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applications the graph and grouping is liable to change, 
because of changes to the underlying data structure, or 
because a user has edited the diagram. 
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ced Euler diagram. This task is non-trivial when the 
structures of the diagrams differ. In particular, if a 
ange is made to an existing drawn diagram, our work 

presentation of the new diagram with minor disruption 
s mental map. As the new diagram is often generated 
tract representation, its initial embedding may not be 

at of the original, so we have developed similarity 
or Euler diagrams integrated into a multi-criteria 
nd a force model for associated graphs that attempts to 
 original layout. This work extends the two stage non-
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y the investigators. 
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an be generated automatically, without any known 
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imple closed curves which can intersect, contain 
e other contours. The parts of the plane 
ed by being contained in some contours but 
rom all others are called zones. In Figure 2 there 
enn diagrams shown and in Figure 3 we have a 
ram and an Euler diagram. 

aph-enhanced Euler diagram comprises an 
 Euler diagram with a graph super-imposed. The 
the graph are associated with Euler diagram 
o different drawings of the same graph-enhanced 
ram are shown in Figure 1. 

 enhanced Euler diagrams combine the 
 associative readability of graphs with the 
grouping and set intersection features of Euler 
Many diagrammatic applications have extended 
ax such as higraphs or hypergraphs, where nodes 
d in intersecting regions. These structures can be 
d as enhanced Euler diagrams and in most of the 

 
 

Figure 1. Two drawings of a graph-enhanced Euler diagram 
 

The dynamic diagram application presented in this 
paper is that of laying out a sequence of diagrams that 
represents a diagram proof, where the reasoning steps give 
structural changes in the diagram. To maximise the 
readability of the proof, consecutive diagrams should 
appear similar apart from changes made by the reasoning 
steps. 

Dynamic diagram drawing deals with the automatic 
layout of diagrams when the underlying structure of an 
original diagram has changed to give a new diagram. 
Because of the wide variety of changes possible and 
reasons for the changes, the task of dynamic drawing is 
demanding. Techniques for dynamic graph drawing have 
been explored (see Section 2 for a summary), however no 
previous work has been performed in dynamic Euler 
diagram drawing, or dynamic drawing of Euler diagrams 
enhanced with graphs. 

  
Figure 2. Contour addition / removal 
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Figure 3. Zone ab is present in only one diagram 

Possible changes to an Euler diagram include the 
addition or removal of contours (see Figure 2), or changes 
to
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the application area of diagrammatic reasoning with Euler 
diagrams; Section 5 details cases where drawing go wrong 
and suggests possible solutions; and finally, Section 6 gives 
our conclusions. 

2. BACKGROUND 
There is a well-established existing body of work on 
drawing Venn diagrams (which have all possible zones), 
for a comprehensive review see [16]. The task of drawing 
Euler diagrams is more difficult than that of drawing Venn 
diagrams (because there are many more possible 
configurations) and more useful (because a Venn diagram 

 

 the zone set (see Figure 3).  

In addition to changes to the underlying Euler diagram, 
e graph associated with the diagram may change with 

ode or edges being deleted or added. Often, both Euler 
iagram and graph change at the same time. 

We have implemented a two stage system for dynamic 
rawing of Euler diagrams enhanced with graphs that 
uilds on the static drawing method described in [15], 
owever the method described in this paper can be applied 
 any initial layout, either hand drawn or drawn with a 

tatic method. Examples in Section 4 show both of these 
ases. Firstly we lay out the underlying Euler structure in 
e new diagram, using information about the layout in the 

ew diagram. This is followed by drawing the graph in the 
ew diagram, again using information about the layout in 
e existing diagram. These two stages are illustrated in 
igure 4. 

 
The original diagram 

 
The new diagram before 

layout 

 
New diagram after Stage 1 

 
New diagram after Stage 2 

Figure 4. Illustrating the two-stage dynamic drawing process 

The rest of the paper is organised as follows: Section 2 
iscusses the background work to this paper; Section 3 
etails the graph-enhanced Euler diagram dynamic drawing 
ethod; Section 4 describes how the method is applied to 

with many contours becomes difficult to interpret). 

Only recently have we seen the publication of papers 
addressing the specific problem of drawing Euler diagrams 
(e.g.[3][6][7][8]). The general task of drawing Euler 
diagrams can be reduced to the simpler task of drawing 
atomic Euler diagrams and recombining to build a nested 
Euler diagram [7]. In practical applications this is a useful 
step which often reduces the number of contours in 
drawing task. 

The embeddings obtainable from algorithms given in 
[6][7] were correct, but not aesthetically pleasing and could 
be hard to visually decipher. In [8] this problem was 
addressed by taking an embedded diagram, subject to some 
aesthetic criteria, and applying a hill climbing algorithm to 
lay out the diagram. The hill climbing process was guided 
by the use of various metrics to assess the quality of a 
drawing. In [15] graphs were superimposed upon the Euler 
diagrams, combining aesthetic-based hill climbing and 
force-based iteration to place graph nodes. Drawing graph-
enhanced Euler diagrams widens the number of potential 
application areas for the work. Apart from diagrammatic 
reasoning systems, graph-enhanced Euler diagrams have 
been used to visualise information in file systems [2] and 
are applicable where graphs are extended in higraph or 
hypergraph systems such as software modelling [18], the 
visualization of networks [11], and database visualization 
[4]. 

The recent results in Euler diagram drawing form the 
basis of the work presented in this paper, but they all 
addressed the problem of drawing an Euler diagram as an 
isolated artefact (static drawing). In contrast, the work in 
this paper considers the problem of drawing a graph-
enhanced Euler diagram in the context of other drawings 
(dynamic drawing).  

The field of dynamic graph drawing investigates the 
process of changing the drawing of a graph as changes are 
made to the underlying structure of the graph. Current 
dynamic graph drawing techniques, see [1] and [14] for 
surveys, are usually based on dynamic variations of current 
graph drawing methods. This work informs our choice of 
title for this paper, where we imagine a drawn graph-
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enhanced Euler diagram as a context for the task of 
drawing a second diagram, related to the first but with 
altered contours, zones and/or graph. 

 
New diagram before layout  

 
New diagram drawn 

statically  

 
The original diagram 

 
the new diagram after 

dynamic drawing  

A major issue when dynamically drawing a graph is to 
avoid disturbing the users mental map of the graph [5], a 
concept which relates to minimising the disruption to the 
current drawing, because the user has invested time in 
understanding the current structure. Similarly, in dynamic 
Euler diagram drawing we strive to present the new 
drawing so that it looks similar to the other diagram, to 
maximise the chances that a user could transfer their 
understanding of one diagram in interpreting the other. Any 
differences between the diagrams should become visually 
obvious and commonalities should be clearly comparable.  

Figure 5 contrasts between static and dynamic graph 
drawing. In this figure, the static drawing approach 
successfully changes the new diagram into an 
approximation of the original. It lays the contours our 
nicely whilst maintaining the Euler diagram structure (the 
same zone set). Also the graphs are drawn to separate 
graph nodes, to keep nodes away from contours and to 
minimise edge crossings.  Figure 5. Static and dynamic diagram drawing 

 The third diagram in the figure is a different, 
contextual diagram, for illustrating dynamic drawing. It has 
fewer zones and fewer graph components. The fourth 
diagram is an attempt to draw the “new diagram” to look 
similar to the “original diagram”. It, again, maintains the 
correct zone set and lays out the contours. We can see that 
the intersection zone in the dynamically drawn diagram is 
smaller than in the statically drawn diagram, because that 
zone is missing from the context. There are conflicting 
aims – to draw similar graph components in similar places, 
and to minimise edge-crossings. In this case, the task of 
highlighting commonality between the graph components 
has resulted in a drawing which has edge-crossings. 
Different weightings can be specified to achieve a balance 
between such conflicting aims. 

This work on dynamic graph-enhanced Euler diagram 
drawing has been applied to spider diagrams [12]. Inspired 
by the widespread use of diagrammatic notations for 
modelling and specifying software systems, there has been 
much work recently about giving diagrammatic notations 
formal semantics. The analysis of a diagrammatic 
specification can be done using diagrammatic reasoning 
rules - rules to transform one diagrammatic assertion into a 
new diagram that represents equivalent or a weaker 
semantic statement. 

 
   

 

 

 

 
Figure 6. Two equivalent hypergraph drawings which are 

different when interpreted as spider diagrams. 

Spider diagrams are a subset of constraint diagrams 
[17], with a restricted notation and restricted rule system. 
Unitary spider diagrams are Euler diagrams with extra 
notation comprising shading in zones and a graph 
superimposed on the diagram. The components of the 
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superimposed graph are trees (called spiders). Contours 
represent sets and zones represent subsets of those sets, 
built from intersection and exclusion. The absence of a 
zone from the diagram indicates that the set corresponding 
to that zone is empty. Thus the absence of a zone from the 
diagram conveys information, and the two diagrams in 
Figure 6 have different semantics. 

The seven reasoning rules each make a small change to 
a diagram, and they have each been proven to be valid: if a 
rule transforms diagram d1 into diagram d2 then d2 
represents a semantic consequence of d1. Other rules could 
be devised which are valid, and in any logic system, the 
choice of rules is to some extent arbitrary. 

 
premise  

 
 

conclusion 

b ba a Each spider drawn on a spider diagram diagram has a 
habitat: the collection of zones that contain nodes of the 
graph. The spiders assert semantically the existence of an 
element in the set corresponding to its habitat. Spiders 
place lower bounds on the cardinality of sets. Shading in a 
zone (or collection of zones) indicates that the set 
corresponding to that zone (or zones) contains only 
elements for the spiders that are in it, and no more. Shading 
places an upper limit on the cardinality of sets. See Figure 
7 for an example of a spider diagram with its abstract 
syntax and semantics. 

c c

b ba a 

c c

Abstract syntax: 
Contours : {a, b} 
Zones: {{},{a},{b}} 
Shading:{{a}} 
Spiders : {{{},{b}},{{a}}} 
 

Semantics: 

|A| = 1 and  and |U-A| ≥ 
1 

{}=∩BA

 

Figure 8. An example of a proof in the spider diagram 
reasoning system 

The spider diagram reasoning system provides an ideal 
application for the dynamic drawing of diagrams, because 
we have a software tool which generates proofs of spider 
diagram theorems, but only generates the underlying 
abstract diagram sequence. Each diagram in the proof 
needs to be laid out for the user so that the changes that 
have been applied by the reasoning rules are visually clear. 
The first diagram can be laid out statically and the 
remaining diagrams dynamically drawn with the preceding 
diagram as context. 

a 
b 

3. DYNAMIC DRAWING METHOD 
We have implemented a two stage system for dynamic 

drawing of Euler diagrams enhanced with graphs that 
builds on the static drawing method described in [15]. 
Firstly we lay out the underlying Euler structure in the new 
diagram, using information about the layout in the original 
diagram. This is followed by drawing the graph in the new 
diagram, again using information about the layout in the 
original diagram. These two stages were illustrated in 
Figure 4. 

Figure 7. An abstract spider diagram and a corresponding 
drawn spider diagram. 

The semantics of spider diagrams provide a foundation 
upon which we build reasoning rules. In the case of spider 
diagrams, it is standard to allow seven rules to transform a 
spider diagram into another (these rules are given in e.g. 
[9]). For example, one rule transforms a diagram with an 
absent zone into the equivalent diagram which contains the 
zone, shaded. This reasoning rule changes the structure of 
the underlying Euler diagram and necessitates 
reconstruction of a drawn diagram. A sequence of 
reasoning rules, applied to a premise diagram, gives a proof 
which ends with a conclusion diagram. An example of such 
a proof is shown, drawn by hand, in Figure 8. The same 
proof is shown again later in Figure 20, Figure 21 and 
Figure 22. 

Our strategy for dynamic layout is to draw a new 
diagram in a similar manner to an existing diagram, but to 
also include some notion of aesthetics into the new layout. 
There are three issues we deal with: mapping diagram 
items in one diagram to items in the other another, which is 
relatively easy for the contours and zones of an Euler 
diagram, as the contours in both diagrams must be uniquely 
labelled, but is harder for the embedded graph as it is 
unlabelled; the second issue is to lay out the items in the 
new diagram in a similar way to mapped items of the 
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existing diagram; the third issue is to include aesthetics into 
the layout of the new diagram, so that unmapped items are 
not drawn badly, and so that mapped items are not forced 
into bad layouts because of changes in the vicinity of the 
item. 

3.1 Dynamic Euler Diagram Layout 
The layout of the Euler Diagram uses a multi-criteria 
optimiser that integrates two specialist dynamic metrics 
with existing metrics that improve the general aesthetics of 
a diagram. These general metrics are used in addition to the 
dynamic metrics because of the incomplete nature of the 
mapping between the original and new diagrams. Where 
contours are not present, simply following the current 
layout is not possible. Where zones have been altered it 
may also be that the best possible match for the current 
layout results in a very poorly laid out diagram. The 
optimiser is a hill-climber, which attempts to minimise a 
weighted sum of the metrics. 

The existing static diagram metrics are taken from the 
static Euler diagram layout method described in [8]. As 
with the previous work, contours are represented as 
polygons with an arbitrary number of points. This allows 
the use of standard algorithms to produce the metrics. 
There are seven single diagram metrics used. Two improve 
the roundness of contours: ContourRoundnessAngles, 
which balances out the angles at the points of polygons and 
ContourRoundnessEdgeLength, which balances out the 
length of the line segments of contours. DiagramArea 
measures the total area occupied by the diagram, and so 
prevents disconnected contours from moving too far apart. 
ContourArea balances out the areas of contours. ZoneArea 
balances out the areas of zones. Two metrics measure the 
closeness of contours: ContourClosenessPts uses 
distances between points on the contours and 
ContourClosenessEdgePt, measures the closeness of points 
in one contour to the line segments in the other. All of 
these metrics except DiagramArea are invariant under 
scaling. 

To lay out static diagrams, these metrics are used in a 
hill climber. This moves the points of contours, and checks 
if the weighted sum of the metrics had been improved. If 
there is an improvement, the move is kept, otherwise it is 
discarded. As well as single points entire contours were 
also moved. A cooling schedule is applied in order to 
reduce the amount of movement as the iterations continued.  

The hill climber was modified for the drawing of 
dynamic Euler diagrams. In particular it was clear that the 
dynamic metrics were each affected by either point 
movement or contour movement, but not both. To take 
advantage of this, and improve the time taken to get to a 
minima, the dynamic metrics were designed so that they 
could register for a particular movement type. This did not 

have an impact on the static diagram metrics, as they are all 
affected by both types of movement 

This change has a significant consequence on 
measuring fitness. It means that there cannot be a global 
fitness function, only local fitness functions for point 
movement and contour movement. It is conceivable that 
one movement may reduce one fitness measure but in 
doing so increase another, however, because the functions 
share many metrics (all the single diagram metrics), the net 
overall effect is a downwards movement of both fitness 
functions. It is likely that having competing fitness 
functions would become problematic if the sets of metrics 
used in each have fewer metrics in common. 

The motivation for the new dynamic metrics is to 
ensure that the new diagram looks as close as possible to 
the original. There are two components to this. Firstly, the 
position of contours that appear in both diagrams should be 
similar. This is implemented by the 
ContourPositionComparison metric. Secondly, the shape 
of two contours that appear in both diagrams should be 
similar. This is implemented by the 
ContourPointsDifferenceComparision metric. 

ContourPositionComparison sums the square of the 
position differences between mapped contours. To ensure 
the metric does not change when the diagrams are scaled, it 
is divided by a value based on the area of the original 
diagram (as this diagram does not change, this value is a 
constant throughout the drawing process). There are 
various possible scaling values, but we use the sum of the 
areas of the contours in the still diagram, which relates 
directly to the scale of the original diagram (and so the new 
diagram, as it will be drawn similarly to the original) and is 
fairly simple to calculate. More precisely the formulae for 
this metric is 

( )

S

CCdist
Ccontour

neworiginal∑ 2),(
 

where  is the distance between the 
centres of the bounding box of contour C in the original 
and new diagrams. S is the scaling value calculated from 
the original diagram. This metric is largely concerned with 
the position of contours. The movement of points has only 
a minimal impact on its value, and so the metric is only 
registered for the contour movement element of the hill 
climber. 

),( neworiginal CCdist

ContourPointsDifferenceComparision is designed to 
make the shape of the contour in the new diagram similar 
to the shape of the mapped contour in the original diagram. 
It works by initially finding a shift factor to lay one contour 
on top of another, equalising the centres of the bounding 
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boxes. The metric penalises points of the new contour that 
are distant from the mapped point in the existing contour. 
The output is the sum of squared differences of the mapped 
points of each mapped contour. 

 

More precisely ContourPointsDifferenceComparision 
is: 

( )

S

EEdist
Ccontour

CnewinEnew
CoriginalinEoriginal

neworiginal∑ ∑
















,

2),(

 

To calculate this value, the point sequences of the two 
contours that are to be compared need to be mapped. 
Consider three aspects in turn.  

 

1 1 2 2 1 1 

where  is the distance between the 
mapped points in the original and new contours in the new 
diagrams. S is the same scaling value as used for 
ContourPositionComparison. This metric is concerned 
with the shape of contours, and the movement of contours 
does not change its value, hence is it only registered for the 
point movement element of the hill climber. 

),( neworiginal EEdist
2 2 

3 3 
3 3 4 4 

Figure 9 Contours with unequal number of points 

Initially, to allow for proper points comparison the 
number of points in each contour need to be equalized. The 
number of points in the polygons representing each contour 
may vary in both automatically generated contours or 
manually created ones, see Figure 9. The numbers of points 
are equalized by placing new points half way along line 
segments of the contour with least points.  

There is an alternative measure of the difference in 
contour shape, and that is to find the difference between the 
polygons that represent the two contours, and attempt to 
minimise the area of the difference. The difficultly with 
this is that very thin polygons have little area, and are 
difficult to reduce, but have a very noticeable impact on the 
drawing. When this metric was tried, the optimiser tended 
to reduce the difference between the polygons by making 
these thin polygons, rather than exactly equalizing the 
contours. 

 

1 1 

2 2 3 3 

3.2 Dynamic Embedded Graph Layout Figure 10. Contours winding in opposite orientations 
The work in the previous section on Dynamic Euler 
Diagram Layout results in a pair of drawn Euler diagrams 
which look similar. Work described in [15] allow us to 
place the graph superimposed upon the Euler diagram so 
that each graph node belongs to the correct Euler diagram 
zone. If we use this algorithm to draw the graphs, they are 
nicely drawn, but a graph that is identical in the new and 
original diagrams can appear very differently in each. 
Hence, to create a dynamic drawing, we use the placing of 
the graph nodes in the original diagram to inform the 
placing of the graph nodes in the new diagram. 

Next, require that the point sequences of the contours 
need to be winding in the same direction - either clockwise 
or counter-clockwise, see Figure 10, else the contour would 
need to be inverted by the optimising process. To deal with 
this a test is made, and if they are in different directions, 
one point sequence is inverted. 

2 

  

1 

2 
3 3 

1 
3.2.1 Mapping 
To work out which original nodes’ positions should affect 
which new nodes’ placing, we have to find a mapping (a 
partial injective function) from the nodes of the original 
diagram to nodes in the new diagram. For some nodes in 
the new graph, the mapping associates (unique) nodes in 
the original graph. If the two graphs are identical, the 
mapping will be a one-to-one mapping between the graph 
nodes, but in general there will be some nodes in the 
original graph unmapped and some modes in the new graph 
unmapped. 

Figure 11. Contours with rotated points 

Finally, the points in the sequences are aligned so that 
the mapped points are close together, otherwise the 
optimiser would need to rotate the points, see Figure 11. 
This is done by finding the two closest points of each 
contour, and translating each point labelling to start the 
point sequence with the closest points. 
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The simplest mapping considers connected 
components of the graphs in the two diagrams. For each 
component in the original graph, an isomorphic graph is 
sought which shares the same habitat (in practise, the graph 
components are simple and the search for isomorphic 
components is assisted by node assignment to zones). If 
such an isomorphic graph is found, then its nodes are 
mapped with the nodes in the new graph. An example is 
shown in Figure 12, where the mapping is shown using 
node labels. In this figure the unlabelled nodes do not 
participate in the mapping. 

 

C 

AD D A 
B

C BE

Figure 14. Problems in mapping between graph nodes 

 

The mapping between nodes of the graphs is used to 
determine some of the forces exerted on graph nodes, as 
described in the next section. Nodes which are associated 
under the mapping are encouraged to be drawn in similar 
positions (relative to the zone they are in) but are also 
subject to other forces. 

 

A B B 
A 

C 
D C D 

3.2.2 Force model 
The force model for laying out the nodes in the new 
diagram is based on the version used for laying out static 
embedded graphs as described in [15]. The forces are 
adjusted so that nodes which have a mapped node in the 
original diagram are encouraged to move closer to the 
corresponding position in the original diagram. However, 
changes to the structure of the Euler diagram may mean 
that the corresponding position is undesirable, or worse, it 
is outside the correct zone. Hence, the force system uses 
the forces from the static method to ensure that the layout 
does not have very poor aesthetics and that the diagram 
retains its structure. Nodes that do not have a mapped node 
in the original diagram are, in effect, placed with the 
standard static method. 

Figure 12. Simple mapping between graph nodes 

 

A more sophisticated mapping would seek components 
which are “nearly” isomorphic – perhaps components 
which differ by a single node. This sort of partial matching 
involves a difficult problem of choosing which components 
to map if there are multiple “similar” graph components. 
Some examples are purely symmetrical, and an arbitrary 
decision could be made. In Figure 13, we could equally 
map A1, B1 to A and B, or we could equally map A2 and 
B2 to A and B. 

 

A2 A1 A 
A node belonging to a particular zone must first be 

placed such that it is contained within the region defined by 
the zone in the new diagram. As with the static method we 
place nodes randomly by first drawing a horizontal line 
through the containing zone that meets the zone at a 
random point. The node is then placed on this line. This 
strategy is designed for quick placements of nodes in the 
correct zone. The application of the force model which 
then follows will place nodes in aesthetically pleasing 
positions, and if a node has a corresponding mapped node, 
it will be placed close to the relevant location found from 
the original diagram. 

B2 
B 

B1 

Figure 13. Symmetry and mapping graph nodes 
 

In other cases choices would have to be made more 
carefully to maximise the mapping’s ability to draw similar 
diagrams. In Figure 14, simple pairwise consideration 
between the CDE component on the left and the AB 
component on the right may lead to a mapping between D 
and A and between E and B. However, this would miss the 
opportunity to use the other component, CD, in the right 
hand diagram. In this way, seemingly arbitrary decisions 
about mapping components may have wider repercussions 
about mapping choices elsewhere in the diagrams. For this 
reason, we have avoided implementing anything more 
sophisticated than the simple node mapper illustrated in 
Figure 12. 

After initial placement, refinement of node locations is 
achieved by applying a force model to the set M of nodes 
in the zone. As with the static method we have a repulsive 
force acting between each pair of nodes in the zone, which 
separates nodes evenly and a repulsive force between 
nodes and line segments, which prevent nodes escaping 
from a zone or getting undesirably close to the boundary of 
a zone. In addition, the dynamic method includes a force 
that attracts nodes to the location of nodes they are mapped 
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to in the original diagram, so encouraging the layout to be 
similar to the original where appropriate. 

The repulsive force between nodes is based on that of 
force model by Fruchterman and Reingold [10] and is 
inversely proportional to the separation d, and proportional 
to the number of nodes, |M|, in the zone. A constant c is 
used to affect the desired separation between pairs of 
nodes. The repulsive force between two nodes is given by 

d
cM × . 

The repulsive force between nodes and line segments 
acts on the nodes only; it does not move the line segments. 
It is proportional to |M|2, as this helps to contain larger sets 
of nodes where there will be more node-node repulsions. 
As the zone may consist of an arbitrary number of line 
segments of arbitrary lengths, the repulsive force is also 
proportional to the length of the line segment l. The 
repulsive force between a line segment and a node is given 

by 2
2

d
lcM × . 

The attractive force is applied to each node that has a 
mapping to a node in the original diagram. The force acts 
towards the position of the mapped node, encouraging the 
graph in the new diagram to be laid out similarly to the 
graph in the original diagram. The magnitude of the force 
applied to the node is directly proportional to the distance 
to the mapped node squared. k represents a constant that 
can be used to adjust this attractive force in relation to the 
two repulsive forces. The attractive force towards mapped 

node position is given by 
c

kd 2
. 

The application of the force model is an iterative 
process. For each iteration, the resultant force acting on 
each node is the sum of all repulsive forces from the line 
segments of the containing zone, the repulsive forces from 
all other nodes in the same zone and possibly the force 
towards the corresponding node in the still diagram. After 
calculating all of the resultant forces, the location of each 
node is updated by moving it a small distance in the 
direction of the force. The distance of the movement is 
proportional to the magnitude of the force, however we cap 
the maximum value of the movement to prevent very 
strong forces from moving nodes a long way and therefore 
possibly breaking the structure of the diagram. After a 
number of iterations, the system nears an equilibrium and 
the nodes occupy their new locations. 

With three different types of forces acting 
simultaneously, some care must be taken to choose suitable 
values for each parameter. Our experimental framework 
uses c = 2 and k = 5x10-6. The purpose of the repulsive 
force exerted on nodes by line segments is to prevent nodes 

escaping from their containing zone. If the attractive force 
towards a node’s position in the original diagram is made 
too strong, the resultant force acting on the node could 
cause it to escape from the zone. For this reason, it is 
important to choose a suitable value for k, which typically 
leads to a compromise between preserving structural 
correctness (which is essential) and preserving the mental 
map of the user. 

4. EXAMPLE – DIAGRAM PROOF 
SEQUENCES 
In the section we demonstrate the dynamic drawing as 
applied to some spider diagram proofs: sequences of spider 
diagrams. Firstly we discuss the alterations needed to adapt 
our method to this specific application area and then we 
give some detailed examples. 

4.1 Extra steps used for this application 
As discussed in [15], the graphs for spider diagrams are 
unusual in that the abstract syntax specifies only the 
connected components of the graph (the habitats of the 
spiders). The graph edges serve only to link together 
connected components into trees, and any tree would 
suffice to convey the same diagram semantics. When 
drawing a static diagram, we collected together relevant 
graph nodes and drew an arbitrary spanning tree for that 
node set. 

When drawing spider diagrams dynamically, the node 
mapping described in section 3.2.1 may associate a spider 
in the original diagram with one (sharing the same habitat) 
in the new diagram. The force model will strive to present 
the nodes of these two spiders in similar positions so that 
the spiders are recognisably “the same” spider. However, 
unless attention is paid to the chosen edges, two spiders 
could still end up looking different, as illustrated in Figure 
15. 

 
Figure 15. The importance of relocating edges in spider 

diagrams 

 

The mapping between nodes of one spider and nodes 
of another can be used to choose which edges should be 
chosen to build the spanning tree in the new diagram, and 
this step is taken before the force model is applied. An 
example of reallocation of edges is illustrated in Figure 16. 
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The original diagram 

 
New diagram, before layout 

 
New diagram drawn 

statically 

 
the new diagram after 

dynamic drawing  

 
Original diagram 

 
New diagram before layout 

 
new diagram drawn 

dynamically 

 
new diagram drawn statically 

Figure 17 Exchanging node positions 

 

If the underlying Euler diagram changes its contour 
set, then the zones become different abstract zones (the 
abstract zones are identified by the set of containing 
contours and the set of excluding contours). If a contour is 
removed from a diagram, even if it seems to leave part of 
the diagram unaffected, the graph components will not be 
mapped across, and the graphs will be drawn independently 
(see, e.g. Figure 18). This failing to match graph 
components could be fixed by using the notion of 
corresponding regions in Euler diagrams, see [13]. 

 
Figure 16. Reassigning edges using the contextual diagram 

 

Another change is the position-exchanging step that 
was used in the static case. To recap, if a diagram had n 
nodes in zone z, the static drawing algorithm first identified 
n suitable node positions, then allocated nodes to different 
positions, using metrics to determine whether exchanging 
positions gave an improvement or not. The metrics 
penalised diagrams with edge-crossings and diagrams 
whose total edge-length was large. In the dynamic case, it 
would be a backwards step to change the position of a node 
whose position had been moved using the force model to 
match the position of a partner node in the original 
diagram. The position-exchanging algorithm is still used 
but only nodes which weren’t in the mapping between 
diagrams participate. This is illustrated in Figure 17. In the 
static drawn diagram, the three positions have been 
distributed within the zones, then positions exchanged to 
minimise edge crossings. However, in the dynamically 
drawn diagram, an attempt has been made to mimic the 
context diagram, and we would expect two of the diagram 
components to include an edge-crossing. The third diagram 
component also involves edge-crossings but it has no other 
(non-mapped) node positions to exchange places with to 
reduce the complexity of the diagram. 
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Original diagram 

 

 
New diagram before layout 

 
new diagram drawn 

dynamically relative to the 
original (without contour c) 

 
new diagram drawn 

dynamically relative to the 
original (including contour c) 

 
Figure 19. Criteria weights in the control window 

  
Figure 18. The effects of changing the contour set on graph 

component matching The metrics and their weights for the Euler diagram 
optimiser are given in Figure 19, which also shows the 
control window for the dynamic drawing. As with most 
multi-criteria systems the weights serve two purposes, to 
define the importance of the metrics and to normalize the 
values of the metrics, which may return values in very 
different ranges. In this  

 

4.2 Examples 
In this section we show the method working on some 
example proof sequences. The first example shows several 
different layouts for the same proof. The following two 
examples are briefer, and compare the original undrawn lay 
out of the proofs against the drawn version. 

For the diagram at the top of Figure 24 the values for 
these metrics, including the above weights is: 

To make the examples consistent they have all been 
drawn with the same parameters for Euler diagram multi-
criteria optimiser and for the graph force algorithm. This 
inevitably produces a compromise, and better results for 
individual examples could have been improved by tuning 
the numbers. 

ContourPositionComparison 634.8

ContourPointsDifferenceCompariso
n 82592

ContourRoundness 0.00031

ContourEdgeLength 0.00028

ContourArea 18.02

ZoneArea 5.337

ContourClosenessPts 2148.7

ContourClosenessEdgePt 52.15

DiagramArea 0.02296
 

It can be seen that the two dynamic metrics at the top 
are given much higher priorities than the standard static 
metrics. This is to ensure diagrams are drawn similarly. 
The next highest importance is given to the closeness 
metrics, to counter the tendency of the similarity metrics to 
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push contours against the border of other contours when 
the mapped contour is not in a position that can be closely 
copied. The other metrics are quite low in this diagram. 
This is normal, but a metric will spike highly, and thereby 
become more important if the drawing is very poor with 
regard to it. 

  

  

  

 
 

Figure 20. A proof sequence that has not been laid out, only 
placed with the standard embedder. The diagram on the right 
is the same as the diagram on the left, except for rounding of 

edges using a Bezier method. 

 

Figure 20, Figure 21 and Figure 22 show an extended 
example of drawing a diagram proof sequence with the 
dynamic method. This sequence is that shown in Figure 8, 
and allows the reader to compare the automatic dynamic 
approach described in Section 3 against an “ideal” hand 
drawn layout. The right hand side of each of these figures 

show the same diagram layout as the left hand side, but 
with a Bezier rounding method applied to the edges. Each 
of the two figures that use the dynamic method, Figure 21 
and Figure 22 use a different starting mechanism. 

Figure 20 shows the simple initial layout with no 
attempt at drawing the diagrams nicely. These Euler 
diagrams are drawn with the method described in [6], and 
the graphs are laid out randomly, using the method 
described in Section 3.2.2. This is the initial position for all 
the diagrams in this paper (except for those which are hand 
drawn). The layout method then alters this initial position 
to a more aesthetically pleasing one. 

  

  

  

 
 

Figure 21. A proof sequence for which the initial diagram has 
been hand drawn, and subsequent diagrams have been drawn 

by the dynamic method. The diagrams on the right are the 
same as on the left, but improved with a Beziering method 
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Figure 21 shows a dynamic sequence for which the 
initial diagram is hand drawn subsequent diagrams are laid 
out using the dynamic drawing method, as with the 
following examples, the dynamic drawing method is 
applied by taking the previous diagram in the sequence as 
the original, rather than always using the first diagram. 
Both the Euler contours and graphs are maintained in 
relatively similar positions to the previous diagram, even 
after structural changes are made, we regard the layout of 
this sequence as successful. 

 

  

  

 
 

  
Figure 22. A proof sequence for which the initial diagram has 
been drawn with the static drawing method, and subsequent 

diagrams have been drawn by the dynamic method. The 
diagrams on the right are the same as on the left, but 

improved with a Beziering method 
 

Figure 22 shows a proof sequence where the first 
diagram is laid out using the static drawing method 

described in [15]. This sequence is still aesthetically 
acceptable, but minor problems in early layout are 
compounded in later diagrams. In particular the high 
weightings given to the contour separation Euler criteria 
are not appropriate for this example. A set of weightings 
used in a static context would be more appropriate here. 

 

  

  

  
Figure 23. A proof sequence with the no layout method 

applied to the diagram on the left. The static drawing method 
has been applied on the first diagram on the right, with the 

dynamic method applied subsequently. 

 

Figure 23 shows a more dynamic sequence, in each 
diagram varied changes are being made to both the Euler 
diagram and graph. The initial layout is shown on the left. 
This changes the layout of the diagram radically for each 
step in the sequence. The right hand side shows an 
automatically laid out diagram at the top, followed by 
applications of the dynamic method below it. The contours 
retain approximately their correct positions, although some 
difference in graph layout can be discerned. The graph 
from the first to the second diagram is particularly distinct, 
because our simple mapping method does not connect the 
two graphs, and they are laid out independently. 
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The original diagram 

 
New diagram before layout 

 

 
new diagram drawn 

dynamically with success 

 
new diagram drawn 

dynamically but from an 
initial node layout that 

resulted in “trapped” nodes 

 
 

  

  

Figure 25. An example of conflict between three forces 

 

Three different forces are applied during the 
simulation of the force model. More often than not, these 
interact to produce desirable results. However, there are 
some cases where these forces can be seen to conflict with 
each other. The example in Figure 25 illustrates one such 
problem. The bottom right diagram has had the force model 
applied to it from a random initial layout of nodes. The 
lone node has become trapped on the wrong side of the 
node it is nearest to. Both nodes are relatively close to the 
zone boundaries that form a valley along which the nodes 
prefer to move. The two nodes are unable to pass each 
other along this valley because the repulsive force between 
these two nodes is countering the attractive force towards 
their partnering nodes in the original diagram. This type of 
problem can usually be solved by reapplying the initial 
random layout and force model. An alternative would be to 
use the mapping information about nodes to find a more 
suitable initial layout for the parts of the graph which have 
this information available. 

Figure 24. A proof sequence with the no layout method 
applied to the diagram on the left. The static drawing method 

has been applied on the first diagram on the right, with the 
dynamic method applied subsequently. 

 

Figure 24 shows a good example of a graph structure 
being maintained by the method. The graph layout on the 
right hand side is clearly repeated. The initial layout for the 
lower two diagrams on the left has a fortuitously good 
embedding in this case. On the right, the changes in Euler 
diagram structure do not completely break the relationship, 
between the Euler diagrams in the first and second of the 
sequence, with the shape of the square in the top being 
reflected below. 

5. FURTHER WORK 
Whilst our method is usually effective, there are some 

problematic cases of diagram. In this section we comment 
on some of the situations where the current drawing system 
can reach poor layouts and discuss possible solutions. 
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The hill climber used as our optimiser can reach local 
minima, particularly when placing contours that are far 
away from their desired position, with other contours in the 
path between current and desired position, see Figure 26. 
Other more sophisticated optimisers, such as simulated 
annealing or genetic algorithms, could be applied, but 
would take longer to run. Another approach to solving 
problems of this sort is to modify the movement method. 
At the moment there are two sorts of movement, contour 
points and the contours themselves, neither of which are 
not moved very far in a single step. It would be possible to 
make wider movements, directed by

CONCLUSIONS 
We have developed a dynamic drawing method for 

Euler diagrams enhanced with graphs, which builds on a 
static drawing method. It firstly draws the Euler diagram of 
the new diagram like the Euler diagram of the original 
using a multi-criteria approach. The embedded graph of the 
new diagram is then drawn like the original with a force 
based method. The drawing method also incorporates 
aesthetic notions so that where parts of the new diagram are 
different they can be drawn nicely. The method works 
effectively and we have shown i

alizing diagram proof sequences. 

We consider this work to be extendable beyond 
dynamic drawing to general example based drawing. Users 
could teach a tool how to automatically lay out diagrams. A 
library of existing diagrams would be consulted before a 
new diagram is drawn. A challenge for this method 
includes deciding which diagram would be chosen to form 
the pattern, by d

We use aesthetic criteria to draw the Euler diagram. 
This method is flexible, allowing changes in weights and 
different criteria according to user preference. The force 
model used to draw the graph also allows for tuning of 
different layout preferences to a lesser extent. However, 

some weaknesses of our method could be addressed. Firstly 
we have a two stage process which firstly changes the 
Euler diagram and then the contained graph. In many 
applications it would be more desirable to combine the 
drawing so that there is a compromise between the layout 
of the Euler diagram and the graph. This could be 
achieved, at the cost of execution time, by laying out the 
graph using a multi-critieria optimiser. This could then be 
directly integrated into the Euler diagram op

ghts assigned for the desired compromise. 

The method presented here lays out one diagram based 
on the current layout of another. For applications such as 
user exploration of proofs this is the best strategy, as the 
user has a mental map of the first diagram. However, to get 
best compromise for all drawings in a sequence of 
diagrams which are already generated, alternative methods 
might be employed. An example application is presenting 
proofs where all the diagrams in a sequence have already 
been generated. To achieve this a set of metrics measuring 
the fitness of the drawings across all diagrams could be 
developed, and employed on the sequence. The metrics 
could for the mo
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