
A Reading Algorithm for Constraint Diagrams

Andrew Fish, Jean Flower and John Howse
Visual Modelling Group

University of Brighton, Brighton, UK
{Andrew.Fish, J.A.Flower, John.Howse}@brighton.ac.uk

http://www.cmis.brighton.ac.uk/research/vmg/

Abstract

Constraint diagrams are a visual notation designed to
complement the Unified Modeling Language in the de-
velopment of software systems. They generalize Venn
diagrams and Euler circles, and include facilities for
quantification and navigation of relations. Their de-
sign emphasizes scalability and expressiveness while re-
taining intuitiveness. The formalization of constraint
diagrams is non-trivial: previous attempts have exposed
subtleties concerned with the ordering of symbols in the
visual language. Consequently, some constraint dia-
grams have more than one intuitive reading. We de-
velop the concept of the dependence graph for a con-
straint diagram. From the dependence graph we obtain
a set of reading trees. A reading tree provides a par-
tial ordering for some syntactic elements of the dia-
gram. Given a reading tree for a constraint diagram,
we present an algorithm that delivers a unique seman-
tic reading.
Keywords Visual formalisms, software specification,
formal methods, constraint diagrams.

1 Introduction

The Unified Modeling Language (UML) [10] is the Ob-
ject Management Group’s industrial standard for soft-
ware and system modelling. This has accelerated the
uptake in the software industry of diagrammatic nota-
tions for designing systems.

In this paper, we describe a notation, constraint di-
agrams, which was introduced in [8] for use in conjunc-
tion with UML for object-oriented modelling. Con-
straint diagrams provide a diagrammatic notation for
expressing logical constraints, such as invariants and
operation preconditions and postconditions. In UML
constraints are expressed using the Object Constraint
Language (OCL) [13], which is essentially a textual,
stylised form of first order predicate logic.

Constraint diagrams were developed to enhance the
visualization of object structures. Class diagrams show

relationships between objects as associations between
classes. Annotating, with cardinalities and aggregation
for example, enables one to exhibit some properties
of these relationships between objects. However, fre-
quently one wishes to exhibit subtler properties, such
as those of composite relations. Whereas this is impos-
sible using class diagrams, the inherent visual structure
of constraint diagrams makes this, and many other con-
structions, easy to express.

Constraint diagrams build on a long history of us-
ing diagrams to visualize logical or set-theoretical as-
sertions. They generalize Venn diagrams [12] and Eu-
ler circles [1], which are currently rich research topics,
particularly as the basis of visual formalisms and dia-
grammatic reasoning systems [11, 4, 5, 6]. Constraint
diagrams are vastly more expressive than these systems
because they can express relations, whilst still retaining
the elegance, simplicity and intuitiveness of the under-
lying diagrammatic systems. For constraint diagrams
to be used effectively in software development, it is
necessary to have strong tool support. Such tools are
currently being developed [9].

In §2 we give a concise description of constraint di-
agrams and consider examples with multiple intuitive
readings. Formal notions required for the reading al-
gorithm are set up in §3 and §4. In §5 we define de-
pendence between certain syntactic elements of the di-
agram. This enables us to associate a unique depen-
dence graph to a diagram, in §6. Using this graph, we
construct a set of reading trees in §7. Given a con-
straint diagram and a reading tree for that diagram,
we construct a building sequence (§8). A building se-
quence corresponds to a choice of construction of the
diagram. In order to give formal meaning to the dia-
grams we move from the syntactic realm to the seman-
tic realm in §9. The reading algorithm, which produces
a unique semantic reading for a diagram with respect
to a reading tree is given in §10. Finally, in §11, we
highlight the usefulness of this (and further) work, es-
pecially with regard to tool creation.

1

2 Constraint diagrams

In this section we give a concise description of con-
straint diagrams. A contour is a simple closed curve
in the plane. The area of the plane which constitutes
the whole diagram is a basic region. Furthermore, the
bounded area of the plane enclosed by a contour c is
the basic region of c. A region is defined recursively:
a basic region is a region, and any non-empty union,
intersection, or difference of regions is a region. A zone
is a region which contains no other region.

A spider is a tree with nodes (called feet) in dis-
tinct zones. It touches any region which contains (at
least) one of its feet. The union of zones that a spider
touches is called the spider’s habitat. A spider is either
an existential spider, whose feet are drawn as dots, or
a universal spider, whose feet are drawn as asterisks.

The source of a labelled arrow may be a contour or a
spider. The target of a labelled arrow may be a contour
or a spider. A contour is either a given contour, which
is labelled, or a derived contour, which is unlabelled
and is the target of some arrow.

Given contours represent sets, arrows represent re-
lations and derived contours represent the image of a
relation. Existential quantification is represented by
existential spiders, and universal quantification is rep-
resented by universal spiders. The scope of quantifi-
cation is a set and this set is represented by a region
which is called the scope of the spider. Distinct spiders
represent distinct elements.

T e a c h e r s S t u d e n t s
C o u r s e s

t e a c h e s a t t e n d s

Fig. 1: Ordering of quantifiers

In [3], a number of issues were raised concerning the
interpretation of constraint diagrams. For example, be-
cause there is no linear ordering of syntactic elements
in a constraint diagram and the ordering of universal
and existential quantifiers is important, the diagram
in figure 1 can have different interpretations. Starting
with the universal spider we obtain: For each teacher
there is a student who attends only courses taught by
that teacher. Whereas, starting with the existential spi-
der we get: There is a student who attends only courses
taught by all teachers. This issue arises when consid-
ering any diagram which includes both an existential
spider and a universal spider.

Also of interest is the scope of quantifiers. A spider
represents a quantifier, but the spider’s habitat may be
smaller than its scope.

T i t l e M e m b e rb o r r o w e r s

t i t l e s B o r r o w e d

x y

Fig. 2: Scope of quantifiers

For example, in figure 2 there are two sensible read-
ings, depending upon whether one starts at x or at y.

If one starts at x, then its scope is the region in-
side the contour Title, even though its habitat is the
smaller region inside the derived contour contained in
Title. We read: “Each title, x, is borrowed by a set of
members.” The scope of the other spider, y, is the re-
gion inside the derived contour contained in Member.
The habitat of y is equal to its scope. We read: “Each
of these members is borrowing titles including x.”

On the other hand, assume that one starts reading
at y. Then the scope of x is equal to its habitat, but
the scope of y is larger than its habitat. One obtains
the semantically different reading: “Each member, y,
is borrowing a set of titles. Each of these titles is bor-
rowed by members including y.”

3 Formal Syntax

In this section we give the abstract syntax of constraint
diagrams, that is, a formal definition which is indepen-
dent of any topological and visual representations.

A constraint diagram consists of contours, zones,
spiders and arrows, formally defined as follows.

1. C is a finite set of contours which is partitioned
into subsets CG, the set of given contours, and CD,
the set of derived contours.

LG is a set of contour labels and the bijection `G :
CG → LG returns the label of a given contour.

2. The set Z ⊆ PC × PC is the set of zones. Let
z ∈ Z be denoted by (C+(z), C−(z)), where C+(z)
and C−(z) partition C and represent the contours
containing and excluding z respectively. The set
Z∗ ⊆ Z is the set of shaded zones. R = PZ −{∅}
is the set of regions.

3. S is a finite set of spiders which is partitioned into
Se, the set of existential spiders, and Su, the set
of universal spiders.

The function η : S → R returns the habitat of a
spider.

4. A is a finite set of arrows. LA is a set of arrow
labels. The functions `A : A → LA, S : A → C∪S,
T : A → C ∪ S return the label, source and target
of an arrow, respectively.

We will use the standard object-oriented nota-

2

tion x.r to represent textually the relational image of
element x under relation r, that is, x.r = {y : (x, y) ∈
r}. Thus x.r is the set of all elements related to x
under relation r. The expression x.r is a navigation
expression, so called because we can navigate from x
along the arrow r to the set x.r. The relational image
of a set S is then defined by S.r =

⋃
x∈S x.r.

4 Formal concepts

In this section we set up formal concepts required for
the reading algorithm. A complete understanding of
the details is unnecessary in order to appreciate the
idea of the algorithm.

If P and Q are disjoint subsets of C then the zonal
region [7] is the region which is contained in all contours
in P and excluded from all contours in Q. This region
is a zone in the diagram with contour set P ∪Q. That
is,

(P, Q) = {z ∈ Z : P ⊆ C+(z) ∧Q ⊆ C−(z)}.
Any region r is a set of zones and hence can be rep-

resented as a union of zonal regions. We can minimize
the number of contours in a description of r by choos-
ing different zonal region representations. A minimal
representation for r is a representation with the fewest
number of contours. Such a representation is not nec-
essarily unique.

The union of the sets of derived contours that appear
in minimal representations of r is called the derived
contour set, and is denoted by DC(r).

An arrow, f , is said to hit the boundary of a region,
r, if T (f) ∈ DC(r). An arrow, f , is said to hit a
derived contour c if T (f) = c. In figure 3, arrow f hits

f

g

h

(d e r i v e d)

(g i v e n)

(d e r i v e d)

Fig. 3: Arrows hitting region boundaries and contours

the boundary of the shaded region r. Informally this
is because T (f) is a derived contour and forms part of
the boundary of r. Arrow g does not hit the boundary
of r, because T (g) is given and not derived, and arrow
h does not hit the boundary of r.

For a contour, c, we will want to describe the place-
ment of c relative to other contours in the diagram.

Informally, think of Rout(c) as the smallest region
of the diagram properly enclosing the basic region of c,
whose boundary does not touch c. Also, think of Rin(c)
as the largest region which is properly enclosed by the
basic region of c, whose boundary does not touch c.

Then we may describe the location of c as “containing
Rin(c)” and “contained in Rout(c)”.

For example, in figure 4, Rin(C) is the shaded region
in the first diagram, whereas Rout(C) is the shaded
region in the second diagram.

Formally, for each zone z = (C+(z), C−(z)) in the
basic region of c, consider the zonal region (C+(z) −
{c}, C−(z)). Then Rout(c) is the union of these zonal
regions. Define Rin(c) by removing from Rout(c) those
zonal regions for which (C+(z)−{c}, C−(z)∪{c}) is a
zone. Note that Rin(c) may be empty.

C C

Fig. 4: Illustrating Rin and Rout

5 Dependence between components

The first step towards generating a semantic reading of
a constraint diagram is to determine the dependences
that exist between spiders and arrows. Let an object
in d be a spider or an arrow.

For example, if we have an arrow f with a spider s
as its source s then we say that arrow f depends upon
spider s. In some other cases dependence is symmetric,
and we will refer to dependence between objects.

Dependence is defined by the six criteria listed be-
low. The dependence relation is not transitive. This
means that it is possible to have s dependent upon t
and t dependent upon f without concluding that s is
dependent upon f .

1. There is a dependence between spiders s and t if
their habitats have non-empty intersection.

2. If the source of an arrow f is a derived contour c
then f is dependent upon any arrow which hits c.

3. If the source or the target of an arrow f is a spider
s then f is dependent upon s

4. There is a dependence between spider s and arrow
f if f hits the boundary of the habitat of s.

5. The shaded zones of a diagram can be collected
into regions which are connected components.1

For each such shaded region r, construct the set of
spiders which touch r. Add to this set the arrows
which hit the boundary of the region r. There

1When we say that a region is connected we are not strictly
referring to the notion of a connected topological set, but rather
to the notion of connected subgraphs of the abstract dual graph
see [2].

3

is pairwise dependence between the objects in this
set.

6. There is dependence between arrows f and g,
whose targets are derived contours, if T (f) and
T (g) are equal or if T (f) ∈ DC(r) where r is
Rin(T (g)) or Rout(T (g)), or vice versa.

f

g

A

h

s

t
vq

Fig. 5: Object dependence

These six dependence criteria can be illustrated with
reference to the diagram in figure 5. This example was
chosen to exhibit many different types of dependence,
and is much more complicated than a typical diagram
used in modelling software requirements.

1. Spiders s and t both touch the (shaded) zone
({A, T (f)}, {T (h)}), so there is dependence be-
tween s and t. Similarly, there is dependence be-
tween q and v.

2. Arrow f hits the source of g, so g is dependent
upon f .

3. Arrows f and h are dependent upon their source
q, and g is dependent upon its target v.

4. Arrow f hits the boundary of the habitat of t so
there is dependence between t and f . Similarly,
there is dependence between q and f and between
v and f .

5. The shaded region is touched by s and t, and its
boundary is hit by f , so there is pairwise depen-
dence between all three of these objects.

6. The contour T (h) has Rout(T (h)) =
({A}, {T (f)}). This is a minimal represen-
tation of Rout(T (h)), so there is dependence
between f and h.

6 Dependence graphs

The dependences between objects can be described
collectively using a dependence graph G(d), whose
edges represent the dependence of one object upon an-
other (directed edges) and dependence between objects
(undirected edges).

Given a diagram, d, construct G(d) as follows:

• the node set of G(d) is the set of objects of d,

• if object o1 is dependent upon object o2 then add
a directed edge from the node o2 to the node o1

and

• if there is a dependence between objects o1 and
o2 then add an undirected edge between the cor-
responding nodes.

Identify duplicate edges between nodes. Remove undi-
rected edges between nodes which also have a directed
edge between them.

The graph generated from dependences for figure 5
is shown in figure 6. Duplicate edges were identified
between s and t and again between f and t. An undi-
rected edge was removed between q and f because of
the directed edge from q to f .

q
f g

h t
s

v

Fig. 6: The dependence graph for figure 5

A simpler example, with its dependence graph is
shown in figure 7.

A (g i v e n) g

f

s g

tf

B (d e r i v e d)

s t

Fig. 7: A diagram and its dependence graph

A diagram is defined to be unreadable if its depen-
dence graph has a directed cycle, and readable other-
wise.

fg

h

g

h

f

Fig. 8: An unreadable diagram

Equivalently, a diagram is unreadable if and only
if there exists a sequence of arrows, f1, . . . , fn, with
n ≥ 1, such that T (fi) is a derived contour which is
equal to S(fi+1), for each i (reading f1 for fn+1).

7 Reading Trees

From the dependence graph of a diagram we construct
a reading tree. This tree is directed and choices made
in its construction will yield different semantic readings
of the diagram.

Let G(d) be the dependence graph of a readable di-
agram d. Construct a directed forest, F (d), as follows.
The node set of F (d) equals the node set of G(d). Add

4

directed edges to F (d) according to the following con-
ditions.

• No two directed edges in F (d) end at the same
node.

• If there is a directed edge from node n1 to n2 in
G(d), then there is a directed path in F (d) from
n1 to n2.

• If there is an undirected edge between nodes n1

and n2 in G(d), then the nodes n1 and n2 must lie
in a common directed path in F (d).

As a consequence of these conditions placed on F (d),
each tree component has a unique starting node, n,
with no incoming edges.

Add a node, labelled by PTC (for plane tiling condi-
tion see equation 1 in section 9), to F (d), and a directed
edge from this node to each starting node. Any rooted,
directed tree thus obtained is called a reading tree of
d, denoted by RT (d).

Figure 9 shows two examples of reading trees ob-
tainable from the dependence graph in figure 7.

s

g

t

f

P T C

P T C g

s

t f

Fig. 9: Two reading trees for the example in figure 7

In the following sections we construct a semantic
interpretation for a diagram and reading tree which is
unique up to the logical equivalence P ∧Q ≡ Q ∧ P .

8 Building Sequence

Given a reading tree, RT (d), we construct a sequence
of diagrams, called a building sequence of building dia-
grams. The initial diagram in a building sequence in-
cludes the given contours of d and some shading, and
the final diagram in the sequence is d itself. Interme-
diate diagrams in the sequence are obtained by adding
diagrammatic elements.

A building sequence is constructed from the read-
ing tree as follows. Perform a depth-first search of the
reading tree, generating an ordering on its nodes n0,
n1,. . . ,nm. Use this to define the building sequence di-
agrams d0,. . . ,dm. Then dj+1 is obtained from dj by
adding an object nj+1 and any of its syntactic conse-
quences (see below).

The initial diagram d0 consists of all of the given
contours of d, together with the connected components
of shading whose boundaries are not hit by any arrows
and have no spiders touching them.

A (g i v e n) g

f

B (d e r i v e d)

s t

A (g i v e n) g

f

B (d e r i v e d)

s t

A (g i v e n)

f

s t

A (g i v e n) g B (d e r i v e d)

s t

A (g i v e n)

t

A (g i v e n) g B (d e r i v e d)

s

A (g i v e n)

t

A (g i v e n)

s

A (g i v e n) A (g i v e n)

f

Fig. 10. Building sequences for the two reading trees in

figure 9

There are two types of syntactic consequence of
adding an object. First, adding an arrow whose tar-
get contour is not included in dj , requires the addition
of the target contour in dj+1. If adding this derived
contour splits a zone of dj which had a spider’s foot in
it, and the spider’s habitat in the final diagram meets
both new zones (zonal regions in d) then create feet
for that spider in the two new zones (sometimes called
splitting spiders’ feet).

In the second case, adding a spider or adding an ar-
row may complete the set of spiders which touch, or
arrows which hit the boundary of, a connected com-
ponent of shading. In this case, the addition of the
shading is a syntactic consequence of adding the ob-
ject.

When all nodes of the reading tree have been visited,
all objects have been added and dm = d, where m is
the total number of objects in d.

9 Semantics

Up to this point, we have been analysing and manipu-
lating the syntax of diagrams. Diagram semantics have
only been mentioned informally. In this section, we be-
gin the creation of a predicate logic statement which is
the semantics of a constraint diagram.

Begin by defining an interpretation for a constraint
diagram, which assigns sets to given contour labels and
relations to arrow labels. An interpretation for d is
a tuple 〈U,Ψ, φ〉 where U is a set and Ψ and φ are
functions, Ψ : LG → PU maps given contour labels
to subsets of U and φ : LA → P(U×U) maps arrow
labels to relations on U.

5

Using the assignment of labels to arrows, we will
extend φ to map arrows to relations on U, and write
φ(a) instead of φ(`A(a)) for an arrow a. Similarly, write
Ψ(c) in place of Ψ(`G(c)) for a given contour c.

Extend the definition of Ψ to interpret zones and
regions which are built from given contours – if zone z
is the contour partition (P, Q) of CG then define

Ψ(z) =
⋂

c∈P

Ψ(c) ∩
⋂

c∈Q

Ψ(c)

where Ψ(c) = U−Ψ(c).
Recall that d0 is the subdiagram of d comprising the

given contours and some shading, and define the plane
tiling condition (PTC):

⋃

z∈Z(d0)

Ψ(z) = U. (1)

This condition says, for d0, explicitly that the sets as-
signed to the zones comprise the universal set U and
also, implicitly, that any zones absent from the diagram
are interpreted as the empty set.

The plane tiling condition for the example in fig-
ure 7 just states that Ψ(A)∪Ψ(A) = U, because there
is only one given contour. The plane tiling condition
is included in the semantics of d. Other conditions are
harder to describe, and for these we require the appa-
ratus from earlier sections of this paper.

For each diagram in the building sequence, we con-
struct text statements called semantic consequences.
Each diagram dj includes a new object nj , and the se-
mantic consequence is denoted Con(nj). For example,
if we add a spider s in given contour A, then Con(s)
is s ∈ Ψ(A). The semantic consequence of an object
expresses in text form the meaning that we derive from
the presence of the object in the diagram.

An example to show the semantic consequences in a
building sequence is given in figure 11. The rest of this
section is devoted to a complete formal description of
how the semantic consequences are obtained.

As well as defining the consequence Con(o) for each
object o in d, we will also define text(e) for diagram el-
ements e: contours (given or derived), spiders, arrows,
and regions. The text function is defined inductively,
using the building sequence. At the start of the induc-
tion:

• for each given contour c, define text(c) = Ψ(c),
• for each arrow a, define text(a) = φ(a),
• for each spider s, define text(s) = s.

The text function extends to a region r =
⋃

i(Pi, Qi)
provided that it is defined for those contours in Pi and
Qi. Define text(r) to be

⋃

i


 ⋂

c∈Pi

text(c) ∩
⋂

c∈Qi

text(c)


 .

A (g i v e n) g

f

B (d e r i v e d)

s t

A (g i v e n)

f

s t

A (g i v e n)

t

A (g i v e n)

t

A (g i v e n)

t . f (f) = Y (A)

t s . f (g)Î

ÍÆ s . f (g) Y (A)Í

f

Fig. 11: Semantic consequences

If r corresponds to a zone in d0, that is Pi and Qi

partition CG, then text(r) is a textual version of the
extension of Ψ described earlier and uses Ψ(c) for each
occurrence of text(c). However, Ψ(c) is undefined for
a derived contour c, so our construction of the text
function is necessary.

We constructed the building sequence with three
purposes: we assign text to new diagram elements, con-
struct Con(o) for new objects o, and find the scope of
quantification for spiders.

Let dj+1 be obtained from dj by adding object nj

(spider or arrow). Assume inductively that the text
function assigns text to all elements and regions in dj .

1. nj is an arrow, f , whose syntactic consequences
include the addition of contour T (f). The source
S(f) is present in diagram dj and so we induc-
tively know text(S(f)). Define text(T (f)) to be
text(S(f)).φ(f).

To describe the placement of T (f) relative to exist-
ing contours in dj , find the regions in = Rin(T (f))
and out = Rout(T (f)) in dj+1. Construct the se-
mantic consequence

text(in) ⊆ text(T (f)) ⊆ text(out).

2. nj is an arrow, f , whose syntactic consequences do
not include the addition of a contour. Construct
the semantic consequence

text(S(f)).φ(f) = text(T (f)).

3. nj is an arrow, f , and spider s has non-
corresponding habitats ηj(s) in dj and ηj+1(s) in
dj+1 (this means that these habitats differ if they
are compared in the final diagram d = dm). Let r

6

be the habitat of s in dj+1. Construct the seman-
tic consequence

s ∈ text(r).

4. nj is a spider, s, whose habitat which is touched
by a spider t. Construct the semantic consequence

s 6= t.

5. nj is an object which is the last object to hit the
boundary of, or touch, a connected component of
shading r. Let spiderSet denote the text represen-
tation of the (possibly empty) set of spiders which
touch r. Construct the semantic consequence

text(r)− spiderSet = ∅.

If there are no consequences of an object, o, then define
Con(o) = true. Otherwise Con(o) is defined to be the
conjunction of consequences constructed above.

For the example in figure 11, we have Con(t) is
“true”, Con(f) is “t.φ(f) = Ψ(A)”, Con(s) is “true”
and Con(g) is “∅ ⊆ s.φ(g) ⊆ Ψ(A) ∧ t ∈ s.φ(g)”.

We need one final concept before proceeding to con-
struct a semantic reading of a diagram and reading
tree. Spiders denote quantification over sets. The scope
of a spider s is the region representing the set over
which quantification occurs and is defined to be the
habitat of s in the first building diagram dj in which s
appears.

Note that the scope of a spider is not necessarily
equal to its habitat in d = dm. In figure 11, the scope
of t is the zonal region (∅, {A}) whereas its habitat is
the zone ({T (g)}, {A}). The scope of s is equal to its
habitat: ({A}, ∅).

10 Reading Algorithm

We have now set up the framework which enables us
to write down the semantic reading of a constraint di-
agram, given a choice of reading tree.

Repeat the depth-first search of the reading tree
traversing nodes n0, . . . , nm, followed by the unique
path back to the root node. Read the semantics of the
diagram, with respect to the reading tree, according to
the following rules
• The initial encounter of

– the root node gives the Plain Tiling Condition
– a universal spider, s:

“∀s ∈ text(scope(s)) (Con (s)”
– an existential spider, s:

“∃s ∈ text(scope(s)) (Con (s)”
– an arrow a labelled, f : “(Con (f)”

• Traversal of edges matching orientation: “∧”

• Traversal of edges opposing orientation: “)”

g

t

f

P T C

s

t . f (f) = Y (A)

t e x t (s c o p e (s)) = Y (A)

u n i v e r s a l

t e x t (s c o p e (t)) = Y (A)

t s . f (g)Î

ÍÆ s . f (g) Y (A)Í

e x i s t e n t i a l

Y (A) Y (A) = UÈ

Fig. 12: Information used in the algorithm

To illustrate the algorithm we will derive the semantic
reading using the first tree in figure 9 and the building
sequence in figure 11. For clarity, in figure 12, we have
redrawn the reading tree, placing information next to
the nodes which is obtainable from the building se-
quence. Begin at the root node, PTC:

Ψ(A) ∪Ψ(A) = U . . .

Navigate along the first edge and arrive at t:

Ψ(A) ∪Ψ(A) = U ∧ ∃t ∈ Ψ(A) (true . . .

Continue the depth-first search along the edge to f :

Ψ(A) ∪Ψ(A) = U ∧ ∃t ∈ Ψ(A) (true

∧(t.φ(f) = Ψ(A) . . .

Traverse the edge back to t, adding a close bracket.
Then traverse to s:

Ψ(A) ∪Ψ(A) = U ∧ ∃t ∈ Ψ(A) (true

∧(t.φ(f) = Ψ(A)) ∧ ∀s ∈ Ψ(A) (true . . .

Finally traverse to g and back to the root node, adding
close brackets to complete the semantic reading:

Ψ(A) ∪Ψ(A) = U ∧ ∃t ∈ Ψ(A) (true

∧(t.φ(f) = Ψ(A)) ∧ ∀s ∈ Ψ(A) (true

∧(∅ ⊆ s.φ(g) ⊆ Ψ(A) ∧ t ∈ s.φ(g)))).

After removing excess syntax omitting Ψ and φ for
readability this example gives the reading:

∃t ∈ A (t.f = A ∧ ∀s ∈ A (s.g ⊆ A ∧ t ∈ s.g)).

The other reading tree shown in figure 9 gives an al-
ternative semantic reading:

∀s ∈ A (s.g ⊆ A ∧ ∃t ∈ s.g (t.f = A)).

The distinction between these two readings is a typical
example of the need to order quantifiers (see also the
example in figure 1).

A model for d is an interpretation (which assigns sets
to given contours and relations to arrows) satisfying the
semantic statement constructed. A model conforming

7

to one reading tree of d may not be a model for a
different reading tree.

Different choices of depth-first search of the read-
ing tree will give different semantic readings, but the
readings will only differ by the logical equivalence
P ∧Q ≡ Q ∧ P .

Consider the interpretation for the diagram in fig-
ure 7 given by U = {1, 2, 3, 4}, Ψ(A) = {1, 2}, φ(f) =
{(3, 1), (3, 2)} and φ(g) = {(1, 3), (2, 4)}. This is a
model for the first reading

∃t ∈ A (t.f = A ∧ ∀s ∈ A (s.g ⊆ A ∧ t ∈ s.g)).

but it is not a model for the second reading

∀s ∈ A (s.g ⊆ A ∧ ∃t ∈ s.g (t.f = A)).

The first reading begins with the existence of t.
Choosing t = 3 gives t.f = {1, 2} and then if s = 1
then s.g = {3} and if s = 2 then s.g = {4}. The sec-
ond reading begins by taking any s in A. If s = 1 then
s.g = {3} and 3.f = A, but if s = 2 then s.g = {4}
and 4.f 6= A – the interpretation fails to conform to
the second semantics predicate.

11 Conclusion and further work

Formal semantics for constraint diagrams are a pre-
requisite for their safe use in software specification.
In this paper, we have presented a reading algorithm
which constructs the semantics of a constraint diagram,
with respect to a reading tree. Certain computational
aspects of the work, such as the development of effi-
cient algorithms to generate all possible reading trees
for a diagram (identifying those which yield equivalent
semantic interpretations) will be further investigated.

We envisage the production of an environment (a
collection of software tools) which will produce the se-
mantics of a diagram, automating the resolution of pos-
sible ambiguities. To maintain the inherent usability of
the notation, the environment should provide a single
default reading of a diagram, but allow more confident
users to specify alternate readings. Such an environ-
ment is already under construction [9].

Unambiguous semantics are an essential foundation
for the development of a set of diagrammatic reasoning
rules. These rules can be applied to reason about sys-
tem specifications. For example, one can check struc-
tural subtyping: that the invariants of a subclass are
stricter than the invariants of a superclass. The envi-
ronment should guide a modeller through a reasoning
process.

The formalisms required to underpin such an envi-
ronment have been completed for simpler systems, and
this paper constitutes a significant advance towards the
required formalisms for constraint diagrams.

Acknowledgements This research was partially sup-
ported by UK EPSRC grant GR/R63516. We thank
Gem Stapleton and John Taylor for their very helpful
comments on earlier drafts of this paper.

References

[1] L. Euler. Lettres a une princesse d’allemagne. Let-
ters Vol 2, No. 102-108, 1761.

[2] J. Flower and J. Howse. Generating Euler dia-
grams. In Proceedings of Diagrams 2002. Springer-
Verlag, 2002.

[3] J. Gil, J. Howse, and S. Kent. Towards a formal-
ization of constraint diagrams. In Proc Symp on
Human-Centric Computing, pages 72–79. IEEE
Press, 2001.

[4] E. Hammer. Logic and Visual Information. CSLI
Publications, 1995.

[5] J. Howse, F. Molina, and J. Taylor. SD2: A sound
and complete diagrammatic reasoning system. In
Proceedings of IEEE Symposium on Visual Lan-
guages (VL2000), pages 127–136. IEEE Computer
Society Press, 2000.

[6] J. Howse, F. Molina, J. Taylor, S. Kent, and J. Gil.
Spider diagrams: A diagrammatic reasoning sys-
tem. JVLC, 12:299–324, 2001.

[7] J. Howse, G. Stapleton, J. Taylor, and J. Flower.
Corresponding regions in euler diagrams. In
Proceedings of Diagrams 2002, pages 146–160.
Springer-Verlag, 2002.

[8] S. Kent. Constraint diagrams: Visualising invari-
ants in object oriented models. In Proceedings of
OOPSLA97, ACM SIGPLAN Notices, 1997.

[9] Kent Modelling Framework (KMF). Home page.
http://www.cs.ukc.ac.uk/kmf.

[10] OMG. UML specification, version 1.4. Available
from www.omg.org.

[11] S.-J. Shin. The Logical Status of Diagrams. Cam-
bridge University Press, 1994.

[12] J. Venn. On the diagrammatic and mechani-
cal representation of propositions and reasonings.
Phil.Mag, 1880.

[13] J. Warmer and A. Kleppe. The Object Constraint
Language. Addison-Wesley, 1998.

8

