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Abstract. We describe a method for drawing graph enhanced Euler diagrams 
using a three stage method. The first stage is to lay out the underlying Euler dia-
gram using a multicriteria optimizing system. The second stage is to find 
suitable locations for nodes in the zones of the Euler diagram using a force 
based method. The third stage is to minimize edge crossings and total edge 
length by swapping the location of nodes that are in the same zone with a mul-
ticriteria hill climbing method. We show a working version of the software that 
draws spider diagrams. Spider diagrams represent logical expressions by super-
imposing graphs upon an Euler diagram. This application requires an extra step 
in the drawing process because the embedded graphs only convey information 
about the connectedness of nodes and so a spanning tree must be chosen for 
each maximally connected component. Similar notations to Euler diagrams en-
hanced with graphs are common in many applications and our method is gener-
alizable to drawing Hypergraphs represented in the subset standard, or to draw-
ing Higraphs where edges are restricted to connecting with only atomic nodes. 

1   Introduction 

The system described here links graph drawing and Euler diagram drawing into a 
system for drawing graph-enhanced Euler diagrams. In this sort of representation the 
nodes of the graph are required to appear in certain zones of the Euler diagram. Our 
approach is to draw the Euler diagram first, and later add the graph in a way that 
minimizes edge crossing and edge length. 

There are various application areas which can be visualized by such structures and 
so benefit from the work described here such as databases [3] and file system organi-
zation [2]. However, we show our system being used with a form of constraint dia-
gram, the spider diagram [12]. This application area is in particular need of automatic 
layout for the diagrams because automatic reasoning algorithms produce abstract 
diagrams that have no physical layout. 

An Euler diagram is a collection of contours (drawn as simple closed curves), ar-
ranged with specific overlaps.  The parts of the plane distinguished by being contained 



within some contours and excluded from other contours are called zones. The essential 
structure of an Euler diagram is encapsulated by an abstract Euler diagram. An ab-
stract Euler diagram is made up of information about contours and zones. Contours at 
the abstract level are not drawn, but have distinguishing contour labels.  Zones are not 
parts of the plane, but a partition of the contour set into containing contours and ex-
cluding contours.  To clarify these concepts, figure 1 shows, first, an abstract Euler 
diagram, and, second, a drawn representation of the same Euler diagram.  The shaded 
zone in the drawn diagram corresponds to the abstract zone ({a},{b}). 
 
 
 
Contours : { a, b } 
Zones: {({},{a, b}),({a},{b}),({b},{a })} 
 

 
Fig. 1. The distinction between an abstract Euler diagram and a corresponding drawn Euler 
diagram. 

The task of drawing an Euler diagram - taking an abstract diagram and producing a 
corresponding drawn Euler diagram is analogous to the field of graph drawing.  Previ-
ous research has addressed some initial issues concerning the drawing of Euler dia-
grams.  The paper [5] outlined well-formedness conditions on drawn diagrams and 
presented an algorithm to identify whether an abstract diagram was drawable subject 
to those conditions.  If a diagram was diagnosed as drawable, then a drawing was 
produced.  Later work, [6], sought to enhance the layout of a drawn Euler diagram 
using a hill-climbing approach in combination with a range of layout metrics to assess 
the quality of a drawing. 

There has been some previous work in drawing extended graph systems. Clustered 
graph visualization systems are common (e.g. [4,8]), but in such structures the regions 
only nest and cannot intersect, hence they are not as expressive as Euler diagrams. 
There are a limited amount of drawing methods for more complex graph-like struc-
tures such as hypergraphs and higraphs. Hypergraphs are similar to standard graphs, 
but with hyperedges rather than edges. Hyperedges connect to several nodes, in con-
trast with standard edges which are binary as they always connect to two nodes. Hy-
pergraphs are commonly represented in two ways: by the edge standard and the subset 
standard [10]. The edge standard draws hyperedges as lines, effectively adding a 
dummy node for each hyperedge, where the lines connecting to each node meet. Visu-
alizing this representation reduces to a graph drawing problem. The subset standard is 
a representation closer to enhanced Euler diagrams, where the hyperedges are indi-
cated by closed curves surrounding the grouped nodes. However, there are still sig-
nificant differences as hypergraph closed curves that intersect have no extra meaning, 
and current hypergraph drawing methods [1] emphasize node groupings, discounting 
the layout of the curves. Hypergraphs with binary edges are represented with the edge 
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standard and with non binary edges represented with the subset standard are similar to 
commonly applied subsets of higraphs [7,9]. 

Could we include a figure here which shows two equivalent hypergraph drawings 
which, if they were interpreted as Euler diagrams, would be different? 

(Jean , can you lay this out how you want it?) 
 

  
 
In graph-enhanced Euler diagrams, the absence of a zone from the second figure 

would convey extra information, whereas, considered as hypergraphs, these two fig-
ures convey the same information 

 
Inspired by the widespread use of diagrammatic notations for modeling and speci-

fying software systems, there has been much work recently about giving diagrammatic 
notations formal semantics.  The analysis of a diagrammatic specification can be done 
using diagrammatic reasoning rules - rules to transform one diagrammatic assertion 
into a new diagram that represents equivalent or a weaker semantic statement. 

One such notation, and reasoning system, is that of constraint diagrams [11]. A 
simple subset of constraint diagrams, with a restricted notation and restricted rule 
system, is that of spider diagrams.  Spider diagrams are Euler diagrams with extra 
notation comprising shading in zones and a graph superimposed on the diagram.  The 
components of the superimposed graph are trees (called spiders).  Contours represent 
sets, so zones represent subsets of those sets, built from intersection and exclusion. 
The absence of a zone from the diagram indicates that the set corresponding to that 
zone is empty.  Each spider drawn on the diagram has a habitat: the collection of 
zones that contain nodes of the graph.  The spiders assert semantically the existence of 
an element in the set corresponding to its habitat.  Spiders place lower bounds on the 
cardinality of sets. Shading in a zone (or collection of zones) indicates that the set 
corresponding to that zone (or zones) contains only elements for the spiders, and no 
more.  Shading places an upper limit on the cardinality of sets. See figure 2 for an 
example of a spider diagram. 

jaf28
Cut the 1st yellow para, gove the figure a ca
unhighlighht

jaf28
Need refs for "formal semantics"

jaf28
ref 11 is in paperTemp.doc but not this copy - I must have neglected to highlight it.

jaf28
so  -> and



 
Contours : { a, b } 
Zones: {({},{a, b}),({a},{b}),({b},{a })} 
Shading:{({},{a, b})} 
Spiders : {{({},{a,b}),({b},{a})},{({a},{b})} } 
 
Semantics: 
|A| = 1 and {}=∩ BA  and |U-A| ≥ 1 

 
Fig. 2. An abstract spider diagram and a corresponding drawn spider diagram. 

The semantics of spider diagrams provide a foundation upon which we build rea-
soning rules. In the case of spider diagrams, there are seven rules which transform a 
spider diagram into another. For example, one rule transforms a diagram with an ab-
sent zone into the equivalent diagram which contains the zone and it is shaded.  This 
reasoning rule changes the structure of the underlying Euler diagram and necessitates 
reconstruction of a drawn diagram. A sequence of reasoning rules, applied to a prem-
ise diagram, gives a proof which ends with a conclusion diagram.  Such a proof is 
shown, drawn by hand, in figure X. 

 

 
premise 

   
conclusion 

Fig. whatever. An example of a proof in the spider diagram reasoning system 

The full spider diagram reasoning system allows for the manipulation and interpre-
tation of compound spider diagrams: that is, expressions built up from spider diagrams 
using the propositional logic connectives “and” and “or”.  This extension leads to 
many more reasoning rules, giving a sound and complete reasoning system, equivalent 
in its expressiveness to monadic first order predicate logic with equality.  Detailed 
descriptions of the system, its rules and its expressiveness can be found in [12]. 

At the heart of a tool to assist users with the application of reasoning rules to trans-
form diagrams must be an algorithm to generate diagrams to be presented to the user 
as the outcome of a rule application. 

2   Drawing Euler Diagrams Enhanced With Graphs 

In this section we describe our three stage generic method for laying out graphs on 
Euler diagrams. The software system has been implemented in Java. 
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2.1   Stage 1: Euler Diagram Smoothing 

The basic process of drawing Euler diagrams in stage 1 has been detailed previously 
[6]. In outline, firstly we produce an initial diagram based on the zone specification as 
described in [5]. This results in a structurally correct, but not very well laid out dia-
gram. We then apply a multicriteria optimizer, which attempts to improve a weighted 
sum of various diagram layout criteria using a hill climbing method. This adjusts the 
contours (represented by polygons) and assesses the new layout for presence of the 
correct zones and to see if the change has improved the weighted sum. The criteria 
and the hill climber are described in [6]. 

This system has since been extended to deal with nested diagrams. Nested Euler 
diagrams have subdiagrams entirely enclosed in a zone of a containing diagram. To 
draw a nested diagram, assuming we have a mechanism for drawing each atomic (non-
nested) part independently, the first step is to identify, in the abstract diagram, which 
are the atomic components and which zones of containing diagrams each nested part 
belongs to.  Each atomic component can be drawn and this tree-structure of drawn 
atomic components is combined into a single diagram as follows. For each zone which 
contains sub-diagrams, find its bounding box and consider sequences of sub-boxes 
within the bounding box. The sub-boxes occupy a fraction j

i of the bounding box, 

and are placed sequentially at 2)( ij − positions scanning the whole bounding box 
(starting centrally).  As j gets larger, the subboxes shrink and eventually one will be 
found which fits inside the zone.  This sub-box is partitioned into disjoint boxes, 
within which the nested diagrams are inserted. This process is illustrated in Fig. Y. 

 
 
 
 

 
                            
 

                  

 

 
Fig. n. Nesting Euler diagrams. 

 Once the nested diagram has been built in this way, the next step is to improve its 
appearance by smoothing. As the nesting can be arbitrarily deep the amount of move-
ment of polygons and polygon corners could be too large for very small nested con-
tours. Hence, the amount of movement has been scaled to be proportional to the size 
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of the contour (in fact the bounding box of the contour) against the size of the whole 
diagram. 

The result of Stage 1 is normally a well laid out Euler diagram. The graph can be 
superimposed as described in the following sections. 

2.2   Stage 2: Finding Locations for Nodes 

(add pseudocode?) paul 
A node belonging to a particular zone must be placed such that the node is con-

tained within the region defined by the drawn zone. Each concrete zone is defined by 
a sequence of line segments. We do not concern ourselves with disconnected zone 
areas, as these are not present in a well-formed [5] Euler diagram, however we fre-
quently draw nested diagrams in which at least one zone fails to be simply-connected 
(i.e. it’s ring-shaped, or worse; see Fig. Z). Zones which are simply connected (i.e. 
disc-like) have one polygon as their boundary, but non-simply connected zones have 
multiple polygons bounding them. 

 
 
 
 
 
 
 

  

Fig. Z.  Three examples of non-simply-connected zones 

A variety of possible strategies exist for the initial placement of a node inside its 
containing zone. We use a fast and simple method that is primarily concerned with 
ensuring that the node is contained inside the zone, regardless of how bad that place-
ment is. Subsequent application of a force model refines the placement so that the 
node is not too close to any of the boundaries of the zone. The force model also en-
sures that all nodes sharing the same zone are reasonably spaced. 

The initial placement of a node requires a line to be drawn through the containing 
zone. For simplicity of implementation, this line is horizontal and passes through the 
bounding box of the concrete zone. The y-coordinate of the horizontal line is chosen 
randomly between the range of the bounding box in order to give a scattering effect 
when there is more than one node present in a zone. By intersecting the bounding box 
horizontally, we can be certain that there is at least one subinterval of the line that is 
contained by the area of the concrete zone. 
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Fig. 3. Candidate locations for a new spider foot in zone a excluding b,c. The horizontal line is 
placed such that it intersects the bounding box of zone a at a random height. This diagram 
shows two subintervals where it is valid to place the new spider foot. 

An ordered set is built up from the intersection points of the horizontal line and the 
line segments which make up the boundary of the zone.  This set must contain at least 
two points, and any point between the first and second intersection point must belong 
to the zone. 

The Stage 1 method for placing nested diagrams described in Section 2.1 could 
have been used for the initial placement of nodes. However this node placement 
method is faster as we are placing a point rather than a shape with a bounding area and 
we are unconcerned about a central placing of the point, anticipating the refinement 
which is described next. 

After initial placement, refinement of node locations is achieved by applying a 
force model to the set F of nodes in the zone. We introduce a repulsive force acting 
between each pair of nodes in the zone, causing them to become evenly distributed. 
This repulsive force is inversely proportional to the separation d, and proportional to 
the number of nodes in the zone. A constant c is used to affect the desired separation 
between pairs of nodes. This repulsive force is based on the force model by Fruchter-
man and Reingold [13] and is commonly used in force directed graph layout. 

Repulsive force between two nodes = 
d
cF × . 

To prevent nodes from escaping from a zone or getting undesirably close to the 
boundary of a zone, we make each line segment in the zone exert a repulsive force on 
each contained node. It is desirable to let the set of nodes spread about a reasonably 
large area of the zone, however it is still essential to keep each nodes away from the 
boundaries of the zone. For this reason, we depart from the previously used force 
model and make the repulsive force acting on a node proportional to the inverse 
square of the distance from the line segment. This encourages nodes to spread over a 
reasonable area with very little chance of getting too close to a boundary due to the 
prohibitively high resultant forces. 
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Fig. 4. Initial placement of spider feet (left) and refinement under the force model (right). 

The repulsive force is proportional to |F|2, as this helps to contain larger sets of 
nodes. As the zone may consist of an arbitrary number of line segments of arbitrary 
lengths, the repulsive force is also proportional to each length. 

Repulsive force between a line segment and a node = 2
2

d
lcF × . 

It has been observed that better results can be obtained when there are more line 
segments bounding a zone. We use a method that breaks a zone into more line seg-
ments without affecting the region contained. This reduces the chance of a node es-
caping from a corner of the zone. 

The simulation of the force model is an iterative process. For each iteration, the re-
sultant force acting on each node is the sum of all repulsive forces from the line seg-
ments of the containing zone and the repulsive forces from all other nodes in the same 
zone. After calculating all of the resultant forces, the location of each node is updated 
by moving it a small distance in the direction of the force. The distance of the move-
ment is proportional to the magnitude of the force. After a number of iterations, the 
system nears an equilibrium and the nodes occupy their new locations. 

2.3   Stage 3: Placing Nodes in Node Locations 

The previous stage calculates locations for nodes. We can think of these locations as 
being candidate locations for the set of nodes in the zone, and we are free to swap the 
location of pairs of nodes, within a zone, without changing the meaning of the dia-
gram. We use a simple hill climbing approach on this with two metrics to improve the 
quality of the diagram. 

One desirable feature of a diagram is to have a minimal number of edge crossings. 
Our first metric returns the number of edge crossings in the current diagram, so values 
closer to zero will represent a better quality of layout in terms of edge crossings. To 
further enhance the understandability of the diagram, we introduce a second metric, 
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which is based on the total length of all edges in the diagram. Shorter edges make 
graphs easier to navigate and identify, so the value returned by this metric will repre-
sent an improvement in the layout if the value is closer to zero. 

In our current system, we are only concerned with simple straight-line edges, al-
though it is worth noting that our software can deal with non-simple edges. For exam-
ple, some notations use curves or shapes to represent special edges and our system is 
able to detect intersections with these more nonlinear edges. 

 
Fig. n. A diagram demonstrating the different types of edges that are supported by our system. 
Intersections with the more complicated types of edges can still be computed. 

As the value returned by the edge length metric is based on the sum of edge lengths 
in the diagram, we make this value dimensionless by dividing it by the square root of 
the area of the diagram. This makes the metric return the same value for a particular 
diagram, regardless of the scaling. 

 
Show two or three diagrams and their edge length metric values 
 
The two metrics are combined as a weighted sum to work out the current quality of 

a diagram. As we have determined minimization of edge crossings to be the most 
important factor, we apply a much higher weighting to this metric. That is, we are 
unlikely to reduce the total edge length in a diagram at the expense of introducing a 
new edge crossing. 

In our implementation of the system, we use a weighting of 1 for the edge crossing 
metric. The weighting of the edge length metric is relative to this and is chosen such 
that when the returned value is multiplied by the weighting, the value is typically less 
than 1. Larger values may allow total edge length to be reduced at the expense of 
introducing new edge crossings. Our implementation uses a weighting of 0.01 for the 
edge length metric weighting. 

 
Show a few diagrams and their total fitness values 
 



The hill climber is also an iterative process and runs for either a fixed number of it-
erations, or a user may interact with the process and apply more iterations if it is 
deemed necessary. Each iteration begins with selecting a random zone that contains 
more than one node. A random pair of nodes is selected from this zone and their loca-
tions are swapped. This does not alter the meaning of the diagram, as they both lie 
within the same zone. If the new quality of the diagram is worse than before, the nodes 
are swapped back to their original locations; otherwise, the change is kept. After a 
number of iterations, the quality of the diagram according to the metrics improves. 

 
Fig. n. A spider diagram with 4 edge crossings (left) and the same spider diagram 

produced using the hill climber, with no edge crossings (right). Notice the common 
locations for all spider feet. 

3   Drawing Spider Diagrams Enhanced With Graphs 

In this section we describe how we apply our method to Spider diagrams. The 
method is essentially that described in Section 2, except that Spider diagrams do not 
have arbitrary graphs connecting nodes, instead nodes are connected in spanning trees, 
and the manner in which the nodes are connected in the spanning tree is not signifi-
cant. The abstract syntax of spider diagrams expresses spiders purely in terms of their 
habitat. A spider whose habitat comprises three zones, z1, z2, z3 can be drawn with a 
graph edges (the spider’s leg) drawn between graph nodes (the spider’s feet) in z1 and 
z2 and a second leg between graph nodes (the spider’s feet) in z2 and z3. An alternative 
drawing might draw legs between z1 and z2 and between z1 and z3. Only once a spider 
is drawn do we know which of its feet have a leg between them.  As we only have the 
information about which sets of nodes are connected, our drawing method needs an 
additional process that develops a spanning tree between the nodes. 

Once the feet for each spider have been placed, it is possible to use Prim’s or 
Kruskal’s algorithm to form a minimal spanning tree. This completes the concrete 
representation of the spider with the smallest total edge length, but does not take into 
account edge crossings. As our hill climbing method gives preference to changes that 



reduce edge crossings, we do not consider the choice of spanning tree to be too impor-
tant. As such, our implementation does not create a minimal spanning tree, but trivi-
ally forms a chain of spider legs that connect each spider foot. 

A proof in the spider diagram reasoning system can be elicited from a user, with a 
software tool assisting in the application of reasoning rules, or, proofs can be auto-
matically generated between given premise and conclusion diagrams [two refs here].  
A proof is essentially a sequence of diagrams with descriptions of rule applications 
obtainable between adjacent diagrams.  An example is shown in figures n, n+1 and 
n+2, where the rules “Add Shaded Zone” and “Add Spider Foot” have been applied.  
The first rule changes the underlying Euler diagram, and the second rule changes the 
superimposed graph. Without any results on drawing spider diagrams, the proof can 
only be presented in its abstract form (figure n).  The preliminary work on drawing 
can present the proof with correct but unappealing diagrams (fig n+1).  After applying 
the algorithm described in this paper, the proof is presented in a most readable fashion 
(fig n+2). 

Show Pretty Pictures against random layout and textual description (Thursday) 
Show any failures (Thursday) 

4   Conclusions and Further Work 

The example of a proof shown in figure n was chosen well, to ensure that all the 
component diagrams are drawable (as described in [5]).  More work needs to be done 
to resolve, and draw, diagrams that are currently diagnosed as “undrawable”. 

Another question raised by the proof-presentation application is that of “continuity 
of proofs”.  When one small change is made (a new zone or a new spider foot), the 
proof would be best understood if the drawn diagram closely resembles the preceding 
diagram, except for a “local change”.  This task generalises to that of drawing one 
diagram given a “context” - another diagram which is structurally similar, or even 
given a context which is a library of already drawn examples.  If all of a set of dia-
grams are provided only in their abstract form, how can the diagrams be generated to 
maximise the likelihood that readers can see similarities between the diagrams? 
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