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Abstract that can only be expressed in UML using the Object Con-
straint Language (OCL) [17], essentially a textual, stylised
Geared to complement UML and to the specification of form of first order predicate logic, which is part of the UML
large software systems by non-mathematiciams)straint  standard [13].
diagramsare a visual language that generalizes the pop-  Constraint diagrams were developed to enhance the vi-
ular and intuitive Venn diagrams and Euler circles, and gyalization of object structures and they build on class di-
adds facilities for quantifying over elements and navigat- agrams in UML. Whereas class diagrams are only able to
ing relations. The language design emphasizes scalabilityshow that there are relationships between certain kinds of
and expressiveness while retaining intuitiveness. Spider di-ppject, constraint diagrams are able to visualize properties

agrams form a subset of the notation, leaving out universal of those relationships and compositions of those relation-
quantification and the ability to navigate relations. Spider ghjps.

diagrams have been given a formal definition. This paper
extends that definition to encompass the constraint diagram
notation. The formalization of constraint diagrams is non- cles or closed curves, which we call contours, have been

trivial: it exposes subtleties concerned with the implicit or- in use for the representation of classical syllogisms since at

dering of symbols in the visual language, which were not o5t the Middle Ages [12]. Euler introduced the notation
evident before a formal definition of the language was at- ;o 0w callEuler circles(or Euler diagrams [1] to illus-

tempted. This has led to an improved design of the an-y oiq relations between sets. This notation uses the topo-

Constraint diagrams build on a long history of using dia-
grams to visualize logical or set-theoretical assertions. Cir-

guage. _ o logical properties of enclosure, exclusion and intersection
KGBI/WorShS (\jﬁsual formalisms, software specification, for- ¢, renresent the set-theoretic notions of subset, disjointness,
mal methods.

and intersection, respectively.

The logician John Venn used contours to represent log-
ical propositions [16]. In Venn diagrams all contours must
The uptake in the software industry of notations for de- intersect. Moreover, for each non-empty subset of the con-
signing systems visually has been accelerated with the stantours, there must be a connected region of the diagram, such
dardization of the Unified Modeling Notation (UML) [13]. that the contours in this subset intersect at exactly that re-
UML brings together a number of informal visual notations gion. Shading is then used to show that a particular region
that have proven useful to some parts of industry. It has of the resulting map is empty.
made little progress in integrating these notations, although The logician Charles Peirce augmented Venn diagrams
formalization of UML notations, in various forms, is cur- by adding X-sequences as a means for denoting ele-
rently a hot research topic. ments [14]. An X-Sequence connecting a number of “min-

In this paper, we describe a notatiorpnstraint dia- imal regions” of a Venn diagram, indicates that their union
grams which was introduced in [10] as a visual technique is not empty. Full semantics and inference rules have only
intended to be used in conjunction with UML for object- recently been developed for Venn-Peirce diagrams [15] and
oriented modelling. Constraint diagrams provide a dia- Euler circles [5]. Constraint diagrams bear a resemblance
grammatic notation for expressing constraints (invariants) to Harel'shigraphs[6], the basis oftatechartsin that they

1 Introduction



both represent binary relations by using arrows between
closed curves. However, the semantics of the two notations

A B C
are rather different.
Spider diagramd?2] are a natural extension of Venn- e

Peirce and Euler diagrams; they are based on Euler dia-

grams, so the topological properties of the diagrams are

important, but they also contaspiders a generalization

of Peirce’'s X-sequences, and shading. They emerged from Fig. 1: Spider diagram.

\\I/vgr:ﬁ %neﬁzgs;r:énéd'li?r;i:srsgd Stﬁg? ;ﬁ;hn(:jg (Ijarlty \évgr:) and spiders with squares as feet. A spider whose feet are
el =u lagrams _ s us "Lircles corresponds to existential quantification of an ele-
the existing notations were adapted to give formal SeMan-ent within the set denoted by the habitat of the spider. A

:'ﬁs rin? de)\(/erlop ﬁ/oundi dar;d diC orpprl:te flflrf]erenﬁf rulisa ficr)‘rspider whose feet are squares represents a given element. A
€ More expressive spider diagrams. € syntax ar ‘Schibdingerspider denotes a set whose size is either zero or
formal semantics of spider diagrams are considere§®in

o . ne. Lik bdinger’ neisn re whether the el-
We then extend this, i§3, to develop the syntax and in- one e Schbdingers cat, one is not sure whether the e

: . ) ement within the set exists or not. The feet of a $dimger
formal semantics of constraint diagrams. In the work on

traint di it b t that th i spider are rendered as open circles. Fig. 1 contains exam-
constraint diagrams it soon became apparent that the no ables of all these types of spider.

tion was far more sophisticated than it first seemed. Specifi- - . -
. Two distinct spiders denote distinct elements, unless they
cally we started to discover examples where, although there_ .. ; o .
o L : are joined by die or by astrand A tie is a double, straight
seemed to be an intuitive reading, it was not obvious how . . ] . X
. : . . line (like an equals sign) connecting two feet, from differ-
that reading was derived in any general or systematic way. . : .
. X ent spiders, placed in the same zone. hhstof spiderss
These issues are discussed4n In §5 we develop the for- ; . .
: ! N andt, written (s, t), is the set of those zoneshaving the
mal syntax and a partial semantics of constraint diagrams. 2
. : . property that the feet of andt are connected by a tie in
Finally, in §6, we conclude the paper and discuss future re- ; .
Two spiders which have a non-empty nest are referred to as

s_earch, mqludlng an idea that resolves most of the ISSUES. 1o If both the elements denoted by spiderand are
discussed ig4.

Constraint diagrams include the idea pfojections in the set denoted by the same zone in the nestandt,

. . . thens andt denote the same element. sétandis a wavy
which remove clutter and focus attention in the diagram ap- . . . : .
. " _line connecting two feet, from different spiders, placed in
propriately. For space reasons, we are unable to conside

projections in this paper; for details see [3] Fhe same zone. Theebof spider33 andt, written (s, ), .
' ' is the union of zoneg having the property that there is

. . a sequence of spideks = sg, s1,...,5, = t such that,
2 Splder dlagrams for i q: 0,....n —pl, s; ands; 11 are connected by a tie or
In this section we give a concise description of spider di- by astrandin.. Sor (s, t) is a subregion of (s, t). Two spi-
agrams. For more details see [2]. cntouris a simple  ders with a non-empty web are referred tdfi@snds Two
closed plane curve. Boundary rectangl@roperly contains ~ spiderss and¢ may (but not necessarily must) denote the
all other contours, although we do not usually represent itin same element if that element is in the set denoted by the
concrete spider or constraint diagrams; its existence is im-web of s andt.
plicit. A district (or basic region is the bounded area of the Every region is a union of zones. A regionskadedif
plane enclosed by a contour or by the boundary rectangle.each of its component zones is shaded. The semantics of a
A regionis defined, recursively, as follows: any districtis a shaded zonés that the set it denotes may not contain ele-
region; ifr; andr, are regions, then the union, intersection, ments other than those indicated by the spiders which touch
or difference, ofr; andry are regions provided these are that zone. Hence, a shaded region denotes the empty set if
non-empty. Azone(or minimal regior) is a region having  itis not touched by any spider. Spiders can be used to place
no other region contained within it. Contours and regions a lower bound on the number of elements in a set; shading
denote sets. a zone which includes spiders has the effect of placing an

A spideris a tree with nodes (callege) placed in dif- upper bound on the cardinality of the set denoted by that
ferent zones; the connecting edges (caléer) are straight ~ zone. Each contour must be labelled and no two contours in
lines. A spidertouchesa zone if one of its feet appears in the same unitary diagram can have the same label. The la-
that zone. A spider may touch a zone at most once. A spi-belling of spiders is optional. The semantics of the diagram
der is said tdnhabit the region which is the union of the inFig. 1lincludesANC =0Ace CA|C—B| <2A3zx €
zones it touches. For any spider the habitat of s, de- AU B ez # c. The given spider i is labelledc.
notedrn(s), is the region inhabited by. There is a slight Sound and complete diagrammatic inference rules have
semantical difference between spiders with circles as feetbeen developed for several systems of spider diagrams [7,
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Fig. 4: Arrow with zone as source and zone as target.

Fig. 2: Simple arrow. A B
A B f
Q\f\@
Fig. 5: Arrow with given spiders as source and target.

Fig. 3: A derived contour.

A B
8, 9. f
3 Syntax and informal semantics of con-
straint diagrams

Constraint diagrams are spider diagrams augmentea-by Fig. 6: Existential and derived spiders.
rows and universal spiders Arrows represent binary rela-
tions between sets and universal spiders denote universal

A B
guantification. f
An arrow has dabel, asourceand atarget The source
of an arrow can be a contour, a zone or a spider. The target
of an arrow can be a contour, a zone or a spider; it is inter-
preted as the relational image of the set represented by the g

source under the relation represented by the arrow. We will
use the standard object-oriented notation to represent

. . ) Fig. 7: Arrows with universal spider as source.
textually the relational image of elementinder relation,

ie,zr = {y: (z,y) € r}; thusz.r is the set of all el-  Spider is treated semantically as a singleton set. We are im-
ements related ta under relationr. The expressiom.r  Plicitly allowing coercion between a singleton set and its
is anavigation expressiqrso called because we caavi- element.

gatefrom x along the arrow to the setc.r. The relational
image of a sefS is then given byS.r = (J, g .7 (note
that, in OCL, the navigation expressi®hr returns a bag;  The notation is able to express existential and universal
constraint diagrams are purely set-based). $eind 7" be guantification. The navigation expression in Fig. 6 is ex-
the sets represented by the source and target, respectivelystentially quantified, as its source is an existential spider.
of arrowr. Then the equatiof.r = T holds. In Fig. 2the Its interpretation isdz € A e z.f € B. The target is a
source of arrowf is contourA and its target is contour B.  derivedspider. This spider is treated as if it were a derived
Its interpretation isA. f = B. contour whose interpretation is a singleton set and, because
In Fig. 3, the target of arrovf is aderived contour The it is a singleton set, we coerce the set into its element and
interpretation isA. f C B. Derived contours are non-given hence writer. f € B rather thanc. f C B.
contours appearing as the target of some arrow. The set The source of an arrow can also bei@iversal spider
denoted by a derived contour is defined by the navigation The universal spider, whose feet are renderegsasanges
expression of its arrow (or arrows). over all the elements of the set denoted by its habitat. In
The source or target of an arrow can be a zone. In Fig. 4,Fig. 7, the universal spider ranges over all elements of the
the interpretation i$AN B).f = (C — D). Boththe source  setA. The interpretation of this diagram is that for each
and target of the arrow in Fig. 5 are given spiders; the in- in A, z.f andxz.g are disjoint, i.e.Vz € Aex.fNz.g = 0.
terpretation isc. f = y. The target of an arrow should be a A universal spider can only be the source of an arrow.
set. However, the arrow is targeted on a given spider. ThisNo arrow can be targeted on a universal spider and a uni-

3.1. Quantification



Reservation Car Specification

A B f ¢ reserved
T
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Car /

A B C D spec
f \\/
@ @ Fig. 11: A car-hire constraint.
g g

wherez. f.g delivers a bag. In Fig. 10, the set obtained by
navigating from the universal spider ihvia arrowsf andg
Fig. 9: Distinct and non-distinct universal spiders. is the same as that obtained by navigating from it albng
Thus we hav&/zex. f.g = z.h. One of the key strengths of
constraint diagrams is their ability to illustrate diagrammat-

f@ ically navigation expressions and the relationships between
A

them.
g

When constraint diagrams are used in object-oriented
C modelling, we use rectangles for classes (or types) and
round-cornered rectangles for states and we identify a state
as a subset of a class. The constraint diagram in Fig. 11 ex-
presses, among other constraints, an invariant on a model of
a car-hire business:

Fig. 10: Navigation. The specification of the car assigned to a reservation
versal spider that is not the source of an arrow cannot existmust be the same or better than the specification reserved.
(it would have no meaning; this is why universal spiders do
not occur in spider diagrams). A universal spider can be
articulated (i.e., have more than one foot). In Fig. 8, the
source of arrowf is an articulated universal spider. The
arrow can be sourced on any part of the spider, that is, on# 1SSues

any of the feet or on any of the legs. The interpretation of |n the work on the development of constraint diagrams it
thisisVz € AUBex.f C C. The universal spiders in  phecame apparent that the notation was rather more sophis-
contourA of Fig. 9 obey the rule that spiders represent dis- ticated than we anticipated. Specifically, we started to dis-
tinct elements unless connected by a strand or a tie. So theover examples where, although there seemed to be an in-
interpretation isvz,y € Aex # y = y.g € z.f. The  uitive reading, it was not obvious how that reading was de-
universal spiders i’ of Fig. 9 are connected by a strand rived in any general or systematic way. These examples
and therefore can represent the same elements; the interpreyenerally involved quantification and interesting relation-
tationisVz,y € Cey.g =u.f. ships between navigation expressions. For instance, con-
sider the diagram in Fig. 10. The target of arrgiwis a
derived spider (a derived singleton set), which, in turn, is
So far, we have only considered single-arrow navigation ex-the source of arrowy; the target ofy is also a derived spi-
pressions. In Fig. 10, there is a two-arrow navigation ex- der. So, both the source and targey ofepend ory; indeed,
pressiorvz € Aex.f.g. The expression.f.gisinterpreted  they are both parts of a universally quantified statement
as(xz.f).g which is equal tolJ, .. ; y-g; We take the union

of ihe ?mage sets under opéjgchf element of the derived VreAe(zfeBAN(.f)gel)
setx.f. Interestingly, if we take the expressigiy to be To consider the source and targetgobutside the scope of
the composition of andg, then we havéx. f).g = z.(f.g) this quantified statement would be meaningless; some ar-
and hence the expressiory.g is well-defined, albeitwitha  rows cannot be interpreted independently. To be precise,
very overloadedlot; this, of course, is not the case in OCL, any arrow whose source is a derived contour or a derived

Fig. 8: Arrow with articulated universal spider as source.

Vr € Reservations, r.assigned.spec = r.reserved

V r.assigned.spec € r.reserved.better.

3.2. Constraint diagrams and OO modelling



A C B
Fig. 14: Ordering of quantifiers.
@/ : : :
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Fig. 12: An arrow sequence.

Fig. 15: Numbered quantifiers.
of the spiders we start fromiiz € Ae (x.f C C AVy €

A C B
f Be(y.g C C/\x.f:y.g))andVyEBo(y.gig CANVzx €
Ae(x.f CCAx.f=uy.g)). The expression.f = y.g
g must be within the scope of both the universal quantifiers.

However, the two interpretations are in fact equivalent, as
Fig. 13: Two universally quantified arrows with same target. ~ they can be rewritten as

spide_r orisa univgrs_al or gxister_ntial spider whose habitat is Vo e AVy € Be(z.f CCAy.gC CAz.f=uy.q)

a derived contour is intrinsically linked to another arrow. Of

course, in longer navigation expressions we can have arrowsnd the ordering of the two universal quantifiers is irrele-
dependent upon many other arrows for their interpretation.vant. In fact, this expression constrains the relatfoso

In order to give semantics to such expressions, we have tdhatVzy,zo € A e z1.f = zo.f and similarly forg.

consider whole sequences of arrows. However, a problem arises when we consider a similar
We define an arrow sequence to be a se- situation but with a universal quantifier and an existential
quenceay, . ..,a, Of distinct arrows with the following  quantifier. The ordering of universal and existential quan-

properties. The source af; is a quantified spider whose tifiers is important. The diagram in Fig. 14 can have two
habitat is not derived. The source of each of the other very different interpretations, depending on which of the
spiders is a derived contour or spider or is a quantified spiders we start from: Vo € Ady € Bex.f = y.g
spider whose habitat is a derived contour. The target ofand3y € BVz € Aex.f = y.g.

each of the arrows except (possibly) the last ong,)X is There are a number of solutions to this type of problem.
derived and the target af; is equal to the source af; We could ban such expressions. Itis not too difficult to con-
or is the habitat of the quantified spider that is the source struct a syntactic condition that would exclude such cases.
of a;41, fori € 1..n — 1. An arrow sequencey, ..., a, This, of course, reduces the expressiveness of the notation.
in which the target of.,, is not derived or if it is derived We could have a default semantics which is always
it does not contain a quantified spider that is the source ofunique; for instance we could insist that universal quan-
another arrow is called @omplete arrow sequence tifiers always had precedence over existential quantifiers
In Fig. 12, there is a complete arrow sequetlfice, h, j, (where there was any ambiguity). This would mean that
where each arrow has a different kind of source. The arrowthe first interpretation held; however, it would then be im-
sequence is interpreted@s € Ae(x.f C BAJy € x.fe possible to express the second interpretation in the notation,

(y.g CCAygheDAy.g.hj=FE)). When obtaining  again reducing the expressiveness of the notation.
the formal semantics of constraint diagrams, it is arrow se- A third possibility is to introduce more syntax into the
guences we need to consider rather than that of individualnotation. For instance, quantifiers could be numbered, or
arrows. Of course, a single arrow can constitute a completeeven coloured, to indicate the order in which they occur.
arrow sequence. Arrow sequences are given formal defini-In Fig. 15 precedence is given to the universal quantifier as
tions and formal semantics §5. it is numbered 1. The interpretation is the first one given
An interesting case occurs when two quantified arrows above; with the numbering reversed, the second interpre-
have the same derived target. This means that the target ofation would hold. In an arrow sequence the order of the
each arrow is interpreted as the same set. Consider Fig. 13quantifiers is given by the order of the arrows, however,
There are two interpretations of this, depending on which when two sequences interact, there could be a problem; the
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Fig. 18: Inconsistency.

BAy € x.f)). We can, again, number the quantifiers to give
an unambiguous reading, but this interpretation does require
the scope of the universal spiderdnto be something other
than its habitat; this may well be counter-intuitive.

The obvious thing to do in such cases is to ban such ex-
pressions and for the moment this is what we will do. This
A B does limit the expressiveness of the notation, but it prevents

f a possible ambiguity. We can banish these expressions syn-
tactically by insisting that all arrows must be part of some

% % complete arrow sequence.
In §6, we sketch the idea @bnstraint treeswhich deals

with many of the problems of expressibility and allows us to
modularize the notation and to mix it with other notations.
A full consideration of this idea is beyond the scope of this
Fig. 17: Circularity. paper.
simplest case of this is Fig. 14. If all the quantifiers in two Finally in this section, we will consider the problem of
interacting arrow sequences are universal or if all of them inconsistency. For spider diagrams, we can prove that each
are existential, then there is an unambiguous interpretation;unitary diagram is consistent, i.e., that it has a compliant
the simplest case of this is Fig. 13. In the case in which model. The constraint diagram in Fig. 18 is inconsistent
there is a mixture of types of quantifier, we could number asA.f = B, but there exists: € A for whichz.f ¢ B.
the quantifiers to remove any ambiguity, but the ordering of It may well be possible to syntactically exclude all such in-
the quantifiers in any arrow sequence must follow the order- consistencies; we will not attempt to do so in this paper.
ing of the arrows. In Fig. 16, there are at least six different
interpretations. The quantifier it has precedence over the 5, Formal syntax and semantics
quantifier inB and the quantifier irD has precedence over
the quantifier in&, apart from that any permutation of the

h

Fig. 16: Two interacting sequences.

In this section we give the abstract syntax of constraint di-
quantifiers would be permitted agrams, that is, a formal definition which is independent

A difficult issue is that ofcircularity. Consider Fig. 17. of any topological and visual representations, and a partial

Each derived contour is defined in terms of the other derived].com,]al sclaman.tlcs. For space reasons, the definition of pro-
contour. There is no arrow sequence in this diagram. It jslectionsis ormtteQ from_th|s paper.

very difficult to interpret this diagram without being told A consraint diagramis a tuple

yvhere to start. _One inter_pretz_ition might be to s_tart n_avigat- (,c?, 8,2, 2,898 8%, 8 1,7,(, A, 0, 6)

ing from the universal spider iAd (we’ll call it x), in which

case it should range over all the elementslibecause the = whose components are defined as follows:

derived contour containing it is defined in terms of an ar- (i) C is a finite set whose members are caléeshtours

row from a universal spider (which we'll call) which is The elemens, which is not a member @, is called
contained in a derived contour which is defined in terms the boundary rectangleC? is a finite set of derived
of X. So an interpretation igz € Ae (z.f C BAVy € contours.

z.fe(y.g C AAx € y.g)). Inthis interpretation, the uni- (i) The setZ C 2¢ is the set ozoneswhile Z* C Z is
versal spider withinB ranges over the elements of the de- the set ofshaded zonedA zonez € Z isincidenton
rived setz. f, not over the whole oB3. The symmetry of the acontourc € Cif c € z. LetR = 2% — () be the set
expression is broken and it does matter where we start the of regions and letR’ = R U 0.

interpretation, because, of course, by symmetry, there is a (iii) SY is a set ofgiven spidersS© is a set ofexistential
similar, but different, interpretation starting with the univer- spiders S* is a set ofUniversal spidersandS? is a

sal spiderinB, i.e.,Vy € Be(y.g C AAVx € y.ge(x.f C set of Schibdinger spidersThese sets are all pairwise



disjoint and letS = SY U 8¢ U 8% U S° be a set of The Spider Condition ensures that an element denoted

spiders by a spider is in the set denoted by the habitat of the spider:
(iv) The functionn : S — R returns the habitat of a

spider. The function : S x S — R’ returns the Vs € SY e 1(s) € ¥(n(s))

nest of any two spiders, whilg: S x S — R’ is a

function that returns the web of any two spiders. Vs € S e(s) € U(n(s)) U{L}
(v) Ais asetofarrows The functiono : 4 — ZUR U

C U S returns the source of an arrow agd A — Vs € S edx € U(n(s))

ZUCU (S — S*) returns the target of an arrow.

We use the value_ to denote undefined values. The Strangers Condition ensures that if elements de-

A modelfor a constraint diagrani is a tuple noted by two distinct spiders are equal then they must fall

within the set denoted by their web:

Vs, t € S,s £teth(s) =1(t) = ¥(s) € U({(s,1)).

The Mating Condition ensures that if the elements de-
noted by two distinct spiders fall within the set denoted by
their nest, then these elements must be equal:

m = (U, ¢, ¥, )
such thafU is a set and), ¥, ¢ are functions:

e ) : S — UU{L} maps spiders to elements tf or
to the special symbal , and

.0, 9U
e U :(C — 2~ maps contours to subsetsGf Vs, t € Sz € 7(s,1) @ (s), (t) € U(z) =

e ¢: A— 2U*U maps arrows to relations di. P(s) = P(t).

We can extend the definition df to include the interpreta- The Shading Condition maintains that the set denoted

tion of other elements af which denote sets in the model: by a shaded zone contains no elements other than those de-
(i) Boundary.The boundary denotes the universal set.  noted by spiders

v(B) =U.
(if) Zones.The semantics of a zonec Z is determined Vze Z* e W(z) C U {w(s)}
by which contours enclose it and which don't s€S
U(z) = . O_ﬁ ¥(e)\ EUC\ ¥(e). Here we adopt the standard convention that a union over an

empty range results in the empty set. Together with the spi-

By letting the set intersection operation range over the L ) .
boundary contour, we make sure that even the zone.der condition, this condition ensures that the only elements

that is external to all contours has a well-defined se- " & S€t denoted _by a _sha_deq zone are the eIemenst repre-
mantics. sented by any spiders impinging on that zone. Specifically,

(iii) Regions.The value of¥ of a region is the union of thg set Qenoted by a shaded zone not containing feet of any
the semantics of the zones in the collection: Fa spiders is empty. .
R TheArrow Condition ensures that the element or set de-
, () = U w(:) noted by the target of an arrow is the image of the element
et ’ or set denoted by the source of the arrow under the rela-

The fo”owing conditions must hold for any Comp“ant tion denoted by the arrow. It aISO ensures that naVigation

model of a constraint diagram. expressions are properly quantified.
The Plane Tiling Condition ensures that all elements For each arrow: we define
fall within sets denoted by zones:
N(a) = (¥({(a)) = ¥(o(a).9(a)))
U(z)=U
ZEJZ ) N(a) is the “navigation expression” af. If {(a) € S,

then¥(&(a)) = {¥(&(a))}, etc. The semantics of a non-
We can derive from this condition that an intersection of quantified arrow: is just N(a). For each arrow. we also

contours that doesn’t appear as a zone must be empty; Let define

andcs be two distinct contours in a concrete diagram. Then

no zone will contain botle; andc,. So, it follows from the Q(a) = if o(a) € 8 then Jx,(,) € n(o(a)) else
plane tiling condition that any “zone” containing baoth if o(a) € 8" then Vay (s € n(o(a)) else ||
andc, denotes the empty set. Hendéc;) N ¥(cz) = 0.

Similarly, if ¢; is contained irc, then it follows from that ~ where[] is the empty string.Q(a) is the “quantification
condition that¥(¢;) C ¥(ca). expression” forz. We introduced and informally discussed



arrow sequences ig¥. We define ararrow sequencto be be scalable. Constraint trees would allow the ordering of
a sequencey, ..., a, of distinct arrows for which: clauses in a constraint; ordering was the problem in most
of the issues we discussedgja. One of the main reasons
€ u € u
o(a1) € STUSH A (Va € STUS" o for developing a formalization of constraint diagrams is to

n(o(ar)) # &(a)) AVa; € az..an develop diagrammatic reasoning rules for the notation and
(o(a;) € SCUS*UC A (0(a;) € SEUSY hence provide a step towards constructing a reasoning sys-
= n(o(a;)) € Elai_y)) A€&(ai_1) € Cd) tem which combines both diagrammatic and textual rules,

and which handles issues of modularity.
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P(a) is a recursive function giving the “partial predicate”
of a, that is, the interpretation afand any arrow dependent
on a; it is not necessarily the full predicate farbecause
it does not include the quantification expression of any ar-
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