual
diagrams of a multi-diagram ∆ are interpreted as the same
set:

)()()(, 2121 cλcλCcc =•∆∈∀  ⇒ )()( 21 cc Ψ=Ψ .

2.4. Comparing regions across diagrams
Let D be a unitary SD2 diagram.  For any  z ∈ Z(D),

define  L+(z) = λ(C+(z)), the set of labels of the contours
containing z, and  L–(z) = λ(C–(z)).

Given two unitary diagrams D and D′, we can define
equivalent regions across the two diagrams by
considering partitions of the set of contour labels the two
diagrams have in common.  Let  P = (L+, L–)  be a
partition of  L(D) ∩ L(D′)  and define  ZP(D) = {z ∈ Z(D)
|  L+ = L+(z) ∩ L(D′)  ∧  L– = L–(z) ∩ L(D′)}.  A region
zr ∈ R(D)  is said to be zonal with respect to  D′  if there
exists a partition  P  of  L(D) ∩ L(D′)  such that

�
)(DZz P

zzr
∈

= .

Suppose region  zr  of  D  is zonal with respect to D′
and zr′ of D′ is zonal with respect to D.  Then zr and zr′
are corresponding zonal regions, denoted  zr ≡c zr′,  if
there exists a partition  P  of  L(D) ∩ L(D′)  such that

�
)(DZz P

zzr
∈

=    and   �
)(DZz P

zrz
′∈′
′=′ .

Let r be a region of D and let r′ be a region of D′.
Then r and r′ are corresponding regions, denoted by

rr c≡′ , if and only if r is a union of a set ZR(r) of zonal
regions with respect to D′, r′ is a union of a set ZR(r′) of
zonal regions with respect to D, and

rzzrrZRzrrZRrzrzzr
rZRrzrZRzr

cc ′≡•∈∃′∈′∀∧′≡
•′∈′∃∈∀

)()(
)()(

If r1 ∈ R(D)  and  ,1 rrr c ′≡⊆   then  r1  is a
corresponding subregion of  r′,  denoted by  .1 rr c ′⊆

A B A
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Figure 3

In Figure 3, the region 21 zzz ∪=  in D is zonal with
respect to D′ and the region z′ in D′ is zonal with respect
to D.  Furthermore, z′ ≡c z as both regions are associated
with the partition   P = ({B}, {A})   of   L(D) ∩ L(D′)  =
{A, B};  hence zz c ′⊆1   and  .2 zz c ′⊆

Theorem 1 Corresponding regions are interpreted as
the same set.

(i) •Ψ=∀′∈′∀∈∀ )()()( U,mDRrDRr
rrmPmP cDD ′≡•∧ ′ )()(  ⇒ ).()( rr ′Ψ=Ψ

(ii) •Ψ=∀′∈′∀∈∀ )()()( U,mDRrDRr
rrmPmP cDD ′⊆•∧ ′ )()(  ⇒ ).()( rr ′Ψ⊆Ψ

The proof is omitted. We can now give a definition of
equivalent diagrams. Two unitary diagrams D and D′ are
equivalent, denoted by D ≡ D′, if

(i) L(D) = L(D′),

(ii) ∧′≡•′∈′∃∈∀ rrDRrDRr c)(*)(*
rrDRrDRr c ′≡•∈∃′∈′∀ )(*)(*   and

(iii) rrDRrDRr c ′≡•′∈′∀∈∀ )()( ⇒ .|)(||)(| rSrS ′=
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2.5. Compliance and Consistency
A model m = (U,=Ψ) complies with diagram D if it

satisfies its semantic predicate PD(m). We write m ⊨ D.
That is, m ⊨ D  ⇔  PD(m). Similarly, a model m complies
with multi-diagram ∆ if it satisfies its semantic predicate
P∆(m). That is,  m ⊨ ∆  ⇔  P∆(m).

A diagram is consistent iff it has a compliant model.
Similarly, a multi-diagram is consistent iff it has a
compliant model.

Theorem 2 All SD2 diagrams are consistent.
The proof is based on the construction of topological

models for the diagram. The details are omitted. Theorem
2 does not extend to multi-diagrams.

3. Diagrammatic reasoning rules
We introduce purely syntactic, diagrammatic rules for

turning one diagram into another. In this section we
define and illustrate the rules and show that they are valid.

3.1. Rules of transformation of unitary diagrams
We introduce rules that allow us to obtain one unitary

diagram from a given unitary diagram by removing,
adding or modifying diagrammatic elements.

Rule 1: Erasure of shading. We may erase the shading
in an entire zone.

Rule 2: Erasure of a spider. We may erase a complete
spider on any non-shaded region.

Figure 4 shows how the removal of a spider from a
shaded region may result in an invalid inference. In
diagram D, the set corresponding to region A ∩ B
contains at most a single element, whereas in D′, the
corresponding set is empty.

A B

D

A B

D′

U U

Figure 4

Rule 3: Erasure of a contour. We may erase a contour.
When a contour is erased:
• any shading remaining in only a part of a zone should

also be erased.
• if a spider has feet in two regions which combine to

form a single zone with the erasure of the contour,
then these feet are replaced with a single foot
connected to the rest of the spider.

Rule 3 is illustrated in Figure 5.

A

C

B U

D

A B U

D′

Figure 5
Rule 4: Spreading the feet of a spider.  If a diagram has
a spider s, then we may draw a node in any non-shaded
zone z that does not contain a foot of s and connect it to s.

Rule 5: Introduction of a contour.  A new contour may
be drawn interior to the bounding rectangle observing the
partial-overlapping rule: each zone splits into two zones
with the introduction of the new contour. Each foot of a
spider is replaced with a connected pair of feet, one in
each new zone. Shaded zones become corresponding
shaded regions.

3.2. Rules of transformation involving compound
diagrams
Rule 6: Splitting spiders. If a unitary diagram D has a
spider s whose habitat is formed by n zones, then we may
replace D with a connection of n unitary diagrams D1–
…– Dn where each foot of the spider s touches a different
corresponding zone in each diagram Di.

Rule 6 is illustrated in Figure 6.

UA B U

D

A B U

1D

A B

2D

Figure 6
Rule 7: Rule of excluded middle. If a unitary diagram D
has a non-shaded zone z where |S(z)| = n, then we may
replace D with D1–D2, where D1 and D2 are unitary and
one of the corresponding zones of z is shaded with |S(z)| =
n  and the other is not shaded with  |S(z)| = n +1.

A B U

D

A B U

1D

A B U

2D

Figure 7
Rule 7 is illustrated in Figure 7. In diagram D, the set
corresponding to region B – A contains at least one
element. In D1 the set corresponding to B – A contains
either one or two elements and in D2 it contains at least
two elements.
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Rule 8: The rule of connecting a diagram. For a given
diagram D, we may connect any diagram D′ to D.

Rule 9: The rule of construction. Given a diagram D1–
…–Dn, we may transform it into D if each D1,…, Dn may
be transformed into D by a sequence of the first eight
transformation rules.

3.3. Consistency of a multi-diagram and the rule
of inconsistency

Definition An α diagram is a diagram in which no
spider’s legs appear; that is, the habitat of any spider is a
zone.

Any SD2 diagram D can be transformed into an α
diagram by repeated application of rule 6, splitting
spiders.

Theorem 3  (i) Two unitary α diagrams D1 and D2 with
L(D1) = L(D2) are consistent iff

21
2

2
1

1 )()( zzDZzDZz c≡•∈∀∈∀   ⇒

|)))(||)(|)()((

|))(||)(|)()(((

21
2*

2
1*

1

21
2*

2
1*

1

zSzSDZzDZz

zSzSDZzDZz

<∧∉∧∈

∨≠∧∈∧∈¬

(ii) Let D1 and D2 be unitary but not α diagrams.
Introduce contours, if necessary, into D1 and D2 to
obtain D1a and D2b, where L(D1a) = L(D2b) = L(D1) ∪
L(D2). Transform D1a and D2b into their α diagrams

a
n

a DD 11
1 −−�  and b

m
b DD 22

1 −−� . Then D1 and D2

are consistent iff there exist unitary components Di
1a of

D1a and Dj
2b of D2b such that Di

1a and Dj
2b are consistent.

(iii) Two diagrams D1 and D2 are consistent iff there
exist unitary components Di

1 of D1 and Dj
2 of D2 such

that Di
1 and Dj

2 are consistent.

Case (iii) is the general case and relies on case (ii),
which in turn relies on case (i). The formal details of the
proof are again omitted. Intuitively, the diagrammatic
condition in (i) would prevent the case in which two
corresponding zones denote two sets whose cardinalities
are inconsistent; this is the only case in which a pair of
unitary α diagrams can be inconsistent.

Figure 8 shows a multi-diagram which is inconsistent,
but whose components are pairwise consistent.
Discussion of the consistency of multi-diagrams in
general is deferred until we consider combining diagrams.

A B U A B U

C

A B U

C

1D 2D 3D

Figure 8

Rule 10: The rule of inconsistency. Given an
inconsistent multi-diagram ∆, we may replace ∆ with any
multi-diagram.

3.4. Combining Diagrams
Given two consistent diagrams, D1 and D2, we can

combine them to produce a diagram D, losing no semantic
information in the process. In this section we describe the
construction of such a combined diagram D. We give the
rule for combining diagrams in several stages.

Rule 11: The rule of combining diagrams Let D1 and
D2 be two consistent SD2 diagrams. Then their
combination 21 * DDD =  is defined as follows.

(i) D1 and D2 are α unitary diagrams with L(D1) = L(D2).
The combined diagram D is also an α unitary diagram for
which L(D) = L(D1) = L(D2). So, for each z∈Z(D), there
exist corresponding zones z1∈Z(D1) and z2∈Z(D2).
Furthermore, the number of spiders in z is equal to the
maximum of the number of spiders in z1 and the number
of spiders in z2, and z is shaded iff z1 or z2 is shaded.

∧≡≡•∈∃∈∃∈∀ 21
2

2
1

1 )()()( zzzDZzDZzDZz cc

)()()()((( 2*2
2

1*1
1 DZDZzDZDZz −∈∨−∈   ⇒

∧= |))(||,)(max(||)(| 21 zSzSzS

)(( * i
i DZz ∈ ⇒ ∧= |))(||)(| izSzS

)))()()(( 2*
2

1*
1

* DZzDZzDZz ∈∨∈⇔∈

(ii) D1 and D2 are unitary diagrams and L(D1) ≠ L(D2). We
introduce contours into D1 and D2 to obtain D1a and D2b,
where L(D1a) = L(D2b) = L(D1) ∪ L(D2). Transform D1a

and D2b into their α diagrams a
n

a DD 11
1 −−�  and

b
m

b DD 22
1 −−� . The combined diagram D is the

compound diagram formed by combining each Di
1a with

each Dj
2b; where two components are inconsistent, we do

not obtain a corresponding component in D.

(iii) D1 and D2 are any diagrams. The combined diagram
D is the compound diagram formed by combining each
component Di

1 of D1 with each component Dj
2 of D2.

Again (iii) is the general case, relying on (ii) which in
turn relies on (i). If D1 and D2 are inconsistent, then the
combination is not defined. Rule 11(ii) is illustrated in
Figure 9. First, contour C is added to D2 to form D2a,
which is then transformed into an α diagram. We then
combine the components of each diagram. Note that D1a

and aD2
2 are inconsistent, as are D1a and aD2

3 , so the
resulting combined diagram is unitary.
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Figure 9
The associativity of * allows us to define the

combination of the components of a multi-diagram
},,,{ 21 nDDD �=∆  unambiguously as D*

nDDD *** 21
�= . If ∆ is inconsistent, the result will be

no diagram; D* is only defined when ∆ is consistent. A
test for the consistency of ∆ is to try to evaluate D*.

3.5. Soundness

D′ is a consequence of D, denoted by D ⊨ D′, if every
compliant model for D is also a compliant model for D′.
A rule is valid if, whenever a diagram D′ is obtained from
a diagram D by a single application of the rule then D ⊨
D′. We write ∆ ⊢ D′ to denote that diagram D′ is obtained
from multi-diagram ∆ by a finite sequence of applications
of the rules. We write D ⊢ D′ to mean {D} ⊢ D′, etc.

For space reasons, we omit the proofs of the validity
of rules 1 to 11. These rules are similar to those of the
Venn-II system given in [12] and SD1 [4] and the proofs
are fairly straightforward. It can be noted that rules 5,
introduction of a contour, 6, splitting spiders, 7, excluded
middle, and 11, combining diagrams do not lose any
semantic information; this is useful for proving
completeness which we consider in the next section.

Theorem 4 Soundness Theorem  Let ∆ be a multi-
diagram and D′ a diagram. Then  ∆ ⊢ D′ ⇒ ∆ ⊨ D′.

The result follows by induction from the validity of
the rules.

4.  Completeness
To prove completeness we show that if diagram D′ is

a consequence of multi-diagram ∆, then ∆ can be
transformed into D′ by a finite sequence of applications of
the rules given in section 3. That is, ∆ ⊨ D′ ⇒ ∆ ⊢ D′.

Definition A β diagram is an α diagram in which each
zone is either shaded or contains at least one spider.

Any diagram D can be transformed into its β diagram
βD  by repeated application of rule 6, splitting spiders, to

turn it into an α diagram and then repeated application of
rule 7, excluded middle, on empty zones, that is, on zones
not containing spiders or shading. Figure 10 illustrates the

transformation D ⊢ βD  for a unitary diagram D. Each
zone in βD  conveys information; it tell us whether or not
the corresponding set is empty.

A B U A B U A B U A B U

βD

A B U A B U

αD

A B U

D

Figure 10
Theorem 5 For any diagram D,  βD  ⊢ D.

In SD1 the basic strategy was to expand D*, the result
of combining the diagrams of set ∆, and D′ into β
diagrams D*β and D′β respectively. We can then show that
for any unitary component Di

*β in D*β there is a unitary
component Dj′β in D′β which is a logical consequence of
Di

*β.
However, in SD2 the transformation of D* and D′ into

β diagrams may not provide, for each unitary component
Di

*β in D*β, a unitary component Dj′β in D′β such that
Di

*β ⊨ Dj′β. This is illustrated in Figure 11, where
D ⊨ D1′–D2′ but we can infer neither unitary component
from D.

A U

D

B A B U

′
1D

A B U

′
2D

Figure 11
This difficulty arises in SD2 because rule 7, excluded

middle, allows us to carry out the process of expanding a
unitary component of a β diagram indefinitely provided it
contains a non-shaded region. (In SD2 the only diagrams
that cannot be split without adding contours are those
where each region is shaded.)
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To overcome this difficulty we apply rule 7 to the
premise D to obtain D1–D2 such that D1 ⊨ D1′ and D2 ⊨
D2′. This is illustrated in Figure 12.

A B U

1D

A B
U

2D

A B U

′
1D

A B U

′
2D

Figure 12
When we can show that for any unitary component Di

in D there is unitary component Dj in D′′ which is a
logical consequence of Di, we can use Theorem 8, below,
to show that Di ⊢ Dj.

First we state, without proof, the following theorems:

Theorem 6 Let },,,{ 21 nDDD �=∆ and
nDDDD *** 21*

�= . Then D* ⊨ ∆.

Theorem 7 Let Dc be the diagram obtained from D by
rule 5, introduction of a contour. Then Dc ⊢ D.

Theorem 8 Let D and D′ be β unitary diagrams for
which ).()( DLDL =′  Then the following three
statements are equivalent.

(i) D ⊢ D′
(ii) D ⊨ D′
(iii) [1] •∈∃′∈′∀ )()( ** DZzDZz

|)(||)(| zSzSzz c ′=∧′≡
and [2] •∈∀′∈′∀ )()( DZzDZz

|zz c≡′ ⇒ .|)(||)(| zSzS ′≥

Theorem 9 Let D and D′ be compound diagrams for
which each component is a β unitary diagram. That is,

βββ
kDDDD −−−= �21  and

βββ
nDDDD ′−−′−′=′ �21 .

Assume further that
)()( ββββ

ijji DLDLDD =′•′∀∀  and

•−∈∀′∈′∀ )()()( ** βββ
iij DZDZzDZz

zz c≡′  ⇒ .|)(||)(| zSzS <′

Then D ⊨ D′ ⇒ βββ
iji DDD •′∃∀ ⊨ .β

jD′

Before proving the completeness theorem we outline
the process of finding a derivation of diagram D′ from a
multidiagram ∆ whenever D′ is a logical consequence of
∆. First we replace ∆ by D*, the result of combining the
components of multidiagram ∆. Secondly, we introduce
contours in the premise, D*, and the conclusion diagram,
D′, to obtain equivalent diagrams D*c and D′c,
respectively, so that the sets of labels of any pair of
unitary components in these diagrams are the same. After
transforming D*c and D′c into their β diagrams, D*cβ and
D′cβ, we show that for any unitary component in the
premise diagram, the conclusion follows. For each unitary
component Di

*cβ in the premise, we apply again rule 7,
excluded middle, but this time to ensure that no shaded
zone in the conclusion D′cβ has a corresponding non-
shaded zone in the premise containing an equal number of
spiders.

By doing so we avoid the problem illustrated above in
Figure 11. Now, there are diagrammatic conditions to
show that there exists a unitary component in the
conclusion deducible from the premise unitary
component. And, further, by the rules of construction and
connecting a diagram, and transitivity we can reverse the
process and show that D′cβ is derivable from D*cβ and
finally that D′ is derivable from ∆.
Theorem 10 Completeness Theorem Let ∆ be a multi-
diagram and let D′ be a diagram. Then ∆ ⊨ D′ ⇒ ∆ ⊢ D′.

Proof  If ∆ is inconsistent, then the result follows
immediately by applying Rule 10. Assume that ∆ is
consistent and that ∆ ⊨ D′. By Theorem 6, D* ⊨ ∆. So,
by transitivity, D* ⊨ D′.

Introduce contours into each unitary component of D*
and D′ to produce c

m
ccc DDDD ∗∗∗ −−−= �21

*  and
c

n
ccc DDDD ′−−′−′=′ �21  so that •′∀∀ ∗ c

j
c

i DD

).()( c
j

c
i DLDL ′=∗  Then, by Theorem 7 and soundness,

D*c ⊨ D*. By soundness D′ ⊨ D′c.  So, by transitivity,
D*c ⊨ D′c. Transform D*c and D′c into their β diagrams,

βcD*  and βcD′ , respectively. By Theorem 5 and the
soundness theorem, βcD*  ⊨ D*c and, by the soundness
theorem, D′c ⊨ βcD′ . So, by transitivity, βcD*  ⊨ βcD′ .
Since ),()( ** ββββ c

i
c
j

c
j

c
i DLDLDD =′•′∀∀  it follows from

logical manipulation that ββ c
i

c
i DD ** •∀ ⊨ βcD′ . Apply

the rule of excluded middle repeatedly to βc
iD*  to obtain

ββ c
ip

c
i DD **
1 ... −−  so that
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•−∈∀′∈′∀ )()()( **** βββ c
ik

c
ik

c
h DZDZzDZz

zz c≡′  ⇒ .|)(||)(| zSzS <′

It follows from Theorem 9 that
βββ c

ik
c

h
c

ik DDD ** •′∃∀ ⊨ .βc
hD′  Hence, by Theorem 8,

βββ c
ik

c
h

c
ik DDD ** •′∃∀ ⊢ .βc

hD′  So, by applying Rule 8,
ββ c

ik
c

ik DD ** •∀  ⊢ βcD′  and hence, by applying Rule 9,
βcD*  ⊢ βcD′ . Now, ∆ ⊢ D*, D* ⊢ βcD* , and by

Theorem 7, βcD′ ⊢ βD′ , and by Theorem 5, βD′  ⊢ D′,
so, by transitivity, ∆ ⊢ D′.

5.  Conclusion and related work
We have given formal syntax and semantics and

diagrammatic inference rules to the system of spider
diagrams we call SD2. We have shown that the inference
rules are sound and complete. In proving completeness,
we have provided a proof strategy that should extend to
most spider/constraint diagram systems and other similar
systems based on Venn or Euler diagrams. Indeed, the
proof can be adapted to give a simpler proof of the
completeness of the Venn-II system than the one given by
Shin.

We are in the process of proving soundness and
completeness of other spider diagram systems using the
strategy introduced in this paper. Our longer term aim is
to prove similar results for constraint diagrams, and to
provide the necessary mathematical underpinning for the
development of software tools to aid the reasoning
process.
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