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Abstract. The object Constraint Language (OCL), which forms part of the
UML set of modelling notations, is a precise, textual language for expressing
constraints that cannot be shown diagrammatically in UML. This paper reflects
on a number of aspects of the syntax and semantics of the OCL, and makes
proposals for clarification or extension. Specifically, the paper suggests that: the
concept of flattening collections of collections is unnecessary, state models
should be connectable to class models, defining object creation should be made
more convenient, OCL should be based on a 2-valued logic, set subtraction
should be covered more fully, and a "let" feature should be introduced.

1 Introduction

The Object Constraint Language [12] is a precise, textual language designed to
complement the largely graphical UML [11]. Specifically, OCL supports the
expression of invariants, preconditions and postconditions, allowing the modeller to
define precise constraints on the behaviour of a model, without getting embroiled in
implementation details.

OCL is the culmination of recent work in object-oriented modelling [1, 2, 3, 8]
(which has selected ideas from formal methods to combine with diagrammatic,
object-oriented modelling resulting in a more precise, robust and expressive notation.
Syntropy [1] extended OMT [13] with a Z-like textual language for adding invariants
to class diagrams and annotating transitions on state diagrams with preconditions and
postconditions. Catalysis [2, 3] has done something very similar. OCL adopts a
simple non-symbolic syntax and restricts itself to a small set of core concepts.

One of the most important aspects of OCL is that it is part of the Unified
Modelling Language, which has recently become a standard modelling language,
under the auspices of the Object Management Group. As a result, it is likely to get
much greater exposure and use than previously proposed formal specification
languages such as VDM [9] and Z [14], and work invested in ensuring that it is
correct and appropriate for its purpose is therefore more likely to reap a dividend than
work on the aforementioned languages.

The purpose of this paper is to contribute to discussions on the correctness and
appropriateness of OCL. We identify a number of issues which, in our opinion, need
to be resolved; where possible we suggest a solution, or at least an outline direction
for further investigation.



The paper is organised as follows. Section 2 deals with navigation in object-
oriented modelling, in particular navigating from collections. Section 3 considers
object states. Section 4 considers object creation and the feature allInstances .
Section 5 looks at the issue of undefined values. Section 6 proposes adding more
collection operations. Section 7 suggests allowing local definitions. And section 8
briefly summarises the issues examined and proposes that future semantics work on
OCL be driven by the needs of CASE tool builders and users.

2 Navigation in OO Modelling

Navigation in OO modelling means following links from one object to locate another
object or a collection of objects. It is possible to navigate across many links, and
hence to navigate from a collection to a collection. Navigation is at the core of OCL.
OCL expressions allow us to write constraints on the behaviour of objects identified
by navigating from the object or objects which are the focus of the constraint. At the
specification level, the expressions appear in invariants, preconditions and
postconditions.

In this section we review some of the issues concerning the meaning of navigation
expressions, and outline a semantics for them which takes account of these issues. We
conclude by examining what the OCL specification says about navigation expressions
and suggest that the notion of flattening collections of collections is not needed.
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Fig. 1. A class diagram for a seminar scheduling system



2.1 Example Model

Fig. 1 presents a small, contrived example of a class model in UML for a simple
system that supports scheduling of offerings of seminars to a collection of attendees
by presenters who must be qualified for the seminars they present. A full description
of the notation can be found in [11] and a distilled description can be found in [4].

2.2 Navigating from single objects

Navigation expressions start with an object, which can be explicitly declared or given
by a context. For example, a declaration such as s:Seminar  means that s  is a
variable that can refer to an object taken from the set of objects conforming to type
Seminar . Here, the type name is used to represent the set of objects in the model
that conform to the type.

A navigation expression is written using an attribute or role name, and an optional
parameter list. Given the earlier declaration, the OCL expression s.title
represents the value of the attribute title  for the object represented by s . An OCL
expression can also use the name self to refer to a contextual instance. In the
following example, self  refers to an instance of Seminar .

Seminar
self.title

Navigating from an object via an association role can result in a single object or a
collection, depending on the cardinality annotations of the association role. A
collection is, by default, a set. For example, given the declaration p:Presenter ,
the expression p.qualifiedFor  results in the set of seminars p is qualified to
present.

The association between Seminar  and Offering  has the annotation
{ordered}  on the offering  role. As a result, the expression s.offering ,
where s  is a seminar, results in a sequence. Notice that this means that the operator
". " is overloaded, because it can map from an object to a set, to a bag, or to a
sequence.

2.3 Navigating from collections

Assume we have the declaration p:Presenter . The OCL navigation expression
p.qualifiedFor.title  (which is an abbreviation of the following expression
p.qualifiedFor->collect(title) ) involves navigating first from a single
object and then from a collection, namely the set of seminars for which presenter p is
qualified. This is because the expression parses as (p.qualifiedFor).title .
The result of this expression is obtained by applying title  to each member of the
set p.qualifiedFor .

Similarly, navigating from a bag yields a bag and navigating from a sequence
yields a sequence (but see section 2.4). This means that every property (attribute or



association role) must, in general, be applicable to a set, a bag or a sequence, and this
can be seen in terms of overloading of the navigation operators. For example, within
the model of Fig. 1, we have the following overloaded versions of the "_.name " and
"_.date " operators (the symbol "_" indicates the position of the argument):

_.name: Presenter → String
_.name: Set(Presenter) → Bag(String)
_.name: Bag(Presenter) → Bag(String)
_.date: Offering → Date
_.date: Sequence(Offering) → Sequence(Date)

Hence, the OCL expressions p.name ,(p.qualifiedFor).name ,
(p.qualifiedFor->asBag).name , and (s.Offering).date  are well-
typed. The operator asBag  converts a set or a sequence into a bag.

The overloaded versions of the operator "_.property " (property  is an
attribute or association role) must satisfy the  axioms:

Set{}.property = Bag{}
(s->including(e)).property =

(s->excluding(e).property)->including(e.property)

Bag{}.property = Bag{}
(b->including(e)).property =

(b.property)->including(e.property)

Sequence{}.property = Sequence{}
(q->including(e)).property =

(q.property)->including(e.property)

Intuitively, these axioms define that applying property to a collection yields a
second collection, obtained by applying property  to each element of the original
collection. In the axioms, s  is a set, b is a bag and q is a sequence, e is some element.
Here e.property  returns a single element; we can give similar axioms for the case
where e.property  returns a collection.

OCL specifies navigation from collections by using the feature collect , which
takes a collection and an expression as arguments and yields a collection obtained by
applying the expression to each element in the collection. When the type of the
expression is also a collection then the result can be seen as a collection of collections.
According to the OCL documentation, a collection of collections is automatically
flattened.  Such a view is easy to teach to modellers, but hard to define without falling
into traps. For instance, a well-defined function will satisfy

x = y implies f(x) = f(y)

where x  and y  are values and f  is a function. Consider the following OCL navigation
expression.



sss.presenter->collect(qualifiedFor)

where sss  is an object of type SeminarSchedulingSystem . The first part of
the expression

sss.presenter

yields a set of presenters. The full expression, without flattening, yields a bag of sets
of seminars, such as

Bag{ Set{s1, s2}, Set{s2, s3} }

With flattening, the full expression yields a bag of seminars, such as

Bag{ s1, s2, s2, s3 }

In the flattening step, no elements are lost or gained (we just lose structure). The
two expressions above are of types Bag(Set(Seminar))  and Bag(Seminar) ,
respectively. Thus, any well-defined function we wish to specify on elements of type
Bag(Seminar)  will not apply to elements of type Bag(Set(Seminar)) , unless
we specify it in various overloaded forms. There would be as many overloaded forms
as there are possible levels of structure in the model.

If, instead, OCL defined the result of navigating via collections simply in terms of
left-to-right parsing, there would be no need for any concept of flattening. For
instance,

sss.presenter.qualifiedFor.offering

is parsed as

( (sss. presenter ).qualifiedFor) ).offering

whose meaning can be found by repeated application of navigation from one
collection to another. Each application of navigation yields a collection, which is the
source of the next navigation. This does not entail building a collection of collections
of collections and then flattening it.

2.4 Navigating from sequences

According to the OCL document, navigating from a sequence yields another
sequence. For example, given the declaration s:Seminar , the expression
s.offering  results in the sequence of offerings for seminar s . The expression
s.offering.attendee  results in the sequence of attendees for all offerings of
seminar s .  The value of this expression is obtained by applying the association role
attendee  to each element of the sequence s.offering . This results in a
sequence of sets which is then flattened to give the desired sequence. However, there
are many ways to flatten sequence of sets, which would result in different sequences.



OCL does not indicate how such collections of collections are flattened. In addition,
there are situations where it is not appropriate to get a sequence when navigating from
a sequence. For example, given a seminar s  we would be more interested in the bag
of all attendees for all offerings of s  rather than in the (underspecified) sequence.

3 States

In object-oriented modelling, class diagrams can be supplemented by state diagrams.
A state diagram for a given object type shows the possible states an object of this type
can be in, together with the transitions that move an object from one state to another.
A state diagram contributes to the behavioural specification of a type in a model. An
object state is an abstraction of its detailed property values. Fig. 2 shows a state
diagram of Offering with two states, Scheduled  and Cancelled , meaning
that an offering of a seminar can be scheduled or cancelled but not both. There are
several ways of connecting class diagrams and state diagrams. One approach is taken
by Syntropy [1], which amounts to treating states as dynamic subtypes, so that an
object can move from one type to another. A second approach is to treat states as if
they were boolean attributes in class diagrams. In UML it is not clear how to connect
class diagrams and state diagrams, and OCL does not clarify the issue.

Schedule
d

CancelledH

Offering

cancel (...)

Fig. 2. A state diagram for a seminar offering

If UML allows states to be represented as dynamic subtypes on a class diagram
then the OCL feature oclIsKindOf  can be used to assert that an object is in a given
state. For example, we could use o.oclIsKindOf(Scheduled)  to assert that
offering o is in the state Scheduled .

If states are represented as boolean attributes then the corresponding attributes
could be used to represent states in OCL. For example the expression p.Scheduled
would be true if p is in state Scheduled , and false otherwise. These state-model
attributes can related to other properties by means of invariants. For example, the state
Cancelled  in Fig. 2 can be related to the attribute goingAhead  in Fig. 1 by an
obvious invariant.

Yet another way would be to introduce a function:



_in_:Presentation,State → Boolean

where (p in Scheduled) is true if p is in state Scheduled , and false otherwise,
and where State  would be an enumerated type of object states.

From the point of view of using OCL, the mapping to boolean attributes is,
perhaps, the easiest to explain to modellers. However, from the point of view of
providing an integrated semantics for UML, treating states as dynamic types might be
the most elegant approach: substating then has the same semantics as inheritance,
dynamic classes in class diagrams are just states in state diagrams, there can be
associations targeted and sourced on states (dynamic classes), and so on.1 Whichever
approach is chosen, it should be clear to modellers how the names of states can be
defined in terms of class model properties, and how they can be used in OCL
expressions.

4 Object creation

OCL provides a type operation allInstances , which delivers a set of all
instances of a given type. For example, Presentation.allInstances  would
be a set of all instances of type Presentation in the model at a given point in
time. Although the italicised condition is not explicitly covered in the OCL
documentation, it has been inferred from a private communication on object creation
with Jos Warmer, one of the authors of the OCL. In general, for a given type T, the
meaning of T.allInstances  is the set of all elements of type T at some moment
in the life of a model containing type T.

The set T.allInstances  can change as a result of creation operations
associated with the type T.  One use of allInstances  is in the postcondition of an
operation specification to assert that an object has been created. In the example
system, one result of executing an operation schedule  is the creation of a new
offering. In order to assert that a new offering o is created, we need to assert that it
did not exist prior to executing the operation but does exist after executing the
operation. We can use the allInstances  operation, as follows:

(Offering.allInstances - Offering.allInstances@pre)
-> includes(o)

where Offering.allInstances@pre  is the set of offerings that existed in the
model prior to executing schedule . Asserting that a new object has been created is
such a common thing to do that we propose the introduction of a limited number of
convenient abbreviations. Here are two candidates.

                                                          
111 Note that this semantics is not necessarily in accordance with the semantics of state

diagrams as currently described in the UML 1.1. documentation. Discussion of the
relationship between these two approaches appears in [10].



SeminarSchedulingSystem::schedule( s:Seminar, d : Date )

post:
self.seminar.offering->exists( o : Offering |

Offering.allInstances-Offering.allInstances@pre
->includes( o )

and o.seminar = s
and o.date = d
and o.attendee->isEmpty
and o.presenter->isEmpty
and o.goingAhead)

Fig. 3. Specification of operation schedule

The first recognises that asserting creation in a postcondition often involves saying
"there is a new object o of type T and it has the following properties." For example, in
the model of Fig. 1, the postcondition of an operation to schedule a new presentation
of a seminar is given in Fig. 3.

Loosely, this begins by saying that after the schedule operation there exists an
offering which was not in the set of offerings before the operation, and continues by
defining four properties of the new offering (seminar, date, attendee and presenter).
This is such a common idiom that a combined operator to assert existence and
newness would be useful, as in Fig. 4.

SeminarSchedulingSystem::schedule( s:Seminar, d : Date )

post:
self.seminar.offering->existsNew( o : Offering |

and o.seminar = s
and o.date = d
and o.attendee->isEmpty
and o.presenter->isEmpty
and o.goingAhead)

Fig. 4. Alternative specification of operation schedule

Now the newness is captured in the operator and the body of the quantified
expression concentrates on defining what properties the new object should have.

Our second candidate for a convenient operator associated with creation is inspired
by the allInstances  operator. An operator newInstances , as in, for example,

Offering.newInstances

could be used in postconditions to mean exactly those instances of type Offering
that did not exist in the pre-state. The Catalysis method [3] has something similar. We
see no harm in having several overlapping ways to talk about new objects.



5 Undefined Values

The OCL document [12] (p7) admits the possibility that some expressions may be
undefined when evaluated. Having an undefined value could be important for a
number of purposes. It could serve as the result of an illegal operation such as
dividing by zero; or as indicated in the OCL definition (p15) when asking for the
property of an object that has been destroyed in the post-condition of an operation; or
for the @pre property of one that has just been created; or when type casting (p6). In
addition, an undefined value could be used to stand for a non-terminating computation
such as an infinite loop.

Several approaches have been used in other languages to deal with undefined
expressions. One approach is to regard undefined expressions as being unknown or
underspecified. In this case the result of, for instance, dividing 1 by 0 is an integer but
its value is unknown. This is similar to declaring a variable of a given type: the
variable has a value of the declared type, but the precise value is unknown. In this
approach, Boolean expressions are either true or false, resulting in a two-valued
logical system. It is the approach generally adopted in classical mathematics, which
admits only total functions, and in some formal specification languages, such as the
Larch Shared Language [5].

Another approach is to include a special value ⊥ to denote that something is
undefined. If the logical connectives are treated as boolean functions then the
undefined value propagates into logical expressions. For example, b and ⊥ = ⊥.
This results in a 3-valued logic, as in, for instance, VDM.

Yet another approach, adopted by Z, is to maintain the distinction between logical
operators and expressions. Undefined expressions are interpreted as meaningless, that
is, they do not denote anything in the interpretation domain. Since logical expressions
are not treated as expressions within the language, their truth values are unknown if
they involve undefined expressions.

In OCL expressions can be undefined. However, it is not clear from the
documentation what is meant by being undefined. One possibility is that undefined is
not interpreted as unknown. Let ⊥ stand for the undefined value. According to OCL,
if a subexpression of an expression evaluates to undefined then the whole expression
is undefined. The only exceptions to this are:

True or ⊥ =True
⊥ or True = True
False and ⊥ = False
⊥ and False = False

that is, True OR-ed with anything is True , and False  AND-ed with anything is
False . With other Boolean operations we deduce the following:

False implies ⊥ = True
⊥ implies True = True
not( ⊥) = ⊥



The boolean operations agree with the classical logical connectives on the ordinary
truth values, i.e., True  and False . However, when ⊥ is involved they reflect a
model of computation which is mainly strict. For example, with the operation not , if
the argument is undefined then whole expression is undefined, that is to say not  is
strict in its argument. The operation or , however, is not strict in either the first or the
second argument.

In addition we have the following axiom:

⊥ or ⊥ = ⊥

which implies the law of excluded middle does not always hold, that is, a Boolean
expression can be true, false or undefined. (From the definition of b implies b2 ,
i.e., (not b) or (b and b2) , given on p24 of the OCL document, we could
deduce that ⊥ implies True = ⊥, which is not consistent with either 2-valued
or 3-valued logic. However, this definition is probably erroneous and should have
been (not b) or b2 .)

There is one place in OCL where undefinedness definitely is not required: when
navigating over an optional association (cardinality 0..1 ). By forcing the result of
navigation to be a set, the equivalent of a 'null' or 'nil' reference is the empty set (and
similarly for optional attributes). Thus 'null' does not correspond to an undefined
value.

Both 2-valued and 3-valued logics have advantages. However, we would suggest
that OCL be based on a 2-valued logic, for the following reasons. If the logic is to be
used for specifying properties without reasoning about partial functions, 2-valued
logic seems appropriate and simpler. In addition, reasoning with 3-valued logic is
harder because of the absence of some logical laws, e.g., the law of excluded middle.
We would suggest that an understanding of 3-valued logic is not required by users, so
perhaps references to 3-valued logic are an unnecessary complication if practitioners
are the audience.

6 Completing the set of collection operators

In its current form, the OCL contains an includes  operation, as in
p.qualifiedFor ->includes(s) , which says that seminar s is an element of
the set p.qualifiedFor (the set of seminars p is qualified to present), but there is
no p.qualifiedFor->excludes(s) . Perhaps more importantly, there is
p.qualifiedFor->includesAll(p1.qualifiedFor ) , saying that the set
p1 .qualifiedFor  is a subset of p.qualifiedFor , but no
p.qualifiedFor ->excludesAll( p1. qualifiedFor ) . Instead the latter
has to be expressed using the rather cumbersome expression:

(p. qualifiedFor ->intersection(p1. qualifiedFor ))
-> isEmpty

There is, however, an operation p.qualifiedFor ->excluding(s) , and the
set subtraction operator "-" found in traditional mathematical notation. We suggest



that the set of operations on collections could be extended so that the inclusive
operators all have their exclusive counterparts.

7 Local definitions

In VDM [9], "let" expressions have the following syntax:

let(x = expr : oclExpression) in
 (expr1 : oclExpression) end

:expr1.evaluationType

The value of a let expression is evaluated by evaluating expression expr  and then
using the result in the evaluation of expr1. This is equivalent to expr1[expr/x ]
(the expression expr1  with x  substituted for expr ).

Let expressions are useful when the same expression needs to be used a number of
times in the same assertion. This is particularly true when long navigation expressions
are combined with operators on collections to identify particular sets of objects. Then
having to repeat such expressions several times is cumbersome, and can obscure the
meaning of the overall assertion. We therefore recommend that some form of local
definition mechanism be included.

8 Further work

In this paper we have considered some issues related to the OCL language. We
believe that the ideas we have presented about navigation should be tested by
including them in a proper formal semantics for OCL.

With regard to object states, we have commented on the fact that there is a problem
in UML with the integration of state and class diagrams, and no attempt has been
made to resolve this in OCL. We have sketched some approaches to providing an
integrated semantics. However, there is semantic work to be done here, too. For
instance, the approach based on dynamic subtypes is at odds with the (informally
described) semantics provided as part of the UML 1.1. In particular, it takes no
account of events and requires the restriction that all transitions must be atomic and at
the same level of granularity to be lifted. We believe that work in this area is crucial if
UML is to proceed any further, especially when one considers that UML-RT (Real
Time) is likely to provide us with yet another possible semantics for state diagrams
and, at least initially, seems to be taking a "bolt on" rather than "integrative"
approach.

In general, the integration of the UML notation set, including OCL, needs
attention.

We have highlighted a range of approaches in the formal methods literature for
dealing with undefinedness. We do not believe this issue can be resolved without
providing a formal semantics for OCL, and the way it is resolved will depend on the
semantics approach taken. We believe that a semantics should be built for a purpose,



which in our view should be to support CASE tools for reasoning about and checking
the integrity of models specified using UML and OCL.
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