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Abstract— The Unified Modeling Language (UML) is a collec- are similar to Euler diagrams. In Venn diagrams all possible
tion of notations which are mainly diagrammatic. These notations intersections between contours must occur and shading is
are used by software engineers in the process of object oriented used to represent the empty set. Peirce [13] extended Venn

modelling. The only textual notation in the UML is the Object di by introducing * "t t i
Constraint Language (OCL). The OCL is used to express logical lagrams Dy Introducing x-sequences 1o represent non-empty

constraints such as system invariants. Constraint diagrams are S€ts and ‘o-sequences’ to represent empty sets. Reasoning rules
designed to provide a diagrammatic alternative to the OCL. Since have been developed for Venn-Peirce diagrams [14] and Euler
constraint diagrams are visual they complement existing nota- diagrams [6].

tions in the UML. Spider diagrams form the basis of constraint Spider diagrams [3], [7], [9], [11] modify and extend Venn-

diagrams and sound and complete reasoning systems have beer]3 irce diagrams. Instead of using x n to reor nt
developed. Spider diagrams allow subset relations between sets eirce diagrams. [nstéad of using x-sequences {o represe

and cardinality constraints on sets to be expressed. In addition Non-empty setsspidersare used to represent the existence
to this, constraint diagrams allow universal quantification and of elements and shading is used to place upper bounds on the
relational navigation and hence are vastly more expressive. In cardinalities of sets. The motivation for the work on spider
this paper we present the first constraint diagram reasoning giagrams was to provide a basis for developing the much more
system. We give syntax and semantics for constraint diagrams XDIESSIV nstraint diagram svstems. Spider diaaram Anot
we call CD1 diagrams. We identify syntactic criteria that allow expressive constra agra S_ys ems. .p erdiagrams ca' 0
us to determine whether a CD1 diagram is satisfiable. We give €Xpress the complex Con_stral_nts required when modelling
descriptions of a set of sound and complete reasoning rules for software systems. Constraint diagrams can express statements

CD1 diagrams. involving two place predicates, whereas spider diagrams can
only express statements involving one place predicates, along
with equality.

Constraint diagrams were introduced in [10] as a notation For constraint diagrams to be considered as a formal lan-
for expressing constraints in object-oriented models. The nguage they must have formal underpinning. This underpinning
tation integrates well with existing UML notations since alls essential for the development of software tools to support
of the UML notations are diagrammatic, with the exceptiothe modelling process. Furthermore software developers who
of the OCL [12] which is, essentially, a stylized form of firsichoose to use constraint diagrams for system specification
order predicate logic and is used to convey formal statemenigay also require the ability to reason with these diagrams.
Thus constraint diagrams provide a diagrammatic alternatiyg this end we give the syntax and semantics of a system of
to, and may be more intuitive than, the OCL. The diagram igbnstraint diagrams, that we call CD1 diagrams, in section
Fig. 1 is a constraint diagram. It expresses the following. N@ In section Il we give syntactic criteria for identifying
mice are cats or dogs. No dogs are cats. Each cat is bigges satisfiability of constraint diagrams. A set of reasoning
than each mouse. There is a mouse that has been eaten hylgs for CD1 diagrams are given in sections 1V, V and VI.
cat. There is exactly one dog. Many of these reasoning rules relate to arrows. We expect that
this system will form the basis of future constraint diagram
biggerThan reasoning systems. The CD1 system we introduce here, while
Cats not as expressive as the full constraint diagram notation (which
includes further syntactic elements), is considerably more
expressive than previous spider diagram systems. We are using
the CD1 system for pragmatic reasons and this work represents
a significant step towards a reasoning system based on the full
Fig. 1. A constraint diagram. notation.

I. INTRODUCTION

Mice

beenEatenBy

. . . . [I. DESCRIPTION OFCD1 DIAGRAMS
Constraint diagrams are based on Euler diagrams [1], intro- ) i
duced by Leonard Euler to illustrate subset relations betwefn The Syntax of Unitary CD1 Diagrams.
sets. Euler diagrams exploit topological properties of enclo-We now give an informal description of unitary CD1
sure, exclusion and intersection to represent subset, disjalidggrams. More details can be found in [4]. ddntouris a
sets and set intersection respectively. Venn diagrams [18belled, simple closed plane curve.bdundary rectanglaés



a simple closed plane curve and is not labelleda&ic region a reading. To avoid ambiguity in diagram reading and to make
is the bounded area of the plane enclosed by a contour or the system tractable, we restrict the semantic interpretation so
boundary rectangle. Aegionis defined recursively: any basicthat ‘there exists’ takes precedence over ‘for all’. Relaxing this
region is a region and any non-empty union, intersection semantic constraint has non-trivial outcomes.

difference of regions is a region. 2oneis a region having no

other region contained within it. Aexistential spideis a tree 4 C)B

with nodes, calledeet placed in different zones. Aniversal
spider is a star placed in a zone. No two universal spiders

are placed in the same zone.sfideris either an existential f

spider or a universal spider. A spidieruchesa zone if one of

its feet appears in that zone. A spiderjs said toinhabit the Fig. 2. A constraint diagram.

region which is the union of the zones it touches. This region ] . ) )

is called thehabitat of s, denoted(s). Later we will consider more than one unitary diagram.

A region isshadedf each of its component zones is shadedC €nsure consistency of interpretation between diagrams we
An arrow is a labelled, directed line from a spider to eithefl€fine C£ and AL to be countably infinite sets afontour
an existential spider or a contour. The spider at the beginnilp€!s and arrow labels respectively, from which all labels
of the arrow is called theource(of the arrow) and the spider Wil be drawn. , ,
or contour at the end is called therget (of the arrow). ~ An interpretationof C£ and. AL is a triplem = (U, ¥, ¢)
A unitary diagramis a finite collection of contours, spidershereu is a set¥: C£ — PU is a function mapping contour
and arrows properly contained in a boundary rectangle. ARPe!S to subsets df and¢: AL — P(U x U) is a function

universal spiders must be the source of an arrow and no tif¢PPIing arrow labels to relations &h To interpret a diagram
distinct arrows can have the same label, source and target/rSt note that a zone can be identified by the contours that

For unitary diagramd define L(d), C(d), Z(d), Z*(d) contain it. Definec(z) ande(z) to be the sets of labels of the
ES(d), US(d) and A(d) to be the sets of contour labelscontours ind that contain and exclude respectively. We can
contours, zones, shaded zones, existential spiders, univel2gn define¥: Z(d) — PU by
spiders and arrows af respectively. U(z) = ﬂ w(l)N ﬂ ()

The diagram in Fig. 1 contains three contours and five lec(z) lee(z)
zones, of which two are shaded. There are two arrows. Th —

source of the arrow labellebeen EatenBy is an existential W1er€ () = U —¥(l). Further we deflnel(g@ ) =

spider with a habitat that is the basic region inside the contom T(1) = U. Any region is a union of zones, thus we define
labelled Mice. Its target is an existential spider. The othejcyp

arrow, labelledbiggerThan, has a universal spider as its¥: R(d) — PU by
source and its target is the contour labellgdce. U(r) = U U(z).

B. Semantics of Unitary CD1 Diagrams 2ErAz€Z(d)

Regions in CD1 diagrams represent sets. An existentizf" contourC we definel(C') to be the label of” and also
spider represents the existence of an element in the 9gfine¥(C) = Y({(C)). _ . _
represented by its habitat. Distinct existential spiders represent/€Xt We formalize the notion of the image of a relation.
the existence of distinct elements. In the set represented byS} R be a relation on a sdi. Define theimageof R to be
shaded region, all the elements are represented by existertialR) = b € U :‘(a’ b) € R}. Let A be a subset df). Define
spiders. Arrow labels represent relations. An arrow, togethér 0 be A.R =im(RN(AxU)) and sayA.R is the image
with its source and target, represents a property of the relat@hR With the domain restricted tal.
represented by its label. A universal spider represents universal ©' €ach region;, we defines(r) andZ'(r) to be the set of

guantification over the set represented by its habitat. Univerféi"‘:'tem"”‘I spiders that are completely withiand that touch

uantification over the set represented by a zone can be reffSPectively. For each arrow, defines(a), ¢(a) andi(a) to be
q b y 6 source, target and label @fespectively. Definel. (d) and

sented by a single universal spider. Some problems interpretf 8 - ) ‘
constraint diagrams are raised in [4] and resolved in [2]. The éd) o be tlhe sets of arrows Tﬂw:h anszmztentlgIAsozrce
problems do not arise in this system due to restrictions \0d universal source respectively. Arrow A(d) and Ay (d)

place on the syntax (for example, we do not inclutieived are called existential arrows and universal arrows respectively.

contourg and semantics of CD1 diagrams. ThehsetsAe(d)_ and Ala.(d> partition ’:{(d)' . di .
The diagram in Fig. 2 expresses the fact that (the s%s;— c(ca)rSf?J r:c?t?élﬁsof:ﬁeliglﬁgiii(:l);:cc))n;til:)?:;ary lagram is
represented by}l and B are disjoint,B is not empty and there = . J - o 9 o

is anz in U — (AU B) such that for all in A the relational (i) Plane Tiling Condition. All elements are in sets repre-
image ofa underf is z. This diagram could also be interpreted sented by zones:

as ‘for alla in A, there exists an in U — (AU B) such that the U U(z) =U.

relational image ofi under f is z’, but we will not allow such z€Z(d)



(i) There exists an extension of: R(d) — PU to where, for contourd, S(A) is the set of existential spiders
U: R(d) U ES(d) — PU such that the conjunction of whose habitat is completely withid. The arrows ofd are
the following conditions are satisfied. pairwise compatibléf and only if

(a) Spiders Condition. Each existential spider rep- (i) every pair of arrows with the same existential spider as
resents the existence of an element in the set their source and the same label have the same hits and

represented by its habitat: (i) every pair of arrows with the same universal spider,

Veec ES(d)e|¥T(e)]=1AT(e) C T(n(e)). as their source and the same label have the same hits or
(b) Strangers Condition. No two existential spiders the habitat ofs is not inhabited by any existential spider

represent the existence of the same element: and

Ver,ea € ES(d) @ U(er) = U(es) = €1 = ea. (i) if an existential spider has the same habitat as a universal
(c) Shading Condition. Each shaded zone;, repre- spider and both are the source of arrows with the same

sents a subset of the elements represented by the label then these arrows have the same hits.

existential spiders touching': If the arrows ofd are not pairwise compatible thehis said

V2t e Z(d) e ¥(z") C H )‘I’(e)- to containincompatible arrows

ecT'(z*

In Fig. 3 one arrow with labef has hit{e; } and the other
arrow, a, the image of¢(i(a)) with its domain has.hit{eg}. Since Fhese arrows h.ave.the same source they
restricted to¥ (s(a)) equals¥ ((a)): are |ncompat|ble,'fa.|llng cond'ltlon (). Smce all unitary §p|der
Va e Ad(d) e W(s(a)).¢(l(a)) = U(t(a)). diagrams are satisfiable [9], incompatible arrows provide the
only source of unsatisfiability for unitary-diagrams.
Theorem 1:Unitary a-diagramd is satisfiable if and only
'B‘);he arrows ofd are pairwise compatible.

(d) Existential Arrows Condition. For any existential

(e) Universal Arrows Condition. For any universal
arrow, a, the image ofg(l(a)) with its domain
restricted to any element in the set represented

the habitat ofs(a) equals¥(t(a)): IV. REASONING RULES FORUNITARY DIAGRAMS

va € Auy(d)¥z € U(n(s(a)))s In this section we give informal descriptions of purely
{z}-0((i(a)) = ¥(t(a)). syntactic reasoning rules which turn one unitary CD1 diagram
I1l. SATISFIABILITY into another. Some of the reasoning rules for CD1 diagrams are
modifications and extensions of those in [9] and, in addition,

An interpretationm is said tosatisfy diagramd, denoted . .
new rules relating to arrows are included.

m [= d, if Py(m) is true. If there exists am such thatn |= d
we sayd is satisfiable Diagramds is alogical consequence Rule 1: Inconsistency.A unitary a-diagram that contains
of diagram d;, denotedd; E ds, if every interpretation incompatible arrows can be replaced by any diagram.
that satisfiesd; also satisfiesd,. Diagramsd; and d, are
semantically equivalent, denoted =- ds, if d; F dy and
ds F dy. Unlike spider diagrams, not all unitary CD1 diagram
are satisfiable.

The diagram in Fig. 3 is unsatisfiable. It expresses that thereThe arrow labelledf is erased from diagrand; in Fig. 4.
is an element inA that is related to exactly one element,
say, inU — A under the relatiorf and exactly one elementin |4 C y C
U — A distinct fromz also under the relatiofi, which cannot
ORoL

A diagramd is ana-diagramif all of the existential spiders g
in d inhabit exactly one zone. We give syntactic criteria for ~ ~
identifying whether or not a unitarg-diagram is satisfiable. ‘ ’

Rule 2: Erasure of an arrow. We may erase any arrow. If
erasing an arrow results in a universal spider that is no longer
the source of an arrow then that spider is also erased.

Fig. 4. An application of rule 2.

4 Rule 3: Erasure of a contour. We may erase any contour
e that is not the target of an arrow. When a contour is erased
the following occurs.
f € « Any shading in only part of a zone is erased.
« If an existential spider has feet in two zones that combine
Fig. 3. An unsatisfiable unitary constraint diagram. to form a single zone then these feet are replaced by
a single foot connected to the rest of the spider. Any
For each arrowg in unitary a-diagramd, define the set of arrows sourced (targeted) on this spider are still sourced
hit existential spider®f a, denotedhit(a), to be (targeted) on this spider.

(i) hit(a) = {t(a)} if t(a) € ES(d) and » Suppose there are universal spiders in the two old zones

(i) hit(a) = S(t(a)) if t(a) € C(d), that combine to form a single zone and both spiders are



sources of an arrow with the same label and target, called | 4 f
common arrowsA new universal spider is placed in the

new zone and is the source of one arrow for each pair l_
of common arrows with the same label and target as
the common arrows. All the old universal spiders whose 7 ~
habitat is a zone that combine with another zone are : ’
deleted, along with their arrows. Fig. 6. An application of rule 4.

The contour with labelB can be erased frond; in Fig. 5
since it is not the target of any arrow. The existential spider _, i h h el Anh
in d; is replaced by a single footed spiderdp with a habitat In F|.g. ’, , lagramd, EXpresses that each element nnas
that is the new zone outsidé and C. The universal spider relguonal Image, undey, that is 5. Thgrefore a umversal
inside A is retained, along with the arrows sourced on it. ThePider can be introduced to the zone insidewhich is the

two universal spiders id; that are outside botd andC have SOUrce of an arrow with labef, targeted ons.

habitats combine to form a single zone. Both are sources o

arrows labelled;, targeted orC'. These two universal spiders 4 S B A B

are replaced by a single universal spiderdin with habitat I_

outsideA andC'. The universal spider it inhabiting the zone

outsideA, B and C is also the source of an arrow labelled S S

h and targetA. Since the universal spider inside is not the a ]

source of an arrow with label and targetA, this arrow is

‘lost’ in d». Fig. 7. An application of rule 5.

4 . Rule 6: Introduction of an arrow: universal deduction.
jz Let d be a diagram with a universal arrow,and an existential
spider,e with the same habit as the sourceafThen we can
! OC introduce an arrow with soureeand the same label and target

asa provided that the new arrow is not already presend.in

Diagram d; in Fig. 8 expresses that there is exactly one
Fig. 5. An application of rule 3. element,z say, in B that each element i is related to
under f. Therefore the element represented by the existential
An application of any of the previous rules (potentiallyypider inhabiting the zone withir is related toz under f.
loses information. The remaining rules in this section preserve
semantic information and are therefore reversible. 4

S B A 4 B
Rule 4: Introduction of a contour. A contour may be
drawn in the interior of the boundary rectangle provided the |—
following occurs.
« The new contour has a label not present in the diagram. a 7
« Each zone splits into two zones and shading is preserved.
o Each foot of an existential spider is replaced by a Fig. 8. An application of rule 6.
connected pair of feet — one in each new zone of the
habitat. The following three rules allow us to introduce an arrow
« Each universal spideu, is replaced by a pair of universalwith the same source as an existing arrow, but with a new
spiders — one in each zone of the habitat. Each aripw,target. The naming of each of these rules refers to the targets
sourced at: is replaced by a pair of arrows with the samef the existing and introduced arrows.
Iab_el and target as, one sourced on each new universal Rule 7: Introduction of an arrow: spider to contour. Let
spider. d be a diagram with an arrow, whose target is an existential
Fig.6 shows an application of rule 4. spider, e. If the habitat ofe is entirely within a contour,
C, whose basic region is shaded and touched by no other
existential spiders, then we can introduce an arrow with the

Let d be a diagram with a shaded zoné where every d label h : s ided that
existential spider that touches is the source of an arrow with Same Source and 1abel aswhose larget 13 provide a
the new arrow is not already presentdn

labell and target (I andt are fixed). Then we can introduce
a universal arrow (and if necessary a universal spider) whoseéDiagramd; in Fig. 9 expresses that there is exactly one
source inhabits*, labelled with targett provided that the element,z say, in B and all elements i are related tar
new arrow is not already present dh under f. Thus the image of any element ithunder f is B.

Rule 5: Introduction of an arrow: universal equivalence.



conjunctive information, we introduce connectivesand .
If D; and Dy, are CD1 diagrams then so al®; LI Do

l_ (pronouncedD; or D) and D; M Dy (pronouncedD; and
D,). If D = Dy U Dy then thesemantics predicatePp (m),
of D is PD(m) = PDl(m) \/PDQ(m). If D = DM Dy
then thesemantics predicatePp(m), of D is Pp(m) =
PDI (m) A PDz (m)

We now introduce three reversible reasoning rules that
transform a unitary diagram into a disjunction of unitary

Rule 8: Introduction of an arrow: contour to spider. Let diagrams.
d be a diagram with an arrow,, whose target is a contour,

C. If the basic region insid&’ is shaded and there is anq,naining an existential spider, whose habitat partitions into

existential spidere, such thatS(C) = {e} = T(C) then |egigns,. “andyr,. We can replace by d; Lids, whered; and

we can introduce an arrow with the same source and Iabela%sare a copies ofl except that the habitat of is 1 in d;

a whose. target i provided that the new arrow is not alreadyandr2 in ds. Any arrows sourced (targeted) erin d are still
present ind. sourced (targeted) omin both d; andd..

d, d,

Fig. 9. An application of rule 7.

Rule 11: Splitting existential spiders. Let d be a diagram

Rule 9: Introduction of an arrow: contour to contour. Diagramd in Fig. 12 expresses that there is an element in
Let d be a diagram with a pair of contourly and C2, 4 hat is related to an element, say, inU — A under f.

whose symmetric difference is shaded and not touched by a8y .. is either in B or I/ — (AU B). We can split the spider

existential spider and’; is the target of an arrow. Then we representing the existence ofinto two parts, one insidé3
can introduce an arrow td with the same source and label, 4 e other insidé& — (AU B) giving d, U ds

asa and targetC; provided that the new arrow is not already

prlesent |nd.. | | 7 My, - = 5
Diagramd; in Fig. 10 expresses that there is an elemersgay, - O
in A that is related to each elementfhunderf. Furthermore r

d expresses thaB represents the same set @s Thusz is 7 = Y

related to each element il under f.

Fig. 12. An application of rule 11.

) B
l_ Rule 12: Excluded middle for regions.Let d be a diagram
with a non-shaded region,.. We can replacel by d; LI do,
C whered; andd, are copies ofi except that is shaded ind;
7 andr contains an additional existential spiderdg.

The excluded middle for regions rule is applied to diagram
Fig. 10.  An application of rule 9. d in Fig. 13. We shad®—C (giving d;) and add an existential
spider toB — C (giving ds), as shown ind; Ll ds.
Rule 10: Equivalent forms. If d is not in Venn form we

can introduce a new, shaded zone, that is not touched, to AL B L 47 Bl |47 B
To diagramd; in Fig. 11 we can introduce a shaded zone -
contained within the contours labellggi and C, shown inds.

d,

4 B Fig. 13. An application of rule 12.

Rule 13: Excluded middle for arrows. Let d be ana-

C diagram such that every zone this shaded and, for each

d, 4, subset ofES(d), E;, such thatE;| # 1, there is a contour4,
) such thatS(A) = E;. Letl € AL and lete be an existential

Fig. 11. An application of rule 10. spider ind that is not the source of an arrow with label

Define £(d, 1) to be the set of unitary diagramé,, each of
which is a copy ofd except thatd; contains an additional

V. CONNECTING DIAGRAMS arrow with sourcee, label I and any target. Then we may

Unitary diagrams form the building blocks of more ComFe(PIaced by |_| d;.

plicated diagrams. To enable us to present disjunctive an d;€E(d,1)



An application of this rule is illustrated in Fig. 14. Since every

A B 4
possible subset of/ is represented, we can deduce that any ‘
given element must be related to nothing, itself, the other

d

element or both elements under the relation

= dl dz
B A B| |4
o led 0.6 | [0
G0 :
A B a d, d,
@ O l_ dl d2
A4 Bl 4 B Fig. 16. Disjunctifying constraint diagrams.
d, 4, Let dyg and d; be two unitarya-diagrams such that each
zone indy has a corresponding zonedh and vice versa. We

Fig. 14. An application of rule 13. say the zone sets af, and d; are corresponding, denoted
Z(dy) = Z(d1). Let d be a unitarya-diagram that does
There are also many rules (not necessarily reversiblept contain incompatible arrows. Thehis called apartial
omitted for space reasons, that have analogies in propositiop@inbinationof dy andd; if and only if each of the following
logic, for example associativity and distributivity. are satisfied.
(i) The zone sets of andd, are corresponding.

VI. DISJUNCTIFYING DIAGRAMS N . ) .
Wi introd furth le that all | (ii) All zones ind that have a corresponding shaded zone in
e now introduce a further rule that allows Us to replace” " gynar g or ¢, are shaded inl and no other zones are

a diagram with a disjunction of unitary diagrams. The spider shaded ind.
diagram version of this rule is essential to the completeneiﬁi

proof strategies used in spider diagram systems. To extend t e)
strategy to the CD1 system, we require a constraint diagram
version of this rule and we call the procedisjunctification iv)
The basic operation of disjunctification is performed on unitar;s
a-diagrams which have the same sets of contour labels.
In spider diagram systems, disjunctifying two such unitary @
diagrams results in a unitary diagram. For CD1 diagrams

this is not the case. Firstly we consider an example where (b)
disjunctifying two unitary diagrams gives a unitary diagram.
Diagramd; M d, in Fig. 15 is semantically equivalent to the ©
unitary diagramd.

The number of existential spiders in any shaded zone
in d is the maximum number of existential spiders
inhabiting any corresponding zone dj or d;.

The number of existential spiders in any unshaded zone
in d is at most the maximum of

the number of existential spiders inhabiting the

corresponding zone idy,

the number of existential spiders inhabiting the

corresponding zone idy,

the sum total of existential spiders that are sources
or targets of arrows inhabiting corresponding zones

in dy andd;.
O (v) The number of existential spiders in any zonediris
7 A A 5 A ; .
f . at least the largest number in one of the corresponding
m =k zones indy andd; .
g g d (vi) There is a universal spider in a zonedrif there is one
4 e in a corresponding zone i, or d;.

(vii) All the arrows indy occur ind, similarly for d;, and no
others.

Next we consider an example where disjunctifying does n¥fe defineD,..(do Md:) to be the set of partial combinations
result in a unitary diagram. Diagramisid’ andd; UdsLidsLd,  ©f do M.
in Fig. 16 are semantically equivalent. thr d’ the spiders It may be thatD,.(dy 1 d;) = 0, for example, if one of
inside A could represent the same element or distinct elements. and d; contains incompatible arrows. Thus it is useful to
Similarly for B. This pair of choices gives four alternativesdefine an unsatisfiable unitary diagram denotedlby
each represented by one @f, ds, ds anddy. Let dy and d; be unitarya-diagrams such thaZ(do) =

To define thedisjunctificationof two unitary diagrams we Z(d1) or do =L or d; =_L. Define thedisjunctificationof do
first identify the unitary components that form the disjuncandd, denotedd, * d;, as follows.
tification, calledpartial combinations Define zonesz; and 1) If dg =L ord; =1 thendy xdy =L.
z9 to be correspondingif and only if ¢(z1) = ¢(z2) and 2) If a zone in one diagram contains more existential
e(z1) = e(z2). Corresponding zones represent the same set. spiders than in a corresponding shaded zone in the other
A more thorough treatment of corresponding regions can be diagram therndy «dy =1.
found in [8]. 3) If Dpe(doMdy) =0 thendy « dy =L.

Fig. 15. Disjunctifying constraint diagrams.



A B Jl 4 B 2B of D. Introduce contours to each unitary component until they
: = @@ all have the same label sets and denote the resulting diagram
DT, Next, introduce zones until all unitary components have

d a a corresponding zone sets, gividg?. Apply the ;plitting spi-
ders rule to the unitary components 6f until we obtain
Fig. 17. The first step towards introduction of shading. an a-diagram, and denote the resulting diagr&m?. The

disjunctification ofD, denotedD*, is a disjunction of unitary
a-diagrams defined recursively as follows.
4) Otherwisedy * d; = en % .y )d- o If “DZ is a unitary diagram the®* = “D?,
pclol 101 anZ __ * * * *

To summarizedy*d; =¢ doMd, anddyxd; is a disjunction ¢ g* Zre ;}53';'21:%25) n;O% irﬁ%wcggeféfa;d
of unitary a-diagrams. 2 Isjunctificatl X 2 fespectively.
e _ _ « If °DZ = D, N D, thenD* = | | d where

Rule 14: Disjunctifying unitary «a-diagrams. Let d, and deD
d, be unitarya-diagrams such that (dy) = Z(d;) or dg =L « .
. D=1{d;«xd;:d; € c D , p(D
ord, =1. Thend,Md; may be replaced by, % d;. This rule {di+d; - di € comp(DY) N d; € comp(D3)}
is reversible. andcomp(D;) is the set of unitary components of which
Dy consists.

Rule 18: Disjunctification. We may replaceD with D*.
This rule is reversible.

VIl. OBTAINABILITY AND DERIVED RULES

Let D; and D, be two diagrams. Defin®, I+ D, if and
only if Dy can be transformed tD5 by a single application of
one of the reasoning rules); is obtainablefrom D, denoted
D, + D,, if and only if there is a sequence of diagrams
(D', D?,...,D™) such thatD' = D;, D™ = D, and D* |- A reasoning ruley, is valid if, wheneverD is obtained
DF+1 for eachk (wherel < k < m). from D, by one application of, D, I+ Dy implies Dy E Ds.

Let » be a reasoning rule. If, whenevér, can be trans-  All the reasoning rules are valid. Hence the system is sound.
formed intoD, by a single application of, there is a sequence Theorem 2:SoundnessLet D; and D, be constraint dia-
of reasoning rules distinct from yielding D; - Dy then we grams. If Dy - Dy then Dy E Ds.
sayr is derived The remaining rules we present are derived. Theorem 3:Completeness.Let D; and D, be constraint
Although not necessary for completeness, these rules aid thi@grams. I1fD; = Dy then Dy - Ds.
reasoning process. The strategy for proving completeness of spider diagram
systems extends to CD1. Part of the completeness proof strat-
egy used in spider diagram systems begins with a disjunction
of unitary a-diagrams (acquired using rule 18) and uses the

Rule 16: Erasure of an existential spider.If d is a unitary excluded middle for regions rule to add shading and spiders to
diagram with a spides which is not the source or target ofproduce a disjunction of unitarg-diagrams A S-diagram is
any arrow and whose habitat is a non-shaded region then ¥¢g,-diagram in which every zone is either shaded or touched
may erases from d. by an existential spider. For spider diagrams, there are simple

Another useful derived rule permits the introduction ofyntactic checks that establish when ghdiagram is a logical

shading to a unitary diagram, resulting in a semantical§Pnsequence of another. If we consider the subset of all spider
equivalent diagram. diagrams consisting of unitary-diagrams with the same label

_ . _ set, then all the rules necessary for completeness are erasure
Rule 17: Introduction of shading. Let d be a unitarya- | jjes.

di"%‘gfam_ contgining a non-shaded_zo,nel_f introducing an In CD1 it is possible to transform any diagram into a
¢X|stentla_l spider to: would resultlln a dlqgram anta'n'ngdisjunction of 3-diagrams, in the same way. However it is
incompatible arrows then we can introducing shading.to |, easy to determine whether one unitahdiagram is a

From diagramd in Fig. 17 we can deduce thd contains logical consequence of another. There are examples of unitary
exactly one element, because there is some elemedt in (-diagrams with the same label sets, where afiesay, is
say, such thatr.f € B andz.f = B. Apply the excluded a logical consequence of another but requires more complex
middle for regions rule tod giving d; Ll do. Diagramd, rules than simple erasure of components to establish syntactic
contains incompatible arrows. Use the inconsistency rule ¢ntailment. An example of two such diagrams is given in Fig.
obtaind; U d; which is equivalent tal;. 18.

We now extend the disjunctification rule given for two uni- If we introduce ‘all possible’ syntactic elements to a unitary
tary a-diagrams with corresponding zone sets to any diagragrdiagram,d;, using our reasoning rules, givinty, then any
To disjunctify diagrams in general we transform them into unitary 5-diagram,ds, that is a logical consequence &f will
diagrams with corresponding zone sets. Take a diadpairet ‘contain only syntactic elements that aredsg’. Although the
L be the union of all of the label sets of the unitary componentigetails are non-trivial, this allows us to establish thiatis

VIIl. SOUNDNESS ANDCOMPLETENESS

Rule 15: Erasure of shading. If d is a unitary diagram
with a shaded region we may erase the shading franj11].



A A spider ind. From diagrami; LI d, we deduce for each in A
there is ay in B such thate. f = y or for eachz in A there is

= N ay in U — (AU B) such thatz. f = y, which is not logically
f equivalent to the interpretation af Relaxing the constraint
d, d, -
A f B 4 7 Bll4 B
Fig. 18. Diagramd, is a logical consequence df . @@ )7_1 @’@ @J\;O
d d, d,

obtainable fromd; by simply erasing components @f. This

gives a completeness result for unitaydiagrams. Fig. 19. Alternative semantics: incorrectly splitting spiders.

We use the completeness result for unit@grgiagrams to
prove completeness of the system. Consider two CD1 digat ‘there exists’' takes precedence over ‘for all’ is likely to
grams that satisfyD; = D,. All the rules that transform a CD1 make the process of disjunctification more complicated: the
diagram into a disjunction of-diagrams are reversible, so Wepperation will need to be defined for diagrams that are not
transformD; and D, into a disjunction of3-diagrams,’ D, necessarilyx-diagrams.
and? D, respectively, in the way outlined for spider diagrams.
We then apply the excluded middle for regions rule repeatedly ACKNOWLEDGMENT
to #D; until the number of existential spiders in each zone Gem Stapleton thanks the UK EPSRC for support under
of each unitary component exceeds the number of existent@hnt number 01800274. John Howse and John Taylor were
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of P D, giving a diagramD, say. We then add ‘all possible’ Thanks also to Andrew Fish, Jean Flower and Chris John for
syntactic elements td) using our reasoning rules givingtheir comments on earlier drafts of this paper. Thanks to the
diagramD’, say. We can then show each unitary componeahonymous referees for their comments.
of D', sayd, semantically entails a unitary component’@,,
sayd;. From the completeness result for unitafydiagrams,
d + d; and it follows thatD; + D-,. Moreover, to prove [1] L. Euler. Lettres a une princesse d’allemagne, 1761.

. A. Fish, J. Flower, and J. Howse. A Reading algorithm for constraint
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The natural next step to take on this route would be to relax

the constraint that ‘there exists’ takes precedence over ‘for all’.
There are implications of this: if ‘for all’ takes precedence over
‘there exists’ it is not necessarily possible to split existential
spiders. If we interpret! in Fig. 19 as ‘for allx in A there is

ay in U — A such thate. f = ' we cannot split the existential
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