
Towards a Formalization of Constraint Diagrams

Joseph (Yossi) Gil
Department of Computer Science

Technion—IIT, Haifa 32000, Israel
yogi@cs.technion.ac.il

John Howse
School of Computing & Mathematics
University of Brighton, Brighton, UK

John.Howse@brighton.ac.uk

Stuart Kent
Computing Laboratory

University of Kent, Canterbury, UK
S.J.H.Kent@ukc.ac.uk

Abstract

Geared to complement UML and to the specification of
large software systems by non-mathematicians,constraint
diagramsare a visual language that generalizes the pop-
ular and intuitive Venn diagrams and Euler circles, and
adds facilities for quantifying over elements and navigat-
ing relations. The language design emphasizes scalability
and expressiveness while retaining intuitiveness. Spider di-
agrams form a subset of the notation, leaving out universal
quantification and the ability to navigate relations. Spider
diagrams have been given a formal definition. This paper
extends that definition to encompass the constraint diagram
notation. The formalization of constraint diagrams is non-
trivial: it exposes subtleties concerned with the implicit or-
dering of symbols in the visual language, which were not
evident before a formal definition of the language was at-
tempted. This has led to an improved design of the lan-
guage.
Keywords Visual formalisms, software specification, for-
mal methods.

1 Introduction

The uptake in the software industry of notations for de-
signing systems visually has been accelerated with the stan-
dardization of the Unified Modeling Notation (UML) [13].
UML brings together a number of informal visual notations
that have proven useful to some parts of industry. It has
made little progress in integrating these notations, although
formalization of UML notations, in various forms, is cur-
rently a hot research topic.

In this paper, we describe a notation,constraint dia-
grams, which was introduced in [10] as a visual technique
intended to be used in conjunction with UML for object-
oriented modelling. Constraint diagrams provide a dia-
grammatic notation for expressing constraints (invariants)

that can only be expressed in UML using the Object Con-
straint Language (OCL) [17], essentially a textual, stylised
form of first order predicate logic, which is part of the UML
standard [13].

Constraint diagrams were developed to enhance the vi-
sualization of object structures and they build on class di-
agrams in UML. Whereas class diagrams are only able to
show that there are relationships between certain kinds of
object, constraint diagrams are able to visualize properties
of those relationships and compositions of those relation-
ships.

Constraint diagrams build on a long history of using dia-
grams to visualize logical or set-theoretical assertions. Cir-
cles or closed curves, which we call contours, have been
in use for the representation of classical syllogisms since at
least the Middle Ages [12]. Euler introduced the notation
we now callEuler circles(or Euler diagrams) [1] to illus-
trate relations between sets. This notation uses the topo-
logical properties of enclosure, exclusion and intersection
to represent the set-theoretic notions of subset, disjointness,
and intersection, respectively.

The logician John Venn used contours to represent log-
ical propositions [16]. In Venn diagrams all contours must
intersect. Moreover, for each non-empty subset of the con-
tours, there must be a connected region of the diagram, such
that the contours in this subset intersect at exactly that re-
gion. Shading is then used to show that a particular region
of the resulting map is empty.

The logician Charles Peirce augmented Venn diagrams
by adding X-sequences as a means for denoting ele-
ments [14]. An X-Sequence connecting a number of “min-
imal regions” of a Venn diagram, indicates that their union
is not empty. Full semantics and inference rules have only
recently been developed for Venn-Peirce diagrams [15] and
Euler circles [5]. Constraint diagrams bear a resemblance
to Harel’shigraphs[6], the basis ofstatecharts, in that they

1



both represent binary relations by using arrows between
closed curves. However, the semantics of the two notations
are rather different.

Spider diagrams[2] are a natural extension of Venn-
Peirce and Euler diagrams; they are based on Euler dia-
grams, so the topological properties of the diagrams are
important, but they also containspiders, a generalization
of Peirce’s X-sequences, and shading. They emerged from
work on constraint diagrams and such is the similarity with
Venn-Peirce and Euler diagrams that the methods used on
the existing notations were adapted to give formal seman-
tics and develop sound and complete inference rules for
the more expressive spider diagrams. The syntax and in-
formal semantics of spider diagrams are considered in§2.
We then extend this, in§3, to develop the syntax and in-
formal semantics of constraint diagrams. In the work on
constraint diagrams it soon became apparent that the nota-
tion was far more sophisticated than it first seemed. Specifi-
cally we started to discover examples where, although there
seemed to be an intuitive reading, it was not obvious how
that reading was derived in any general or systematic way.
These issues are discussed in§4. In §5 we develop the for-
mal syntax and a partial semantics of constraint diagrams.
Finally, in §6, we conclude the paper and discuss future re-
search, including an idea that resolves most of the issues
discussed in§4.

Constraint diagrams include the idea ofprojections,
which remove clutter and focus attention in the diagram ap-
propriately. For space reasons, we are unable to consider
projections in this paper; for details see [3].

2 Spider diagrams

In this section we give a concise description of spider di-
agrams. For more details see [2]. Acontour is a simple
closed plane curve. Aboundary rectangleproperly contains
all other contours, although we do not usually represent it in
concrete spider or constraint diagrams; its existence is im-
plicit. A district (or basic region) is the bounded area of the
plane enclosed by a contour or by the boundary rectangle.
A region is defined, recursively, as follows: any district is a
region; ifr1 andr2 are regions, then the union, intersection,
or difference, ofr1 andr2 are regions provided these are
non-empty. Azone(or minimal region) is a region having
no other region contained within it. Contours and regions
denote sets.

A spider is a tree with nodes (calledfeet) placed in dif-
ferent zones; the connecting edges (calledlegs) are straight
lines. A spidertouchesa zone if one of its feet appears in
that zone. A spider may touch a zone at most once. A spi-
der is said toinhabit the region which is the union of the
zones it touches. For any spiders, the habitat of s, de-
notedη(s), is the region inhabited bys. There is a slight
semantical difference between spiders with circles as feet

A B C

c

Fig. 1: Spider diagram.

and spiders with squares as feet. A spider whose feet are
circles corresponds to existential quantification of an ele-
ment within the set denoted by the habitat of the spider. A
spider whose feet are squares represents a given element. A
Schr̈odingerspider denotes a set whose size is either zero or
one. Like Schr̈odinger’s cat, one is not sure whether the el-
ement within the set exists or not. The feet of a Schrödinger
spider are rendered as open circles. Fig. 1 contains exam-
ples of all these types of spider.

Two distinct spiders denote distinct elements, unless they
are joined by atie or by astrand. A tie is a double, straight
line (like an equals sign) connecting two feet, from differ-
ent spiders, placed in the same zone. Thenestof spiderss
andt, written τ(s, t), is the set of those zonesz having the
property that the feet ofs andt are connected by a tie inz.
Two spiders which have a non-empty nest are referred to as
mates. If both the elements denoted by spiderss andt are
in the set denoted by the same zone in the nest ofs andt,
thens andt denote the same element. Astrand is a wavy
line connecting two feet, from different spiders, placed in
the same zone. Thewebof spiderss andt, written ζ(s, t),
is the union of zonesz having the property that there is
a sequence of spiderss = s0, s1, . . . , sn = t such that,
for i = 0, . . . , n − 1, si andsi+1 are connected by a tie or
by a strand inz. Soτ(s, t) is a subregion ofζ(s, t). Two spi-
ders with a non-empty web are referred to asfriends. Two
spiderss and t may (but not necessarily must) denote the
same element if that element is in the set denoted by the
web ofs andt.

Every region is a union of zones. A region isshadedif
each of its component zones is shaded. The semantics of a
shaded zoneis that the set it denotes may not contain ele-
ments other than those indicated by the spiders which touch
that zone. Hence, a shaded region denotes the empty set if
it is not touched by any spider. Spiders can be used to place
a lower bound on the number of elements in a set; shading
a zone which includes spiders has the effect of placing an
upper bound on the cardinality of the set denoted by that
zone. Each contour must be labelled and no two contours in
the same unitary diagram can have the same label. The la-
belling of spiders is optional. The semantics of the diagram
in Fig. 1 includesA∩C = ∅∧ c ∈ C ∧|C−B| ≤ 2∧∃x ∈
A ∪B • x 6= c. The given spider inC is labelledc.

Sound and complete diagrammatic inference rules have
been developed for several systems of spider diagrams [7,



A Bf

Fig. 2: Simple arrow.

A B
f

Fig. 3: A derived contour.

8, 9].

3 Syntax and informal semantics of con-
straint diagrams

Constraint diagrams are spider diagrams augmented byar-
rows anduniversal spiders. Arrows represent binary rela-
tions between sets and universal spiders denote universal
quantification.

An arrow has alabel, a sourceand atarget. The source
of an arrow can be a contour, a zone or a spider. The target
of an arrow can be a contour, a zone or a spider; it is inter-
preted as the relational image of the set represented by the
source under the relation represented by the arrow. We will
use the standard object-oriented notationx.r to represent
textually the relational image of elementx under relationr,
i.e., x.r = {y : (x, y) ∈ r}; thusx.r is the set of all el-
ements related tox under relationr. The expressionx.r
is a navigation expression, so called because we cannavi-
gatefrom x along the arrowr to the setx.r. The relational
image of a setS is then given byS.r =

⋃
x∈S x.r (note

that, in OCL, the navigation expressionS.r returns a bag;
constraint diagrams are purely set-based). LetS andT be
the sets represented by the source and target, respectively,
of arrowr. Then the equationS.r = T holds. In Fig. 2 the
source of arrowf is contourA and its target is contour B.
Its interpretation isA.f = B.

In Fig. 3, the target of arrowf is aderived contour. The
interpretation isA.f ⊆ B. Derived contours are non-given
contours appearing as the target of some arrow. The set
denoted by a derived contour is defined by the navigation
expression of its arrow (or arrows).

The source or target of an arrow can be a zone. In Fig. 4,
the interpretation is(A∩B).f = (C−D). Both the source
and target of the arrow in Fig. 5 are given spiders; the in-
terpretation isx.f = y. The target of an arrow should be a
set. However, the arrow is targeted on a given spider. This

A B C
Df

Fig. 4: Arrow with zone as source and zone as target.

A B

x yf

Fig. 5: Arrow with given spiders as source and target.

A B

f

Fig. 6: Existential and derived spiders.

A B

f

g

Fig. 7: Arrows with universal spider as source.

spider is treated semantically as a singleton set. We are im-
plicitly allowing coercion between a singleton set and its
element.

3.1. Quantification

The notation is able to express existential and universal
quantification. The navigation expression in Fig. 6 is ex-
istentially quantified, as its source is an existential spider.
Its interpretation is∃x ∈ A • x.f ∈ B. The target is a
derivedspider. This spider is treated as if it were a derived
contour whose interpretation is a singleton set and, because
it is a singleton set, we coerce the set into its element and
hence writex.f ∈ B rather thanx.f ⊆ B.

The source of an arrow can also be auniversal spider.
The universal spider, whose feet are rendered as∗s, ranges
over all the elements of the set denoted by its habitat. In
Fig. 7, the universal spider ranges over all elements of the
setA. The interpretation of this diagram is that for eachx
in A, x.f andx.g are disjoint, i.e.,∀x ∈ A • x.f ∩ x.g = ∅.

A universal spider can only be the source of an arrow.
No arrow can be targeted on a universal spider and a uni-



A B C
f

Fig. 8: Arrow with articulated universal spider as source.

A B C D
f

g

f

g

Fig. 9: Distinct and non-distinct universal spiders.

A

B

C

f

g

h

Fig. 10: Navigation.

versal spider that is not the source of an arrow cannot exist
(it would have no meaning; this is why universal spiders do
not occur in spider diagrams). A universal spider can be
articulated (i.e., have more than one foot). In Fig. 8, the
source of arrowf is an articulated universal spider. The
arrow can be sourced on any part of the spider, that is, on
any of the feet or on any of the legs. The interpretation of
this is∀x ∈ A ∪ B • x.f ⊆ C. The universal spiders in
contourA of Fig. 9 obey the rule that spiders represent dis-
tinct elements unless connected by a strand or a tie. So the
interpretation is∀x, y ∈ A • x 6= y ⇒ y.g ∈ x.f . The
universal spiders inC of Fig. 9 are connected by a strand
and therefore can represent the same elements; the interpre-
tation is∀x, y ∈ C • y.g = x.f .

3.2. Constraint diagrams and OO modelling

So far, we have only considered single-arrow navigation ex-
pressions. In Fig. 10, there is a two-arrow navigation ex-
pression∀x ∈ A•x.f.g. The expressionx.f.g is interpreted
as(x.f).g which is equal to

⋃
y∈x.f y.g; we take the union

of the image sets underg of each element of the derived
setx.f . Interestingly, if we take the expressionf.g to be
the composition off andg, then we have(x.f).g = x.(f.g)
and hence the expressionx.f.g is well-defined, albeit with a
very overloadeddot; this, of course, is not the case in OCL,

Reservation Car Specification

Car
assigned

reserved

better

spec

Fig. 11: A car-hire constraint.

wherex.f.g delivers a bag. In Fig. 10, the set obtained by
navigating from the universal spider inA via arrowsf andg
is the same as that obtained by navigating from it alongh.
Thus we have∀x•x.f.g = x.h. One of the key strengths of
constraint diagrams is their ability to illustrate diagrammat-
ically navigation expressions and the relationships between
them.

When constraint diagrams are used in object-oriented
modelling, we use rectangles for classes (or types) and
round-cornered rectangles for states and we identify a state
as a subset of a class. The constraint diagram in Fig. 11 ex-
presses, among other constraints, an invariant on a model of
a car-hire business:

The specification of the car assigned to a reservation
must be the same or better than the specification reserved.

∀r ∈ Reservations, r.assigned.spec = r.reserved

∨ r.assigned.spec ∈ r.reserved.better.

4 Issues
In the work on the development of constraint diagrams it
became apparent that the notation was rather more sophis-
ticated than we anticipated. Specifically, we started to dis-
cover examples where, although there seemed to be an in-
tuitive reading, it was not obvious how that reading was de-
rived in any general or systematic way. These examples
generally involved quantification and interesting relation-
ships between navigation expressions. For instance, con-
sider the diagram in Fig. 10. The target of arrowf is a
derived spider (a derived singleton set), which, in turn, is
the source of arrowg; the target ofg is also a derived spi-
der. So, both the source and target ofg depend onf ; indeed,
they are both parts of a universally quantified statement

∀x ∈ A • (x.f ∈ B ∧ (x.f).g ∈ C).

To consider the source and target ofg outside the scope of
this quantified statement would be meaningless; some ar-
rows cannot be interpreted independently. To be precise,
any arrow whose source is a derived contour or a derived



A B C

DE

f g

h

j

Fig. 12: An arrow sequence.

A C B
f

g

Fig. 13: Two universally quantified arrows with same target.

spider or is a universal or existential spider whose habitat is
a derived contour is intrinsically linked to another arrow. Of
course, in longer navigation expressions we can have arrows
dependent upon many other arrows for their interpretation.
In order to give semantics to such expressions, we have to
consider whole sequences of arrows.

We define an arrow sequence, to be a se-
quencea1, . . . , an of distinct arrows with the following
properties. The source ofa1 is a quantified spider whose
habitat is not derived. The source of each of the other
spiders is a derived contour or spider or is a quantified
spider whose habitat is a derived contour. The target of
each of the arrows except (possibly) the last one (an) is
derived and the target ofai is equal to the source ofai+1

or is the habitat of the quantified spider that is the source
of ai+1, for i ∈ 1..n − 1. An arrow sequencea1, . . . , an

in which the target ofan is not derived or if it is derived
it does not contain a quantified spider that is the source of
another arrow is called acomplete arrow sequence.

In Fig. 12, there is a complete arrow sequencef, g, h, j,
where each arrow has a different kind of source. The arrow
sequence is interpreted as∀x ∈ A• (x.f ⊆ B∧∃y ∈ x.f •
(y.g ⊆ C ∧ y.g.h ∈ D ∧ y.g.h.j = E)). When obtaining
the formal semantics of constraint diagrams, it is arrow se-
quences we need to consider rather than that of individual
arrows. Of course, a single arrow can constitute a complete
arrow sequence. Arrow sequences are given formal defini-
tions and formal semantics in§5.

An interesting case occurs when two quantified arrows
have the same derived target. This means that the target of
each arrow is interpreted as the same set. Consider Fig. 13.
There are two interpretations of this, depending on which

A C B

f

g

Fig. 14: Ordering of quantifiers.

A C B
1 2f

g

Fig. 15: Numbered quantifiers.

of the spiders we start from:∀x ∈ A • (x.f ⊆ C ∧ ∀y ∈
B • (y.g ⊆ C∧x.f = y.g)) and∀y ∈ B • (y.g ⊆ C∧∀x ∈
A • (x.f ⊆ C ∧ x.f = y.g)). The expressionx.f = y.g
must be within the scope of both the universal quantifiers.
However, the two interpretations are in fact equivalent, as
they can be rewritten as

∀x ∈ A∀y ∈ B • (x.f ⊆ C ∧ y.g ⊆ C ∧ x.f = y.g)

and the ordering of the two universal quantifiers is irrele-
vant. In fact, this expression constrains the relationf so
that∀x1, x2 ∈ A • x1.f = x2.f and similarly forg.

However, a problem arises when we consider a similar
situation but with a universal quantifier and an existential
quantifier. The ordering of universal and existential quan-
tifiers is important. The diagram in Fig. 14 can have two
very different interpretations, depending on which of the
spiders we start from: ∀x ∈ A∃y ∈ B • x.f = y.g
and∃y ∈ B∀x ∈ A • x.f = y.g.

There are a number of solutions to this type of problem.
We could ban such expressions. It is not too difficult to con-
struct a syntactic condition that would exclude such cases.
This, of course, reduces the expressiveness of the notation.

We could have a default semantics which is always
unique; for instance we could insist that universal quan-
tifiers always had precedence over existential quantifiers
(where there was any ambiguity). This would mean that
the first interpretation held; however, it would then be im-
possible to express the second interpretation in the notation,
again reducing the expressiveness of the notation.

A third possibility is to introduce more syntax into the
notation. For instance, quantifiers could be numbered, or
even coloured, to indicate the order in which they occur.
In Fig. 15 precedence is given to the universal quantifier as
it is numbered 1. The interpretation is the first one given
above; with the numbering reversed, the second interpre-
tation would hold. In an arrow sequence the order of the
quantifiers is given by the order of the arrows, however,
when two sequences interact, there could be a problem; the



A

D E

B

C

f
g

h

j

Fig. 16: Two interacting sequences.

A B
f

g

Fig. 17: Circularity.

simplest case of this is Fig. 14. If all the quantifiers in two
interacting arrow sequences are universal or if all of them
are existential, then there is an unambiguous interpretation;
the simplest case of this is Fig. 13. In the case in which
there is a mixture of types of quantifier, we could number
the quantifiers to remove any ambiguity, but the ordering of
the quantifiers in any arrow sequence must follow the order-
ing of the arrows. In Fig. 16, there are at least six different
interpretations. The quantifier inA has precedence over the
quantifier inB and the quantifier inD has precedence over
the quantifier inE, apart from that any permutation of the
quantifiers would be permitted.

A difficult issue is that ofcircularity. Consider Fig. 17.
Each derived contour is defined in terms of the other derived
contour. There is no arrow sequence in this diagram. It is
very difficult to interpret this diagram without being told
where to start. One interpretation might be to start navigat-
ing from the universal spider inA (we’ll call it x), in which
case it should range over all the elements inA because the
derived contour containing it is defined in terms of an ar-
row from a universal spider (which we’ll cally) which is
contained in a derived contour which is defined in terms
of x. So an interpretation is∀x ∈ A • (x.f ⊆ B ∧ ∀y ∈
x.f • (y.g ⊆ A ∧ x ∈ y.g)). In this interpretation, the uni-
versal spider withinB ranges over the elements of the de-
rived setx.f , not over the whole ofB. The symmetry of the
expression is broken and it does matter where we start the
interpretation, because, of course, by symmetry, there is a
similar, but different, interpretation starting with the univer-
sal spider inB, i.e., ∀y ∈ B•(y.g ⊆ A∧∀x ∈ y.g•(x.f ⊆

A Bf

f

Fig. 18: Inconsistency.

B∧y ∈ x.f)). We can, again, number the quantifiers to give
an unambiguous reading, but this interpretation does require
the scope of the universal spider inA to be something other
than its habitat; this may well be counter-intuitive.

The obvious thing to do in such cases is to ban such ex-
pressions and for the moment this is what we will do. This
does limit the expressiveness of the notation, but it prevents
a possible ambiguity. We can banish these expressions syn-
tactically by insisting that all arrows must be part of some
complete arrow sequence.

In §6, we sketch the idea ofconstraint trees, which deals
with many of the problems of expressibility and allows us to
modularize the notation and to mix it with other notations.
A full consideration of this idea is beyond the scope of this
paper.

Finally in this section, we will consider the problem of
inconsistency. For spider diagrams, we can prove that each
unitary diagram is consistent, i.e., that it has a compliant
model. The constraint diagram in Fig. 18 is inconsistent
asA.f = B, but there existsx ∈ A for which x.f /∈ B.
It may well be possible to syntactically exclude all such in-
consistencies; we will not attempt to do so in this paper.

5. Formal syntax and semantics

In this section we give the abstract syntax of constraint di-
agrams, that is, a formal definition which is independent
of any topological and visual representations, and a partial
formal semantics. For space reasons, the definition of pro-
jections is omitted from this paper.

A constraint diagramis a tuple

〈C, Cd, β,Z,Z∗,Sg,Se,Su,Ss, η, τ, ζ,A, σ, ξ〉
whose components are defined as follows:

(i) C is a finite set whose members are calledcontours.
The elementβ, which is not a member ofC, is called
the boundary rectangle. Cd is a finite set of derived
contours.

(ii) The setZ ⊆ 2C is the set ofzones, whileZ∗ ⊆ Z is
the set ofshaded zones. A zonez ∈ Z is incidenton
a contourc ∈ C if c ∈ z. LetR = 2Z − ∅ be the set
of regions, and letR′ = R∪ ∅.

(iii) Sg is a set ofgiven spiders, Se is a set ofexistential
spiders, Su is a set ofUniversal spiders, andSs is a
set ofSchr̈odinger spiders. These sets are all pairwise



disjoint and letS = Sg ∪ Se ∪ Su ∪ Ss be a set of
spiders.

(iv) The functionη : S → R returns the habitat of a
spider. The functionτ : S × S → R′ returns the
nest of any two spiders, whileζ : S × S → R′ is a
function that returns the web of any two spiders.

(v) A is a set ofarrows. The functionσ : A → Z ∪R∪
C ∪ S returns the source of an arrow andξ : A →
Z ∪ C ∪ (S − Su) returns the target of an arrow.

We use the value⊥ to denote undefined values.
A modelfor a constraint diagramd is a tuple

m = 〈U, ψ, Ψ, φ〉
such thatU is a set andψ, Ψ, φ are functions:

• ψ : S → U ∪ {⊥} maps spiders to elements ofU or
to the special symbol⊥, and

• Ψ : C → 2U maps contours to subsets ofU.

• φ : A → 2U×U maps arrows to relations onU.

We can extend the definition ofΨ to include the interpreta-
tion of other elements ofd which denote sets in the model:

(i) Boundary.The boundary denotes the universal set.
Ψ(β) = U.

(ii) Zones.The semantics of a zonez ∈ Z is determined
by which contours enclose it and which don’t

Ψ(z) =
⋂

c∈z∨c=β

Ψ(c) \
⋃

c∈C\z
Ψ(c).

By letting the set intersection operation range over the
boundary contour, we make sure that even the zone
that is external to all contours has a well-defined se-
mantics.

(iii) Regions.The value ofΨ of a region is the union of
the semantics of the zones in the collection: Forr ∈
R,

Ψ(r) =
⋃
z∈r

Ψ(z).

The following conditions must hold for any compliant
model of a constraint diagram.

The Plane Tiling Condition ensures that all elements
fall within sets denoted by zones:

⋃

z∈Z
Ψ(z) = U

We can derive from this condition that an intersection of
contours that doesn’t appear as a zone must be empty. Letc1

andc2 be two distinct contours in a concrete diagram. Then
no zone will contain bothc1 andc2. So, it follows from the
plane tiling condition that any “zone” containing bothc1

andc2 denotes the empty set. HenceΨ(c1) ∩ Ψ(c2) = ∅.
Similarly, if c1 is contained inc2 then it follows from that
condition thatΨ(c1) ⊆ Ψ(c2).

TheSpider Condition ensures that an element denoted
by a spider is in the set denoted by the habitat of the spider:

∀s ∈ Sg • ψ(s) ∈ Ψ(η(s))

∀s ∈ Ss • ψ(s) ∈ Ψ(η(s)) ∪ {⊥}

∀s ∈ Se • ∃x ∈ Ψ(η(s))

The Strangers Condition ensures that if elements de-
noted by two distinct spiders are equal then they must fall
within the set denoted by their web:

∀s, t ∈ S, s 6= t • ψ(s) = ψ(t) ⇒ ψ(s) ∈ Ψ(ζ(s, t)) .

TheMating Condition ensures that if the elements de-
noted by two distinct spiders fall within the set denoted by
their nest, then these elements must be equal:

∀s, t ∈ S∀z ∈ τ(s, t) • ψ(s), ψ(t) ∈ Ψ(z) ⇒
ψ(s) = ψ(t).

The Shading Condition maintains that the set denoted
by a shaded zone contains no elements other than those de-
noted by spiders

∀z ∈ Z∗ •Ψ(z) ⊆
⋃

s∈S
{ψ(s)}

Here we adopt the standard convention that a union over an
empty range results in the empty set. Together with the spi-
der condition, this condition ensures that the only elements
in a set denoted by a shaded zone are the elements repre-
sented by any spiders impinging on that zone. Specifically,
the set denoted by a shaded zone not containing feet of any
spiders is empty.

TheArrow Condition ensures that the element or set de-
noted by the target of an arrow is the image of the element
or set denoted by the source of the arrow under the rela-
tion denoted by the arrow. It also ensures that navigation
expressions are properly quantified.

For each arrowa we define

N(a) = (Ψ(ξ(a)) = Ψ(σ(a).φ(a)))

N(a) is the “navigation expression” ofa. If ξ(a) ∈ S,
thenΨ(ξ(a)) = {ψ(ξ(a))}, etc. The semantics of a non-
quantified arrowa is justN(a). For each arrowa we also
define

Q(a) = if σ(a) ∈ Se then ∃xσ(a) ∈ η(σ(a)) else

if σ(a) ∈ Su then ∀xσ(a) ∈ η(σ(a)) else []

where [] is the empty string.Q(a) is the “quantification
expression” fora. We introduced and informally discussed



arrow sequences in§4. We define anarrow sequenceto be
a sequencea1, . . . , an of distinct arrows for which:

σ(a1) ∈ Se ∪ Su ∧ (∀a ∈ Se ∪ Su •
η(σ(a1)) 6= ξ(a)) ∧ ∀ai ∈ a2..an •

(σ(ai) ∈ Se ∪ Su ∪ Cd ∧ (σ(ai) ∈ Se ∪ Su

⇒ η(σ(ai)) ∈ ξ(ai−1)) ∧ ξ(ai−1) ∈ Cd)

We define, fori = 1..n− 1,

P (ai) = Q(ai) • (N(ai) ∧ P (ai+1))

P (an) = Q(an) •N(an)

P (a) is a recursive function giving the “partial predicate”
of a, that is, the interpretation ofa and any arrow dependent
on a; it is not necessarily the full predicate fora because
it does not include the quantification expression of any ar-
rows earlier in the sequence on whicha depends. Thus the
semantics of an arrow sequence,A = a1, . . . , an, is P (a1).

If two or more arrows are sourced on the same quanti-
fied spider, then the sequences associated with each arrow
are within the scope of the quantifier of that spider. We en-
sure that the problem cases considered in§4 do not occur
by insisting that any arrow is part of an arrow sequence or
is not quantified and, if there is more than one sequence in a
diagram, then there should be no mixture of types of quan-
tifier, they should all be universal or all existential. In§6 we
sketch an idea that should solve most of these problems.

The semantics of a derived contour is just the seman-
tics of the target of any arrow targeted on it. We extendΨ
to derived contours. For allc ∈ Cd, for all arrowsa such
that c is the target ofa, Ψ(c) = Ψ(ξ(a)). With this ex-
plicit definition, the sets denoted by derived contours will
be properly defined (i.e., with full quantification of the nav-
igation expressions used to define them) when they are used
in conjunction with the other semantic conditions.

6. Further work

We have given a partial formal semantics of constraint di-
agrams and discussed the problems involved in giving a
full semantics. Experience of using constraint diagrams
suggests that there are some constraints that are expressed
much more concisely and intuitively using them; however,
it has also highlighted properties that are, at best, awkward
to express, without further textual annotation. This has led
to ideas on how to use visual constraint notations (eg, con-
straint diagrams) in combination with textual (eg, OCL) or
symbolic (eg, raw predicate logic) and each other usingcon-
straint trees, informally introduced in [11]. The nodes of
constraint trees may be logical expressions, in any nota-
tion, or logical connectives. Constraint trees also provide
a way of modularizing constraint diagrams, and compos-
ing constraints from modules; this allows the notation to

be scalable. Constraint trees would allow the ordering of
clauses in a constraint; ordering was the problem in most
of the issues we discussed in§4. One of the main reasons
for developing a formalization of constraint diagrams is to
develop diagrammatic reasoning rules for the notation and
hence provide a step towards constructing a reasoning sys-
tem which combines both diagrammatic and textual rules,
and which handles issues of modularity.

Acknowledgements We would like to thank Jean Flower
and John Taylor for comments on earlier drafts of this pa-
per and also the anonymous referees for their very helpful
comments. We acknowledge Yan Sorkin, the creator of the
CDEditor [4], the automatic tool that was used to gener-
ate all the diagrams presented here. Authors Howse and
Kent acknowledge some support from the UK EPSRC grant
GR/M02606. Part of this research was undertaken while au-
thor Gil was at the IBM T. J. Watson Research Center.

References
[1] L. Euler. Lettres a Une Princesse d’Allemagne, volume 2.

1761. Letters No. 102–108.
[2] J. Gil, J. Howse, S. Kent. Formalising Spider Diagrams,

Proc. VL99, Tokyo, Sept 1999. IEEE Press, 130-137.
[3] J. Gil, J. Howse, E. Tulchinsky. Positive semantics of pro-

jections. Accepted for JVLC. To appear, 2001.
[4] J. Gil, Y. Sorkin. The Constraint Diagrams Editor,

http://www.cs.technion.ac.il/Labs/ssdl/research/cdeditor/.
[5] E. Hammer.Logic and Visual Information. CSLI Publica-

tions, 1995.
[6] D. Harel. On visual formalisms. In J. Glasgow,

N. H. Narayan, B. Chandrasekaran, eds,Diagrammatic Rea-
soning, 235-271. MIT Press, 1998.

[7] J. Howse, F. Molina, J. Taylor. SD2: A sound and com-
plete diagrammatic reasoning system.Proc. VL 2000, Seat-
tle, Sept 2000. IEEE Press, 127-136.

[8] J. Howse, F. Molina, J. Taylor. On the completeness and
expressiveness of spider diagram systems.Proc. Diagrams
2000, Edinburgh, Sept 2000. LNAI 1889, Springer, 26-41.

[9] J. Howse, F. Molina, J. Taylor, S. Kent, J. Gil. Spider Di-
agrams: A Diagrammatic Reasoning System. Accepted for
JVLC. To appear, 2001.

[10] S. Kent. Constraint diagrams: Visualising invariants in ob-
ject oriented models. InIn Proc. OOPSLA97, ACM SIG-
PLAN Notices 32, 1997.

[11] S. Kent and J. Howse. Constraint Trees, in Clark A, Warmer
J (eds),Advances in Object Modelling with OCL, Springer
Verlag. To appear.

[12] R. Lull. Ars Magma. Lyons, 1517.
[13] Object Management Group. Unified Modeling Language

Specification, Version 1.3. Available from www.omg.org.
[14] C. Peirce.Collected Papers. Harvard Univ. Press, 1933.
[15] S.-J. Shin.The Logical Status of Diagrams. CUP, 1994.
[16] J. Venn. On the diagrammatic and mechanical representation

of propositions and reasonings.Phil.Mag., 1880. 123.
[17] J. Warmer and A. Kleppe.The Object Constraint Language:

Precise Modeling with UML. Addison-Wesley, 1998.


