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Abstract— The Unified Modeling Language (UML) is a collec-
tion of notations which are mainly diagrammatic. These notations
are used by software engineers in the process of object oriented
modelling. The only textual notation in the UML is the Object
Constraint Language (OCL). The OCL is used to express logical
constraints such as system invariants. Constraint diagrams are
designed to provide a diagrammatic alternative to the OCL. Since
constraint diagrams are visual they complement existing nota-
tions in the UML. Spider diagrams form the basis of constraint
diagrams and sound and complete reasoning systems have been
developed. Spider diagrams allow subset relations between sets
and cardinality constraints on sets to be expressed. In addition
to this, constraint diagrams allow universal quantification and
relational navigation and hence are vastly more expressive. In
this paper we present the first constraint diagram reasoning
system. We give syntax and semantics for constraint diagrams
we call CD1 diagrams. We identify syntactic criteria that allow
us to determine whether a CD1 diagram is satisfiable. We give
descriptions of a set of sound and complete reasoning rules for
CD1 diagrams.

I. I NTRODUCTION

Constraint diagrams were introduced in [10] as a notation
for expressing constraints in object-oriented models. The no-
tation integrates well with existing UML notations since all
of the UML notations are diagrammatic, with the exception
of the OCL [12] which is, essentially, a stylized form of first
order predicate logic and is used to convey formal statements.
Thus constraint diagrams provide a diagrammatic alternative
to, and may be more intuitive than, the OCL. The diagram in
Fig. 1 is a constraint diagram. It expresses the following. No
mice are cats or dogs. No dogs are cats. Each cat is bigger
than each mouse. There is a mouse that has been eaten by a
cat. There is exactly one dog.
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Fig. 1. A constraint diagram.

Constraint diagrams are based on Euler diagrams [1], intro-
duced by Leonard Euler to illustrate subset relations between
sets. Euler diagrams exploit topological properties of enclo-
sure, exclusion and intersection to represent subset, disjoint
sets and set intersection respectively. Venn diagrams [15]

are similar to Euler diagrams. In Venn diagrams all possible
intersections between contours must occur and shading is
used to represent the empty set. Peirce [13] extended Venn
diagrams by introducing ‘x-sequences’ to represent non-empty
sets and ‘o-sequences’ to represent empty sets. Reasoning rules
have been developed for Venn-Peirce diagrams [14] and Euler
diagrams [6].

Spider diagrams [3], [7], [9], [11] modify and extend Venn-
Peirce diagrams. Instead of using x-sequences to represent
non-empty sets,spiders are used to represent the existence
of elements and shading is used to place upper bounds on the
cardinalities of sets. The motivation for the work on spider
diagrams was to provide a basis for developing the much more
expressive constraint diagram systems. Spider diagrams cannot
express the complex constraints required when modelling
software systems. Constraint diagrams can express statements
involving two place predicates, whereas spider diagrams can
only express statements involving one place predicates, along
with equality.

For constraint diagrams to be considered as a formal lan-
guage they must have formal underpinning. This underpinning
is essential for the development of software tools to support
the modelling process. Furthermore software developers who
choose to use constraint diagrams for system specification
may also require the ability to reason with these diagrams.
To this end we give the syntax and semantics of a system of
constraint diagrams, that we call CD1 diagrams, in section
II. In section III we give syntactic criteria for identifying
the satisfiability of constraint diagrams. A set of reasoning
rules for CD1 diagrams are given in sections IV, V and VI.
Many of these reasoning rules relate to arrows. We expect that
this system will form the basis of future constraint diagram
reasoning systems. The CD1 system we introduce here, while
not as expressive as the full constraint diagram notation (which
includes further syntactic elements), is considerably more
expressive than previous spider diagram systems. We are using
the CD1 system for pragmatic reasons and this work represents
a significant step towards a reasoning system based on the full
notation.

II. D ESCRIPTION OFCD1 DIAGRAMS

A. The Syntax of Unitary CD1 Diagrams.

We now give an informal description of unitary CD1
diagrams. More details can be found in [4]. Acontour is a
labelled, simple closed plane curve. Aboundary rectangleis



a simple closed plane curve and is not labelled. Abasic region
is the bounded area of the plane enclosed by a contour or the
boundary rectangle. Aregion is defined recursively: any basic
region is a region and any non-empty union, intersection or
difference of regions is a region. Azoneis a region having no
other region contained within it. Anexistential spideris a tree
with nodes, calledfeet, placed in different zones. Auniversal
spider is a star placed in a zone. No two universal spiders
are placed in the same zone. Aspider is either an existential
spider or a universal spider. A spidertouchesa zone if one of
its feet appears in that zone. A spider,s, is said toinhabit the
region which is the union of the zones it touches. This region
is called thehabitat of s, denotedη(s).

A region isshadedif each of its component zones is shaded.
An arrow is a labelled, directed line from a spider to either
an existential spider or a contour. The spider at the beginning
of the arrow is called thesource(of the arrow) and the spider
or contour at the end is called thetarget (of the arrow).
A unitary diagram is a finite collection of contours, spiders
and arrows properly contained in a boundary rectangle. All
universal spiders must be the source of an arrow and no two
distinct arrows can have the same label, source and target.

For unitary diagramd define L(d), C(d), Z(d), Z∗(d),
ES(d), US(d) and A(d) to be the sets of contour labels,
contours, zones, shaded zones, existential spiders, universal
spiders and arrows ofd respectively.

The diagram in Fig. 1 contains three contours and five
zones, of which two are shaded. There are two arrows. The
source of the arrow labelledbeenEatenBy is an existential
spider with a habitat that is the basic region inside the contour
labelled Mice. Its target is an existential spider. The other
arrow, labelledbiggerThan, has a universal spider as its
source and its target is the contour labelledMice.

B. Semantics of Unitary CD1 Diagrams

Regions in CD1 diagrams represent sets. An existential
spider represents the existence of an element in the set
represented by its habitat. Distinct existential spiders represent
the existence of distinct elements. In the set represented by a
shaded region, all the elements are represented by existential
spiders. Arrow labels represent relations. An arrow, together
with its source and target, represents a property of the relation
represented by its label. A universal spider represents universal
quantification over the set represented by its habitat. Universal
quantification over the set represented by a zone can be repre-
sented by a single universal spider. Some problems interpreting
constraint diagrams are raised in [4] and resolved in [2]. These
problems do not arise in this system due to restrictions we
place on the syntax (for example, we do not includederived
contours) and semantics of CD1 diagrams.

The diagram in Fig. 2 expresses the fact that (the sets
represented by)A andB are disjoint,B is not empty and there
is anx in U − (A∪B) such that for alla in A the relational
image ofa underf is x. This diagram could also be interpreted
as ‘for alla in A, there exists anx in U−(A∪B) such that the
relational image ofa underf is x’, but we will not allow such

a reading. To avoid ambiguity in diagram reading and to make
the system tractable, we restrict the semantic interpretation so
that ‘there exists’ takes precedence over ‘for all’. Relaxing this
semantic constraint has non-trivial outcomes.
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Fig. 2. A constraint diagram.

Later we will consider more than one unitary diagram.
To ensure consistency of interpretation between diagrams we
define CL andAL to be countably infinite sets ofcontour
labels and arrow labels respectively, from which all labels
will be drawn.

An interpretationof CL andAL is a triplem = (U,Ψ, φ)
whereU is a set,Ψ: CL → PU is a function mapping contour
labels to subsets ofU andφ : AL → P(U× U) is a function
mapping arrow labels to relations onU. To interpret a diagram
first note that a zone can be identified by the contours that
contain it. Definec(z) ande(z) to be the sets of labels of the
contours ind that contain and excludez respectively. We can
then defineΨ: Z(d) → PU by

Ψ(z) =
⋂

l∈c(z)

Ψ(l) ∩
⋂

l∈e(z)

Ψ(l)

where Ψ(l) = U − Ψ(l). Further we define
⋂
l∈∅

Ψ(l) =
⋂
l∈∅

Ψ(l) = U. Any region is a union of zones, thus we define

Ψ: R(d) → PU by

Ψ(r) =
⋃

z⊆r∧z∈Z(d)

Ψ(z).

For contourC we definel(C) to be the label ofC and also
defineΨ(C) = Ψ(l(C)).

Next we formalize the notion of the image of a relation.
Let R be a relation on a setU. Define theimageof R to be
im(R) = {b ∈ U : (a, b) ∈ R}. Let A be a subset ofU. Define
A.R to beA.R = im(R∩ (A×U)) and sayA.R is the image
of R with the domain restricted toA.

For each region,r, we defineS(r) andT (r) to be the set of
existential spiders that are completely withinr and that touchr
respectively. For each arrow,a, defines(a), t(a) andl(a) to be
the source, target and label ofa respectively. DefineAe(d) and
Au(d) to be the sets of arrows ind with an existential source
and universal source respectively. Arrows inAe(d) andAu(d)
are called existential arrows and universal arrows respectively.
The setsAe(d) andAu(d) partition A(d).

The semantics predicate, Pd(m), of a unitary diagramd is
the conjunction of the following conditions.

(i) Plane Tiling Condition. All elements are in sets repre-
sented by zones: ⋃

z∈Z(d)

Ψ(z) = U.



(ii) There exists an extension ofΨ: R(d) → PU to
Ψ: R(d) ∪ ES(d) → PU such that the conjunction of
the following conditions are satisfied.

(a) Spiders Condition. Each existential spider rep-
resents the existence of an element in the set
represented by its habitat:
∀ e ∈ ES(d) • |Ψ(e)| = 1 ∧Ψ(e) ⊆ Ψ(η(e)).

(b) Strangers Condition. No two existential spiders
represent the existence of the same element:
∀ e1, e2 ∈ ES(d) •Ψ(e1) = Ψ(e2) ⇒ e1 = e2.

(c) Shading Condition. Each shaded zone,z∗, repre-
sents a subset of the elements represented by the
existential spiders touchingz∗:
∀ z∗ ∈ Z∗(d) •Ψ(z∗) ⊆ ⋃

e∈T (z∗)
Ψ(e).

(d) Existential Arrows Condition. For any existential
arrow, a, the image ofφ(l(a)) with its domain
restricted toΨ(s(a)) equalsΨ(t(a)):
∀ a ∈ Ae(d) •Ψ(s(a)).φ(l(a)) = Ψ(t(a)).

(e) Universal Arrows Condition. For any universal
arrow, a, the image ofφ(l(a)) with its domain
restricted to any element in the set represented by
the habitat ofs(a) equalsΨ(t(a)):
∀ a ∈ Au(d)∀x ∈ Ψ(η(s(a)))•

{x}.φ((l(a)) = Ψ(t(a)).

III. SATISFIABILITY

An interpretationm is said tosatisfy diagramd, denoted
m |= d, if Pd(m) is true. If there exists anm such thatm |= d
we sayd is satisfiable. Diagramd2 is a logical consequence
of diagram d1, denotedd1 ² d2, if every interpretation
that satisfiesd1 also satisfiesd2. Diagramsd1 and d2 are
semantically equivalent, denotedd1 ≡� d2, if d1 ² d2 and
d2 ² d1. Unlike spider diagrams, not all unitary CD1 diagrams
are satisfiable.

The diagram in Fig. 3 is unsatisfiable. It expresses that there
is an element inA that is related to exactly one element,x
say, inU −A under the relationf and exactly one element in
U −A distinct fromx also under the relationf , which cannot
happen.

A diagramd is anα-diagramif all of the existential spiders
in d inhabit exactly one zone. We give syntactic criteria for
identifying whether or not a unitaryα-diagram is satisfiable.
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Fig. 3. An unsatisfiable unitary constraint diagram.

For each arrow,a in unitary α-diagramd, define the set of
hit existential spidersof a, denotedhit(a), to be

(i) hit(a) = {t(a)} if t(a) ∈ ES(d) and
(ii) hit(a) = S(t(a)) if t(a) ∈ C(d),

where, for contourA, S(A) is the set of existential spiders
whose habitat is completely withinA. The arrows ofd are
pairwise compatibleif and only if

(i) every pair of arrows with the same existential spider as
their source and the same label have the same hits and

(ii) every pair of arrows with the same universal spider,s,
as their source and the same label have the same hits or
the habitat ofs is not inhabited by any existential spider
and

(iii) if an existential spider has the same habitat as a universal
spider and both are the source of arrows with the same
label then these arrows have the same hits.

If the arrows ofd are not pairwise compatible thend is said
to containincompatible arrows.

In Fig. 3 one arrow with labelf has hit{e1} and the other
has hit{e2}. Since these arrows have the same source they
are incompatible, failing condition (i). Since all unitary spider
diagrams are satisfiable [9], incompatible arrows provide the
only source of unsatisfiability for unitaryα-diagrams.

Theorem 1:Unitary α-diagramd is satisfiable if and only
if the arrows ofd are pairwise compatible.

IV. REASONING RULES FORUNITARY DIAGRAMS

In this section we give informal descriptions of purely
syntactic reasoning rules which turn one unitary CD1 diagram
into another. Some of the reasoning rules for CD1 diagrams are
modifications and extensions of those in [9] and, in addition,
new rules relating to arrows are included.

Rule 1: Inconsistency.A unitary α-diagram that contains
incompatible arrows can be replaced by any diagram.

Rule 2: Erasure of an arrow. We may erase any arrow. If
erasing an arrow results in a universal spider that is no longer
the source of an arrow then that spider is also erased.

The arrow labelledf is erased from diagramd1 in Fig. 4.
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Fig. 4. An application of rule 2.

Rule 3: Erasure of a contour. We may erase any contour
that is not the target of an arrow. When a contour is erased
the following occurs.

• Any shading in only part of a zone is erased.
• If an existential spider has feet in two zones that combine

to form a single zone then these feet are replaced by
a single foot connected to the rest of the spider. Any
arrows sourced (targeted) on this spider are still sourced
(targeted) on this spider.

• Suppose there are universal spiders in the two old zones
that combine to form a single zone and both spiders are



sources of an arrow with the same label and target, called
common arrows. A new universal spider is placed in the
new zone and is the source of one arrow for each pair
of common arrows with the same label and target as
the common arrows. All the old universal spiders whose
habitat is a zone that combine with another zone are
deleted, along with their arrows.

The contour with labelB can be erased fromd1 in Fig. 5
since it is not the target of any arrow. The existential spider
in d1 is replaced by a single footed spider ind2 with a habitat
that is the new zone outsideA and C. The universal spider
insideA is retained, along with the arrows sourced on it. The
two universal spiders ind1 that are outside bothA andC have
habitats combine to form a single zone. Both are sources of
arrows labelledg, targeted onC. These two universal spiders
are replaced by a single universal spider ind2 with habitat
outsideA andC. The universal spider ind1 inhabiting the zone
outsideA, B and C is also the source of an arrow labelled
h and targetA. Since the universal spider insideB is not the
source of an arrow with labelh and targetA, this arrow is
‘lost’ in d2.
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Fig. 5. An application of rule 3.

An application of any of the previous rules (potentially)
loses information. The remaining rules in this section preserve
semantic information and are therefore reversible.

Rule 4: Introduction of a contour. A contour may be
drawn in the interior of the boundary rectangle provided the
following occurs.
• The new contour has a label not present in the diagram.
• Each zone splits into two zones and shading is preserved.
• Each foot of an existential spider is replaced by a

connected pair of feet – one in each new zone of the
habitat.

• Each universal spider,u, is replaced by a pair of universal
spiders – one in each zone of the habitat. Each arrow,a,
sourced atu is replaced by a pair of arrows with the same
label and target asa, one sourced on each new universal
spider.

Fig.6 shows an application of rule 4.

Rule 5: Introduction of an arrow: universal equivalence.
Let d be a diagram with a shaded zonez∗ where every
existential spider that touchesz∗ is the source of an arrow with
label l and targett (l andt are fixed). Then we can introduce
a universal arrow (and if necessary a universal spider) whose
source inhabitsz∗, labelled l with target t provided that the
new arrow is not already present ind.
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Fig. 6. An application of rule 4.

In Fig. 7, diagramd1 expresses that each element inA has
relational image, underf , that is B. Therefore a universal
spider can be introduced to the zone insideA, which is the
source of an arrow with labelf , targeted onB.
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Fig. 7. An application of rule 5.

Rule 6: Introduction of an arrow: universal deduction.
Let d be a diagram with a universal arrow,a, and an existential
spider,e with the same habit as the source ofa. Then we can
introduce an arrow with sourcee and the same label and target
asa provided that the new arrow is not already present ind.

Diagram d1 in Fig. 8 expresses that there is exactly one
element,x say, in B that each element inA is related to
underf . Therefore the element represented by the existential
spider inhabiting the zone withinA is related tox underf .
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Fig. 8. An application of rule 6.

The following three rules allow us to introduce an arrow
with the same source as an existing arrow, but with a new
target. The naming of each of these rules refers to the targets
of the existing and introduced arrows.

Rule 7: Introduction of an arrow: spider to contour. Let
d be a diagram with an arrow,a, whose target is an existential
spider, e. If the habitat of e is entirely within a contour,
C, whose basic region is shaded and touched by no other
existential spiders, then we can introduce an arrow with the
same source and label asa, whose target isC provided that
the new arrow is not already present ind.

Diagram d1 in Fig. 9 expresses that there is exactly one
element,x say, in B and all elements inA are related tox
underf . Thus the image of any element inA underf is B.
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Fig. 9. An application of rule 7.

Rule 8: Introduction of an arrow: contour to spider. Let
d be a diagram with an arrow,a, whose target is a contour,
C. If the basic region insideC is shaded and there is an
existential spider,e, such thatS(C) = {e} = T (C) then
we can introduce an arrow with the same source and label as
a whose target ise provided that the new arrow is not already
present ind.

Rule 9: Introduction of an arrow: contour to contour.
Let d be a diagram with a pair of contours,C1 and C2,
whose symmetric difference is shaded and not touched by any
existential spider andC1 is the target of an arrow,a. Then we
can introduce an arrow tod with the same source and label
asa and targetC2 provided that the new arrow is not already
present ind.

Diagramd1 in Fig. 10 expresses that there is an element,x say,
in A that is related to each element inB underf . Furthermore
d expresses thatB represents the same set asC. Thus x is
related to each element inC underf .
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Fig. 10. An application of rule 9.

Rule 10: Equivalent forms. If d is not in Venn form we
can introduce a new, shaded zone, that is not touched, tod.

To diagramd1 in Fig. 11 we can introduce a shaded zone
contained within the contours labelledB andC, shown ind2.

A A
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f f

Fig. 11. An application of rule 10.

V. CONNECTING DIAGRAMS

Unitary diagrams form the building blocks of more com-
plicated diagrams. To enable us to present disjunctive and

conjunctive information, we introduce connectives:t andu.
If D1 and D2 are CD1 diagrams then so areD1 t D2

(pronouncedD1 or D2) and D1 u D2 (pronouncedD1 and
D2). If D = D1 tD2 then thesemantics predicate, PD(m),
of D is PD(m) = PD1(m) ∨ PD2(m). If D = D1 u D2

then the semantics predicate, PD(m), of D is PD(m) =
PD1(m) ∧ PD2(m).

We now introduce three reversible reasoning rules that
transform a unitary diagram into a disjunction of unitary
diagrams.

Rule 11: Splitting existential spiders.Let d be a diagram
containing an existential spider,e, whose habitat partitions into
regionsr1 andr2. We can replaced by d1td2, whered1 and
d2 are a copies ofd except that the habitat ofe is r1 in d1

andr2 in d2. Any arrows sourced (targeted) one in d are still
sourced (targeted) one in both d1 andd2.

Diagramd in Fig. 12 expresses that there is an element in
A that is related to an element,x say, in U − A under f .
So x is either inB or U − (A ∪ B). We can split the spider
representing the existence ofx into two parts, one insideB
and the other insideU − (A ∪B) giving d1 t d2.
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Fig. 12. An application of rule 11.

Rule 12: Excluded middle for regions.Let d be a diagram
with a non-shaded region,r. We can replaced by d1 t d2,
whered1 andd2 are copies ofd except thatr is shaded ind1

andr contains an additional existential spider ind2.

The excluded middle for regions rule is applied to diagram
d in Fig. 13. We shadeB−C (giving d1) and add an existential
spider toB − C (giving d2), as shown ind1 t d2.
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Fig. 13. An application of rule 12.

Rule 13: Excluded middle for arrows. Let d be anα-
diagram such that every zone ind is shaded and, for each
subset ofES(d), Ei, such that|Ei| 6= 1, there is a contour,A,
such thatS(A) = Ei. Let l ∈ AL and lete be an existential
spider in d that is not the source of an arrow with labell.
Define E(d, l) to be the set of unitary diagrams,dj , each of
which is a copy ofd except thatdj contains an additional
arrow with sourcee, label l and any target. Then we may
replaced by

dj∈E(d,l)

dj .



An application of this rule is illustrated in Fig. 14. Since every
possible subset ofU is represented, we can deduce that any
given element must be related to nothing, itself, the other
element or both elements under the relationl.
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Fig. 14. An application of rule 13.

There are also many rules (not necessarily reversible),
omitted for space reasons, that have analogies in propositional
logic, for example associativity and distributivity.

VI. D ISJUNCTIFYING DIAGRAMS

We now introduce a further rule that allows us to replace
a diagram with a disjunction of unitary diagrams. The spider
diagram version of this rule is essential to the completeness
proof strategies used in spider diagram systems. To extend the
strategy to the CD1 system, we require a constraint diagram
version of this rule and we call the processdisjunctification.
The basic operation of disjunctification is performed on unitary
α-diagrams which have the same sets of contour labels.
In spider diagram systems, disjunctifying two such unitary
diagrams results in a unitary diagram. For CD1 diagrams
this is not the case. Firstly we consider an example where
disjunctifying two unitary diagrams gives a unitary diagram.
Diagramd1 u d2 in Fig. 15 is semantically equivalent to the
unitary diagramd.

ó

º �

d 1 d 2 d

A A Af f

g g

Fig. 15. Disjunctifying constraint diagrams.

Next we consider an example where disjunctifying does not
result in a unitary diagram. Diagramsdud′ andd1td2td3td4

in Fig. 16 are semantically equivalent. Ind u d′ the spiders
insideA could represent the same element or distinct elements.
Similarly for B. This pair of choices gives four alternatives,
each represented by one ofd1, d2, d3 andd4.

To define thedisjunctificationof two unitary diagrams we
first identify the unitary components that form the disjunc-
tification, calledpartial combinations. Define zonesz1 and
z2 to be correspondingif and only if c(z1) = c(z2) and
e(z1) = e(z2). Corresponding zones represent the same set.
A more thorough treatment of corresponding regions can be
found in [8].
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Fig. 16. Disjunctifying constraint diagrams.

Let d0 and d1 be two unitaryα-diagrams such that each
zone ind0 has a corresponding zone ind1 and vice versa. We
say the zone sets ofd0 and d1 are corresponding, denoted
Z(d0) ≡ Z(d1). Let d be a unitaryα-diagram that does
not contain incompatible arrows. Thend is called apartial
combinationof d0 andd1 if and only if each of the following
are satisfied.

(i) The zone sets ofd andd0 are corresponding.
(ii) All zones ind that have a corresponding shaded zone in

eitherd0 or d1 are shaded ind and no other zones are
shaded ind.

(iii) The number of existential spiders in any shaded zone
in d is the maximum number of existential spiders
inhabiting any corresponding zone ind0 or d1.

(iv) The number of existential spiders in any unshaded zone
in d is at most the maximum of

(a) the number of existential spiders inhabiting the
corresponding zone ind0,

(b) the number of existential spiders inhabiting the
corresponding zone ind1,

(c) the sum total of existential spiders that are sources
or targets of arrows inhabiting corresponding zones
in d0 andd1.

(v) The number of existential spiders in any zone ind is
at least the largest number in one of the corresponding
zones ind0 andd1.

(vi) There is a universal spider in a zone ind if there is one
in a corresponding zone ind0 or d1.

(vii) All the arrows ind0 occur ind, similarly for d1, and no
others.

We defineDpc(d0 u d1) to be the set of partial combinations
of d0 u d1.

It may be thatDpc(d0 u d1) = ∅, for example, if one of
d0 and d1 contains incompatible arrows. Thus it is useful to
define an unsatisfiable unitary diagram denoted by⊥.

Let d0 and d1 be unitaryα-diagrams such thatZ(d0) ≡
Z(d1) or d0 =⊥ or d1 =⊥. Define thedisjunctificationof d0

andd1, denotedd0 ∗ d1, as follows.
1) If d0 =⊥ or d1 =⊥ thend0 ∗ d1 =⊥.
2) If a zone in one diagram contains more existential

spiders than in a corresponding shaded zone in the other
diagram thend0 ∗ d1 =⊥.

3) If Dpc(d0 u d1) = ∅ thend0 ∗ d1 =⊥.
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Fig. 17. The first step towards introduction of shading.

4) Otherwised0 ∗ d1 =
d∈Dpc(d0ud1)

d.

To summarize,d0∗d1 ≡� d0ud1 andd0∗d1 is a disjunction
of unitary α-diagrams.

Rule 14: Disjunctifying unitary α-diagrams. Let d0 and
d1 be unitaryα-diagrams such thatZ(d0) = Z(d1) or d0 =⊥
or d1 =⊥. Thend0ud1 may be replaced byd0 ∗d1. This rule
is reversible.

VII. O BTAINABILITY AND DERIVED RULES

Let D1 and D2 be two diagrams. DefineD1 ° D2 if and
only if D1 can be transformed toD2 by a single application of
one of the reasoning rules.D2 is obtainablefrom D1, denoted
D1 ` D2, if and only if there is a sequence of diagrams
〈D1, D2, ..., Dm〉 such thatD1 = D1, Dm = D2 and Dk °
Dk+1 for eachk (where1 ≤ k < m).

Let r be a reasoning rule. If, wheneverD1 can be trans-
formed intoD2 by a single application ofr, there is a sequence
of reasoning rules distinct fromr yielding D1 ` D2 then we
sayr is derived. The remaining rules we present are derived.
Although not necessary for completeness, these rules aid the
reasoning process.

Rule 15: Erasure of shading. If d is a unitary diagram
with a shaded regionr we may erase the shading fromr [11].

Rule 16: Erasure of an existential spider.If d is a unitary
diagram with a spiders which is not the source or target of
any arrow and whose habitat is a non-shaded region then we
may erases from d.

Another useful derived rule permits the introduction of
shading to a unitary diagram, resulting in a semantically
equivalent diagram.

Rule 17: Introduction of shading. Let d be a unitaryα-
diagram containing a non-shaded zonez. If introducing an
existential spider toz would result in a diagram containing
incompatible arrows then we can introducing shading toz.

From diagramd in Fig. 17 we can deduce thatB contains
exactly one element, because there is some element inA, x
say, such thatx.f ∈ B and x.f = B. Apply the excluded
middle for regions rule tod giving d1 t d2. Diagram d2

contains incompatible arrows. Use the inconsistency rule to
obtaind1 t d1 which is equivalent tod1.

We now extend the disjunctification rule given for two uni-
tary α-diagrams with corresponding zone sets to any diagram.
To disjunctify diagrams in general we transform them intoα-
diagrams with corresponding zone sets. Take a diagramD. Let
L be the union of all of the label sets of the unitary components

of D. Introduce contours to each unitary component until they
all have the same label sets and denote the resulting diagram
DL. Next, introduce zones until all unitary components have
corresponding zone sets, givingDZ . Apply the splitting spi-
ders rule to the unitary components ofDZ until we obtain
an α-diagram, and denote the resulting diagramαDZ . The
disjunctification ofD, denotedD∗, is a disjunction of unitary
α-diagrams defined recursively as follows.

• If αDZ is a unitary diagram thenD∗ = αDZ .
• If αDZ = D1 tD2 thenD∗ = D∗

1 tD∗
2 whereD∗

1 and
D∗

2 are the disjunctifications ofD1 andD2 respectively.
• If αDZ = D1 uD2 thenD∗ =

d∈D
d where

D = {di ∗ dj : di ∈ comp(D∗
1) ∧ dj ∈ comp(D∗

2)}
andcomp(D∗

i ) is the set of unitary components of which
D∗

i consists.

Rule 18: Disjunctification. We may replaceD with D∗.
This rule is reversible.

VIII. S OUNDNESS ANDCOMPLETENESS

A reasoning rule,r, is valid if, wheneverD2 is obtained
from D1 by one application ofr, D1 ° D2 impliesD1 ² D2.

All the reasoning rules are valid. Hence the system is sound.
Theorem 2:Soundness.Let D1 andD2 be constraint dia-

grams. IfD1 ` D2 thenD1 ² D2.
Theorem 3:Completeness.Let D1 and D2 be constraint

diagrams. IfD1 ² D2 thenD1 ` D2.
The strategy for proving completeness of spider diagram

systems extends to CD1. Part of the completeness proof strat-
egy used in spider diagram systems begins with a disjunction
of unitary α-diagrams (acquired using rule 18) and uses the
excluded middle for regions rule to add shading and spiders to
produce a disjunction of unitaryβ-diagrams. A β-diagram is
anα-diagram in which every zone is either shaded or touched
by an existential spider. For spider diagrams, there are simple
syntactic checks that establish when oneβ-diagram is a logical
consequence of another. If we consider the subset of all spider
diagrams consisting of unitaryβ-diagrams with the same label
set, then all the rules necessary for completeness are erasure
rules.

In CD1 it is possible to transform any diagram into a
disjunction of β-diagrams, in the same way. However it is
not easy to determine whether one unitaryβ-diagram is a
logical consequence of another. There are examples of unitary
β-diagrams with the same label sets, where one,d2 say, is
a logical consequence of another but requires more complex
rules than simple erasure of components to establish syntactic
entailment. An example of two such diagrams is given in Fig.
18.

If we introduce ‘all possible’ syntactic elements to a unitary
β-diagram,d1, using our reasoning rules, givingd2, then any
unitaryβ-diagram,d3, that is a logical consequence ofd1 will
‘contain only syntactic elements that are ind2’. Although the
details are non-trivial, this allows us to establish thatd3 is
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Fig. 18. Diagramd2 is a logical consequence ofd1.

obtainable fromd1 by simply erasing components ofd2. This
gives a completeness result for unitaryβ-diagrams.

We use the completeness result for unitaryβ-diagrams to
prove completeness of the system. Consider two CD1 dia-
grams that satisfyD1 ² D2. All the rules that transform a CD1
diagram into a disjunction ofβ-diagrams are reversible, so we
transformD1 andD2 into a disjunction ofβ-diagrams,βD1

andβD2 respectively, in the way outlined for spider diagrams.
We then apply the excluded middle for regions rule repeatedly
to βD1 until the number of existential spiders in each zone
of each unitary component exceeds the number of existential
spiders in any corresponding zone in any unitary component
of βD2, giving a diagramD, say. We then add ‘all possible’
syntactic elements toD using our reasoning rules giving
diagramD′, say. We can then show each unitary component
of D′, sayd, semantically entails a unitary component ofβD2,
saydi. From the completeness result for unitaryβ-diagrams,
d ` di and it follows thatD1 ` D2. Moreover, to prove
completeness, we have constructed an algorithm to transform
D1 into D2.

Theorem 4:Decidability. Let D1 and D2 be constraint
diagrams. There is an algorithm which determines whether
or not D1 ` D2.

IX. CONCLUSION

We have presented, informally, a sound and complete con-
straint diagram reasoning system. The syntactic conditions
given to identify the satisfiability of unitaryα-diagrams are
sufficient, along with rule 18 (disjunctification), to identify
the satisfiability of any diagram.

The CD1 system is more expressive than any spider diagram
system. CD1 diagrams can express statements involving two
place predicates whereas spider diagrams can only express
statements involving one place predicates and equality. Pre-
vious work on spider diagrams provided a basis for the
development of the CD1 system and it is anticipated that
CD1 will provide a basis for the development of future
constraint diagram systems. A long term aim is to develop
sound and complete reasoning rules for the full constraint
diagram notation and to develop software tools to aid the
modelling and reasoning process.

The natural next step to take on this route would be to relax
the constraint that ‘there exists’ takes precedence over ‘for all’.
There are implications of this: if ‘for all’ takes precedence over
‘there exists’ it is not necessarily possible to split existential
spiders. If we interpretd in Fig. 19 as ‘for allx in A there is
a y in U−A such thatx.f = y’ we cannot split the existential

spider ind. From diagramd1 td2 we deduce for eachx in A
there is ay in B such thatx.f = y or for eachx in A there is
a y in U − (A∪B) such thatx.f = y, which is not logically
equivalent to the interpretation ofd. Relaxing the constraint

ò

�
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f

f f

Fig. 19. Alternative semantics: incorrectly splitting spiders.

that ‘there exists’ takes precedence over ‘for all’ is likely to
make the process of disjunctification more complicated: the
operation will need to be defined for diagrams that are not
necessarilyα-diagrams.
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