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ABSTRACT

Simple spider diagrams are a system of Venn-type
diagrams that can be used to reason diagrammatically
about sets, their cardinalities and their relationships. They
extend the systems of Venn-Peirce diagrams investigated
by Shin to include lower bounds for the cardinalities of
the sets represented by the diagrams. This paper
summarises the main syntax and semantics of simple
spider diagrams and introduces inference rules for
reasoning with the system. We discuss the soundness and
prove completeness of the system. In proving
completeness, we develop a proof strategy that is simpler
than that adopted by Shin. We expect this strategy to
extend to other, richer diagrammatic systems including
other spider and constraint diagram systems. The general
aim of this work is to provide the necessary mathematical
underpinning for the development of software tools to aid
reasoning with diagrams.

Keywords Diagrammatic reasoning, visual formalisms.

1. INTRODUCTION

In OO software development, diagrammatic modelling
notations are used to specify systems. Recently, the
Unified Modeling Language (UML) [10] has become the
Object Management Group’s (OMG) standard for such
notations. In UML, constraints are expressed using the
Object Constraint Language (OCL), essentially a stylised,
textual, form of first-order predicate logic, which is part of
the UML standard. Constraint diagrams [4, 8] are a
diagrammatic notation for expressing constraints and can
be used in conjunction with UML and OCL. Spider
diagrams [3,7] emerged from work on constraint
diagrams. They combine and extend Venn diagrams and
Euler circles to express constraints on sets and their
relationships with other sets.

The notation we now call Euler circles was introduced
by Euler in 1761 to illustrate relations between classes [2].
In 1880, Venn modified this notation to represent logical
propositions [13]. In the 1890s, Peirce modified Venn
diagrams to introduce elements and disjunctive
information into the system [9]. Recently, full formal
semantics and inference rules have been developed for
Venn-Peirce diagrams [12] and Euler diagrams [6]; see
also [1, 5] for related work.

This paper extends these diagrammatic inference rules
to simple spider diagrams. Simple spider diagrams, in
effect, enhance the semantics of the second Venn-Pierce
system that Shin investigated (i.e., Venn-II, see [12]
Chapter 4) to give lower bounds for the cardinality of the
sets represented by the diagrams. Shin’s proof of
completeness does not extend very easily to spider
diagram or constraint diagram systems; the central notion
of a maximal diagram is not easy to define for these
systems. In proving completeness of the simple spider
diagram system, we give a proof strategy that should be
extensible to most spider/constraint diagram systems and
other similar systems, and can be adapted to give a
simpler proof of the completeness of the Venn-II system
than the one given by Shin.

The general aim of this work is to provide the
necessary mathematical underpinning for the development
of software tools to aid reasoning with diagrams. Some
steps have been taken towards the development of tools.
On the syntactic level, a good editor for constructing
constraint diagrams and spider diagrams has been
developed at Technion, [14]. An experimental system
‘JVenn’ has been developed at Niigata University for
reasoning with a limited system of Venn diagrams, but
this work is at an early stage of development [11].

The structure of this paper is as follows. A discussion
of simple spider diagrams is conducted in section 2, where
the main syntax and semantics of the notation is
introduced. Section 3 introduces the inference rules for
reasoning with simple spider diagrams and for combining
diagrams. Section 4 considers the validity of the inference
rules culminating in the soundness theorem. Section 5
gives the strategy for proving completeness and proves the
completeness theorem. Section 6 states the conclusions of
this paper and details related, ongoing and future work.
Throughout this paper, for space reasons, some details of
proofs, and sometimes whole proofs, will be omitted;
however, sufficient information will be given to judge the
veracity of the approach.

2. SIMPLE SPIDER DIAGRAMS

This section introduces the main syntax and semantics
of simple spider diagrams. Spider diagrams, introduced in
[3, 7], contain other syntactic elements which enable the
expression of relations between elements and are based on



Euler diagrams rather than Venn diagrams. Simple spider
diagrams considered here have a reduced set of syntactic
components than spider diagrams; they are Venn-Peirce
diagrams adapted so that we can infer lower bounds for
the cardinalities of the sets represented by the non-empty
regions.

2.1. Syntactic elements of unitary simple spider
diagrams

A contour is a simple closed plane curve. A boundary
rectangle properly contains all other contours. A district
(or basic region) is the bounded subset of the plane
enclosed by a contour. A region is defined, recursively, as
follows: any district is a region; if 7| and », are regions,
then the union, intersection, or difference, of », and r, are
regions provided these are non-empty. A zone (or minimal
region) is a region having no other region contained
within it. Contours and regions denote sets.

A spider is a tree with nodes (called feef) placed in
different zones; the connecting edges (called legs) are
straight lines. A spider fouches a zone if one of its feet
appears in that region. A spider may touch a zone at most
once. A spider is said to inhabit the region which is the
union of the zones it touches. For any spider s, the habitat
of s, denoted 7(s), is the region inhabited by s. The set of
complete spiders within region » is denoted by S(r). A
spider denotes the existence of an element in the set
denoted by the habitat of the spider. Two distinct spiders
denote distinct elements.

Every region is a union of zones. A region is shaded if
each of its component zones is shaded. A shaded region
denotes the empty set. No spider’s foot can touch a shaded
region. A unitary simple spider diagram is a boundary
rectangle together with a finite collection of contours (all
possible intersections of contours must occur, i.e., the
underlying diagram is a Venn diagram), spiders and
shaded regions. Each contour must be labelled and no two
contours in the same unitary diagram can have the same
label. The labelling of spiders is optional. For any unitary
simple spider diagram D, we use C= C(D), Z=Z(D),
Z* =7Z*D), R=R(D), R*=R*(D), L = L(D) and S = S(D)
to denote the sets of contours, zones, shaded zones,
regions, shaded regions, contour labels and spiders of D,
respectively.

D
Figure 1

The diagram D in Figure 1 can be interpreted as:
A—-(BUC)=D A C—(AUB)=Z A|ANC—-B|=2
A dx,yexe B A ye B—CAx#y.

2.2. Semantics of unitary simple spider diagrams

A model for a unitary simple spider diagram D is a pair
m= (¥, U) where U is a set and ¥ : C — Ser U, where
Set U denotes the power set of U, is a function mapping
contours to subsets of U. The boundary rectangle is
interpreted as U.

A zone is uniquely defined by the contours containing
it and the contours not containing it; its interpretation is
the intersection of the sets denoted by the contours
containing it and the complements of the sets denoted by
those contours not containing it. We extend the domain of
Y to interpret regions as subsets of U. First we define
Y: Z — Set U by

¥()= (PN (¥
ceCt(2) ceC (2)
where Ct(z) and is the set of contours containing the
zone z, C(z) is the set of contours not containing z and

WY(c) =U-¥(c). Since any region is a union of zones,
we may define ¥: R — Set U by

v = [J¥e
zeZ(r)
where, for any region r, Z(r) is the set of zones contained
inr.
The semantics predicate Pp(m) of a unitary diagram D
is the conjunction of the following three conditions.

Spider Condition: A spider denotes the existence of an
element in the set denoted by the habitat of the spider:
/\axs o x; € Y (1(s)

ses

Distinct Spiders Condition: The elements denoted by
two distinct spiders are distinct:
/\ Jxg,x, e xg #x,

s,teS, s#t

Shading Condition: The set denoted by a shaded zone is
empty:
N\ Y(==9

zeZ"

Theorem 1 The cardinality of the set denoted by region
r of unitary diagram D is greater than or equal to the
number of complete spiders in 7:

Vre R(D) o |[¥(r)|2[S(r)|

Theorem 1 is equivalent to the conjunction of the
Spider and Distinct Spider Conditions. The proof is
omitted.

2.3. Compound diagrams and multi-diagrams

Given two unitary diagrams D; and D,, we can
connect D; and D, with a straight line to produce a
diagram D =D—D,. If a diagram has one boundary
rectangle, then it is a wunitary diagram; if a diagram has
more than one rectangle, then it is a compound diagram. If
a compound diagram D has n components, then we can



place those n components in any order. Hence, for
example, D1—D, = D,—D;.

The semantics predicate of a compound diagram D is
the disjunction of the semantics predicates of its
component unitary diagrams; the boundary rectangles of

the component unitary diagrams are interpreted as the
same set U. That is, if D = D\—D,— ... -D, then

Po(m) =V Py, (m)

Contours with the same labels in different component
unitary diagrams of a compound diagram D are
interpreted as the same set:

Vey,cp € C(D)el(c))=L(cy) = Y(c))=Y(cy)

where ((c) is the label of contour c.

4 8|V |4 BV

Dy D,
Figure 2

The compound diagram D in Figure 2 asserts that:
(3x,yexe AnCAye B-C)
Vv (Ix,yexe BAye A-BuUC(C).

A simple spider multi-diagram is a finite collection A
of simple spider diagrams. The semantics predicate of a
multi-diagram is the conjunction of the predicates of the
individual diagrams; the boundary rectangles of all
diagrams are interpreted as the same set U:

Patm)= /N Pp(m).

Contours with the same labels in different individual
diagrams of a multi-diagram A are interpreted as the same
set:

ey, e e | JOD)) o le)) = tey) = (o) = Wiey) .

D;eA

2.4 Comparing regions across diagrams

Given two unitary diagrams D and D’, we wish to call
regions in the two diagrams ‘equivalent’ if they represent
the same set. We can make this precise by considering
partitions of the set of contour labels the two diagrams
have in common. Let D be a unitary diagram. For any z €
Z(D), define L*(z) = ((C*(2)), the set of labels of the
contours containing z, and L(z) = ((C(z)), the set of
labels of the contours not containing z. Let P = (L*, L7) be
a partition of L(D) N L(D’) and define Zp(D) = {z € Z(D)
| LT =LYz N L(D') A L~ = L(z) N L(D")}. A region zr €
R(D) is said to be zonal with respect to D’ if there exists a
partition P of L(D) N L(D") such that

zZr = UZ.

zeZp(D)

Suppose region zr of D is zonal with respect to D’ and
zv’ of D’ is zonal with respect to D. Then zr and z’ are
corresponding zonal regions, denoted zr =, zv/, if there
exists a partition P of L(D) N L(D’) such that

zr = U z and zr'= U z.
zeZp(D) ZeZp(D)

Let 7 be a region of D and let 7’ be a region of D’. Then
rand 7 are corresponding regions, denoted by r'=_ r, if
and only if 7 is a union of a set ZR(7) of zonal regions with
respect to D', ¥ is a union of a set ZR(#") of zonal regions
with respect to D, and

(Vzr € ZR(r) Jzr’ e ZR(r') o zr =,
A (Vzr' e ZR(r') Fzre ZR(r) @ zr =, zr’).

zr')

Theorem 2 The relation =
Ifrie R(D)and r, cr=

corresponding subregion of ¥, denoted by r .. .

D D
Figure 3

. 1s an equivalence relation.

, .
1, thenr isa

In Figure 3, the region z=z, Uz, in D is zonal with
respect to D" and the region z”in D’ is zonal with respect
to D. Furthermore, z° =. z as both regions are associated
with the partition P = ({B}, {4}) of L(D) L") =
{4,B};hencez, .z andz, . 7.

The following theorem shows that the corresponding
region relations behave well with respect to the semantics.

Theorem 3
(i) VreR(D) Vr'e R(D') Vm=(¥, U) e
Pr(m)A Py (m) e (r = r=>¥@r)= lI"(r')).

(i) Vre R(D) V¢’ e R(D") Vm =(P,U) o
Pp(m) A Pry(m) ® (rc, ¥’ =¥(r) c¥()

The proof is omitted. We can now give a definition of
equivalent diagrams. Two unitary diagrams D and D’ are
equivalent, denoted by D = D', if
(i) LD)=LD"),
(i) Vre R*(D) Ir'e R'*(D")er=,r

AV e R"*(D’) Ire R*(D)er=, 7" and
(i) Vre R(D)Vr'e R'(D)er=,r" =|S(r)|=|S0"]|.

2.5. Satisfiability and Consistency

A model m = (Y, U) complies with diagram D, m = D,
if it satisfies its semantic predicate Pp(m). That is, m = D
& Pp(m). Similarly, a model m complies with multi-
diagram A if it satisfies its semantic predicate P (m). That
is, m = A & Py(m). A diagram is satisfiable if and only if
it has a compliant model. Similarly, a multi-diagram is
satisfiable if and only if it has a compliant model.



Theorem 4  All simple spider diagrams are satisfiable.

The proof is based on the construction of topological
models for the diagram. The details are omitted. Theorem
4 does not extend to multi-diagrams.

The syntactic notion of consistency for pairs of
diagrams is defined as follows:
(i) Two unitary simple spider diagrams D and D’ are
consistent if and only if
Vre R(D) Vr'e R(DYer=,1r" =
—(re R*(D)A|SF) > 0)A=(r € R*(DYA|S(r)|> 0).
(i) Two simple spider diagrams D and D’ are consistent
if and only if there exist unitary components D; of D
and D of D’ such that D; and D’; are consistent.

Intuitively, the condition (i) above would prevent the
case in which a region is shaded in one diagram but the
corresponding region in the other contains a spider; this is
the only case in which a pair of unitary diagrams can be
inconsistent.

Theorem 5 Let A = {D;, D,}. Then A is satisfiable if
and only if A is consistent.

Figure 4 shows a multi-diagram which is inconsistent,
but whose components are all pairwise consistent.
Discussion of the consistency of multi-diagrams in
general is deferred until we consider combining diagrams.

@U A4 B|\U | 4 B |U

C C
D! D? D3
Figure 4

3. DIAGRAMMATIC REASONING RULES

We introduce purely syntactic, diagrammatic rules for
turning one diagram into another. In this section we define
and illustrate the rules; in the next section we show that
the rules are valid.

3.1. Rules of transformation for unitary diagrams

We introduce rules that allow us to obtain one unitary
diagram from a given unitary diagram by removing,
adding or modifying diagrammatic elements. Each rule is
either self-explanatory or is followed by a figure that
illustrates it.

Rule 1: Erasure of shading. We may erase the shading in
an entire zone.

Rule 2: Erasure of a spider. We may erase a complete
spider.

Rule 3: Erasure of a contour. We may erase a contour.
When a contour is erased:

e any shading remaining in only a part of a zone should
also be erased.

e if a spider has feet in two regions which combine to
form a single zone with the erasure of the contour,
then these feet are replaced with a single foot
connected to the rest of the spider.

4 B U 4 B|U
e

Figure 5

Rule 4: Spreading the feet of a spider. If a diagram has
a spider s, then we may draw a node in any non-shaded
zone which does not contain a foot of s and connect it to s.

Figure 6 illustrates rule 4. From D we know that there is
an element belonging to 4 — B. Having spread its feet in
D’, we may only infer that this element belongs to 4.

A B|U A B|U
—_

D D
Figure 6

Rule 5: Introduction of a contour. A new contour may
be drawn interior to the bounding rectangle observing the
partial-overlapping rule: each zone splits into two zones
with the introduction of the new contour. Each foot of a
spider is replaced with a connected pair of feet, one in
each new zone.

A B|U 4 B|U
@
D D
Figure 7

3.2. Rules of transformation involving compound
diagrams

Rule 6: Splitting spiders. If a unitary diagram D has a

spider s whose habitat is formed by » zones, then we may

replace D with a connection of # unitary diagrams D;— ...

— D, where each foot of the spider s touches a different

corresponding zone in each diagram D;.

A B|U A B|U |4 BlU
D Dy D,
Figure 8

Rule 7: Excluded middle. If a unitary diagram D has a
non-shaded zone z touched by no spiders, then we may
replace D with D—D,, where D; and D, are unitary and
one of the corresponding zones of z is shaded and the
other touched by a single foot spider.



4 B\U 4 B|U [4 B|U
D D, D,
Figure 9

Rule 8: Connecting a diagram. For a given diagram D,
we may connect any diagram D’ to D.

Rule 9: Construction. Given a diagram D,—...—-D,, we
may transform it into D if each Dy, ..., D, may be
transformed into D by some of the first eight
transformation rules.

3.3 Combining Diagrams

Given two consistent diagrams, D' and Dz, we can
combine them to produce a diagram D, losing no semantic
information in the process. In this section we describe the
construction of such a combined diagram D.

An a diagram is a diagram in which no spider’s legs
appear, that is, the habitat of any spider is a zone. Any
diagram D can be transformed into an o diagram by
repeated application of rule 6, splitting spiders. We give
the definition of combining diagrams in several stages.

Let D' and D’ be two consistent diagrams. Then their
combination D = D! « D? is defined as follows.

(i) D' and D* are o unitary diagrams with L(D') =
L(D?). The combined diagram D is also an o unitary
diagram for which L(D) = L(D") = L(D?). So, for
each ze Z(D), there exist equivalent zones z;€ Z(D")
and z,e Z(D?). Furthermore, the number of spiders in
z is equal to the maximum of the number of spiders
in z; and the number of spiders in z,, and z is shaded
if and only if z or z, is shaded.

Vze Z(D)3z,€ Z(D") 3z, € Z(D*) o z=, z, =, z,
= (1S(2)[Fmax(|S(z)) ]| S(z2) D
A (Z € Z*(D) & zZ) € Z*(Dl) Ve Z*(Dz))

(i) D' and D* are unitary diagrams and L(D') # L(D?).
We introduce contours into D' and D* to obtain D'
and D, where L(D") = L(D*) = L(D") U L(DY).
Transform D' and D* into their o diagrams
D"~ ...— D, and D,*- ... - D,?. The combined
diagram D is the compound diagram formed by
combining each D" with each D_,-Zh; where the two
components are inconsistent, we do not obtain a
corresponding component in D.

(iii) D' and D*are any consistent simple spider diagrams.
The combined diagram D is the compound diagram
formed by combining each component D;' of D' with
each component D;” of D,

Part (ii) of the definition is illustrated in Figure 10. First,
contour C is added to D* to form D*, which is then
transformed into an o diagram. We then combine the

components of each diagram. Note that D' and D,* are
inconsistent, as are D' and D;*, so the resulting
combined diagram is unitary.

S S
S
a a
® ®
®

A B
c
Dla DZa
A @B A B| |4 B| |4 B
c c C c
Dla D]Za DZZa DZZA
A @ B
C
D'+D?
Figure 10

The combining operation * is commutative and
associative. This allows us to define the combination of
the components of a multi-diagram A = {D!, D?, ..., D"}
unambiguously as D*=D!« D2« .. D" If A is
inconsistent, then following the steps above will result in
no diagram; D* is only defined when A is consistent. A
test for the consistency of A is to try to evaluate D*.

Rule 10: Inconsistency. Given an inconsistent multi-
diagram A, we may replace A with any multi-diagram.

Rule 11: Combining diagrams. A consistent multi-
diagram A = {D!, D?, ..., D"} may be replaced by the
combined diagram D* = D' % D% % ... % D",

4. SOUNDNESS

We write A = D’ to denote that diagram D’ is obtained
from multi-diagram A by applying a sequence of
transformations. We write D — D’ to mean {D} + D’, etc.
A diagram D’ is a consequence of D, denoted by D = D',
if every compliant model for D is also a compliant model
for D’. Aruleisvalid,if DD =D E D’.

For space reasons, we omit the proofs of the validity of
the rules. The proofs for rules 1 — 10 are similar to those
of the Venn-II system given in [12] and the proofs are
fairly straightforward and are omitted for space reasons.
Rules 5, 6, 7 and 11 do not lose any semantic information;
this fact is useful for proving completeness in the next
section. The following result follows by induction from
the validity of the rules.



Theorem 6 Soundness Theorem Let A be a multi-
diagram and D a diagram. Then A+~ D = A D.

5. COMPLETENESS

To prove completeness we show that if diagram D’ is a
consequence of multi-diagram A, then A can be
transformed into D’ by a finite sequence of applications of
the rules given in section 3. Thatis, AE D' => A+ D’.

The basic strategy is to transform A and D’ into
diagrams D and D”, respectively, so that if D” is a
consequence of diagram D, then there are diagrammatic
conditions which must hold between D and D”, and if
these conditions hold, then D can be transformed
syntactically into D”. We first show that a multi-diagram
is a consequence of the combination of its component
diagrams. That is, if A= {D!, D2, ..., D"} then any model
m compliant with D* = D! % ... = D" is also compliant
with A, that is, D* = A. The proofs of Theorems 7, 8 and
9 are very informal.

Theorem7 LetA={D! ...,D"} and D*= D! % . % D"
Then D* & A.

Proof Each step in obtaining D* is reversible. Thus for
each i, D* - D'. So, by soundness, D* = A.

Theorem 8 Let D° be the diagram obtained from D by
rule 5, introduction of a contour. Then D¢ = D.

Proof Introducing a contour splits each spider in two;
erasing that contour will reunite the spiders and have no
other effect. So, to transform D° into D, we erase the
contour introduced into D. Thus, D° — D. So D° = D by
soundness.

Figure 11

A B diagram is an o diagram in which each zone is
either shaded or contains at least one spider. Any diagram
D can be transformed into its B diagram D# by repeated
application of rule 6, splitting spiders, to turn it into an o
diagram and then repeated application of rule 7, excluded
middle. Figure 11 illustrates the transformation D + DA
for a unitary diagram D.

Theorem 9  For any diagram D, DB + D.

Any unitary component of DP can be transformed into
D by removing shading and extending spiders
appropriately (i.e., by undoing the transformations to

obtain that component). So, by rule 9, the rule of
construction, DB+ D.

Theorem 10 Let D and D’ be [ unitary diagrams for
which  L(D")c L(D). Then the following three
statements are equivalent.
i) DrD
(i) DD
(iii) [1] VZ'e ZXD’) Ire R¥D)e z’c.r and
[2] VF/eRWD') Vre RID)eV =.r

= |S() 2] 8¢
Proof (i) = (ii). By soundness.
(i) = (iii). We will prove the contrapositive: —([1] A [2])
= —(DED). That is, (=[1]v—[2]) = —(DED),
which is equivalent to —[1] = —(DED") A —[2] =
—(D E D).
(@) —[l]=>—~(DE=D). Assume —[l]; that is,
3z e ZXD')V re R¥D)e —(z' <, r). Let z;" be such a
zone z. Let r; € R(D) be such that r=.z (r; exists
because L(D")c L(D)). Then, by the assumption, r; is
not entirely shaded and therefore contains spiders (as D is
a B diagram). That is, S(r)# . Then, for any model m =
(¥, U) compliant with D, ¥(7,)>0. But no such m is
compliant with D’ since for any model m = (P, U)
compliant with D’, W(z,)=&, and by Theorem 3,
W) =Y(r)asz/ =r.

(b) —[2]=—~(DED’). Assume —[2]; that is,
Ire R(D) dre RID) o ¥=.r A S| <|SF)|. Let
€ R(D") and r; € R(D) be such that r’=.r, and
IS(r)| < |S(r1")|. Let m = (¥, U) be such that m = D and
[Y(@)| = |S(ry)|. For any m” = (¥, U) compliant with D’
we have, V' (r/)| 2 |S(r)| > |S(r)| = [¥(r1)|, so m is not
compliant with D’.
(iii) = (i). Let D and D’ be B unitary diagrams for which
L(D’) ¢ L(D) and assume [1] and [2]. Then any region in
D’ has a corresponding equivalent region in D. Let
re R(D) be such that r =, U z , the region consisting
zeZ' (D)
of all and only shaded zones in D’. Erase the shading in
Uz—r to obtain D' so that Uz =, Uz.
zeZ"(D) zZ" (DY zeZ" (D)
Remove contours from D' to obtain D* so that L(D’) =
L(D%). Delete spiders in D to obtain D* so that Vr € R(D)
Vi e RID)er=.r = |S(r)|=|SG")|. Then D’ = D".

Theorem 11 Let D, Dy, D5, ..., D, be B unitary diagrams
for which L(D,) U L(D,)u...UL(D,) < L(D). Then

DED -Dy—...-D, = (DE D))V ...v(DED,).

Proof We will prove the contrapositive. Assume VD, e
D D;. By Theorem 10, either (i) 3Iz€ Z%D)



Vre R¥D)e —(z; c,. r) or(il) dr,e R(D;) dre R(D)e
re r,=.rn|S)|<|S#)|. Let my = (¥, U) be compliant
with D and be such that Vze Z(D) ¢|¥(z)|=|S(2)].

If condition (i) holds in D;, then there will be a shaded
zone z; in D; for which the corresponding equivalent
region 7 in D contains a spider. For any model m = (¥, U)
compliant with D;, W¥(z;)=< and by Theorem 2,
Y(z;)="Y(r) as z; =, r. So m, is not compliant with D;.
If condition (ii) holds in D;, then there will be a region r;
in D; for which the corresponding equivalent region  in D
contains fewer spiders. That is 7, =, r A|S()|<|S(#;)] -
For any model m=(¥,U) compliant with D,
|[W(r;)|2]S(r;)| and Y¥(r,))=W(r). So m; is not
compliant with D;.

Therefore for i =1, 2, ..., n, D;, m; ¥ D, and hence, m; ¥
D\—D,— ... —D,,. So, there exists an m such that m = D, but
that m # Dl—Dz— _Dn' That iS, D ¥ DI—D2— cee —Dn.

Theorem 12 Let D and D’ be compound diagrams for
which each component is a B unitary diagram. That is,
D=D/-...-D and D'=D'/-...— D,F. Assume
further that ¥ DSV D’/ e L(D'f) c L(DP). Then D = D’
=>VDF IDfeDl D)

Proof Assume D &= D’. Let m = (¥, U) be any model
such that m = D. Then m = D’. So Pp(m) = Pp(m). That

k n
is, l/l PD‘_,; (m) = >:/1 PD;B (m) . By logical manipulation

we have VDS eP ,(m= \/IPD,ﬁ (m). That is,

‘v’Di'B .Diﬁ = Dl'ﬂ —D;'B —---—D;ﬂ. Hence, by
Theorem 11, VD? EID_;ﬁ D/ E D_;'B :

Theorem 13 Completeness Theorem Let A be a multi-
diagram and let D’ be a diagram. Then A = D" = A+ D’

Proof If A is inconsistent, then the result follows
immediately by applying Rule 10. Assume that A is
consistent and that A = D’. By Theorem 7, D* = A. So,
by transitivity, D* = D’. Introduce contours into each
component of D* to produce D* = D\*~ ... -D,* so
that V D;* e L(D")c L(D,*). Then, by Theorem 8,
D* &= D*. So, by transitivity, D* = D’. Transform D**
and D’ into their B diagrams, D** and D'’ respectively.
By Theorem 9 and the soundness theorem, D*% = D*
and, by the soundness theorem, D’ E D’ So, by
transitivity, D** = D2, Since V D*? V D'f o L(D'P)
L(D;**) it follows from Theorem 12 that ¥ D;** 3 D’jﬁ .
D,«*cﬂlzD’jﬂ. Hence, by Theorem 10, V D;** ElD'jﬂ .
D+ D'P. So, by applying rule 8, V D;** o D*# - p’P
and hence, by applying rule 9, D** - D’’. Now, A - D*,
D* D*#  and, by Theorem 9, DPr D, so, by
transitivity, A = D’.

6. CONCLUSION AND RELATED WORK

We have given formal syntax and semantics and
diagrammatic inference rules to simple spider diagrams.
We have shown that the inference rules are sound and
complete. In proving completeness, we have provided a
proof strategy that should be extensible to most
spider/constraint diagram systems and other similar
systems based on Venn or Euler diagrams. Indeed, the
proof can be adapted to give a simpler proof of the
completeness of the Venn-II system than the one given by
Shin.

We are in the process of proving soundness and
completeness of other spider diagram systems using the
same strategy as that introduced in this paper. Our longer
term aim is to prove similar results for constraint
diagrams, and to provide the necessary mathematical
underpinning for the development of software tools to aid
the reasoning process.
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