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Nesting in FKuler Diagrams

J. Flower > J. Howse*!' J. Taylor*!

School of Computing and Mathematical Sciences,
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Abstract

This paper outlines the notion of nesting in Euler diagrams, and how nesting affects
the interpretation and construction of such diagrams. After setting up the necessary
definitions for Euler diagrams at concrete syntax and abstract levels, the notion of
nestedness is introduced at the concrete level, then an equivalent notion is given at
the abstract level. The natural progression to the diagram semantics is explored.
In the final sections, we describe how this work supports tool-building for diagrams,
and how effective we might expect this support to be in terms of the proportion of
nested diagrams.

1 Introduction

The distinction between concrete diagrams (drawn in the plane) and abstract
diagrams (having just formal structure) was highlighted in [5]. The problem
of converting an abstract Euler diagram into a concrete representative was
addressed in [2]. This article extends work on Euler diagrams by incorporat-
ing the notion of a nested diagram (other choices of name could have been
disconnected or separated). Section 2 begins with the necessary background
notation and definitions for the rest of the paper.

The concept of nesting is most obvious, visually, for concrete diagram
representatives. In section 3 we define the notion of nesting in a concrete
Euler diagram and present an equivalent notion of nesting in an abstract
diagram. The two notions of nesting are shown to be equivalent under the
morphism from concrete to abstract diagrams (theorems 3.6,3.7).

Nesting in diagrams gives rise to different ways of writing down diagram
semantics, and one example in section 4/ points the way towards a “nested
normal form” for diagram semantics.
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One application of this work is in diagram generation algorithms which
are used to drive software tools. This application of the nested concept is
discussed in section 5.

Finally, in section 6, some statistics are presented at the end of the paper to
show how much leverage can be gained from making use of nesting in abstract
diagrams.

2 The context: Euler diagrams

Work in this section is largely based upon work from [2]. Euler diagrams form
the foundation of many diagrammatic notations such as Harel’s hi-graphs,
some UML notations [6] and constraint diagrams [4].

An abstract FEuler diagram comprises a set whose elements are called con-
tours and a set of zones which are subsets of the contour set.

Definition 2.1 An abstract (Euler) diagram is a pair: d = (C(d), Z(d))
where

(i) C(d) is a finite set whose members are called contours
(i) 0 € Z(d) CPC(d) is the set of zones of d, so z € Z(d) is z C C(d)
(i) U =z=C(d)
z€Z(d)
The set of abstract diagrams is denoted D.

Example 2.2 [Abstract diagram| This abstract diagram has three contours

and five zones: ({a,b,c}, {{},{a},{a,b},{b},{c}}) € D.

A concrete Euler diagram is a set of labelled contours (simple closed curves)
in the plane, each with a unique label. A zone is a connected component of
the complement of the contour set. The zone corresponding to the empty set
is the component outside all contours of the diagram.

~ A

Definition 2.3 A concrete (Euler) diagram is a triple d = (£(d),C(d), 2((2))
whose components are defined as follows:

(i) C(d) is a finite set of simple closed curves, contours, in the plane RZ.
Each contour has a label from the set £(d), so that the labelling mapping
C(d) — L(d) is a bijection.

(ii) contours meet transversely.

(iii) each component 2 € R* — |J ¢is a zone.

eet(d)

(iv) each zone is uniquely identified by a set of contours Z(d) C C(d) with
z= () interior(¢)N [  exterior(c).

eeB(d) ecl®(d)—B(d)

The set of concrete diagrams is denoted D.
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Fig. 1. Well-formed and not well-formed concrete diagrams

Example 2.4 [A concrete diagram| Let d be the first concrete diagram given
in figure(1. C(d) has four elements (the four contours shown) £(d) = {a, b, ¢, d}
and Z(d) has seven elements, uniquely determined by the label sets {}, {a},

{b}, {a,b}, {a,c}, {a,d} and {a,c, d}.

The rules about transverse crossings and connectedness of zones are the
chosen well-formedness rules for this paper. Figure [Il shows two well-formed
concrete diagrams and two which are not well-formed. In future work, we plan
to accommodate different definitions of “well-formed” concrete diagrams.

Definition 2.5 The mapping ab : DD (“ab” for “abstractify”) forgets
positioning of the contours. It is defined by

ab: (L(d),C(d), Z(d)) = (L(d), {L(2) : 2 € Z(d)})
Example 2.6 Let d be the concrete diagram given in figure 1. Then its
abstract diagram has:

A,

) C(ab(d)) = {a,b,c,d}
Z(ab(d)) = {{} . {a},{b} {a,b} ,{a,c} {a,d} {a,c,d}}

Definition 2.7 A concrete diagram d represents or complies with an abstract

diagram d if and only if d = ab(d). An abstract diagram which has a compliant
concrete representation is drawable.

Definition 2.8 An abstract labelled graph is a triple (L(G), V(G), £(G)) where
the components are defined as follows.
(i) L(G) is a set of labels
(ii) V(G) is a set of vertices. Each vertex ¢ is labelled with £L(v) C L(G)
(i) £(G) is a set of edges. Each edge é is a pair of vertices in V(G),
where the vertex labels must have a singleton symmetric difference (one
set exceeds the other by a single additional element). The label which
distinguishes the end vertices can be used to label the edge
The set of abstract labelled graphs is denoted £G.

Definition 2.9 The map dual : D — LG is defined by
(C(d), Z(d)) — (C(d), Z(d), E(G))
where the edges include all possible e = (v, v9) where v; and v, have singleton
symmetric difference.
This definition of the dual graph of an abstract diagram extends to a
definition of the dual of a concrete diagram.

3
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Definition 2.10 The map dual : D — £G is defined by
(L(d),C(d), Z(d)) — dual(ab((L(d),C(d), Z(d)))).

Note that this dual graph is not a topological construction. It is possible for
two zones which are not topologically adjacent in d to correspond to adjacent
vertices in the dual. However, if two zones are adjacent in d then the vertices
are bound to be adjacent in the dual.

Definition 2.11 [The connectivity conditions] An abstract labelled graph
(L(G),V(G),E(G)) satisfies the connectivity conditions if it is connected and,
for all labels [ € L(G), the subgraphs G7 (I) generated by vertices whose
labels include [, and G~ (I) generated by vertices whose labels exclude [ are
connected.

Theorem 2.12 (The connectivity theorem) Let d be a concrete diagram.
Then dual(d) satisfies the connectivity conditions. Hence, if abstract diagram
d is drawable then dual(d) satisfies the connectivity conditions.

3 Defining atomic and nested diagrams

We want to be able to identify nesting within a given diagram.

3.1 Nesting in concrete diagrams

Definition 3.1 d i is a nested concrete diagram if it can be split into at least
two sub- dlagrams dy, ..., d, where a contour in C (d ) never crosses any contour
inC (d )ind (i and j dlstmct) A diagram which is not nested is called atomic.

Proposition 3.2 A concrete Euler diagram d is nested if there exists a simple
closed curve v which doesn’t meet any of the contours of d, and splits the plane
into two parts, both including at least one contour of d.

Proposition 3.3 A concrete Euler diagram d is atomic if the union of its
contours is a connected subset of the plane.

Proposition 3.4 A concrete Euler diagram d is mested if it splits into sub-
dzagmms d1 and dg and there is a zone z € Z(dl) such that all contours in
C (dg) are contained within 2.

The following figure illustrates three equivalent approaches to nested con-
crete diagrams.

3.2 Nesting in abstract diagrams

The notions of crossing contours, topological connectedness or topological con-
tainment are unavailable to us when we define the notion nesting in the ab-
stract case.
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Fig. 2. Criteria for nesting in a Euler diagrams

Definition 3.5 An abstract Euler diagram d is nested if there exists a cut
vertex of dual(d). A diagram which is not nested is called atomic.

3.8 Consistency between abstract and concrete nesting

Figure 2| illustrates the relationship between nested concrete diagrams and
the presence of a (highlighted) cut vertex in the dual graph of the abstract
diagram.

We will show two results: if a concrete diagram is nested, then its abstract
diagram is also nested, and if an abstract diagram is nested, then all concrete
representations of it will be nested.

Theorem 3.6 Given an abstract diagram d which is nested, let d be any well-
formed concrete representation. Then d must be nested.

Proof. Let cv be a cutvertex of dual(d). The dual has n > 1 subgraphs
S, ..., S, obtained by removing the cutvertex and replacing it back into each
component in turn. By construction of the S; we have, for distinct ¢ and 7,

For each 1 < i < n, let C; C C(d) be the set of contour labels appearing
as edge labels of S;. Every contour in C(d) appears in one of these sets. We
will show that the sets C', ..., (), are disjoint, by contradiction.

Let ¢ € C; N C;. There are edges of e; in 5;, e;in S; which are both
labelled c. Let e; have ends v;, w; and e; have ends v;, w; where ¢ € v;,v; and
c & w;, wj.

Assume first that ¢ € cv so that v;,v; € S; — cv, S; — cv. Any path from
v; to v; must pass through the cutvertex cv, but the drawability of d tells us
that the dual satisfies the connectivity conditions, including the fact that the
subgraph restricted to those vertices which contain c¢ is connected. This is a
contradiction.

If, on the other hand, ¢ € cv then follow a similar line of argument using
w; and w;, and the contradiction comes from the connectivity condition that
the subgraph of S built from vertices which exclude ¢ is connected.

bt
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Thus C4, - Ch partition the contour set. It will be enough to show that
a contour ¢; € OZ can never cross a contour ¢; € C’j. If ¢; meets ¢; and the
diagram has transverse crossings, then there must be zones z, zU{¢;},2U{¢;}
and z U {¢;,¢;} in the abstract diagram d. The dual edges between z and
z U{¢} and between z U {¢;} and z U {¢;, ¢;} lie in subgraph S;, and the
dual edges between z and z U {¢;} and between z U {¢;} and z U {¢;, ¢;} lie in
subgraph S;. But the subgraphs S; and S; share only one vertex, the cutvertex
cv. This is a contradiction, so the partitioning of the contour set shows that
the concrete diagram d is nested. O

The second of these results only holds in the presence of the well-formedness
rules. (For example: A C B can be drawn non-nested if we allow tangential
contours.)

Theorem 3.7 Given a concrete diagram d which is nested, then its abstract
diagram ab(d) is nested.

Recall that topological adjacency implies dual adjacency but the converse
does not hold.

Proof. Let d be nested, and let Cs be the contours in an innermost connected
component of the union of contours of d (see 3.3). Let C; be é\(cz) —C,. Think
of contours in Cs as being “inside” some simple closed curve, v and contours
in C; being outside ~y (see 3.2).

This enables us to partition z (cZ) = Z; L {Zw} U Z,,; where the zones
in Zm have boundaries made up of contours from C’g, the zones in Zout have
boundaries made up of contours from C’l and the zone which has a boundary
meeting both contours from 01 and Cg is called Z,.

EZm/\ceCl = 0:Nc=10
€ ZuNCEC = 0:iné=0
dé €C1/\02 GCQ such that (9z}ﬂ€17$®/\82}ﬂ€27é®

Given any zone Z € Zn, there is a path « inside ~ from a point in Z to a
point in Z,. The symmetric difference between the abstract zones z € Z;,, and
2, consists of contours in C5. The partitioning of concrete zones induces a
partitioning of abstract zones with symmetric difference properties (use A to
denote set symmetric difference).

Z(d) = Zip U {2} U Zowe
2€Zy, = 20z, CCNzAz, #0D
2€Zu = 202, CCoNzAzy#0)
Zlezin/\ZQEZout = ZlAZQIZlAZ,YUZQAZW

The symmetric difference of abstract zones in sets Z;, and Z,,; contains at
least two elements, so no two are adjacent. The zone z, acts as a pathway in
the dual graph from 2, to Z,,, and is a cut vertex of the dual graph. d

6
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4 The semantics of nested diagrams

A model for Euler diagrams assigns sets to contours. Given a diagram, some
models will be valid and others invalid, according to the indicated set contain-
ment and disjointness rules.

Definition 4.1 A model for diagram d is an assignment ¢ : C(d) — P(U),
where U is some universal set. Such a mapping ¢ extends to a set assignment
to zones:

Y Z(d) — Set;z— ()(e) N[ )¥(e)

cEz cZz

The overline used here means set complement in the context of the uni-
versal set U. The extension of 1 to zones ensures that two different zones
correspond to disjoint sets.

Definition 4.2 A mapping v is valid for diagram d if the extension of ¢ to
zones satisfies the plane tiling condition: that the sets represented by all zones
union to make up the whole of the universal set.

U vz =U

z€Z(d)

Example 4.3 [A valid model] Consider the first diagram given in Figure [1.
Define a mapping from contours to sets and extend it to a mapping from zones
to sets. Take a universal set U = {1,2,3,4,5}

Y :{a,b,c,d} — Set; Z(d) — Set
a— {1,2,3,4};b— {4,5};c— {1,2};d — {2,3}
{} = {}ifa) = {}:{b} — {5}: {a, b} — {4}
{a, ¢} = {1};{a, d} = {3}:{a, c,;d} — {2}
Example 4.4 [An invalid model] Consider the first diagram given in Figure [I.

Define a mapping from contours to sets and extend it to a mapping from zones
to sets. Take a universal set U = {1,2,3,4,5}

Y :{a,b,c,d} — Set; Z(d) — Set
a— {1,2,3,4};b— {3,4,5};¢— {1,2};d — {2,3}
{} = {}{a} = {}:{b} = {};{a, b} — {4}
{a,c} = {1} {a, d} = {}:{a, ¢, d} — {2}
The zones only combine to make {1,2,4} # U and the plane tiling condition
is not satisfied. The model is not valid.

The semantics of an abstract Euler diagram are encapsulated in the plane
tiling condition. This could be taken as a normal form for the semantics.

Example 4.5 Consider the first diagram given in Figure 1. The normal form
of its semantics is

(ANBNCND)U(ANBNCND)U(ANBNCND)U
7
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(ANBNCND)U(ANBNCND)UANBNCND)U(ANBNCND)=U

If a diagram is nested, then this normal form for the diagram semantics
can be simplified to a nested normal form:

Example 4.6 Consider the first diagram given in Figure [1. The nested nor-
mal form of its semantics is as follows. The contours partition into {a,b} U
{c,d}. This partition gives a nested normal form:

((ZmE)u(AmE)u(ZmB)u(AmB):U) A (c,DgAmE)
/\((UHEOAHF)U(CHE)U(UHD)u(CmD):AHE)

The first part of this expression is the semantics for the containing subdia-
gram. The second part expresses a containment relationship about the con-
tours inserted into the containing diagram. The third part is similar to the
semantics for the inner subdiagram, with the universal set taken to be the
set of the zone into which the inner diagram is inserted, and the “outside”
zone replaced with the intermediate zone between the inserted diagram and
the containing diagram.
This nested normal form simplifies further to give

A B.CCDCUNCCANBADCANB

This final simplification is evident from the nested normal form, by noticing
that, for example, (AN B)U (AN B)U (AN B)U (AN B) = U reduces to
A CU and B C U. The more concise expression was disguised in the first
normal form.

There remains a question: is there such a concept as a “nested proposi-
tion”, which, expressed as as Euler diagram, would yield a nested diagram?
Is there a “nested normal form” for propositions?

5 Constructing atomic and nested diagrams

An algorithm has been devised and implemented to create drawings of draw-
able Euler diagrams [2]. To enhance the efficiency of the algorithm and the
readability of its output, we describe here an approach to make use of nesting
in the abstract Euler diagrams.

Given an abstract Euler diagram d whose dual has a cut vertex, there are
sub-graphs 51, ..., S, of the dual(d) obtainable by removing the cut vertex
and replacing it, in turn, to each component. Without loss of generality, S,
contains a vertex labelled by the empty set. (Possibly other subgraphs do too,
if the cutvertex is the null vertex).

Draw a concrete representation for the diagram whose dual is S7, and add
to it places to insert n — 1 other diagrams inside the zone corresponding to
the cut-vertex. Think of the diagram as a template, as in [3].

8
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The other n — 1 subgraphs of the dual have vertex labels which are all
supersets of the cut vertex. Replace each abstract zone z with z — cv. Then
each of subgraph can be represented by a concrete diagram. These concrete
diagrams are inserted into the template, to make up d.

Figure 3| shows an example where the dual has two cut vertices {} and
{a}. The containing diagram is used as template with insertion into two
different zones. The subgraph in zone {a} has vertices are {a}, {a, c}, which
are all reduced to {}, {c} before constructing the inner concrete diagram. The

Fig. 3. Constructing concrete nested diagrams using templates

sub-diagrams constructed for insertion into the template correspond to part
of the semantic expression in nested normal form. The nested normal form
essentially combines information from the template diagram, information from
the sub-diagrams and information about the inclusion of the subdiagram into
the template.

6 Counting atomic and nested diagrams

To see the leverage gained by using the nesting concept in semantics or draw-
ing problems, consider how the numbers of abstract diagrams grow with the
number of contours. The following table shows how many well-formed dia-
grams there are with a given number of contours (by row) and a given number
of zones (by column). The number of diagrams is seen to grow quickly, but
the number of atomic diagrams, shown in brackets, grows much less quickly.
Drawing nested diagrams using templates as described in the previous section
can handle the vast majority of diagrams, leaving just a few atomic examples
to be drawn without using a template.

3z | 4z | bz | 6z 7z 87
2c | 2 | 1(1)
3¢ 4 4 13(3)33) | 1(1)
4c 9| 15 20 | 30(14)
ac 20 20 101

The figure shows some of these diagrams in concrete form. The first col-
umn shows the atomic examples and the later columns show nested examples.
Studying these diagrams may give insight into methods for counting the dia-
grams - use tree-counting (eg in [I]) or group symmetries, for example.

9
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Fig. 4. Examples of small Euler diagrams
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