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ABSTRACT

The Object Constraint Language OCL is a formal textual
notation that could be used for placing constraints on the
modelling elements that occur in UML diagrams.
Constraints include invariants on classes and types, and
preconditions and postconditions of operations. OCL was
designed to be used in conjunctions with UML diagrams
resulting in more precise object-oriented designs. The Java
Modelling Language (JML) is a behavioural interface
specification language designed for specifying Java classes
and interfaces. This paper applies OCL for developing
Java realizations of UML design models where JML is
used as the assertion language. This is achieved by
translating a subset of OCL assertions into JML assertions.
In order to verify a Java subsystem with respect to a design
subsystem with OCL constraints, an appropriate
realization relation is defined and the approach is
illustrated by an example.
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1. Introduction

The UML [9] facilitates the precise and formal specifica-
tion of semantic constraints on object-oriented models
using the Object Constraint Language OCL [8][12], and
provides notations such as the “realizes” for describing
correctness or refinement relationships between different
diagrams (or models) at different levels of abstraction.
This has improved the possibilities of making program
verification more practical. The OCL is a formal textual
notation that can be used for constraining modelling ele-
ments that occur in UML diagrams. OCL is also used as
the constraint language for rigorous software development
in the Catalysis approach [4]. The type of constraints that
can be expressed using OCL include invariants on classes
and types, preconditions and postconditions of operations.
The “realizes” relationship asserts that classes (written in a

programming language) “realize” the requirements speci-
fied in a more abstract class diagram with constraints. This
relation allows the programmer to express the correctness
of its implementations with respect to UML designs. How-
ever there is up to date no possibility of a verification of
such relation.

The Java Modelling Language JML [6] is a behavioural
interface specification language for specifying Java [1]
modules (classes and interfaces). JML assertion language
is based on Java expressions and supports various con-
structs such as universal and existential quantifications that
are essential for greater expressiveness. The approach of
JML is model based like VDM [5] and Z [11] which means
that JML specifications can be expressed abstractly in
terms of mathematical models such as sets and relations.
However, the mathematical models used in specifications
are defined as Java classes making it unnecessary for users
to learn another specification language. The advantage of
this is that the same notation (in this case Java) which will
be familiar to object-oriented programmers is used
throughout the specification. JML also supports specifica-
tion only variables (or fields), which is necessary for com-
plete and expressive specifications. In addition, JML
specifications allow frame conditions to be specified [2].

This paper proposes a formalization of the “realizes” rela-
tionship with respect to implementations written in Java.
This formalization is done in the context of JML. Given a
design model represented by a class diagram with OCL
constraints, the syntactic and semantic requirements of the
relation induced by this model will be defined. The seman-
tical requirements are given by JML specifications which
express invariants of classes, and preconditions and post-
conditions for the implementations of methods. These
requirements can then be verified by generating from JML
specifications the proof obligations, and proving these
obligations using a theorem prover such as PVS [14]. This
has become possible by using the tools built by the LOOP
project [7][13] which generate proof obligations in PVS
from Java code with JML annotations.



Even if in practice such proofs will not be done in full, the
approach provides a tool for verifying the critical and
important parts of a realization relationship. In addition,
the approach is also useful for debugging and testing
using the JML tools which include a runtime assertion
checker [3] for checking invariants of classes, and precon-
ditions and postconditions of methods.

This paper is organised as follows. Section 2 introduces
the design and implementation models of a simple system,
and defines a realization relation between such models. It
also presents a mapping between OCL and JML assertions
and expressions. Section 3 outlines the process of verify-
ing the realization relation. Section 4 provides the conclu-
sion.

2. The General Process

During the process of developing complex software sys-
tems various models at different levels of abstraction are
produced ranging from analysis models to concrete imple-
mentations expressed in terms of some programming lan-
guage code. This paper focuses on the system design and
system implementation and their (formal) relationship.

2.1 The Design Model

Following the Unified Process [10] a design model can be
presented by a design subsystem. It is assumed that such
subsystem will contain classes with their attributes and
operations, associations relations with other classes in
such a way that any association is directed and annotated
with a role name and multiplicity at the association end,
and inheritance. As an essential part of the paper’s
approach, the subsystem would also include OCL con-
straints for specifying properties like invariants of classes,
preconditions and postconditions for the operations.

In order to illustrate the approach, the design model for a
(simple) bank account subsystem is considered, and
shown in Figure 1. For any current account there is a
transaction history that records the amounts of all deposit
operations performed on the account. The OCL is used to
precisely describe the desired effects of the operations in
terms of preconditions and postconditions. In addition,
appropriate invariants on the specialised classes will also
be expressed using OCL. The OCL constraints are shown
in Figure 2.

2.2 The Implementation Model

An implementation model is given by an implementation
subsystem (in the sense of [10]) which contains compo-
nents that may be related by dependency relations. In thisFigure 1. Design model for bank accounts

DepositAccount
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addInterest()

CurrentAccount

chargeRate : Integer

deposit(a : Integer)

BankAccount {abstract}

bal : Integer

deposit(a : Integer)  {abstract}
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0..1
TransactionHistory

amount : Integer

context    BankAccount::deposit(a : Integer)                                  
pre: a >= 0
post: bal = bal@pre + a

context DepositAccount
inv: bal >= 0 and interestRate >=0

context DepositAccount:: addInterest()
post: bal = bal@pre + bal@pre*interestRate* 0.1

context CurrentAccount::
inv: chargeRate >= 0

context CurrentAccount::deposit(a : Integer)
pre: a >= 0
post: history.oclIsNew and
        history.amount = a and
        history.history = history@pre

Figure 2: OCL-constraints for account subsystem

abstract Class BankAccount
{ protected int bal;
  abstract void deposit(int a);
}

class DespositAccount extends BankAccount
{   private int interestRate;

    public void deposit(int a)
     {    this.bal = this.bal + a; }

    public void addInterest()
     { int interest = this.bal * this.interestRate/100;
           this.deposit(interest);  }
}

class CurrentAccount
{  private int chargeRate;
   private TransactionHistory history;

   public deposit(int a)
    {  this.bal = this.bal + a;
       TransactionHistory h  = new TransactionHistory();
       h.amount = a;
       h.history = this.history;
       this.history = h; }
}

class  TransactionHistory 
{    private int       amount;
     private TransactionHistory  history;
}

Figure 3. Implementation model 



paper, any component C.java will be a Java file contain-
ing the code of a Java class C. It is assumed that all
attributes of Java classes are declared “private” or “pro-
tected” to ensure the encapsulation of object states. The
code of the implementation model is shown in Figure 3.

2.3 The Realization Relation

A design model and its corresponding implementation
model can be related by realization relation as shown in
Figure 4. We say that the realization relation between
“designSubsystem” and “javaSubsystem” holds if the fol-
lowing syntactic and semantics requirements are satisfied:

Syntactic requirements

Every class in the design subsystem will have a corre-
sponding component in the implementation subsystem.
This can be achieved by using trace dependencies as con-
sidered in [10]. It is required that every class C of the
design model is related by a trace dependency to a Java
component C.Java as shown in Figure 4. The trace
dependency between a class C and C.java is supposed to
hold if and only if the following conditions are satisfied:

a. Each attribute of the design class C is also an attribute 
of the Java class C and for each role name at the end of 
a directed association the Java class contains a corre-
sponding reference attribute with the same name. 
Standard types may be slightly renamed according to 
the Java syntax and that role names with multiplicity 
greater than one map to a reference attribute of some 
container type.

b. For each operation m specified in the design class C 
there is a method declaration in the Java class C and 
vice versa (up to an obvious syntactic modification of 
the signature). The operation m of the design model 
has the property {abstract} if and only if the method m 

is an abstract method.

c. The design class C is a (direct) subclass of a design 
class A if and only if the Java class C extends the Java 
class A.

These conditions guarantee (in particular) that the OCL
expressions used as constraints for the design model can

be interpreted in the implementation model which is nec-
essary to define the semantical requirements. Moreover,
note that the above conditions are satisfied by usual code
generators for Java classes from UML class diagrams.

Semantic requirements

For the formulation of the semantic requirements we
assume that the syntactic requirements from the above are
satisfied. Given that, we require that for each design class
C the following are satisfied:

1. For each operation of C its precondition and postcon-
dition are respected by corresponding method imple-
mentations. That is for each operation m specified in 
the design class with OCL-constraints:

context C::m(p1: T1, ..., pn : Tn) 
pre: OCL-PRE     
post: OCL-POST

the given Java subsystem has the following specification
for the method m:

/*@  private normal_behavior
  @  requires JML-PRE;
  @  assignable variable-List;
  @  ensures JML-POST;
  @*/
void C::m( T1 p1, ..., Tn pn)

where JML-PRE and JML-POST are the interpretations of
the precondition OCL-PRE and postcondition OCL-POST in
JML respectively. The first line of the JML specification
indicates that the specification is private and that the
method terminates normally (no exception) under the
assumption that the precondition holds. The specification
is private because private variables are used, and the nor-
mal behaviour is because OCL specification does not
specify exceptions. However, the specification could be
designated public where the private variables are regarded
as public for specification purposes. JML preconditions
follow the keyword “requires”, and postconditions fol-
low the keyword “ensures”. The assignable clause indi-
cates which variables or attributes the method is allowed
to modify. OCL does not support the specification of
frame conditions so this clause has to be extracted from
the postcondition.

If in the design model, there is a subclass C’ of the design
class C which redefines m in the sense that it provides an
additional OCL constraint with precondition PRE’ and
postcondition POST’ for m, then the method m must satisfy
both of the following:

/*@ private normal_behavior
  @ requires JML-PRE;
  @ assignable variable-List;
  @ ensures JML-POST;
  @*/
void C::m( T1 p1, ..., Tn pn)

Figure 4. Trace dependency and realization relation

<<realizes>><<design subsystem>>
designSubsystem

<<java subsystem>>
javaSubsystem

C
<<trace>> <<java file>>

C.Java



/*@ also
  @ private normal_behavior;
  @ requires JML-PRE’;
  @ assignable variable-List;
  @ ensures JML-POST’;
  @*/
void C’::m( T1 p1, ..., Tn pn) 

That is the specification of the method in the superclass is
inherited. In JML this is indicated by adding the keyword
‘also’ before the specification in the subclass. This
ensures that Liskov’s substitution principle is satisfied.
The implementation system given with JML specification
is shown in Figure 5.

2. Each invariant attached to a class in the design model 
will be translated to a JML invariant on the corre-
sponding class in the implementation subsystem. 
These invariants are preserved by method implemen-
tations. This means that for each invariant OCL-INV 
for a design class C, there is a corresponding invariant 
JML-INV for the java class C expressed in JML. Sub-
classes inherit the invariants of their superclasses.

2.4 Mapping OCL Expressions

2.4.1 Boolean expressions

OCL assertions are boolean expressions built using the
boolean operators and (conjunction), or (disjunction), not

(negation), implies (implication), forAll (universal quantifi-
cation), and exists (existential quantification). The basic
boolean expressions are mapped quite easily. That is the
assertions (p and q) is mapped to the JML expression p&&q,
where p and q are the translation of the expressions p and
q respectively. Since assertions are expressions, an asser-
tion may be undefined. The OCL’s semantics for undefin-
edness is to allow an undefined value to stand for
undefined expressions resulting in three-valued logic
interpretation. So if p is false, the expression (p and q) will
evaluate to false regardless of what the value of q is. This
would not be consistent with the Java interpretation of
p&&q sine the order of evaluation is important. However,
the way JML deals with undefinedness is to substitute an
arbitrary but defined value for an undefined expression.
So if p is false, the expression p&&q will evaluate to false
regardless of what the value of q is. So the mapping is still
sound. In the same way, the expressions p or q, not(p), and
p implies q are mapped to p||q,!p, and p==>q respectively.

The operation forAll is applied to finite collections (sets,
bags, sequences) with the syntax c->forAll(x : T | p(x)), where
c is a collection containing elements of type T, and p is a
predicate with x as parameter. This expression asserts that
all the elements of c satisfy the predicate p. It is mapped to
the JML assertion (\forAll T x;c.has(x);p(x)), where
c.has(x) is the membership predicate for collection c.
The exists operation is used to assert that at least one ele-
ment of a collection satisfies a given predicate. Its syntax
is given as c->exists(x : T | p(x)), where c is a collection con-
taining elements of type T, and p is a predicate with x as
parameter. It is mapped to the expression
(\exists T x;c.has(x);p(x)).

2.4.2 Collection types

OCL supports the following collection types Set(T),
Bag(T), and Sequence(T). All the mathematical collections
in JML are supported in the form of Java immutable or
pure classes. The class JMLValueSet is the class of objects
representing sets which contain values (immutable
objects). While the class JMLObjectSet is the class of
objects representing sets which contain other objects. This
distinction is needed in order to define equality for sets
containing values and sets containing objects. Other col-
lection types are also defined by classes containing collec-
tions with values and classes containing collections with
objects. These include bags (JMLValueBag,
JMLObjectBag) and sequences (JMLValueSequence,
JMLObjectSequence).

class abstract BankAccount {
     private int bal;
     
     /*@    private normal_behavior
       @    requires   a >= 0;
       @    assignable bal;
       @    ensures    bal = \old( bal)  + a;
       @*/
     void deposit( int a);
}
class DepositAccount extends BankAccount {
     private int interestRate;
     //@ invariant  bal >= 0 && interestRate >=0;

     public void deposit(int a) {
            this.bal = this.bal + a;  
     }
     /*@   private normal_behavior
       @   assignable bal;
       @   ensures    bal = \old(bal)  +
                            \old(bal)*interestRate* 0.1;
       @*/
     public void addInterest(){
         private int interest = bal * interestRate/100;
         this.deposit(interest);
     }
}

class  CurrentAccount extends BankAccount {
     private    int   chargeRate;
     private    TransactionHistory  history;

     //@ invariant chargeRate >= 0;

    /*@   private normal_behavior
      @   requires  a >= 0;
      @   assignable bal, history;
      @   ensures    \fresh( history) && 
      @              history.amount = a &&
      @              history.history = \old(history);
      @*/
     public void deposit(int a){
          this.bal = this.bal + a;
          TransactionHistory h  = 
                       new TransactionHistory();
          h.amount = a;
          h.history = this.history;
          this.history = h;
     {

Figure 5. Implementation subsystem with JML specification



When mapping expressions involving collections it is
essential to consider whether the collection containing
values or objects, since these are treated differently in
JML. For instance, the OCL type Set(T), where T is a value
type, will be mapped to a JML set type containing values
of type T. Since JML collection types hold elements of the
type Object (the super class of Java classes), Set(T) is
mapped to JMLValueSet. However, a constraint is needed
to say that the elements belong to T. For example, if s is of
type Set(T), then the s is mapped to a set s of type
JMValueSet which satisfies the condition
(\forall JMLType x;;s.has(x)==> x instanceof T).

The type Set(Integer) is mapped to JMLValueSet, where
each set contains objects of the type JMLInteger rather
than of type int. This is because JML collections contains
objects not basic values, where some of these objects rep-
resent values (i.e. immutable objects). If T is an object
type, Set(T) is mapped to the type JMLObjectSet, the type
of sets containing object references.

OCL collections contain basic values as well as objects
and “=” is used to denote equality between collections.
For instance, if s1 and s2 are of type Set(T), s1=s2 asserts
that s1 and s2 are equal in the sense that they contain the
same elements. Since JML collection types are defined as
Java immutable (or pure) classes, using == as the equality
between collections will give wrong results in the pres-
ence of the New operator. Instead, the equality used is a
defined one, namely equals. So the assertion s1=s2 is
mapped to s1.equals(s2).

The standard OCL operations on collections can be trans-
lated quite easily since most of them are directly sup-
ported by JML. In addition OCL also supports operations
for filtering collections. For example, the operation select

filters a finite collection using a boolean predicate. Its
syntax is of the form c->select(x : T | p(x)), where c is a finite
collection with elements of type T and p is a boolean pred-
icate. The value of this expressions is the subcollection of
c obtained by taking those elements satisfying predicate p.
JML collections do not have a corresponding operation
for filtering a finite collection, however a form of compre-
hension can be used to map expressions involving the
operation select. So is the expression s->select(x : T | p(x))

where s is a set and T is an object type is translated to new
JMLObjectSet{ T x | s.has(x)&&p(x)}. JML only sup-
ports set comprehension, that is bag and sequence com-
prehension is not supported. OCL has operations that
convert one type of collection into another. For example,
asSet converts a bag or sequence to a set. There are no
corresponding methods in JML for such operations, how-
ever, these can be defined within JML by adding methods
to the collection classes.

The operation collect maps a collection into another collec-
tion based on an expression. Its general syntax is given by

c->collect(x : T | expr(x)), where c is a collection of T’s ele-
ments and expr is an expression that may involve variable
x. The value of this expression is another collection
obtained from c by applying expr to each element of c.
JML does not have a corresponding operation. However,
one could extend JML with a general form of comprehen-
sion such that  new JMLObjectSet{S expr(x)|s.has(x)}
would denote the set obtained from a given set s by apply-
ing expr to each element in s.

2.4.3 Old values and oclIsNew

OCL uses the @ symbol followed by the pre keyword to
refer to the pre-state value of an attribute or association.
That is, bal@pre in the postcondition of deposit refers to the
value of the attribute bal in the pre-state. JML uses \old to
refer to the pre-state value of a variable with the syntax
\old(e), where e is an expression. The meaning of
\old(e) is as if e were evaluated in the pre-state and that
value is used in place of \old(e) in the assertion. Expres-
sions of the form expr@pre are mapped to \old(expr).

When navigating optional associations on a class diagram,
the value of navigation expression might be undefined.
This is the case when an object from one end of the asso-
ciation is not related to an object on the other end of the
association with “0..1” multiplicity. In order to check if an
expression is defined OCL treats it as a set. For example
acc.history is defined if and only if acc.history->notEmpty.
The expression a.history->notEmpty is then mapped to
a.history != null.

The OCL operation oclIsNew is used in postconditions to
assert that an object is newly created. In JML, the operator
\fresh is used for similar purpose. That is \fresh(o)
asserts that the object bound to o was not allocated in the
pre-state. The expression o.oclIsNew is mapped to
\fresh(o).

3. Verifying the Realization Relation

In this section, we show how a proof of correctness of the
realization relation of the AccountSubsystem (Figure 6)
could be done. According to the definition in Section 2.3,
one needs to show the trace dependencies, the satisfaction
of the preconditions and postconditions constraints and
the preservation of OCL invariants.

Figure 6. Realization relation of the account subsystem

<<realizes>><<design subsystem>>
AccountSubsystem

<<java subsystem>>
AccountJava
Subsystem



Trace dependencies what needs to be shown is that for
each class of the AccountSubsystem there exists a cor-
responding Java class in AccountJavaSubsystem such
that the attributes, methods, and generalization relations
are preserved. By looking at the design and implementa-
tion subsystems, the trace dependencies are satisfied.

Satisfaction of preconditions/postconditions The JML
method specifications generated from the OCL operation
specifications have to be verified. It is easy to see that the
implementation of deposit in the class DepositAccount
satisfies the postcondition. It is possible to use the tools
developed by the LOOP project [7] which provide a veri-
fication platform for Java programs based on the formal
semantics of both Java and JML which has been given in
[13]. This approach is based on translating a method spec-
ification and implementation to proof obligations that can
be verified using a suitable theorem prover such as PVS.

Preservation of invariants The AccountSubsystem has
two invariants for DepositAccount and CurrentAccount.
From the implementation subsystem it is easy to show that
the invariants are preserved. To show that the method
deposit of the class DepositAccount preserves the invar-
iant one needs to prove:

   old(bal)>=0 && old(interestRate)>=0 && (a>=0)
                ==>(bal>=0)

Since the implementation of deposit meets its postcondi-
tion, the following is true bal=old(bal)+a. From this it
follows that bal>=0. Since the method does not change
the value of interestRate, it follows that
interestRate>=0.

4. Conclusion

The realization of UML design models by Java subsys-
tems has been formalised in the context of the JML. This
is done by mapping expressions and assertions written in
OCL to JML expressions and assertions. The formaliza-
tion provides a formal approach for verifying the realiza-
tion relation where JML is used as the assertion language.
One possible way to do the verification is to use the tools
developed by the LOOP project which translates Java
code annotated with JML specifications into PVS asser-
tions and proof obligations. These obligations could then
be verified using PVS. This approach can also be used in
the context of CASE tools which generate Java code from
UML diagrams, where OCL constraints can also be
mapped to JML assertions. This will help in debugging
and testing using the JML runtime assertion checker to
check invariants, preconditions and postconditions of
methods.

One area of future work is to extend this approach to
include interfaces, since the design models in this paper
were restricted to classes and their relationships.
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