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Abstract
Venn diagrams and Euler circles have long been used

to express constraints on sets and their relationships with
other sets. However, these notations can get very cluttered
when we consider many closed curves or contours. In
order to reduce this clutter, and to focus attention within
the diagram appropriately, the notion of a projected
contour, or projection, is introduced. Informally, a
projected contour is a contour describes a set of elements
limited to a certain context. Through a series of examples,
we develop a formal semantics of projections and discuss
the visual language design issues involved in introducing
these.
Keywords Visual formalisms, diagrammatic notations

1. Introduction
Diagrammatic notations involving circles and other

closed curves, which we will call contours, have been in
use for the representation of classical syllogisms since at
least the Middle Ages [10]. In the middle of the 18th

century, the Swiss mathematician Leonhard Euler
introduced the notation we now call Euler circles (or
Euler diagrams) [1] to illustrate relations between sets.
This notation uses the topological properties of enclosure,
exclusion and intersection to represent the set-theoretic
notions of containment, disjointness, and intersection,
respectively. The 19th century logician John Venn [15]
modified this notation to represent logical propositions. In
Venn diagrams all contours must intersect. Moreover, for
each non-empty subset of the contours, there must be a
single connected region of the diagram, such that the
contours in this subset intersect at exactly that region.
Shading is then used to show that a particular region
represents the empty set.

An indication of the popularity and intuitiveness of
Venn and Euler diagrams is the fact that they are used in
elementary schools for teaching set theory as an
introduction to mathematics. However, as we will see
next, both notations have their limitations.

Venn diagrams are expressive as a visual notation for
writing constraints on sets and their relationships with

other sets, but difficult to draw because all possible
intersections have to be drawn and then some regions
shaded. Although it may first seem impossible to draw a
Venn diagram of more than three contours, there are in
fact many ways of doing so. Venn himself developed a
scheme for drawing such a diagram for any number of
diagrams. Yet another such scheme is due to More [11].
Since then, there was a large body of research on the
drawing of Venn diagrams, their topological properties,
etc. The interested reader is referred to e.g., [4,5] for more
information on the topic, which involves some beautiful
mathematics, which results in some very aesthetically
pleasing drawing. For example, Figure 1 shows a
symmetrical Venn diagram of four contours, while Figure
2 is the only simple symmetric Venn diagram of five
contours.

Figure 1 - A simple and symmetrical Venn diagram of four
contours

Figure 2 – The simple symmetrical Venn diagram of five
contours

Examining these two figures, it is clear why it is so
rare to see Venn diagrams of four or more contours used
in visual formalism.  Most regions require a bit of
pondering before it is clear which are the contours that
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contain it. As shown in Figure 3, the situation worsens
with the increase in the number of curves.

Figure 3 - Adelaide, a symmetrical Venn diagram of seven
contours

On the other hand, Euler circles are intuitive and easier
to draw, but are not as expressive as Venn diagrams
because they lack provisions for shading. It is therefore
the case that an informal hybrid of the two notations that
is used for teaching purposes. We use the term Venn-
Euler diagrams for the notation obtained by a relaxation
of the demand that all curves in Venn-diagrams must
intersect or conversely, by introducing shading into Euler
diagrams. Gil, Howse and Kent [2] provided formalism
for Venn-Euler diagrams as part of the more general
spider diagrams notation.

Rather informally, we use the following terminology:
A contour is a simple closed plane curve. A boundary
contour is not contained in and does not intersect with any
other contour. A district (or basic region) is the set of
points in the plane enclosed by a contour. A region is
defined as follows: any district is a region; if r1 and r2 are
regions, then the union, intersection, or difference, of r1
and r2 (defined as sets of points of the plane) are regions
provided these are non-empty. A zone (or minimal region)
is a region having no other region contained within it.
Contours and regions denote sets.

Every region is a union of zones. A region is shaded if
each of its component zones is shaded. A shaded region
denotes the empty set.

A

B

C
D

Figure 4 - A Venn-Euler diagram

The Venn-Euler diagram D in Figure 4 has four non-
boundary contours A, B, C, D and the boundary is
omitted. Its interpretation includes ABCD −−⊆ )(  and

∅=∩∩ CBA .
However, even Venn-Euler diagrams can get very

cluttered when many contours are involved. The issue of
clutter becomes even more crucial when such diagrams
are used as foundation for other, more advanced visual
formalism. A case in point is the constraint diagrams
notation [3] which uses arrows and other diagrammatic
elements to model constraints not only on simple sets, but
also on mathematical relations. Constraint diagrams can
be used in conjunction with the Unified Modeling
Language (UML) [13], which has become the Object
Management Group’s (OMG) standard for object-oriented
modelling notations, and the Object Constraint Language
(OCL) [16], a textual notation for expressing constraints
that is part of UML.

In order to reduce this clutter, and to focus attention
within the diagram appropriately, the notion of a
projected contour, or projection, can be used as an
addition to the Venn-Euler based notation. In Figure 5 for
example, the set Women is projected into the set of
employees. The projected contour represents the set of
women employees; it doesn’t say that all women are
employees.

Employees

(Women)

Figure 5 - Example projection

As a slightly more interesting example, consider the
constraint diagram in Figure 6. This diagram states
(among other things) that the sets Kings and Queens are
disjoint, that the set Kings has an element named Henry
VIII, that all women that Henry VIII married were queens
and that there was at least one woman he married who
was executed. The dotted contour is a projection of the set
Executed; it is the set of all executed people projected
into the set of people married to Henry VIII, that is, it
gives all the queens who were married to Henry VIII and
executed.

Kings

Queens

married
Henry VIII

(Executed)

Figure 6 - A constraint diagram with projection

Thus, projection, denoted by a dotted contour can be
thought of as a notation for intersection. In the example,
the inner most circle labelled “(Executed)” denotes the
intersection of the set Executed with the set of women
who were married to Henry VIII. The notation is intuitive
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and more concise than the alternative, which would have
been drawing a large ellipse that intersects the Queens
contour. As shown in Figure 7, this ellipse must also
intersect with the Kings contour, or otherwise the
diagram would imply that no kings were ever executed.

Kings Queens

married
Henry VIII

Executed

Figure 7 – The constraint diagram of Figure 6 redrawn
without projections.

Moreover, Figure 6 does not specify whether Henry
VIII was executed or not. The elimination of projections
then requires delving into a history book and explicitly
specifying this point as shown in Figure 7. Alternatively,
one could use what is known as a spider to refrain from
stating whether or not Henry VIII was executed. As
shown in Figure 8, this alternative is even more
cumbersome.

Kings
Queensmarried

Henry VIII

Executed

Figure 8 – Using a spider notation to preserve the semantics
of Figure 6 while eliminating projections from it.

There are non-trivial issues in dealing with this
seemingly neat idea. For example, the notation must have
a well-defined semantics when a projection intersects
with a contour, and not only when it is disjoint to it, or
contained in it. Moreover, a diagram may contain more
than one projection that may interact in subtle ways.

The projection concept was first suggested as part of
the constraint diagram language. However, these
complicating matters were not dealt with. Instead, there
was a tacit understanding that only “simple” use of
projections, which avoided these issues was allowed. This
work represents the first attempt to systematically deal
with the semantics of projections.

The rest of this paper is structured as follows. Section
2 briefly sketches the formal semantics of Venn-Euler
diagrams. Section 3 gives an informal definition of
projections. The formal semantics is given in Section 4. In
Section 5 we consider interacting projections and give a
further syntactic constraint to the notation. Section 6 deals
with issues involved in the semantics of projections.

Finally, Section 7 gives a conclusion and discussed
related work.

2. Semantics of Venn-Euler Diagrams
In this section we sketch the main definitions used in

giving semantics to an Venn-Euler diagram. A Venn-
Euler diagram is a finite collection of contours and a list
of shaded zones, where each zone is a non-empty subset
of the contours. Exactly one of the contours must be
denoted as boundary contour. (We frequently omit the
boundary contour from drawings.) For any diagram D, we
use C = C(D), R = R(D), Z = Z(D), and Z* = Z*(D) to
denote the sets of contours, regions, zones, and shaded
zones of D, respectively.
The semantics of a Venn-Euler diagram D is given in
terms of the semantic function

Ψ : C → ℘U,
where U is a given universal set of D and ℘U denotes the
power set of U. Contours are interpreted as subsets of U,
and the boundary contour is interpreted as U.

A zone is uniquely defined by the contours containing
it and the contours not containing it; its interpretation is
the intersection of the sets denoted by the contours
containing it and the complements of the sets denoted by
those contours not containing it. We extend the domain of
Ψ to interpret regions as subsets of U. First define
Ψ : Z → ℘U by

Ψ Ψ Ψ( ) ( ) ( )
( ) ( )

z c c
c C z c C z

= ∩
∈ ∈+ −
� �

where C+(z) is the set of contours containing the zone z,
C–(z) is the set of contours not containing z and

)()( cc Ψ−=Ψ U , the complement of Ψ(c). Since any
region is a union of zones, we may define Ψ : R → ℘U
by

Ψ Ψ( ) ( )
( )

r z
z Z r

=
∈
�

where, for any region r, Z(r) is the set of zones contained
in r.

The semantics of a diagram D is the conjunction of the
following conditions.
Plane Tiling Condition: All elements fall within sets
denoted by zones:

Ψ( )z
z Z∈

=� U

Shading Condition: The set denoted by a shaded zone is
empty

∅=Ψ∧
∗∈

)(z
Zz
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3. Projections
Sometimes it is necessary to show a set in a certain

context. Intersection can be used for just this purpose: an
intersection of A and B shows the set A in the context of B
and vice-versa. However, intersections also introduce
regions that may not be of interest. Projections are
equivalent to taking the intersection of sets, except that
they introduce fewer regions, with the effect that regions
which are not the focus of attention are not shown,
resulting in less cluttered diagrams.

A projection is a contour, which is used to denote an
intersection of a set with a “context”. By convention, we
use dashed iconic representation to make the distinction
between projections and other contours.

A determining label, denoted by λ(p), must be
associated with any projection p. This label is used to
denote the set which is being projected. The convention is
that determining labels are rendered within parenthesis
when drawn in a diagram. A projection can also have a
contour label.

Definition 1 The context of a projection p, denoted κ(p),
is the smallest region, defined in terms of non-projected
contours, that contains the district of p.

The set denoted by the context of a projection is
calculated from the sets denoted by non-projected
contours; it is defined independently of projected contours
for reasons discussed in Section 7. A projection p denotes
the set obtained by intersecting the set denoted by its
determining label λ(p) with the set denoted by its context
κ(p).

Figure 9 shows a simple example. The dashed contour
labelled X denotes the set obtained by “projecting” the set
A onto the context D – B, i.e., )( BDAX −∩= .

B
C

D
X

(A)

Figure 9 - Simple projection

The same semantics could have been obtained by using
More’s algorithm [11] to draw the Venn diagram with
four contours, as in Figure 10, in which

)(21 BDAXXX −∩=∪= , where X1 and X2 denote
the zones in which the labels appear. The simplicity of
Figure 3, when compared to that of Figure 4, is self-
evident.

B
C

D

X1

X2
A

Figure 10 - Semantics of Figure 9

Thus, a projection gives another way of showing the
intersection of sets. This gives a clue to its value, given
the notorious difficulty of showing the intersection of
more than three sets on a Venn diagram: Figure 11 shows
how all the regions obtained by intersecting six sets can
be obtained using projections. This is an extreme case.
More often than not, one is only interested in some of the
intersections and not the others: projections provide the
freedom to show only those intersections of interest.

(A) (B)

(C)

(A) (B)

(C)

(A) (B)

(C)
(A) (B)

(C)(A) (B)

(C)

(A)
(B)

(C)

(A) (B)

(C)

Figure 11 - Six sets

4. Semantics of Simple Projections
Let P be the set of all projections and L be the set of all

determining labels. We extend the domain of the semantic
function Ψ to interpret projections and determining labels
as subsets of U:

Ψ : P → ℘U, Ψ : L → ℘U.
Let p be a projection with determining label λ(p) and

context κ(p). Then we have:

))(())(()( ppp κλ Ψ∩Ψ=Ψ .
So, we can add a new semantic condition to the two

given earlier. Let P(D) be the set of all projections in
diagram D. Then the semantics of a diagram D is the
conjunction of the Plane Tiling Condition, the Shading
Condition and the Projection Condition.

Projection Condition: The set denoted by a projection is
the intersection of the set denoted by its determining label
and the set denoted by its context:
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))(())(()(
)(

ppp
DPp

κλ Ψ∩Ψ=Ψ∧
∈

.

5. Interacting Projections
In this section we consider examples of interacting

projections and highlight some problems. The solution of
these problems requires a syntactic constraint on
projections. There are two main cases to consider: disjoint
projections and intersecting projections. The case of
projections contained in each other is similar to that of
intersection projections.

5.1 Disjoint Projections
The intuitive interpretation of the diagram in Figure 12

is that BAX ∩=  and CAY ∩=  and that BA ∩  and
CA ∩  are disjoint.

A

Y

(C)

X

(B)

Figure 12 - Disjoint projections

We will interpret Ψ(A) as A, etc., for simplicity (and,
of course, this will almost always be the intention of the
producer of the diagram).

Now, AX =)(κ  and AY =)(κ . The Projection
Condition gives BAX ∩=  and CAY ∩=  and the
Plane Tiling Condition says that X and Y are disjoint,
which is the intuitive interpretation. Note that this
specifies that BA ∩  and CA ∩  are disjoint, so even
though we are not explicitly showing the contours B and
C, we can still constrain the sets that they represent.

A

Y

(B)

X

(B)

Figure 13- An illegal diagram

Now, consider the diagram in Figure 13. We have
AX =)(κ  and AY =)(κ . The Projection Condition gives
BAX ∩=  and BAY ∩=  and the Plane Tiling

Condition says that X and Y are disjoint. So, we have
∅=∩ BA . We could have said the same thing by

shading a single projection of B in A as in Figure 14.

A

X

(B)

Figure 14 – Empty projection

There are various extensions of Venn-Euler diagrams
in which elements of sets can be shown diagrammatically;
these include Peirce diagrams [4, 12, 14] and spider
diagrams [2]. If a diagram such as that in Figure 8
occurred in such a system, then the diagram could be
made inconsistent by placing an element icon in one of
the projections. Because of this and other similar
problems, this situation is not allowed. We have the
following syntactic constraint on projections:

if two projections have the same context, then they
must have different determining labels.

Formally: let 1p  and 2p  be projections, then
)()( 21 pp κκ =  ⇒ )()( 21 pp λλ ≠ .

A

Z

(C)

X

(B)

Y

(C)

Figure 15 - Another illegal diagram

The diagram in Figure 15 is illegal because Y and Z
have the same context and the same determining label.
The diagram in Figure 15 is probably all that is intended.

A

Y

(C)

X

(C)
B

Figure 16 - Yet another illegal diagram

In fact, this syntactic constraint is not strong enough.
Consider the diagram in Figure 16. The context of X is A,
the context of Y is B. The Projection Condition gives

CAX ∩=  and CBY ∩=  and the Plane Tiling
Condition says that X and Y are disjoint. Hence, we have

∅=∩∩ CBA , which, again, is problematic and could
lead to inconsistent diagrams in some systems. The
complete (syntactic) constraint that prevents these
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situations is the following:
Projection Label Constraint: if two projections
have the same determining label, then they must
have disjoint contexts.

Formally: let 1p  and 2p  be projections, then

)()( 21 pp λλ =  ⇒ ∅=∩ )()( 21 pp κκ .

Theorem 1 Imposing the Projection Label Constraint
does not limit expressiveness.

Proof  Suppose that projections p1 and p2 do not satisfy
the constraint:

λ(p1) = λ(p2) = λ   and===κ(p1) ∩ κ(p2) = κ ≠ ∅

as illustrated in Figure 17.

)(λ )(λκ

1p
2p

)( 1pκ )( 2pκ

Figure 17 - Intersecting contexts

Suppose that p1 and p2 are disjoint (if not, p1 and p2
should be replaced by a single projection). Then, the
Plane Tiling Condition gives

Ψ(p1) ∩ Ψ(p2) = ∅

The Projection Condition gives

Ψ(p1) = Ψ(λ(p1)) ∩ Ψ(κ(p1))
Ψ(p2) = Ψ(λ(p2)) ∩ Ψ(κ(p2))

Therefore,

Ψ(λ(p1)) ∩ Ψ(κ(p1)) ∩ Ψ(λ(p2)) ∩ Ψ(κ(p2)) = ∅
hence,

Ψ(λ) ∩ Ψ(κ(p1)) ∩ Ψ(κ(p2)) = ∅
i.e.,

Ψ(λ) ∩ Ψ(κ) = ∅.
So, p1 and p2 can be replaced by a single projection p
whose intersection with κ is shaded. This is expressed by
the legal diagram in Figure 13.

))(( pλ

κ

p

)( 1pκ )( 2pκ

Figure 18 - Legal version of Figure 17

5.2 Containing and Intersecting Projections
Consider the diagram in Figure 14. The intuitive

interpretation is that BACA ∩⊆∩ , or, in the context of
A, C is a subset of B.

A

Y

(C)

X

(B)

Figure 19 - A containing projection

By the projection condition BAX ∩=  and
CAY ∩= . By the plane tiling condition XY ⊆ . So,

BACA ∩⊆∩ , the intuitive interpretation. Note, again,
that the sets B and C have been constrained. In fact, we
can obtain precise expressions for X and Y: BAX ∩=
and CBAY ∩∩= , because ∅=∩∩ CBA .

A

Y

(C)

X

(B)

Figure 20 - Intersecting projections

In Figure 20, the two projections intersect in the same
context. In this case there are no constraints on the sets B
or C (or A).
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(A) (B)

C D

X Y

Figure 21 - Interacting projections

In Figure 21 there is a more complicated intersection
of projections. The context of both projections X and Y is

DC ∪ . So ADCX ∩∪= )(  and BDCY ∩∪= )( . But
in this case X and Y are constrained: YCX ∪⊆  and

XDY ∪⊆ . Putting all this together, we have

BDCBDCCYCX ∩∪=∩∪∪=∪⊆ )( .
So,

)()()( BDCABDCADCX ∩∪∩=∩∪∩∩∪=

and further,
∅=∩∪∩∩∪ BDCADC )(

hence,
∅=∩∩∩ BCDA .

We can obtain similar expressions for Y by symmetry. So
we have precise expressions for X and Y:

)( DBCAX ∩∪∩=  and )( CADBY ∩∪∩=
with

∅=∩∩∩ BCDA  and ∅=∩∩∩ ADCB .

A few seconds’ thought will confirm that this is an
intuitive interpretation.

6. An Alternative Semantics
There is an alternative possibility for the semantics of

projections, which is to include projections in the context
of a projection. This interpretation of interacting
projections involves the solution of simultaneous set
equations. In general, these equations have many
solutions, but there is usually a “minimal” solution. This
minimal solution frequently agrees with the intuitive
interpretation. However, there are some cases in which
the solution might turn counter-intuitive semantics. We
consider a couple of examples of this approach to show
why this alternative may lead to undesirable situations
and explain why the semantics given earlier was chosen
as the appropriate semantics.

Consider again the diagram in Figure 12. Recall that
the intuitive interpretation is that BAX ∩=  and

CAY ∩=  and that BA ∩  and CA ∩  are disjoint. In the

alternative interpretation, YAX ∩=)(κ  (or A – Y) and
XAY ∩=)(κ . The Projection Condition gives:

XACY
YABX

∩∩=

∩∩=

Substituting for Y  in the first equation gives

)(
)(

XCAB
XACAB

XACABX

∪∩∩=

∪∪∩∩=

∩∩∩∩=

We can use the following lemma from set theory,
stated without proof, to solve this set equation.

Lemma 1 For given sets A, B, the set equation

BXAX ∪∩=

has solution
BSAX ∪∩=

where S is any set. The “minimal” solution is thus
X = B and the “maximal” solution is  X = A ∪ B.
By Lemma 1, we have

)( SCABX ∪∩∩=
for any set S. Now, substituting for X  in the second of
the original equations gives

)(
)(

)(
)(

SBAC
SCBAC

SCABAC
SCABACY

∪∩∩=

∩∪∩∩=

∩∪∪∩∩=

∪∩∩∩∩=

which is interesting because of the asymmetry of the
solutions. If we let ∅=S , we get CBAX ∩∩= , which
is probably what our intuition tells us, but CAY ∩= ,
which is counter-intuitive, because of the asymmetry.
What the solution is giving us is the projections of B and
C in A, with the added condition that these two
projections are disjoint. The semantics does not give us
that BA ∩  and CA ∩  are disjoint (i.e.,

∅=∩∩ CBA ), but that any element in CBA ∩∩  is
arbitrarily placed in either the projection X or the
projection Y (but not both). This is a palpably reasonable
interpretation, but rather counter-intuitive and non-
deterministic.

For a second example, consider Figure 21. X and Y are
projections with determining labels A and B respectively.
How do we now interpret projections X and Y? With the
new interpretation, YCX ∪=)(κ  and XDY ∪=)(κ .
So, by the semantics of projections, we have
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)(
)(

XDBY
YCAX

∪∩=
∪∩=

Substituting for Y in the first equation and using
Lemma 1, we obtain

SBADBCAX ∩∩∪∩∪∩= )(

and similarly, we obtain

SBACADBY ∩∩∪∩∪∩= )(

where S is any set.
Unfortunately, there are many possible solutions.

There is, however, a unique “minimal solution” in this
case:

)(
)(

CADBY
DBCAX

∩∪∩=
∩∪∩=

This is the intuitive interpretation and agrees with the
solution given earlier, except that we do not have

∅=∩∩∩ BCDA  and ∅=∩∩∩ ADCB .

However, the amount of work it took to get there and
the problem of producing the general case, together with
the problems involving the disjoint projections, means
that this version of the semantics is problematic. Although
it does have some things going for it:

• it would allow as legal the diagram in Figure 13,
as the context for Y would now be different from
the context for Z (but whether you would want
this diagram to be legal is another question and if
so, does this semantics agree with the intuitive
semantics?)

• there are fascinating mathematical intricacies in
this approach to the semantics!

The original version of the semantics is simple and
always gives an intuitive interpretation.

7. Conclusion and Related Work
We have introduced the concept of projections into

Venn-Euler and related diagrammatic systems and have
given them simple formal and intuitive semantics.
Projections form an integral part of spider diagrams and
constraint diagrams. Constraint diagrams have been used,
in conjunction with UML, in the modelling of
telecommunications systems for industry and projections
have proved invaluable in allowing complicated
invariants to be expressed with clarity. Formal semantics
have been given for spider diagrams [2] and are currently
being produced for constraint diagrams. Diagrammatic
reasoning rules have been developed for spider diagrams
[8] and these have been proved sound and complete for a
subset of the notation [7]. Reasoning rules involving
projections are currently being developed.
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