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Abstract. This article describes an algorithm for the automated gener-
ation of any Euler diagram starting with an abstract description of the
diagram. An automated generation mechanism for Euler diagrams forms
the foundations of a generation algorithm for notations such as Harel’s
higraphs, constraint diagrams and some of the UML notation. An algo-
rithm to generate diagrams is an essential component of a diagram tool
for users to generate, edit and reason with diagrams.
The work makes use of properties of the dual graph of an abstract di-
agram to identify which abstract diagrams are “drawable” within given
wellformedness rules on concrete diagrams. A Java program has been
written to implement the algorithm and sample output is included.

1 Introduction and background

Euler diagrams consist of contours, simple closed curves, which split the plane
into zones. A concrete Euler diagram is a drawing which represents information
about sets and their intersections. This information can be encapsulated by an
abstract diagram. An abstract (Euler) diagram consists of contours, which are
just abstract notions, and information about how those contours are used to
give a set of zones. An abstract diagram has zero or many concrete representa-
tions, and this paper is primarily concerned with the construction of concrete
representations from an abstract description. An important consequence is the
identification of a complete set of drawable abstract diagrams, with tests for
drawability made at the abstract level. This work supports the development of
a constraint diagram tool, and this application is discussed in subsection 1.1.
Definitions of the terms “concrete (Euler) diagram”, “abstract (Euler) diagram”
are in subsection 1.3, and the algorithm for construction of concrete diagrams is
in section 2.

1.1 An application to motivate the work

The construction of a concrete representation of an abstract diagram is useful
in many environments. In this section we describe one application for the work.
Constraint diagrams [6] convey a subset of first-order predicate calculus con-
cerning sets and their elements. The simplest kind of constraint diagrams are
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Fig. 1. An Euler diagram, a spider diagram and a constraint diagram

Euler diagrams [4], which make statements about the enclosure and intersection
of sets in the system. The first of three diagrams in figure 1 is an Euler diagram
which conveys the fact no book is both reserved and borrowed.

The second diagram in figure 1 is a spider diagram [5] showing three states for
a book: ‘borrowed’, ‘on the shelf’, or ‘on hold’. No book may be in two states,
and there is a book in one of the states. A further extension of the notation
adds universal elements, and relational navigation [6], giving the full notation
for constraint diagrams. The third diagram in figure 1 is a constraint diagram
which states that reservations are only held on titles for which there is a copy
in stock. Furthermore, there is a copy that is in stock and not in the borrowed
state.

Textual notations (eg.OCL [17]) and diagrammatic notations (eg. constraint
diagrams) can be used for the same purpose. Many statements can be more
clearly expressed in diagrammatic form. Diagrams can also be used fruitfully
for reasoning ([7], [8]), with animation showing the logical steps involved in an
argument.

Reasoning by transforming diagrams holds potential for the future, especially
if are tools available to assist. Such a tool would be an editor (be able to assist
the user with creation and editing of diagrams) but also needs an understand-
ing of the diagram. This understanding determines whether two constraints are
logically related and enables animated reasoning with diagrams. Flexible and
combined use of textual and diagrammatic notations requires easy transforma-
tion from one notation to the other, in particular generating diagrams from
textual notation.

1.2 Related work

There is much work on graph-drawing algorithms, see e.g. [1].
Euler diagrams are similar to the hypergraphs discussed in [2]. A hypergraph

is given by a set of contours, and a set of points. Each contour is specified as
containing some points and excluding others. This is similar to the problem
addressed here, except the description of an Euler diagram places conditions
on the make-up of the regions of the diagram, and not just on a set of specific
points. Our Euler diagrams could be thought of as examples of hypergraphs.

There is also work on string graphs in e.g. [14]. The authors cast the problem
of the drawability of Euler diagrams as equivalent in complexity to the problem
of recognising string graphs.



In the above references the authors use weaker definitions of a well-formed
diagram.

1.3 Key definitions

An abstract Euler diagram comprises a set of contours and a set of zones which
are subsets of the set of contours. This corresponds to type-syntax in [9].

Definition 1. An abstract (Euler) diagram is a pair: d = 〈C(d),Z(d)〉 where
(i) C(d) is a finite set whose members are called contours.
(ii) Z(d) ⊆ PC(d) is the set of zones of d, so z ∈ Z(d) is z ⊆ C(d).
(iii)

⋃
z∈Z(d)

z = C(d)

(iv) The empty set {} ∈ Z(d).
The set of abstract diagrams is denoted D.

Example 1 (An abstract diagram). 〈{a, b, c} , {{} , {a} , {a, b} , {b} , {c}} 〉 ∈ D.

The condition that the empty set is included as a zone could be omitted, and
this work on converting abstract to concrete diagrams would hold for the subset
of abstract diagrams which did include the empty set as a zone. In a concrete
diagram, the zone corresponding to the empty set will be the zone outside all
contours of the diagram.

A concrete Euler diagram is a set of labelled contours (simple closed curves)
in the plane, each with a unique label. A zone is a connected component of the
complement of the contour set. Each zone is contained in a set of contours. This
corresponds to token-syntax in [9].

Definition 2. A concrete (Euler) diagram is a triple d̂ = 〈L̂(d̂), Ĉ(d̂), Ẑ(d̂)〉
whose components are defined as follows:

(i) Ĉ(d̂) is a finite set of simple closed curves, contours, in the plane R2. Each
contour has a unique label from the set L̂(d̂).
1. Contours meet transversely and without triple points.
2. Each component ẑ ∈ R2− ⋃

ĉ∈bC(d̂)

ĉ is uniquely identified by a set of contours

X ⊂ Ĉ(d̂) with ẑ =
⋂

ĉ∈X

interior (ĉ) ∩ ⋂
ĉ∈bC(d̂)−X

exterior (ĉ) .

(ii) A zone is a connected component of R2− ⋃
ĉ∈bC(d̂)

ĉ. The set of zones of d̂ is

denoted Ẑ(d̂).
(iii) A zone ẑ is uniquely determined by the set of contour labels L̂(ẑ) for the
contours which contain the zone.

The set of concrete diagrams is denoted D̂.

Example 2 (A concrete diagram). Let d̂ be the concrete diagram given in figure 2.
Ĉ(d̂) has three elements (the three contours shown) L̂(d̂) = {a, b, c} and Ẑ(d̂)
has five elements, uniquely determined by the label sets {}, {a}, {a, b}, {b} and
{c}.
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Fig. 2. Well-formed and not well-formed concrete diagrams

The rules about transverse crossing, absence of triple points and connectedness
of zones are the chosen well-formedness rules for this paper. Figure 2 shows a
well-formed concrete diagram and some which are not well-formed. In future
work, it is intended to extend this work to accommodate different definitions of
“well-formed” concrete diagrams.

Definition 3. The mapping ab : D̂ → D (“ab” for “abstractify”) forgets posi-
tioning of the contours. It is defined by

ab
(
〈L̂(d̂), Ĉ(d̂), Ẑ(d̂)〉

)
= 〈L̂(d̂),

{
L̂(ẑ) : ẑ ∈ Ẑ(d̂)

}
〉

Example 3 (Abstractification). Let d̂ be the concrete diagram given in figure 2.
C(ab(d̂)) = {a, b, c} and Z(ab(d̂)) = {{} , {a} , {a, b} , {b} , {c}}.
Definition 4. A concrete diagram d̂ represents or complies with an abstract
diagram d if and only if d = ab(d̂). An abstract diagram which has a compliant
concrete representation is drawable.

Example 4 (Drawability). The abstract diagram 〈 {a, b} , {{} , {a, b}} 〉 is undraw-
able. This can be investigated by futile attempts to produce a diagram (the
temptation to draw two coincident concrete contours violates the condition that
contours meet transversely). Later in the paper, corollary 1 is used to show that
there is no concrete representation for the abstract diagram.

This paper is about the construction of concrete representations of abstract
diagrams. We seek an inverse of the map ab : D̂ → D.

2 A sketch of the algorithm

We use the concept of a plane dual graph of a concrete diagram.

Definition 5. A concrete labelled graph Ĝ is a triple 〈L̂(Ĝ), V̂(Ĝ), Ê(Ĝ)〉 where
the components are defined as follows:

(i) L̂(Ĝ) is a set of labels for the graph
(ii) V̂(Ĝ) is a set of vertices. Each vertex v̂ is labelled with L̂(v̂) ⊆ L̂(Ĝ) and
each vertex has a position in the plane R2.
(iii) Ê(Ĝ) is a set of edges. Each edge ê is a pair of vertices from V̂(Ĝ). The
label sets on adjacent vertices must have singleton symmetric difference (one
set is the other with a single additional element). The edges can be associated
with the label which distinguishes the labels of the end-vertices.



The set of concrete labelled graphs is denoted L̂G.

Note that although the vertices of a concrete labelled graph have a position in
the plane, the edges are simply pairs of vertices. The edges are not associated
with curves in the plane ie. we have a geometric graph in [1].

Definition 6. The map pdual : D̂ → PL̂G (“pdual” for “plane dual”) is defined
by

Ĝ ∈ pdual〈L̂(d̂), Ĉ(d̂), Ẑ(d̂)〉
if and only if L̂(Ĝ) = L̂(d̂) and there is a bijection V̂(Ĝ) → Ẑ(d̂); v 7→ ẑ if
and only if v is inside the part of the plane specified by ẑ and the labelling
matches: L̂(v̂) = L̂(ẑ). Finally, e ∈ Ê(Ĝ) if and only if the corresponding zones
are topologically adjacent in the plane.

Any concrete labelled graph gives an abstract labelled graph, by forgetting vertex
positions.

Definition 7. An abstract labelled graph is a triple 〈L(G),V(G), E(G)〉 where
the components are defined as follows:

(i) L(G) is a set of labels for the graph
(ii) V(G) is a set of vertices. Each vertex v̂ is labelled with L(v) ⊆ L(G).
(iii) E(G) is a set of edges. Each edge ê is a pair of vertices in V(G), where
the vertex labels must have a singleton symmetric difference (one vertex set
exceeds the other by a single additional element). The label which distinguishes
the end vertices can be used to label the edge.

The set of abstract labelled graphs is denoted LG.

Example 5 (An abstract labelled graph). The abstract labelled graph G has two
labels: L(G) = {a, b}, three vertices: V(G) = {v1, v2, v3}, the vertices labelled
as follows: L(v1) = {}, L(v2) = {a}, L(v3) = {a, b} and one edge: E(G) =
{{v1, v2}}. Note that a second edge {v2, v3} could have been added to this ex-
ample, but the pair {v1, v3} would not be admitted as an edge because of the
labels on the vertices v1 and v3.

Definition 8. The map f : L̂G → LG (‘f ’ for ‘forgetful’) is defined by forgetting
positional information in the vertex set V̂(Ĝ).

Proposition 1. Given a concrete diagram d̂ ∈ D̂, and two plane duals Ĝ1, Ĝ2 ∈
pdual(d̂), their abstract labelled graphs are equal: f(Ĝ1) = f(Ĝ2).

Definition 9. Although a concrete diagram d̂ has many plane dual graphs given
by the set pdual(d̂), we can refer to “the” abstract dual graph of a concrete
diagram, abG(d̂) ∈ LG.

Definition 10. The map diag : LG → D (“diag” for “diagrammise”) is defined
by 〈L(G),V(G), E(G)〉 7→ 〈C(d),Z(d)〉 where the abstract contour set is the label
set L(G) = C(d) and the zones are the vertices V(G) = Z(d).



This map can be thought of as forgetting the edge information in an abstract
labelled graph.

Example 6 (The diag mapping). Let G be the abstract labelled graph given in
example 5. The abstract diagram diag(G) = d has contours C(d) = {a, b, c} and
zones {{} , {a} , {a, b}}
What we have so far is illustrated in the following commutative diagram (shown
on the left) which shows“forgetful” mappings as information is lost moving from
a concrete environment to the abstract level.

D̂ pdual−−−−→ L̂G D̂ ←−−−− L̂G
ab

y
yf

x
x

D ←−−−−
diag

LG D −−−−→ LG

The strategy of the algorithm is to attempt to find inverses of the functions pdual,
f and diag (inverses shown on the right). A mapping from abstract diagrams to
concrete diagrams will be found which factors through abstract dual graphs and
plane dual graphs. Factoring the problem through dual graphs reduces one task
to three steps, and allows the use of existing knowledge from graph theory and
graph drawing. As the work progresses, we will see that some inverse functions
cannot be defined on the whole domain, and in this way, some abstract diagrams
become classified as undrawable. The following three sections of the paper cover
three key steps:

(i) map from abstract diagrams to abstract labelled graphs: D → LG
(ii) map from abstract labelled graphs to concrete labelled graphs: LG → L̂G
(iii) map from concrete labelled graphs to concrete diagrams: L̂G → D̂

contours = {
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b
}
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a
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}}
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Fig. 3. The steps of the algorithm

2.1 Creation of an abstract labelled graph from an abstract diagram

Definition 11. The map superDual : D → LG is defined by 〈C(d),Z(d)〉 7→
〈C(d),Z(d), E(G)〉 where the edges include all possible e = (v1, v2) where v1 and
v2 have singleton symmetric difference.



The superdual of an abstract diagram uses the contours for labels and the zones
for vertices. Deriving the superdual of an abstract diagram d and mapping back
to an abstract diagram recovers d, having constructed edges between some ver-
tices and then forgotten the edges again.

Proposition 2. If d ∈ D then diag(superDual(d)) = d.

Figure 3 illustrates vertex and edge-labelling. In small cases (all examples with
three or fewer contours), the abstract labelled dual graph of a concrete diagram
abG(d̂) is exactly the super-dual of its abstract diagram superDual(ab(d̂)). How-
ever, figure 4 shows that vertex labels can differ by a single contour label even
when the zones are not adjacent in the concrete diagram. The vertices {s} and
{p, s} in superDual(ab(d̂)) are adjacent, but they are not adjacent in abG(d̂).
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Fig. 4. The dual graph of the Venn diagram on four contours

Proposition 3. Let d̂ be a concrete diagram. Then abG(d̂) ∈ LG is a subgraph
of superDual(ab(d̂)) which includes all vertices (sometimes called a wide sub-
graph).

The abstract dual of a concrete diagram satisfies connectivity conditions:

Definition 12 (The connectivity conditions). An abstract labelled graph
〈L(G),V(G), E(G)〉 satisfies the connectivity conditions if it is connected and,
for all labels l ∈ L(G), the subgraphs G+ (l) generated by vertices whose labels
include l, and G− (l) generated by vertices whose labels exclude l are connected.

Theorem 1 (The connectivity theorem). Let d̂ be a concrete diagram. Then
abG(d̂) passes the connectivity conditions.

The proof of this result uses some results from topology concerning paths in the
plane.

Corollary 1 (The connectivity test). If d is an abstract diagram whose
super-dual fails the connectivity conditions then d is undrawable.

This corollary provides a practical condition for drawability at the abstract di-
agram level.

Example 7. The abstract diagram of example 4 〈 {a, b} , {{} , {a, b}} 〉 has super-
dual with two vertices, labelled {} and {a, b} and no edges. The super-dual is
disconnected, and so the abstract diagram is undrawable.



2.2 Creation of a plane dual graph from an abstract labelled graph

If we are given an abstract labelled graph which passes the connectivity condi-
tions, it is potentially the abstract graph of a concrete diagram. To begin the
construction of such a concrete diagram (if it exists), assign points in the plane
to vertices of the graph to give a concrete labelled graph. Recall that the vertices
of a concrete labelled graph have positions in the plane, but the edges are simply
pairs of vertices, rather than curves in the plane.

The dual of a concrete diagram can be drawn as a plane graph. Given an
abstract labelled graph G, it is potentially the abstract graph of a concrete
diagram only if it is planar. If G is non-planar, it may still be possible to remove
edges from it to leave a reduced planar graph which still passes the connectivity
conditions. For example, edge removal is necessary to produce a plane dual for
the Venn diagram on four contours. Different choices of edge-removal lead to
different concrete representations.

For non-planar abstract labelled graphs, further work is needed to ascertain a
sound strategy for edge-removal (maintaining connectivity conditions) to give a
planar graph where possible. Strategies exist in the literature for removing edges
to gain planarity, but in this context, attention must be paid to the connectivity
conditions.

Example 8 (Edge-removal and connectivity). The following abstract diagram has
a superdual which passes the connectivity conditions. However, it is non-planar
and if any edge is removed, the connectivity conditions fail. It has five con-
tours {a, b, c, d, e} and fifteen zones. {{}, {b}, {c}, {d}, {e}, {a, b}, {a, c}, {a, d},
{a, e}, {a, b, c}, {a, b, d}, {a, b, e}, {a, c, d}, {a, c, e}, {a, d, e}} (inspired by an ex-
ample in [14]). The superdual is homeomorphic to the complete graph K5.

In the current implementation of the algorithm, an iterative planarising step
is used which is not optimal but works in small cases. An improved planarising
step should take account of the rich structure of the abstract graph given by the
labelling on the vertices. Connectivity conditions reveal the graph as connected
and bipartite (by cardinality of vertex labels). The fact that edges only join
vertices with singleton symmetric difference provides more structure within the
dual graph.

Whatever planarising step is used, the aesthetics of the result are unimpor-
tant at this stage. The placing of the vertices determines faces of the plane graph.
The next step extracts the faces as as combinatorial constructions and makes a
new embedding in the plane.

2.3 Creation of concrete contours from a plane labelled graph

Given a concrete labelled graph with labelled vertices and edges, the faces of
the graph are the starting point for constructing the contours for a concrete
diagram. We would like to be able to construct concrete contours which give one
zone for each graph vertex, and no other zones. The labels on the zones should
match the labels on the graph vertices. The strategy is to draw the edges of
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Fig. 5. Arcs across dual faces

the concrete labelled graph, and to draw arcs across faces to join the midpoints
of edges. These arcs will combine to create the closed contours of a concrete
diagram (see figure 5). The labels on the edges around each face determine how
the arcs will intersect.

Definition 13. A face-cycle of face f in concrete labelled graph G is a cycle of
edges in the boundary of f which make up a cycle in G. The contour labels in a
face-cycle can be cycled, or reversed, giving another representative of the same
cycle.
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Fig. 6. Face-cycles of a concrete labelled graph

For internal (bounded) faces of a concrete labelled graph G, there is a single
face-cycle made up of a subset of the boundary edges. However, an outside
(unbounded) face of G may have multiple face-cycles as shown in figure 6.

Lemma 1. Let f be a face of a concrete labelled graph. For any contour label c,
there is an even number of occurrences of c in a face-cycle of f .

The proof uses a count of symbols in vertex-labels.

Lemma 2. Let G be a concrete labelled graph whose abstract labelled graph
passes the connectivity conditions. Take a face fand a contour label c. There
are zero or two occurrences of c in the face-cycle of f .

The proof of this result is similar to a proof of the five-colouring theorem which
uses Kempe chains [3]. Use connectivity and lemma 1.

When constructing the concrete contours, one zone will be constructed around
each plane labelled vertex. It is important to ensure that the arcs across each
face intersect so that no additional unwanted zone(s) appear in the face. Prob-
lematic cases with unwanted concrete zones are shown in figure 7. The unwanted
zones could be either zones which aren’t specified by the vertex set, or a second
component of an existing zone, giving disconnected zones. The first diagram in
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Fig. 7. Introducing unwanted zones

figure 7 can be resolved by rendering the face convex and using linear arcs across
the face.

In the second diagram, however the arcs are placed without triple points,
an unwanted zone will appear because of the sequence of edges around the face.
The potential introduction of unwanted zones in this way provides another set of
conditions for construction of a concrete diagram. The following definition and
theorem set up enough notation to determine whether or not a concrete labelled
graph can be used to construct a compliant concrete diagram.

Definition 14. Define the crossing index of a face-cycle. For each pair of con-
tour labels which occur in the face-cycle, determine whether the pairs are nested.
If the letters are not nested, the pair contributes 1 to the crossing index, other-
wise the pair contributes 0 to the crossing index. Symbols a and b are nested in
abba, but not nested in abab.

Example 9 (Crossing index). The cycle 〈a, b, c, a, b, c〉 has crossing index equal to
3, because all pairs {a, b}, {b, c}, and {a, c} give non-nested sub-cycles
〈a, b, a, b〉, 〈b, c, b, c〉 and 〈a, c, a, c〉. Another example, 〈a, b, c, b, a, c〉, has crossing
index equal to 2.

If a face-cycle has n symbols, each occurring twice, then its crossing index x is
bounded by 0 ≤ x ≤ n(n−1)

2 .

Theorem 2 (The face-conditions). Let d be a concrete diagram, and P a
plane dual graph. For each face-cycle of a plane dual graph, with crossing index
x and length 2n, the crossing index is x = n− 1.

The proof uses Euler’s formula for plane graphs and the handshaking lemma.

Corollary 2 (The face-cycle conditions). If P is a concrete labelled graph
with a face-cycle whose crossing index is x and number of edges is 2n with
x 6= n− 1, then P cannot be used to construct concrete contours with one zone
containing each vertex.

Example 10 (Face-conditions). In the left-hand diagram of figure 8, there are
three faces and two face-cycles. The four-sided faces have crossing index x = 1
and cycle length n = 2, and the six-sided face has crossing index x = 2 and cycle
length n = 3. The concrete labelled graph passes the face-conditions.

The abstract diagram with zones {{} , {a} , {a, b} , {a, b, c} , {b, c} , {c}} is un-
drawable (see the second graph in figure 8). Its plane dual graph is a cycle of six
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Fig. 8. Face-conditions

edges. The faces both have face-cycles 〈a, b, c, a, b, c〉 with crossing indices x = 3,
and the lengths given by n = 3. It is not the case that x = n− 1.

Proposition 4. If a concrete labelled graph passes the face-conditions and con-
nectivity conditions, and removal of an edge maintains the connectivity condi-
tions, then removal of that edge also maintains the face-conditions.

Removal of edges (e.g. to ease planarisation) cannot jeopardise the existence of
a plane representation which passes the face-conditions.
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Fig. 9. Face-conditions and layout

One might hope that, given an abstract dual graph, all plane representations
of it either pass or fail the face-conditions. However, this is not the case. Figure 9
shows a dual of the Venn diagram on three contours, after removal of the edges
{{a} , {a, c}} and {{b} , {b, c}}. The absence of these two edges does not cause
failure of the seven connectivity conditions. The super-dual has a plane represen-
tation which passes the face-conditions (in fact all plane representations of the
super-dual will pass the face conditions), so proposition 4 says that after remov-
ing two edges, there must also be a plane representation which passes the face
conditions. This is shown on the left of the figure. But removal of these edges also
introduces the existence of a plane representation which fails the face-conditions,
shown on the right. This example shows that failure of the face-conditions in a
single plane subgraph of superDual(d) does not necessarily render the underly-
ing abstract diagram d undrawable. To complete the argument for example 10 we
have to say that not only does the presented plane graph fail the face-conditions,



but all plane representations of the abstract dual will fail the face conditions.
For the example shown, this is easy, but for larger graphs, this kind of argument
poses a problem.

Future work on improving the planarising step in this algorithm should seek
plane representations which pass the face-conditions, if they exist.

Given an abstract labelled graph which passes the connectivity conditions,
and a plane graph representation which passes the face-conditions, to complete
the construction of the contours we draw the plane graph with all faces convex
and draw arcs linear across faces. Of course, it is impossible to draw a graph
with all faces convex, but the faces can be placed as convex faces in a disc with
one new non-convex outside face. This step, called circularisation of the dual, is
discussed in the next section.

2.4 Circularisation

Given a concrete labelled graph which passes the connectivity and face condi-
tions, we seek a plane representation with convex faces. The barycentric approach
to graph drawing [1] gives all but one face convex. Circularisation reproduces all
the faces of a graph inside a disc, introducing a new (non-convex) face outside
the disc. Some vertices of the original graph may appear more than once, and
some edges will be duplicated. Circularisation can be achieved by taking faces
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Fig. 10. The circularisation process and addition of arcs

in turn, inserting them into a disc. After the first face, further faces are chosen
and inserted by identifying common edges which are already present in the disc.
The edges which remain un-identified after all faces are inserted are the edges
around the edge of the disc (polygon). These correspond to edges making up a
spanning tree of the original graph.

An alternative view of the same process begins by choosing a spanning tree
of the original graph. Split the edges into pairs, and fatten the spanning tree into



a new polygonal face. Move the infinity point into this new face and squeeze the
original faces so that all vertices lie around a circle (the boundary of the new
face). Edges in the chosen spanning tree are duplicated around the outside of
the circularised graph whereas edges not in the spanning tree appear once each,
across the disc.

The process of circularisation is illustrated in figure 10 as the second step
(top right to bottom left diagram): a dual graph with two faces is circularised
to give two faces in a disc and one additional non-convex face outside the disc.

The rewards of circularisation come from the construction of the concrete
Euler contours. As in figure 5, arcs will be constructed across faces of the concrete
labelled graph, but now the arcs can be drawn as straight lines. A 2n-sided face
will have n arcs drawn across it. The arcs join the midpoints of edges with shared
labels. They are guaranteed to only cross other arcs in the same face (because
the faces are convex), and they are guaranteed to meet transversely (because
they are linear). The face-conditions guarantee that no new zones will appear as
the linear arcs are added.

The added arcs contribute to piecewise-linear contours of the required con-
crete diagram. The contours need to be completed by drawing arcs outside the
disc (the last step shown in figure 10). Starting at a vertex labelled {}, read the
labels from the edges around the circle, giving a word of contour labels. This
word is made up of nested pairs of contour labels. In figure 10, the nested word is
babbabcc. Use the nesting to determine which labels are pairs. The labels which
pair identify edges which will be joined by arcs outside the disc. Draw arcs out-
side the disc joining the innermost pairs: bb and cc. Join the two edges labelled
a and join the remaining two edges labelled b.

The algorithm to this point has been implemented in the Java program-
ming language, with outcomes shown in figure 12. The results can be difficult
to interpret by eye. The final proposition suggests one resolution of this prob-
lem. The resulting concrete diagram can appear somewhat convoluted. Measure
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Fig. 11. Spanning trees and circularisation

the lengths of arcs drawn outside the disc, and take this to be a measure of
convolution of the concrete diagram. Recall that the decisions made during cir-
cularisation give a spanning tree of the dual.



Proposition 5. Convolution of the concrete diagram is minimised by choosing
a spanning tree with the vertex labelled {} as its centre, with vertices as close as
possible to the centre (for centre of a tree, see [3]).

3 Conclusions

Figure 12 shows the outcome for all drawable diagrams with two or three con-
tours. Some diagrams could be made less convoluted by application of the span-

Fig. 12. Program output

ning tree with null centre (see prop 5). All other abstract diagrams with two
or three contours were determined to be undrawable by testing for connectivity
conditions and face-conditions.

The algorithm has been proved to be practical in small cases, as it has been
implemented in the Java programming language. The program accepts a string
description of a set of sets as zone descriptors. It first constructs the super-
dual graph (def 11) before checking the connectivity conditions (thm 1). If the
connectivity conditions pass, then edges are removed to assist with an iterative
planarising step (sec 2.2). If the face-cycle conditions (cor 2) fail, then alternative
planarisations are sought. If a planar representation of the dual is found which
passes the face conditions, then the circularisation process (sec 2.4) is applied to
construct contours and resulting concrete diagram is drawn.

Remaining questions include:
(i) If an abstract diagram has a non-planar super-dual (e.g. the Venn diagram

on four contours), what is a good strategy for selecting edges (maintaining
connectivity conditions) to get a planar dual graph?

(ii) What is the most effective planarising algorithm for a labelled dual graph?
(iii) Is it possible to adapt the algorithm to allow inclusion of triple points,

or new zones, in the concrete diagrams? This would make more abstract
diagrams drawable.



(iv) How can the resulting concrete diagram be manipulated to maintain the
topological properties of contour intersection, and enhance the clarity of
the concrete diagram?(prettification)

One intended application of this work is to enable a constraint diagram tool
to construct appropriate diagrams which are equivalent to textual constraints
in software modelling. The kinds of constraints which occur normally have few
contours. If a diagram is considered as a set of “nested” components - diagrams
within diagrams - then the number of contours will be further reduced. The
algorithm as it is presented here is effective for such small examples, and after
more work on the planarising step, would be practical for larger examples too.

Current work includes the study of existing Venn diagram algorithms to
address edge-removal and smart planarising steps for Euler duals. We are also
looking at “nesting” diagrams and the impact this has on layout algorithms.

Thanks to John Taylor, Gem Stapleton, and the conference referees for con-
structive comments on drafts of this article. This work was partially supported
by UK EPSRC grant GR/R63516.
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