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Introduction

Constraint diagrams are used to specify constraints about a system.  For detailed information about the
definitions and purposes of constraint diagrams, see the literature (eg. [CD1]-[CD5], [SKCD]).

..a visual notation originally developed for writing constraints on UML models, hence can be used
as an alternative for the OCL, the textual constraint language that is part of the UML standard.
However, its application is more general: it is essentially a visual syntax for writing a significant
subset of first order predicate logic.

A sub-notation of constraint diagrams are spider diagrams, which combine and extend Venn and
Euler diagrams, and are appropriate for relating sets and elements. Constraint diagrams add
arrows which allows relations between sets to be defined and constrained.

[SK]

Spider diagrams combine and extend Venn diagrams and Euler circles to express constraints on sets and
their relationships with other sets. They arose from the work on constraint diagrams which are diagrams
that can be used in conjunction with the Unified Modelling Language (UML) and the Object Constraint
Language (OCL) which are the Object Management Group’s (OMG) standard for modeling in object-
oriented software development

[JT]
Here are some examples to briefly introduce constraint diagrams.

Contours are used to show membership of a set (the set of objects which satisfy some membership
criterion).  A zone is a minimal intersection between contours, and shading indicates that a zone is
empty.

Both diagrams state that no object belongs to
both sets A and B.

These diagrams are equivalent and both state that
all objects in B are also objects in A.

Spiders are drawn as a set of points in different zones, joined by a tree.  The points (spiders’ feet)
assert exsitence of an object.

Both diagrams state that no object belongs to
both sets A and B, and A has at least one object.

These diagrams are equivalent and both state that
all objects in B are also objects in A.

Also, there is an object which is not in B.

Both diagrams state that no object belongs to
both sets A and B.  A has at least three objects

and there is some object in neither A nor B.

These diagrams are equivalent and both state that
all objects in B are also objects in A.
There is an object which is not in  B.

There is a (distinct) object which is in A.

A BA
B

A
B A

B

A BA
B

A
B A

B

A BA
B

A
B A

B
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Arrows can be used to represent mathematical maps, or object-oriented navigation.

B is the image of A under the operation f. The image of an object outside A is outside B.

Such descriptions about a system are unabiguous and can play a part in modelling for software
engineering as a communication tool and for system specification.

Propositional calculus in mathematics and object constraint language [OCL]  in object-oriented
contexts are formally defined, so free from inconsistencies and complete in their descriptive powers.
The advantage of using constraint diagrams lies in their usability and approachability.  If system
designers find OCL difficult to use as a communication tool, there is a risk that they will fall back on
English to communicate with other designers and domain experts.  Such descriptions can be
interpreted differently by different people,  especially in an international context. Constraint diagrams
have the formal underpinning of a mathematical system, but aim to be more usable than textual
approaches.

Before constraint diagrams can be widely adopted by software enigineers, software tools need to be
available to manipulate them.  Ideally, these diagrams will gain standing as a part of the unified
modelling language [FS], and CASE tools from Rational or TogetherSoft could include them to
complement other UML diagrams (class diagram, sequence diagrams and so on).

A constraint diagram drawing tool exists [CDE].  It allows the user to draw constraint diagrams and
export the diagrams as pictures or as a textual description. The program draws all contours as ellipses,
which places some constraint diagrams out of reach.  It allows the user to manipulate the diagrams as
pictures, without any reaction when the meaning changes or if the diagram becomes invalid.

This is an invalid constraint diagram:
the foot of a spider does not belong to a zone.

This is an invalid constraint diagram:
a spider has multiple feet in a single zone.

A
B

f

A B

f

A
B *

*

A
B
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These diagrams are not invalid as constraint diagrams, but an improved tool will prevent contours
meeting at tangential points or triple points, for visual clarity.  For the purposes of this report, contours
of constraint diagrams will only meet at transverse crossing points.

The first diagram has transverse crossing points and will be allowed.  The second diagram has a triple
point, and two tangential crossing points, which are not allowed.  Some diagrams become undrawable
under these rules:

This diagram has coincident contours, the boundary of the C-set follows along part of the A-contour
and part of the B-contour.  There is an equivalent diagram using just transverse contour crossings, but
it introduces a new, shaded, zone.

Another condition placed on constraint diagrams, for this report, is that zones should be represented as
connected areas.  These diagrams would not be allowed:

A B
C

A B
C
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A sophisticated constraint diagram tool would understand the link between a concrete constraint
diagram, an abstract constraint diagram, and an OCL expression.  It would allow the user to
“synchronise” between constraint representations of these different forms.

Such a project in its entirety is beyond reach of an MSc project.  It splits into:

• an editor user interface – similar to the existing diagram editor, but with an OCL pane and
opportunity to “synchronise” between the two panes.

• the transformation from a given diagram to an object model for the constraint diagram and vice
versa

• the transformation from an object model for the constraint diagram to an OCL expression and vice
versa

The focus of this MSc project has been to

• create an object model for an abstract constraint diagram

• create an object model for a concrete constraint diagram representation

• and implement, in java, the transformation from the abstract constraint diagram to a  concrete
representation.

The writing up falls into four chapters – the first describes the algorithm to transform an abstract
diagram into a concrete one. This original algorithm has been implemented in java and does the
required job on a broad selection of examples.

The second chapter is about the design of the object models.  It includes UML diagrams, patterns and
constraints.   Java code samples are included alongside descriptions of some important methods.  The
classes as presented in design form are also illustrated by including test programs.  The test programs
were a critical step in developing the implementation, and serve to show how to build objects of
different classes and how they respond to different method calls.  Complete code listsings and java
documentation are submitted on a CD-ROM.

The third chapter shows a range of screendumps showing program output for different examples.

The fourth chapter consists of reflection on the algorithm and the design, with suggestions for future
work.  There is ongoing reflection and suggestions for improvement in chapter twom as each package
is introduced.  The improvements in chapter 4 are of a more general nature.
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Chapter 1     An algorithm for creating constraint diagrams
This chapter describes a new algorithm for producing a diagram for the contours and zones of an
abstract constraint diagram; details about spiders and arrows have been omitted. Constraint diagrams
without spiders or arrows are referred to as Euler diagrams.  A particular kind of Euler diagram, where
all zones are visible, is called a Venn diagram.  There is a good resource of Venn diagrams and their
representations at [VENN].

An “abstract” constraint diagram consists of information about a constraint diagram without any visual
representation.  For example, “two disjoint contours called A and B, and an existential spider with a
single foot inside A” is a description of an abstract constraint diagram.

A “concrete” constraint diagram is a visual image of a constraint diagram.

An  “abstract Euler diagram” is information about a set of contours.  It’s an abstract constraint diagram
with no shading, spiders or arrows.

A “concrete” Euler diagram is a visual representation of an abstract Euler diagram.

A “combinatorial graph” or “abstract graph” has a set of nodes and edges, but no information about
positioning.

A “graph diagram”, “graph representation”, or “concrete graph” is a visual representation of a
combinatorial graph.

The algorithm focuses on the task of producing a concrete Euler diagram representation of a given
abstract Euler diagram. It uses concepts from Graph Theory (eg. [BB]) and topology (eg. [ES]).

1. 1    A sketch of the algorithm
An abstract Euler diagram can be defined by its zones.  For the purposes of this chapter, I will use a
convention that all contours have names which are a single character, and zones are defined by a list of
contours to which the zone belongs.  So the zone “AB” is inside contours A and B and no others.

A description such as A, AB, B can be represented by this concrete
diagram:

There are other concrete representations of the abstract
Euler diagram, for example:

An algorithm to generate a concrete representation of an abstract diagram has to make a “choice”
amongst an infinite range of possibilities.

There are three key steps in generating a diagram of an abstract constraint diagram:

• generate a combinatorial dual graph (just connectivity).
• generate a planar dual graph diagram.
• generate the contours from the planar dual graph.

These three steps are described in detail in the next three sections.

A B

A B A B
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1.1.1    Generate a combinatorial dual graph
Given an Euler diagram, generate a dual graph diagram.
Create a dual node in each zone of the Euler diagram, and
join two dual nodes by a dual edge if there is a single
contour line separating the dual nodes.

Include a node for the zone
outside all the contours.

Label the vertices of the dual graph diagram with the
zone information.  Label the outside node null.

Given an abstract Euler diagram, studying the contour membership of zones always allows us to
generate an unique abstract dual graph.
For example, the abstract diagram “zones: null, A, B, and AB” corresponds to the abstract dual “nodes
null, A, B, and AB with edges null-A, null-B, A-AB and B-AB”.

Given a concrete Euler diagram, we can visually create a concrete dual graph.  All edges in the
concrete dual correspond to edges in the abstract dual graph.  The converse isn’t always true (see
section 1.3.1   ).

1.1.2    Generate a planar dual graph diagram
From a combinatorial dual graph, seek a planar representation as a concrete dual graph.
A combinatorial graph has many concrete representations.

All these concrete graphs represent the dual graph of the abstract diagram {null, A, B, AB}.  The first
two are planar representations, and the third is non-planar (has edge-crossings).  Not all graphs have
planar representations:

In this case, wherever the nodes are placed, there will be an edge-crossing.  Such a graph is called a
non-planar graph (as opposed to a non-planar representation of a graph).  In 1. 3   , I have shown some
steps required to generate a planar graph representation from a combinatorial graph, and what to do if
the dual combinatorial graph is non planar.

A B

A B

AB

A B

A B

null

null

AB

B

A

null

nullA A

B B

AB

AB
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1.1.3    Generate the Euler contours
Assume we have a concrete planar representation of the dual graph.  The nodes of the dual are labelled
with zone descriptions, and the edges can be labelled with contour names for the change in
membership from a zone at one end to the zone at the other.

For each contour of the abstract Euler diagram, the concrete Euler diagram contour is drawn around
the nodes which contain that letter in their label.  For each contour name, find a subgraph of nodes
which include that name in their label and draw a contour around them.  The drawn contour will cross
all the edges labelled by that contour name and no other edges.

1.1.4    Example:  Venn 3
From zone information A, B, C, AB, AC, BC, ABC (the complete Euler diagram on three contours),
the dual graph could be represented as follows:

Draw contours around each of subgraphs filtered with A, B, C, labelled by “A”, “B”, “C”:

Bring the three contours together on one diagram

A

B C

A

BC

ABC

BC BC

ABAC

A A

A A A

B B

B

B

CC

C

C

null

AB

B

A
label edges

null

AB

B

A
A

A
B

B

find subgraph
and edges for

contour A

find subgraph
and edges for

contour B

null

AB

B

A
A

A

B

B

null

AB

B

A
A

A

B

B

draw concrete Euler
contour around the

vertices and
crossing the edges

null

AB

B

A
A

A

B

B

null

AB

B

A
A

A

B

B
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1. 2    Connectivity obstructions to drawing Euler diagrams

The algorithm described above can’t always work – because some Euler diagrams are undrawable (the
abstract diagram “null and AB”, for example, has no direct concrete representation).

1.2.1    Disconnected dual graphs
It must possible to traverse a concrete Euler diagram from any zone to any other zone, crossing
contour lines.  In the dual graph, this corresponds to traversing paths along edges from any node to any
other node.  The dual graph must be connected.

If the abstract dual graph of an abstract Euler diagram is disconnected, then the abstract Euler diagram
has no concrete Euler diagram representative.

Example 1:
For zone information A, B, C, AB, AC, BC, ABC
(the complete Euler diagram on three contours),
the dual graph could be represented as follows:

The dual graph is connected –  a necessary
condition for proceeding with the algorithm.

Example 2:
Given zone information B, C, ABC,
the dual graph we generate is disconnected.
The Euler diagram is undrawable.

1.2.2    Resolving disconnected duals
One way to resolve this obstacle to drawability would be to insert extra nodes and edges to the dual
graph (e.g. “BC” in the last example), to make the graph connected, and remember to shade in the new
zones in the resulting Euler diagram.  This would create a diagram equivalent to the required diagram,
not equal to the required diagram.

The concrete Euler diagram on the right probably represents the intended constraint, but has more
zones than the abstract Euler diagram, for example, so it’s an unequal Euler diagram.

1.2.3    Disconnected inclusive subgraphs
In a concrete Euler diagram, given two zones in the same contour, it is possible to navigate from one to
the other without leaving the contour.  In the abstract dual graph, this corresponds to navigating along
edges between nodes sharing a contour-label.  Subgraphs of the dual graph corresponding to the inside
of each contour must be connected.

If an abstract Euler diagram generates an abstract dual graph and there is some contour with the
property that the subgraph restricted to that contour is disconnected, the abstract Euler diagram has no
concrete representation.

ABC

BC BC

ABAC

A

null

B

C

ABC

null

B

C

ABC

BC(shaded)

null

B

C

ABC

BC(shaded)
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Example 1:
For the abstract diagram A, B, C, AB, AC, BC, ABC,  consider three subdiagrams of the dual graph,
one for each symbol “A”, “B”, “C”.

These subgraphs are all connected – a necessary condition for drawing the Euler contours.

Example 2:
{A, B, BC, ABC} gives a connected dual graph, but the subgraph obtained by filtering for A is
disconnected – revealing an undrawable diagram.

1.2.4    Resolving disconected inclusive subgraphs
This could be resolved by labelling each component of the A-subgraph as A1, A2, and drawing these as
projected contours [CD2] in the final Euler diagram.

1.2.5    Disconnected exclusive subgraphs
In a concrete Euler diagram, for any contour, given two zones outside that contour, it is possible to
navigate between them, remaining outside the contour. In the abstract dual graph, this corresponds to
navigating from node to node, only through nodes which don’t include a given contour name.
Subgraphs of the dual graph obtained by eliminating zones from a given contour must be connected.

If an abstract Euler diagram generates an abstract dual graph and one contour name leaves a
disconnected subgraph when all nodes in that contour are removed, then the abstract Euler diagram has
no concrete representation.

Example 1:
For abstract information A, B, C, AB, AC, BC, ABC,  consider three subgraphs obtained by excluding
zones within each contour – “filtered less A” etc.

These are all connected.

BC BC

ABC
ABAC

A

ABC

A

BC

AC AB

BC

A

BC

AB

BC

ABC
AC

BC BC

ABC
ABAC

A A

BC

AC AB

BC

ABC

A

BC

AB

BC

ABC
AC

A1
A2BC

BC
B

A ABC

BC
B A ABC

BC
B

subgraph
inside A

A1
A2BC

BC
B
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Example 2:  An undrawable Euler diagram:

This combinatorial dual gives a
disconnected subgraph upon
removal of nodes inside contour A.

There can be no direct concrete represetation
of the abstract diagram.

1.2.6    Resolving disconected exclusive subgraphs
To make an exclusive disconnected subgraph connected, add new nodes (shaded zones) and edges:

1. 3    Planarising obstructions to drawing Euler diagrams
Say we take instructions to draw a Venn diagram
with four contours.  The zones are given by
A, B, C, D, AB, AC, AD, BC, BD, CD,
ABC, ABD, ACD, BCD, and ABCD.
Here’s a non-planar representation of the
abstract dual graph:

This graph is non-planar.  No manipulation of the
node positions will eliminate all edge-crossings.

1.3.1    Resolving planarising obstructions
A Venn diagram on 4 contours can be drawn – so how come the abstract dual graph is non-planar?

It’s because abstract dual graphs constructed from zone information may have more edges than
necessary.  Concrete representations of Venn4 will have dual graphs which are planar subgraphs of
this non planar dual graph.  To create a concrete Euler diagram from a non-planar abstract dual graph,
(if the constraint diagram is drawable) remove some edges, maintaining all connectivity conditions.
Different representations of Venn4  correspond to different choices for edge-removal.

The removal of dual edges can cause some surprising results in the Euler diagram:

The shaded zones in this version of Venn4 could be adjacent, but
the layout has separated them.

When removing contours from constraint diagrams, the abstract
zones lose membership information about the missing contour.  If
the contour is removed from the diagram, some zones may be left
disconnected (not a valid constraint diagram).

null

A

AB

ABC

BC

null

A

AB

ABC

BC

B

null

A

AB

ABC

BC

B
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The shaded area should be part of the outside zone.

There is scope for more work on the removal of contours from
diagrams:

Q: Is the removal of a contour always a legitimate move for
abstract constraint diagrams?

Q: What effect does contour removal have on the dual graph
of a constraint diagram?

1.3.2    Planarising algorithms
After some investigation of existing planarising algorithms in the literature [G1]-[G3]  I found that
they all placed some condition on the outcome – spacing the nodes in a certain way, or maximising the
symmetry of the graph.

One example of a Graphing Layout tool comes from Tom Sawyer software:
http://www.tomsawyer.com:

The Java Technologies Demonstration is a 100% Pure Java interactive graphical editor built
with our Graph Editor Toolkit for Java. The palette items, menus, dialogs, and user interface
are completely customizable to meet your application needs. This editor incorporates our
scalable and incremental graph layout algorithms, so with a press of a button you'll clearly see
the answers you need.

Automatic generation of a circular layout

Automatic generation of an orthogonal layout Automatic generation of a symmetric layout

http://www.tomsawyer.com/
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The Tom Sawyer layout tools work for non planar graphs.

These algorithms are more sophisticated than I need. I wrote my own, simpler algorithm, which tries to
create a planar representation of an abstract graph. For the purposes of this algorithm for drawing
constraint diagrams, the aesthetics of the planar dual graph are immaterial (see the work on
“circularising” a dual graph).

Take any concrete graph.  For each edge, count the number of times it meets another edge. If all of
these calculations give zero, the graph is planar and the planarisation can stop.
Otherwise, choose an edge which meets other edges most often.  Take a node at one end of lowest
degree, and move that node along the edge, halfway towards the other end.  Iterate this step a given
number of times. Either the graph will become planar or it won’t.

In an example where the nodes have integer co-ordinates instead of real co-ordinates, it would also be
useful to rescale the picture after each iteration to reduce the risk of nodes becoming co-incident.

Example:  Planarise this:
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This algorithm is inefficient, but it does a good enough job for the time being, and a method which
takes a graph object, an integer number of iterations, and tries to produce another, planar graph, can
easily be overridden by a better algorithm. A great feature of OO design: as long as the signature and
pre/post conditions of an operation are maintained, it’s easy to substitute one algorithm for another.

1. 4    Word obstructions to drawing Euler diagrams

Given zone information
{A, B, C, AB, BC, AB}
this is a planar representation of the dual graph:

Draw each of the three contours:

When these three contours are placing on a single diagram, a triple point could appear:

For the purposes of this project, constraint diagrams don’t include triple points. There’s a risk, if the
contours are nudged, that the triple point will reduce to three transverse double points (allowed in
constraint diagrams), but at the cost of introducing an unwanted new zone.  This problem could have
been recognised from face-reading – a property of the planar graph embedding. Face reading is
explained below:

Given a planar dual graph representation, label the edges with contour names A, B, C.

There are six faces of the diagram on the right (include the outside one).  Read around these faces,
starting at any vertex, following either direction, giving six words.

ABAB CBCB ACAC
ABAB BCBC ACAC

A AB

B

BCC

AC

A

BC

ABAC

BC

ABC

A

B

C

B

C

A

C

A

B

C

A

C

C
AA

B

B

B
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Notice that each word has an even number of occurrences of each symbol.  Equivalent words can be
obtained by cycling the order of symbols, or reversing the order.  In this example, the words all have
four letters, because the faces were all quadrilaterals.

The hexagonal face in this example reads as CABCAB.  This word is one of a family of words,
recognisable using a template “XYZXYZ”. To find out whether the internal arcs in a dual graph will
create an unwanted zone, generate the contour-word from each face. A  new zone will be a polygon:

Such anomalies can be spotted by searching for (sub)words in which every letter is three from its
partner.  To summarise the word conditions: given a planar representation, we have a word-obstruction
if
(i) any face includes a contour name as an edge label more than twice
(ii) the word of some face, restricted to some subset of contour names, features each name three
places from its partner.

C

A AB

B

BC

AC

An unwanted
triangular

region

1

1

2

2

3

3

Whatever other lines are present in the dual
graph face, if three pairs of labels form the
pattern 132132, then there will be at least one
newly created, unwanted region between the
contours. The Euler contours are undrawable
from this planar representation of the dual
graph.

1

1

2
2

3

3

4
4

An unwanted
quadrilateral

region

Whatever other lines are present in the dual
graph face, if four pairs of labels form the
pattern 13243142, then there will be at leastr
one newly created, unwanted region between
the contours.
The Euler contours are undrawable from this
planar representation of the dual graph.

B

C

B
A

CA
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1.4.1    Resolving word-obstructions
If a face fails the word conditions, it can be resolved by adding a new zone.
For example, the word   abcabc   fails the word conditions, but adding a new zone splits up the
hexagon into a square and a hexagon, essentially reversing two letters in the word, giving a drawable
bacabc

note that there is a triple point problem outside this hexagon, too:

Questions remain like:
• can every word failure be resolved by introducing new nodes with swapped adjacent letters?

• what if the zones “pb” or “acp” existed already elsewhere in the dual graph?

• can a word failure exist with all potentially new resolving zones existing outside the face?

p

ap

a

abp
b

abcp
c

bcp

a

cp
bc

b

b
p

ap

a

abp

abcp

c

bcp

a

cp
bc

pb
a

p

ap

a

abp
b

abcp
c

bcp

a

cp
bc

b

b
p

ap

a

abp

abcp

c

bcp

a

cp
bc

pb
a

b

b
p

ap

a

abp

abcp

c

bcp

a

cp
bc

pb
a

acp

b

a
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1. 5    First worked examples

1.5.1    Singleton set

Zone description:   {A}
preview dual graph edge labels constructed contours

1.5.2    Two sets

Zone descriptions: {A, B, AB}
preview dual graph edge labels constructed contours

Zone descriptions:  {A, AB}
preview dual graph edge labels constructed contours

Other non-empty subsets of {A, AB, B} are
{A, B} (a disjoint union of two singleton diagrams)
{B, AB} (isomorphic to {A, AB})
{A} done as a singleton set
{B} done as a singleton set

and {AB} – here the dual graph is disconnected, so either introduce shaded zones or stop.

A AA
A

null

A
B

A AB

B
A

B

A
B

A

Bnull

A

B

A AB
A

B
A

B

null
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1.5.3    Three sets

Zone descriptors: {A, B, C, AB, AC, BC}
preview dual graph edge labels constructed contours

Zone descriptors: {A, B, C, AB, AC, ABC}
preview dual graph edge labels constructed contours

The null-labelled node should be on the outside of the graph diagram.  Redraw the graph diagram.

There are 127 ways to write down nonempty subsets of {A, B, C, AB, AC, BC, ABC}.
There is one drawable diagram from the singleton sets.
There are three types of diagram for subsets including only two contours.
There are eleven types of diagram for zone descriptions involving all three contour s.

The next section is more specific about the act of drawing contours.  In small examples, it’s easy to see
how the contours must be drawn to pass through the required edges of the dual graph, and to enclose
the required vertices.  But an algorithm is required for the process of constructing contours from line
segments.

The contour for symbol
“A” isn’t drawable – there

is a problem with the
“placing of infinity”.

A
BC

A AB

B

BCC

A
B

C
B

B
C

A
null

A
B

C
B

B
C

A

A
A

B

C

A AB

B

BCC

AC

ABC

null

B

B

B

A

C C

B A C

B

C
A

A

A

C

B B

A C

AB B

BC

CAC

A

null

ABC
C

A

A

A

C

B B

A C
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1. 6    Convex faces and circularising
The mechanism for drawing contours in the last section was mainly intuitive –we can see a collar
round a subgraph.  This section specifies construction of “internal arcs” which can cross and “external
arcs” which never meet any other line segments.  Together, the internal and external arcs for closed
contours.

1.6.1    Drawing contours through convex faces

1.6.2    Drawing a planar graph with convex faces
Given a planar representation of a graph, there is an algorithm using a disc which creates a
representation with straight edges and convex faces.  Take a planar representation, and decompose it
into disjoint faces with identified edges:

This decomposition into faces includes the outside face –contours have to be drawn there as well as in
the inside faces.  Each of these faces can be inserted into a disc.  To explain the process,  insert each
face in turn.  Choose any first face, for example F1.

Face F1 in the disc has straight line edges and is convex.

Face F1 into the disc has an “internal edge” in the disc : B–BC.  There is another edge B–BC   in face
F3.  This face will be placed in the disc, identifying the two occurrence of B–BC.  There are three
ways to place F3 in the disc – make sure that the new internal edge has a partner in the faces which are
still to be put in the disc.  Look at the three faces of F3 that aren’t B–BC and find one whose partner
isn’t yet in the circle.  For example null–B .
Draw F3 in the disc so that null–B is internal.

A

A

B

B

A

A

B

B

Once we have faces, with edges labelled, we want to be
able to join up matching pairs of edge-labels.  If the face
is convex, this can be done with line segments joining
the midpoints of the face edges.

It would be desirable to have all faces convex.
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Face F3 in the disc has an internal edge: null–B.  Find its partner in a face not yet in the disc. It’s in
face F6.  Choose another edge of F6 which isn’t in the disc: for example null–A.
Place F6 with null–A an internal edge.

Place face F5 in the disc adjoining edge null–A with edge C–AC internal.
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Place F4 in the disc with edge A–AC adjoined, and new internal edge AC–ABC.
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1. 7    Building internal arcs and external arcs from a circularised
graph

In a circularised dual graph, all faces are convex, so the
Euler diagram contours can be built up with straight line
segments.
The “internal” (inside the disc) line segments don’t form
closed contours until outer edge identifications are made.
We can resolve this in two ways
- visualise identified outer edges coming together to
recover our original graph, with the drawn linear contour
segments distorting to follow the change
or
- join up the contours by further linear segments outside
the disc.

The first, topological, approach is impractical for
computer implementation, but pleasing to see how the
original graph relates to the graph in the disc.

The second approach will complete the algorithm
for constructing polygonal Euler contours.

1.7.1    Topological reconstruction of the dual graph
The circularised graph may be transformed back into the original dual by identifying pairs of outside
edges of the disc.

  c     a     a     b     a     c     b      b     a     a     c     a     b    c

The adjacent pairs labelled a,a,  b,b  and a,a  are matched first.  Then, if these letters are removed from
the word, another adjacent pairs c,c appears, and so on.

This letter-pairing determines how external arcs are constructed to make closed contours. The next
pages sketch a topological argument for the connection between such a bracketing pairing on the
outside word and contour construction.  Readers in a hurry may wish to skip to the next section :
“Constructing contours as polygons”.

Construct a word (reading round
the outside from the null node).
Pair up equal letters without arc
crossings. There’s only one way
to do this (like determining
bracket-pairs).
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Outside edges corresponding to a,a,   b,b,   a,a    can be folded together, distorting the disc, to identify
the pairs edges. Edges c,c then become adjacent and can also be folded together.
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The identified edges (draw as thick black lines) form a
spanning tree of the dual graph. The choices which were made
in placing the faces inside the disc are equivalent to choices
made in the construction of a spanning tree.  The contours are
no longer polygonal, but the have become closed contours
which enclose the appropriate vertices.

Un-wrap this diagram, splitting identified edges again, but keep
track of how the contours are identified.
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1.7.2    Constructing contours as polygons

External arcs contributing to the contours can be constructed using line segments as shown below.
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1. 8    Examples revisited

1.8.1    Singleton contour
Zone description:   {A}

1.8.2    Two-contour example
Zone descriptions:
{A, B, AB}

1.8.3    Three-contour examples
Zone descriptors: {A, B, C, AB, AC, BC}

Zone descriptions:  {A, AB}
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1. 9    Why use null as a dual vertex?

Take an example with zones [], [a], [b] and [a,b]

Including null, the dual graph looks like this:

Circularise the dual graph

Construct the inner arcs of the constraint diagram:

The external arcs must connect the b’s and a’s at the
ends of the internal arcs.  Use the null (or one of them)
to read round the outside word, giving something like abbabb.
Join up the letters which pair off like brackets,
avoiding crossing a “line to infinity” from null.

If this process is followed through without the null point
included, we get this sequence of diagrams:

The question remains: how to join up the ends
 of the inner arcs with external arcs?

The correct result would be this:                       not this:

It’s not easy to see how to decide between these options, given only the abstract information.

A more serious issue is that the correct result has edge crossings outside the circularised graph.  One
reason for circularising was to allow the graph to be drawn with straight line segments.  Another was
to confine all edge-crossing to inside faces which had passed word-checks.  Allowing crossings
outside the circularised dual graph creates the risk of triple-point drawing obstrcutions outside, even
though we have done contour-word checks to eliminate triple crossings inside.

b ab

anull

anull

null

null
b

b

b

b

a

a

null

b

a

ab

b

a

circularise ->
add inner arcs ->

null a

b ab

ab

a

b

ab

ab

a

b

ab

ab

a

b

ab

ab

a

b

ab


