A Visual Framework for Modelling with Heterogeneous Notations

Jean Flower, John Howse, John Taylor
School of Computing & Mathematical Sciences
University of Brighton, Brighton, UK
{J.A.Flower, John.Howse, John.Taylor}@brighton.ac.uk

Abstract

There is a range of modelling notations, both tex-
tual and diagrammatic, whose semantics are based on
first-order predicate logic. This paper presents a vi-
sual framework for organizing models of systems which
allows a mizture of notations, diagrammatic or text-
based, to be used. The framework is based on the use of
templates for connective operations which can be nested
and sometimes flattened. It is modular and can be used
to structure the constraint space of the system, making
it scalable with appropriate tool support. It is also flex-
ible and extensible: users can choose which notations
to use, mix them and add new notations or templates.

The goal of this work is to provide more intuitive
and expressive languages and frameworks to support
the construction and presentation of rich and precise
models.

Keywords Visual formalisms, software specification,
heterogeneous framework.

1 Introduction

There is a range of notations available for the modelling
of software systems whose semantics are based on first-
order predicate logic (FOPL). Text-based examples in-
clude FOPL itself, or structured variants such as Z [19]
and VDM [13], and the Object Constraint Language
(OCL) [20], which is part of the Unified Modelling Lan-
guage (UML) [16]. Diagrammatic examples include
constraint diagrams [7] and UML class and state di-
agrams. A heterogeneous framework in which these
and other notations can be used together might be of
benefit to modellers. In this paper we present such
a framework, discussing the advantages and disadvan-
tages of different approaches.

Part of the rationale in the development of both
OCL and constraint diagrams was to construct a
developer-friendly notation for expressing constraints
in object-oriented modelling, as an alternative to tra-
ditional mathematical syntax. Notation is notoriously
a matter of taste. Having a range of notations available

Stuart Kent

Computing Laboratory
University of Kent, Canterbury, UK
S.J.H.KentQukc.ac.uk

enables us to choose which is the most appropriate ap-
proach for our needs or our tastes. Some expressions,
such as those which require navigation between sets
and statements about set inclusion and disjointness are
probably shown better diagrammatically than textu-
ally; other statements, such as those involving num-
bers, are frequently better expressed textually.

A further problem when modelling industrial-sized
systems is scalability; the number and complexity of
constraints can be overwhelming. The framework de-
veloped in this paper is modular and can be used to
structure the constraint space of the system. It is also
flexible and extensible. Users can choose which nota-
tions to use and can mix them; they can choose the
ways in which the notations are combined and they
can add their own notations. All the formal notations
in the family should be based upon FOPL, and ex-
pressions are built from atomic expressions using con-
nectives. The framework is flexible enough to deal with
informal notations such as natural language or rich pic-
tures and also examples such as UML object diagrams.
Expressions within the framework will have formal se-
mantics if and only if all their components are formally
defined.

Diagrammatic reasoning can take many forms as can
be evidence by glancing at [1] or [9]. In [3], Barwise
and Etchemendy argue that reasoning is heterogeneous
in nature. They applaud the recent resurgence of in-
terest in “nonlinguistic” representations in reasoning
but strike a note of caution about the potential of non-
linguistic representations. Just as it is unreasonable
to suggest that first-order logic is a universal repre-
sentational language, it is also unreasonable to strive
for a universal nonlinguistic representational language.
They suggest that the search for any universal scheme
of representation, text-based or diagrammatic, is a mis-
take and that reasoning is inescapably heterogeneous
in nature. We fully concur with these sentiments.

The framework presented in this paper has devel-
oped from earlier work. In [14], we showed how OCL
and constraint diagrams can be used effectively to-

gether and in [15] we made the first suggestions for
a framework, constraint trees, for mixing different no-
tations; constraint trees form a subset of the framework
we present in this paper.

In the next section, we introduce the concept of a
template. Our framework for heterogeneous notations
is built from templates, and users can add their own
templates. First we consider binary, commutative and
associative connective operations such as conjunction
and disjunction. They can be extended to n-ary op-
erations because they are associative. Later, we con-
sider other operations which may not be commutative
(e.g. implication) or binary (e.g. negation). One use
of unary templates for predicates and quantifiers is
outlined in §2.6. In §3 we show how templates can
combine in a nested expression and discuss flattening
nested expressions. In §4 we formalise the notation.
We conclude with discussions on tool support and re-
lated work.

2 Templates

An expression is either atomic or made up of compo-
nents, using some connective operation. A view of an
expression is a concrete (diagrammatic or text-based)
representation of an expression. A view can be built up
out of views of its components. The component views
are combined using a template. We will consider the
templates tree, chain, box, and partition, see figures 1
and 3.

To create a view of an expression, use a template
for each application of a connective operation. The
framework is flexible and extensible, because users can
introduce their own templates or adapt existing ones.
The templates we introduce here serve only as exam-
ples.

2.1 Binary commutative templates

Binary operations are shown using binary templates.
An outer rectangle contains two empty inner rectangles
to hold views of the components. The space between
the bounding rectangle and the inner rectangles is filled
differently for different templates. Commutative oper-
ations allow templates that don’t enforce an ordering
on the inner rectangles. The component parts can be
read in any order. The simplest binary commutative
template is bozx, which simply has two rectangles drawn
inside a bounding box. A line can be drawn between
the inner rectangles to give a different template: chain.

A third template uses a new rectangle (smaller than
the others) to represent the operation which brings to-
gether the components. Lines link the view of the op-
eration to the inner rectangles. This template is called

[]
[]

Partition Box Chain Tree

Fig. 1: Four binary templates

tree. The fourth possibility shown in figure 1 makes
most efficient use of space on the diagram. The two in-
ner rectangles occupy the whole of the bounding rect-
angle. One line has been used to partition the bounding
box into parts, ready to hold views of the components.

The partition template is inspired by the use of
dashed lines to indicate orthogonal behaviour in state
diagrams in UML, which originated in Harel’s state-
charts [11]. The chain syntax draws upon our work on
reasoning with spider diagrams [12], which itself builds
upon the work of Shin [18] and Peirce [17]. The tree
template develops from the idea of a constraint tree
used for combining OCL and constraint diagrams [15].

2.2 n-ary commutative templates

If a binary operation is associative, then the repeated
application of that operation can be constructed with-
out explicit reference to the pairs of components which
are combined first. Figure 2 shows how a binary com-
mutative associative template can become a ternary
template. In this way, the binary templates shown in

P Q R P Q R
P .
o)| LSS

Fig. 2: The associative law

figure 1 become the ternary templates seen in figure 3
and, of course, the process can be extended to produce
n-ary templates.

[]
L]

Partition Box Chain Tree

Fig. 3: Ternary templates

2.3 Use of operation annotations

For diagrams representing expressions involving differ-
ent operations, it is useful to be able to annotate the

diagram with operation labels or signifiers. Figure 4

shows some annotated binary templates.

o -
OO Er
|| L L

Partition Box Chain Tree

Fig. 4: Annotated templates

Sometimes we can use diagrammatic notations in-
stead of textual annotations; examples of this are found
in the next two subsections.

2.4 Unary templates

A unary template needs only a bounding box and a
single inner box. Unary templates can be thought of
as frames, or wrappers, of an inner view. The not op-
eration is unary, and two possible templates are shown
in figure 5, one in which the template is annotated with
the label = and the other in which the negation is indi-
cated diagrammatically as a bar above the inner box.
Probably the only unary operation we will require is
= p—

Fig. 5: Templates for not

negation. However, in §2.6, we show how a unary tem-
plate can be used to express quantification.

2.5 Non-commutative templates

A non-commutative operation can be shown using a
template which imposes an ordering on its inner boxes.
Two possible templates for implication are shown in
figure 6. In one the two boxes are linked with an arrow
resembling an “implies” sign (=), while in the other
the two boxes are linked with an arrow which is an-
notated with the label =. Of course, we could have
annotated the arrow with the word implies rather than
the symbol. An implies template can only be binary as

||
\

_

Fig. 6: Templates for implication

the operation is not associative. Another similar tem-
plate could be developed for if then else statements.
See §6 for an example from [4] for such a conditional
construction.

2.6 Predicates and quantifiers

Quantifiers are easily represented by unary templates
to represent the quantifier and variable name. The
inner box of the template should then be filled with
a predicate. The most obvious template is employs
a simple text-based label as in figure 7 although one
could envisage representations where universal and ex-
istential quantification are distinguished diagrammati-
cally.

Vb

P(b)

Fig. 7: A unary quantification template

The scope of a quantifier is represented directly by
the bounding box. For example, figure 8 represents
the proposition Va 3b e P(a,b) A Q(b) in the left-hand
diagram and the predicate Va e P(a,b) A (3be Q(b)) in
the right-hand diagram.

Va Va

Hb [Pab)] [3b
Pab) | [Q0)] 20|

Fig. 8: The scope of quantifiers

3 Nesting templates

The nesting of templates allows for compound expres-
sions to be built up which can contain different con-
nectives. Figure 9 shows how different templates can
combine in a nested expression. The most flexible no-

b -y e

R R

Fig. 9: Nested templates

tation is obtained by allowing the use of any template
for any instance of any operator. A more rigid notation
is obtained by insisting on a consistent use of a unique
template for each connective. A schema could be cho-
sen which uses the tree template for conjunction and
the box template for disjunction. If a schema assigns
unique templates for each operation, then annotations
can be omitted and every diagram has well-defined se-
mantics. On the other hand, a schema which duplicates
the use of a template then requires annotation for those

occurrences of the template to specify which operation
is being represented.

ol o

Fig. 10: Annotated nested templates

3.1 Modularity and scalability

In a modelling situation, we may wish to use notation
such as natural language, without clear semantics. A
mix of formal and informal statements allows for vague
statements to be made, elaborated upon, and made
precise at a later time. The semantics of nested ex-
pressions can be built up modularly. The semantics of
a compound expression exists if and only if we can give
semantics to each component part.

The modularity of the framework allows for scalable
models. With appropriate tool support, see §5, we can
zoom in and out of the model, exploding and collaps-
ing views, expressing the whole model but concentrat-
ing only on manageable sized chunks of the system at
any time; these chunks can range from an overview of
the whole model down to very detailed views of the
smallest components.

3.2 Flattening nested notations

Templates are required to have a bounding box in or-
der to permit unambiguous nesting, but in some cases
diagrams may be simplified by removing some of the
bounding boxes. We call this process flattening. The
associative law illustrated in Figure 2 is an example of
flattening, but more interesting examples arise when
more than one operation appears in the represented ex-
pression. The existing notations of spider diagrams [12]
and constraint trees citekent:trees both employ flatten-
ing as illustrated respectively in Figure 11 (represent-
ing (PVQ)A(RVSVT)) and Figure 12 (representing
PA(QV R)).

Fig. 11: Flattening in spider diagrams

Flattening is possible in some cases where each op-
eration is associated with a particular template style.
In the spider diagram notation, disjunction is always

amn | E

Fig. 12: Flattening in constraint trees

represented by chain templates and conjunction is al-
ways represented by box templates. Similarly, in the
constraint tree notation both disjunction and conjunc-
tion are represented by tree templates. We call such
an association of operations to template styles in this
way a (template) schema (see §4 for the formal defini-
tion). Not all schemas admit flattening. For example,
the ‘box-box’ schema that represents both conjunction
and disjunction as box templates does not permit flat-

tening; see Figure 13.
A

o]
E@E

Fig. 13: A schema that does not admit flattening

We regard the chain and tree templates as being
connected and the box template as being disconnected.
Since connected templates are, in a visual sense, more
‘tightly bound’ than disconnected templates, a schema
that assigns one operation to a connected template and
one to a disconnected template has an implicit operator
hierarchy that permits flattening. This is the diagram-
matic counterpart of the operator hierarchy in algebra
where multiplication binds more tightly than addition
allowing the convention that xy + z can be unambigu-
ously interpreted as (x X y) + z rather than = x (y + z).

Flattening simplifies diagrams, but there is a cost.
For those diagrams that employ a schema that assigns
one operation to a connected template and one to a dis-
connected template, flattening imposes a normal form
on the notation. For example, flattened spider dia-
grams (illustrated in the right-hand diagram of Fig-
ure 11) represent expressions in conjunctive normal
form where disjunction binds more tightly than con-
junction. Reversing the assignment (conjunction to
chain templates and disjunction to box templates) pro-
duces diagrams that represent expressions in disjunc-
tive normal form.

The constraint tree notation that employs the ‘tree-
tree’ schema that assigns both disjunction and con-
junction to tree templates admits flattened diagrams
without a unique interpretation. Figure 14 illustrates
such a diagram which has interpretations that repre-
sent PAQA(RVS) and (PAQ)VRVS. This ambiguity
can be resolved by highlighting one operator node as

the ‘root’ of the tree. The constraint tree can then be
interpreted recursively with operator nodes connected
to the root node becoming the root nodes of subtrees.

Fig. 14: The ambiguity of constraint trees

Another way to resolve the ambiguity is to present
the tree with ‘outermost’ connectives higher on the
page. The tree is then read in a top-down manner,
as illustrated in Figure 15. In either case, identify-
ing the topmost or root connective is sufficient to de-
duce the semantics of the whole tree. We could flat-

O T

mulannn an|nn |

Fig. 15: Evaluation of a constraint tree from the root

ten the unary quantification template, replacing the
quantification annotation Vb with a combined anno-
tations Vb, A on disconnected templates or annotating
the shaded region inside the bounding box with Vb for
connected templates (see figure 16).

AR | (@

i

Partition Box Chain

VonVon | [l
L

L]

Partition 0!

Fig. 16: A flattened quantification template

4 Formalising templates using nesting
with schemas

A logical expression is either atomic or is the result of
applying an operation to other expressions. Examples
of operations are disjunction, conjunction and nega-
tion. Let E be the set of expressions and O be the set

of operations. Figure 17 gives a UML class diagram for
expressions.

components
Expression
1.n
0..n

CompoundExpression AtomicExpression

0..n
1.1

Operation

Fig. 17: UML class diagram for expressions

A wview of an expression is a diagram contained in a
bounding box which represents an expression. We as-
sume that all atomic expressions have a concrete rep-
resentation which can be placed into a box, giving an
atomic view of the atomic expression. Views of com-
pound expressions will be built up out of atomic views
using templates. Let V' be the set of views. Figure 18
gives a UML class diagram for views.

Expression Schema
1n 0.n
0.n
Tepresents vi 0.n
components o comformsTo
1.n ZT
0.1
TemplateView AtomicView
1n
0.n
0.n
Template TemplateStyle
0.n

Fig. 18: UML class diagram for views

An n-ary template is a diagram consisting of one
bounding box containing everything else, and n dis-
joint, empty, inner boxes. The space between the outer
box and the inner boxes may contain shading, lines,
annotation, or other diagrammatic components. An n-
ary template is also referred to as a template of degree
n. Let T be the set of templates. A template is capable

of being displayed by a tool. We could, for example,
choose a template which is presented on screen with
empty inner boxes, and drag and drop views of expres-
sions into the inner boxes to turn the template into a
view. Thus an n-ary template defines a function:

teT=>t: V"=V

If an n-ary template has n > 1, and an inner box is
filled with a view, then we have a new template of de-
gree n — 1. The operation A : (P,Q) — P A Q can be
represented by a binary box template, and the opera-
tion op : (P,Q) — P A Q A R can also be represented
by a binary box template (left diagram of figure 19),
but would be better expressed using a partially filled
ternary template (right diagram in figure 19).

[AR] A
. O [

Fig. 19: A partially-filled template

A template style is a rule which determines what
kinds of diagrammatic structure is present between the
bounding box and the inner boxes of a template. One
example of a template style, called bozx, requires that
the only feature of a template between the bounding
and inner boxes is shading. A template is said to con-
form to a template style. A second example of a tem-
plate style is chain, which says that the inner boxes
are joined together in a chain using line segments in
the bounding box. Some template styles can apply to
only templates of certain degree, whereas others can
apply to templates of any degree. Let T'S be the set
of template styles. Say that a template conforms to
a template style if the template structure satisfies the
template style rule. If template ¢ € T conforms to
template style ts € T'S, we write ¢ ~ ts. In principle,
a template could conform to more than one template
style, but the four styles described in this paper are
mutually exclusive.

A view and a template are concrete diagram con-
cepts. One expression (abstract syntactic) can have
many (concrete) views and one template style (ab-
stract) can have many (concrete) templates conforming
to that style.

A schema assigns a template style to every opera-
tion in a logical system. For example, schema s could
assign the box template style to the disjunction oper-
ation, and the chain template style to the conjunction
operation. Let the set of schemas be S. Each schema
s defines a function:

s€eS=s:0—-TS

Figure 20 gives a UML class diagram for schema. If

Schema
T
An association class
represents the outcome of Operation
mapping a particular operation
under a particular schema

Fig. 20: UML class diagram for schema

an expression is non-atomic, then the view must be
composed of a template, with views of the component
parts drawn within the inner boxes of the template.
Take e € E such that e = op(cy,..,¢,) and views, v,
of e, and v; of each component ¢;. Then there exists a
template t such that

Ve = t(vlv "7vn)'

A view is said to conform to a schema s if each instance

[Al
Account
n Account
LR PR
closed

) = View

Template (view View

Fig. 21: Combining views with a template

of an operation within the expression is represented by
a template which conforms to the relevant template
style. Take e € E such that e = op(ecy, .., ¢,) and views
ve of e, and v; of each component ¢;. Assume these
views conform to schema s. Then there exists a tem-
plate t such that

(t ~ s(op)) A (ve = t(v1, ..y 0,)) .

5 Tool Support

Using visual notations in modelling requires tool sup-
port. As soon as one wishes to maintain the diagrams,
use them in formal documentation, check their correct-
ness, reason with them, manipulate them, and so on,
then tool support is essential. A specialized constraint
diagram editor, the CD Editor [8], has already been
developed.

The main requirement of a tool to support our
framework is zooming, that is, changing the depth of
a view by exploding or collapsing it. Of course, for
any non-trivial system it would be impossible to fit the
whole model on a single screen. A means, therefore,
has to be provided for zooming in and out of views.

The tool should support the creation of new tem-
plates and the adaptation of existing templates. It

2

should “know” the framework’s notations, diagram-
matic and textual, and be able to support manipulation
of these notations, and the results of any manipulation
of the model must be presented in the notations that
the modeller is using.

Each notation should have a set of logical reason-
ing rules, preferably complete, so that modellers can
reason about the system within the notations they are
using. The tool should also be able to evaluate any
statement represented by any of the formal notations
within the framework. It should also be possible to add
new notations to the framework.

Another longer term possibility for tool support is
notation interchange. It would be desirable for a tool
to interchange the notation used to present the con-
tents of a view, for example converting a constraint
diagram into textual notation, and vice-versa. Work is
already underway on this: we can generate Euler dia-
grams [5], the basic notation on which constraint dia-
grams are built, from abstract (textual) mathematical
specifications [6]. However, the main challenge here
is the layout of diagrams when these are created from
text.

6 Related Work

The idea for heterogeneous systems is, of course, not
new. For example, Barwise and Etchemendy have im-
plemented a heterogeneous logical system, called Hy-
perproof [2], that mixes diagrammatic and textual no-
tations and allows reasoning to be performed using the
the appropriate notation. See [1] for other examples of
heterogeneous systems.

Bottoni et al [4] use UML collaborations to give a
visualization of OCL. They use a structuring method
that would fit nicely into our framework. For exam-
ple figure 22 is their visualization of an if then else
statement. They criticize the approach taken in [14]
of mixing OCL and constraint diagrams as “suffering
the typical difficulties of parsing together diagrams and
text”. We claim that the framework developed in this
paper overcomes these difficulties. The criticism is also
counter to Barwise and Etchemendy’s view that rea-
soning (and we would say modelling) is heterogeneous
in nature.

Peirce’s alpha diagrams [17] (but see also [10] for a
more recent interpretation) use labels for propositions,
simple closed curves surrounding diagrammatic ele-
ments for negation, juxtaposition for conjunction and
nothing else. The notation is nested and fits neatly into
our framework. The alpha diagram in figure 23 repre-
sents (=P A =Q) and hence, rather non-intuitively,
PV Q. The nested structure of the notation is clearly
seen. Peirce’s work on diagrammatic representations of

then else

Fig. 22: A visualization of if then else

logic has been very influential on the recent resurgence
of interest in diagrammatic reasoning.

® ©

Fig. 23: A Peirce alpha diagram

7 Conclusion and Further work

There are a number of ways in which the framework
and its components can be adapted and extended. For
example, the tree template can be modified to reduce
duplication of propositions by merging instances of a
statement. Allowing merging of views for identical ex-

A

Fig. 24: The distributive law with merged propositions

pressions would change a constraint tree into a con-
straint graph. Work is in progress to clarify the nota-
tion required for constraint graphs. It is not enough, for
example, to specify a root node of a constraint graph
to deduce the semantics.

In this paper we have developed the idea of a vi-
sual framework for organizing models of systems which
allows a mixture of notations, diagrammatic or text-
based, to be used. The framework is based on the use
of templates for connective operations which can be
nested and sometimes flattened. It is modular and can
be used to structure the constraint space of the system,
making it scalable with the appropriate tool support.
It is also flexible and extensible: users can choose which
notations to use, mix them and add new notations or
templates.

The goal of this work is to provide more intuitive
and expressive languages and frameworks to support
the construction and presentation of rich and precise
models.

Acknowledgements This research was partially sup-
ported by UK EPSRC grants GR/R63509 and
GR/R63516.

References

1]

2]

[13]

G. Allwein and J. Barwise. Logical Reasoning with
Diagrams. OUP, 1996.

J. Barwise and J. Etchemendy. Hyperproof. CLSI,
Stanford, 1994.

J. Barwise and J. Etchemendy. Heterogeneous
logic. In J. Glasgow, N. H. Narayan, and
B. Chandrasekaran, editors, Diagrammatic Rea-
soning, pages 211-234. MIT Press, 1995.

P. Bottoni, M. Koch, F. Parisi-Presicce, and
G. Taentzer. A visualization of ocl using collabo-
rations. In Proceedings of UMLO1, 2001.

L. Euler. Lettres a une princesse d’allemagne. Let-
ters Vol 2, No. 102-108, 1761.

J. Flower and J. Howse. Generating Euler dia-
grams. In Proceedings of Diagrams 2002. Springer-
Verlag, 2002.

J. Gil, J. Howse, and S. Kent. Towards a for-
malization of constraint diagrams. In Proc Symp
on Human-Centric Computing. IEEE Press, Sept
2001.

J. Gil and Y. Sorkin. The con-
straint diagrams editor. Available at
www.geocities.com /ysorkin/cdeditor/.

J. Glasgow, N. Hari Narayanan, and B. Chan-
drasekaran, editors. Diagrammatic Reasoning.
MIT Press.

E. Hammer. Peircian graphs for propositional
logic. In G. Allwein and J. Barwise, editors,
Logical Reasoning with Diagrams, pages 129-147.
OUP, 1996.

D. Harel. On visual formalisms. In J. Glas-
gow, N. H. Narayan, and B. Chandrasekaran, ed-
itors, Diagrammatic Reasoning, pages 235-271.
MIT Press, 1995.

J. Howse, F. Molina, and J. Taylor. On the com-
pleteness and expressiveness of spider diagram sys-
tems. In Proceedings of Diagrams 2000, pages 26—
41. Springer-Verlag, 2000.

C. Jones. Systematic Software Development using
VDM. Prentice Hall, 1990.

[14]

[15]

[18]

[19]
[20]

S. Kent and J. Howse. Mixing visual and textual
constraint languages. In Proceedings of UML99,
1999.

S. Kent, J. Howse, and S. Gaito. Constraint trees.
In A. Clark and J. Warmer, editors, Advances in
Object Modelling with OCL. Springer Verlag, to
appear, 2002.

OMG. UML specification, version 1.3. Available

from www.omg.org.

C. Peirce. Collected Papers, volume 4. Harvard
Univ. Press, 1933.

S.-J. Shin. The Logical Status of Diagrams. Cam-
bridge University Press, 1994.

J.M. Spivey. The Z Notation. Prentice Hall, 1989.

J. Warmer and A. Kleppe. The Object Constraint
Language: Precise Modeling with UML. Addison-
Wesley, 1998.

