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Abstract. Euler diagrams use topological properties to represent set-
theoretical concepts and thus are ‘intuitive’ to some people. When rea-
soning with Euler diagrams, it is essential to have a notion of correspon-
dence among the regions in different diagrams. At the semantic level,
two regions correspond when they represent the same set. However, we
wish to construct a purely syntactic definition of corresponding regions,
so that reasoning can take place entirely at the diagrammatic level. This
task is interesting in Euler diagrams because some regions of one diagram
may be missing from another. We construct the correspondence relation
from ‘zones’ or minimal regions, introducing the concept of ‘zonal regions’
for the case in which labels may differ between diagrams. We show that
the relation is an equivalence relation and that it is a generalization of
the counterpart relations introduced by Shin and Hammer.

1 Introduction

Euler diagrams [1] illustrate relations between sets. This notation uses topo-
logical properties of enclosure, exclusion and intersection to represent the set-
theoretic notions of subset, disjoint sets, and intersection, respectively. The dia-
gram d2 in figure 1 is an Euler diagram with interpretation A is disjoint from B.
Venn [13] adapted Euler’s notation to produce a system of diagrams represent-
ing logical propositions. In a Venn diagram all intersections between contours
must occur. The diagram d1 in figure 1 is a Venn diagram. Some extensions of
Euler diagrams allow shading, as in Venn diagrams, but since we are interested
in a syntactic correspondence between regions shading is irrelevant. Thus we
treat Venn diagrams as a special case of Euler diagrams, and ignore shading.
Peirce [10] extended Venn’s notation to include existential quantification and
disjunctive information.

Shin [11] developed sound and complete reasoning rules for a system of Venn-
Peirce diagrams. This work was seminal in that the rules were stated at the
diagrammatic level and all reasoning took place at that level. This was the
first complete formal diagrammatic reasoning system; until then diagrammatic
reasoning was a mixture of informal reasoning at the diagrammatic level and
formal (and informal) reasoning at the semantic level. Hammer [3] developed
a sound and complete set of reasoning rules for a simple Euler system; it only



considered inferences from a single diagram and contained only three reasoning
rules.

In order to compare regions in different diagrams, Shin and Hammer de-
veloped counterpart relations [4, 11]. This paper considers an alternative, but
related, approach to these counterpart relations and generalizes it to comparing
regions in Euler diagrams. The solution of this problem is very important in
extending diagrammatic reasoning to systems which have practical applications.
Euler diagrams form the basis of more expressive diagrammatic notations such as
Higraphs [5] and constraint diagrams [2], which have been developed to express
logical properties of systems. These notations are used in the software develop-
ment process, particularly in the modelling of systems and frequently as part
of, or in conjunction with, UML [9]. Indeed, some of the notations of UML are
based on Euler diagrams. The development of software tools to aid the software
development process is very important and it is essential that such tools work at
the diagrammatic level and not at the underlying semantic level so that feedback
is given to developers in the notations that they are using and not in some math-
ematical notation that the developers may find difficult to understand. Thus it
is necessary to construct a purely syntactic definition of corresponding regions
across diagrams.

The task of defining such a correspondence relation is interesting, and very
much non-trivial, in Euler diagrams because some regions of one diagram may
be missing from another. For example, in figure 1 the region within the contours
A and B in d1 is missing from d2. Diagram d1 asserts that A ∩ B may or may
not be empty, whereas d2 asserts that A ∩ B = ∅. What are the corresponding
regions in this case?

U UA A B

C

B

d1 d2

Fig. 1. A Venn diagram and an Euler diagram.

In §2 we give a concise informal description of Euler diagrams and a formal
definition of its syntax. In §3 we define the correspondence relation between re-
gions in the more straightforward case of Venn diagrams. In §4 we discuss the
problems of defining corresponding regions in Euler diagrams and in the par-
ticularly difficult case of a system involving the disjunction of diagrams, before
giving a general definition of the correspondence relation and showing that it is
an equivalence relation. We then show, in §5, that it is a generalization of the
counterpart relations developed by Shin and Hammer.



2 Syntax of Euler Diagrams

We now give a concise informal description of Euler diagrams. A contour is
a simple closed plane curve. A boundary rectangle properly contains all other
contours. Each contour has a unique label. A district (or basic region) is the
bounded area of the plane enclosed by a contour or by the boundary rectangle.
A region is defined, recursively, as follows: any district is a region; if r1 and r2

are regions, then the union, intersection and difference of r1 and r2 are regions
provided these are non-empty. A zone (or minimal region) is a region having no
other region contained within it. Contours and regions denote (possibly empty)
sets. Every region is a union of zones. In figure 2 the zone within A, but outside B
is missing from the diagram; the set denoted by such a “missing” zone is empty.
An Euler diagram containing all possible zones is called a Venn diagram.

U
B

A

Fig. 2. An Euler diagram.

Given two diagrams we can connect them with a straight line to produce a
compound diagram [6]. This connection operation is interpreted as the disjunc-
tion of the connected diagrams. A multi-diagram is a collection of compound
diagrams and is interpreted as the conjunction of the compound diagrams. In
this system a multi-diagram is in conjunctive normal form (cf. Shin’s Venn II
system [11]). In figure 3 diagrams d1 and d2 are to be taken in disjunction, thus
{d1, d2} is a compound diagram, as is {d3} (any unitary diagram is a compound
diagram); the diagram {{d1, d2}, {d3}} is a multi-diagram.

U U
A A B

U
C

d1 d2 d3

Fig. 3. Two compound diagrams.

A unitary Euler diagram is a tuple d = 〈L, U,Z〉 = 〈L(d), U(d), Z(d)〉 whose
components are defined as follows:



1. L is a finite set whose members are called contours. The element U , which
is not a member of L, is called the boundary rectangle.

2. The set Z ⊆ PL is the set of zones. A zone z ∈ Z is incident on a contour
c ∈ L if c ∈ z. Let R = PZ − ∅ be the set of regions.

If Z = PL, d is a Venn diagram. At this level of abstraction we identify a
contour and its label. A zone is defined by the contours that contain it and
is thus represented as a set of contours. The set of labels of a zone, z, is thus
L(z) = z. A region is just a non-empty set of zones. The Euler diagram d in
figure 2 has L(d) = {A,B} and Z(d) = {∅, {B}, {A,B}}.

A compound diagram, D, is a finite set of unitary diagrams taken in disjunc-
tion. A multi-diagram, ∆, is a finite set of compound diagrams taken in conjunc-
tion [6]. The set of labels of a compound diagram, D, is L(D) =

⋃
d∈D

L(d). The

set of labels of a multi-diagram, ∆, is L(∆) =
⋃

D∈∆

L(D). In figure 3

L({{d1, d2}, {d3}}) = {A,B,C}.

3 Venn Diagrams

We will identify corresponding regions across Venn diagrams that do not neces-
sarily have the same label sets. As an example, region {z1, z2, z3, z4} in d1 and
region {z5, z6} in d2 in figure 4 are corresponding. We introduce the concept of
a zonal region in order to identify this formally. Intuitively a zonal region is a
region that becomes a zone when contours are removed. This is illustrated in
figure 4. The contour with label C is removed and region {z1, z2} becomes a
zone, {z5}, in the second diagram.

z1

z5 z6

z3

z2 z4
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C

Erase C

d1 d2

Fig. 4. Two Venn diagrams with different label sets.

3.1 Zonal Regions and Splits

In figure 4, consider how we might describe or identify the region {z1, z2}. Infor-
mally, it has description ‘everything inside A but outside B’. Thus we associate
{z1, z2} with an ordered pair of sets, {A} and {B}, which we shall write as



〈{A}, {B}〉. Similarly the region {z1} is associated with 〈{A}, {B, C}〉, intu-
itively meaning ‘everything inside A, but outside B and C’. In order to define
zonal regions formally, and to allow us to compare regions across diagrams, we
introduce the notion of a ‘split’.

Definition 1. A split is a pair of sets, 〈P, Q〉, such that P∩Q = ∅; if P∪Q ⊆ X
then 〈P,Q〉 is said to be a split on X.

Addition is defined on splits with the following axioms:

1. 〈P1, Q1〉 = 〈P2, Q2〉 ⇔ P1 = P2 ∧Q1 = Q2

2. ∀A 6∈ P ∪Q, 〈P,Q〉 = 〈P ∪ {A}, Q〉+ 〈P,Q ∪ {A}〉
3.

∑n
i=1〈Pi, Qi〉 =

∑m
j=1〈Rj , Sj〉 if ∀ i∃ j • 〈Pi, Qi〉 = 〈Rj , Sj〉 and ∀ j ∃ i •

〈Rj , Sj〉 = 〈Pi, Qi〉

Lemma 1. Addition is commutative and associative. Each element is idempo-
tent. If 〈P,Q〉 is a split and S is a finite set such that (P ∪Q) ∩ S = ∅ then

〈P, Q〉 =
∑

W⊆S

〈P ∪W,Q ∪ (S −W )〉

This lemma follows from axioms 2 and 3. The last part of the lemma generalizes
axiom 2 and is illustrated below.

〈{A}, {B}〉 =
∑

W⊆{C,D}
〈{A} ∪W, {B} ∪ ({C,D} −W )〉

= 〈{A}, {B, C, D}〉+ 〈{A,D}, {B,C}〉+
〈{A,C}, {B, D}〉+ 〈{A,C, D}, {B}〉

Definition 2. For unitary Venn diagram d, let 〈P, Q〉 be a split on L(d) . Then
the zonal region associated with 〈P, Q〉 is

{z ∈ Z(d) : P ⊆ L(z) ∧Q ⊆ L(z)}

where L(z) = L(d)− L(z), [8].
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Fig. 5. Venn-4.



In figure 5, zonal regions {z1}, {z2}, {z3} and {z4} are associated with 〈{A},
{B, C, D}〉, 〈{A,D}, {B, C}〉, 〈{A,C,D}, {B}〉 and 〈{A,C, }, {B, D}〉. The zonal
region {z1, z2, z3, z4} is associated with 〈{A}, {B}〉. We have {A} = L(z1) ∩
L(z2) ∩ L(z3) ∩ L(z4) and {B} = L(z1) ∩ L(z2) ∩ L(z3) ∩ L(z4).

Lemma 2. For any unitary Venn diagram d, if a zonal region zr is associated
with 〈P,Q〉 then P =

⋂
z∈zr

L(z) and Q =
⋂

z∈zr
L(z).

Hence each zonal region is associated with a unique split. There is a parallel
between axiom 2, 〈P, Q〉 = 〈P ∪ {A}, Q〉+ 〈P, Q ∪ {A}〉, and lemma 3 below.

Lemma 3. The split rule. Let zr be a zonal region of unitary Venn diagram d.
If zr is associated with 〈P, Q〉 and A ∈ L(d)− (P ∪Q) then zr = zr1∪ zr2 where
zr1 and zr2 are zonal regions associated with 〈P ∪ {A}, Q〉 and 〈P, Q ∪ {A}〉
respectively.

For example, consider the diagram in figure 6. Zonal regions zr1 = {z2, z4, z5, z6},
zr2 = {z2, z4} and zr3 = {z5, z6} are associated with 〈{B}, ∅〉, 〈{A,B}, ∅〉 and
〈{B}, {A}〉 respectively. From the split rule zr1 = zr2 ∪ zr3 and from axiom 2,

〈{B}, ∅〉 = 〈{A,B}, ∅〉+ 〈{B}, {A}〉.

Informally, this is splitting zr1 into the part contained in A and the part excluded
from A. A more general version of the split rule now follows.

z1 z5z2

z3 z6
z4

U
A B

C

d

Fig. 6. Venn-3.

Corollary 1. The derived split rule. If zr is a zonal region of unitary Venn
diagram d associated with 〈P, Q〉 and S ⊆ L(d)− (P ∪Q) then

zr =
⋃

W⊆S

zrW

where zrW is the zonal region associated with 〈P ∪W,Q ∪ (S −W )〉.
Taking zr = {z1, z2, z3, z4} to be the zonal region associated with 〈{A}, ∅〉 in
figure 6, using the derived spit rule with S = {B, C} gives

zr = {z1} ∪ {z2} ∪ {z3} ∪ {z4}



since {z1}, {z2}, {z3} and {z4} are associated with 〈{A}∪∅, ∅∪{B, C}〉, 〈{A}∪
{B}, ∅ ∪ {C}〉, 〈{A} ∪ {C}, ∅ ∪ {B}〉 and 〈{A} ∪ {B,C}, ∅ ∪ ∅〉 respectively.
In general, if we set S = L(d) − (P ∪ Q) in the lemma above and take zr =

{z1, z2, ..., zn} we get zr =
n⋃

i=1

{zi}.
Note that the split associated with a zone involves all the labels in the dia-

gram: {z} is associated with 〈P, Q〉 where P = L(z) and Q = L(z) = L(d)−L(z).
Since any region is a set of zones, we can use this to define a function, ρ, from
regions to splits.

Definition 3. Let d be a unitary Venn diagram.

(i) If z ∈ Z(d) then ρ({z}) =
〈
L(z), L(z)

〉

(ii) If r = {z1, z2, ..., zn} ∈ R(d) then ρ(r) =
∑n

i=1 ρ({zi})
For example, in figure 6, ρ({z1}) = 〈{A}, {B,C}〉. Under ρ the region {z3, z5, z6}
maps to

〈{A,C}, {B}〉+ 〈{B}, {A,C}〉+ 〈{B, C}, {A}〉 = 〈{A,C}, {B}〉+ 〈{B}, {A}〉

Lemma 4. Let zr be a zonal region of unitary Venn diagram d associated with
〈P, Q〉. Then ρ(zr) = 〈P,Q〉.
The zonal region {z1, z2, z3, z4} in figure 6 is associated with 〈{A}, ∅〉 and

ρ({z1, z2, z3, z4}) = 〈{A}, {B, C}〉+ 〈{A,B}, {C}〉+
〈{A,C}, {B}〉+ 〈{A,B, C}, ∅〉

= 〈{A}, {C}〉+ 〈{A, C}, ∅〉
= 〈{A}, ∅〉

Lemma 4 does not follow over to Euler diagrams, as we shall see in section 4.
If we know certain relationships between zonal regions, we can make deductions
about their images under ρ, and vice versa.

Lemma 5. Let zr1 and zr2 be zonal regions of unitary Venn diagram d. If
ρ(zr1) = 〈P1, Q1〉 and ρ(zr2) = 〈P2, Q2〉 then

zr1 ⊆ zr2 ⇔ P2 ⊆ P1 ∧Q2 ⊆ Q1

If (P1 ∪ P2) ∩ (Q1 ∪Q2) = ∅ then zr1 ∩ zr2 = zr3 where

ρ(zr3) = 〈P1 ∪ P2, Q1 ∪Q2〉

From lemma 5 we can deduce that the zonal region associated with 〈{A}, ∅〉 in
diagram d, figure 6, is not a subset of the zonal region associated with 〈{B}, ∅〉.
The zonal region associated with 〈{A}, ∅〉 is {z1, z2, z3, z4}. The zonal region
associated with 〈{B}, ∅〉 is {z2, z4, z5, z6} and {z1, z2, z3, z4} * {z2, z4, z5, z6}.



Lemma 5 also tells us the zonal regions associated with 〈{A}, ∅〉 and 〈{B}, ∅〉 in-
tersect to give a zonal region associated with 〈{A,B}, ∅〉, that is {z1, z2, z3, z4}∩
{z2, z4, z5, z6} = {z2, z4}. We now define correspondence between zonal regions.
Corresponding zonal regions have the same semantic interpretation.

Definition 4. Let zr1 and zr2 be zonal regions of Venn diagrams d1 and d2

respectively. Regions zr1 and zr2 are corresponding zonal regions [8], denoted
zr1 ≡c zr2, if and only if ρ(zr1) = ρ(zr2).

In figure 4 zonal region {z1, z2} in d1 corresponds to zonal region {z5} in d2 since
ρ({z1, z2}) = ρ({z5}) = 〈{A}, {B}〉.
Theorem 1. The relation ≡c is an equivalence relation on zonal regions.

3.2 Corresponding Regions in Venn Diagrams

The definition of correspondence is now extended to regions.

Definition 5. Let r1 and r2 be a regions of Venn diagrams d1 and d2 respec-
tively. Regions r1 and r2 are corresponding regions [8], denoted r1 ≡c r2, if
and only if ρ(r1) = ρ(r2).

At the semantic level, corresponding regions represent the same set [6]. In figure

z1

z5 z6
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z2 z4
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d1 d2

Fig. 7. Two Venn diagrams.

7, region r1 = {z1, z2, z3, z4} in diagram d1 has

ρ(r1) = 〈{A}, {B, C}〉+ 〈{A,C}, {B}〉+ 〈{B}, {A,C}〉+ 〈{B,C}, {A}〉

Region r2 = {z5, z6} in diagram d2 has

ρ(r2) = 〈{A}, {B}〉+ 〈{B}, {A}〉

Using axiom 2, 〈P, Q〉 = 〈P ∪ {A}, Q〉+ 〈P, Q ∪ {A}〉, we obtain

〈{A}, {B}〉+ 〈{B}, {A}〉 =

〈{A}, {B, C}〉+ 〈{A,C}, {B}〉+ 〈{B}, {A,C}〉+ 〈{B, C}, {A}〉
Thus r1 ≡c r2.



Theorem 2. The relation ≡c is an equivalence relation on regions.

Proofs for some of the results in this section can be found in [12]. Ideally,
we want to be able to reason with diagrams that are Euler diagrams. The focus
of this paper now turns to diagrams of this nature. Of the definitions related
to Venn diagrams, 2 and 3 carry over to Euler diagrams. Also lemma 3 and
corollary 1 apply to Euler diagrams.

4 Euler Diagrams

In this section we investigate problems related to zonal regions and their asso-
ciated splits in Euler diagrams. It is no longer necessarily true that, for a zonal
region zr associated with 〈P, Q〉, ρ(zr) = 〈P, Q〉 because the associated 〈P,Q〉
is no longer unique. In figure 8, the zonal region {z1} is associated with both
〈{A}, ∅〉 and 〈{A}, {B}〉 but ρ({z1}) = 〈{A}, {B}〉 6= 〈{A}, ∅〉. Thus lemma 4
fails. However, we can think of 〈{A}, ∅〉 and 〈{A}, {B}〉 as being ‘equivalent
in the context of d’ because 〈{A}, ∅〉 = 〈{A, B}, ∅〉 + 〈{A}, {B}〉 and the zone
corresponding to 〈{A, B}, ∅〉 is ‘missing’ from the diagram.

z1

U
A B

d

Fig. 8. An Euler diagram with a missing zonal region.

In some diagrams there may be a split on L(d) with no zonal region associated
with it. There is no zonal region associated with 〈{A,B}, ∅〉, in diagram d, in
figure 8. Informally, in our ‘algebra of splits’ we can think of 〈{A,B}, ∅〉 as
representing zero. If we allow this, we see that

ρ({z1}) = 〈{A}, {B}〉
= 〈{A}, {B}〉+ 〈{A,B}, ∅〉
= 〈{A}, ∅〉

We have here the idea of equality in the context of a diagram.

Definition 6. The context of unitary diagram d, denoted χ(d), is

χ(d) = {〈P, Q〉 : P ∈ PL(d)− Z(d) ∧Q = L(d)− P}
If 〈P, Q〉 ∈ χ(d) then 〈P, Q〉 is zero in the context of d, denoted 〈P,Q〉 =d 0.
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Fig. 9. A unitary Euler diagram.

The diagram in figure 9 has Z(d) = {∅, {A}, {A,B}, {C}}, so

χ(d) = {〈{B}, {A,C}〉, 〈{A,C}, {B}〉, 〈{B, C}, {A}〉, 〈{A,B, C}, ∅〉}

corresponding to the four zones that are present in the Venn diagram with labels
{A,B, C} but are missing in d.

Lemma 6. If d is a unitary Venn diagram χ(d) = ∅.

U U
AA B B

d1 d2

Fig. 10. Two Euler diagrams.

When considering more than one diagram, we need to take care when deciding
what is the context. Considering diagrams d1 and d2, figure 10, in conjunction
we may deduce that 〈{A,B}, ∅〉 is zero in context, since

{z ∈ Z(d1) : {A,B} ⊆ L(z) ∧ ∅ ⊆ L(z)} = ∅

At the semantic level, the sets represented by the contours labelled A and B are
disjoint. Thus we would want the zonal region associated with 〈{A}, ∅〉 in d2 to
correspond to that associated with 〈{A}, {B}〉, also in d2. However if we were to
take the diagrams in disjunction, we cannot deduce that the sets represented by
the contours labelled A and B are disjoint. Thus we would not want 〈{A,B}, ∅〉
to be zero. In the disjunctive case it is incorrect for ρ({z1}) = 〈{A}, ∅〉.

In order to define the context of compound and multi-diagrams we first define
a function ζδ, called zonify, from splits on L(δ) to sets of splits on L(δ), where
δ is a unitary, compound or multi-diagram,

ζδ(〈P, Q〉) = {〈Pi, Qi〉 : P ⊆ Pi ∧Qi = L(δ)− Pi}



The zonify function delivers the set of splits corresponding to the zones that are
elements of the zonal region associated with 〈P, Q〉 in the Venn diagram with
labels L(δ). Taking ∆ = {{d1, d2}, {d3}} in figure 11,

ζ∆(〈{A}, {B}〉) = {〈{A}, {B,C}〉, 〈{A,C}, {B}〉}
Consider the compound diagram D = {d1, d2} in figure 12. The shaded zones

U U
A A C

U

C

B A B

d1 d2 d3

Fig. 11. A multi-diagram.

in the Venn diagram, d, with L(d) = L(D), represent those sets we can deduce
empty at the semantic level. Each of these shaded zones is associated with a
split that partitions L(D).

U U UA

D
B

C
A B B A

C

D

d1 d2 d

Fig. 12. A compound diagram and a Venn diagram.

Definition 7. Let D be a compound diagram. The context of D is defined to
be

χ(D) =
⋂

d∈D


 ⋃

〈P,Q〉∈χ(d)

ζD(〈P, Q〉)



If 〈P, Q〉 ∈ χ(D) then 〈P,Q〉 is zero in the context of D, denoted 〈P,Q〉 =D 0.

The context of {d1, d2} in figure 13 is χ({d1, d2}) = ∅, since χ(d2) = ∅. The
contexts of diagrams d3 and d4 are

χ(d3) = {〈{A}, {B}〉}
χ(d4) = {〈{A,C}, {B}〉, {〈{A}, {B, C}〉}



z1 z2

z3
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d3 d4

Fig. 13. A multi-diagram containing two compound diagrams.

We use the zonify function to find χ({d3, d4}).

χ({d3, d4}) =


 ⋃

〈P,Q〉∈χ(d3)

ζD(〈P, Q〉)

 ∩


 ⋃

〈P,Q〉∈χ(d4)

ζD(〈P,Q〉



= {〈{A,C}, {B}〉, 〈{A}, {B, C}〉} ∩
({〈{A,C}, {B}〉} ∪ {〈{A}, {B, C}〉})

= {〈{A,C}, {B}〉, 〈{A}, {B, C}〉}
Definition 8. Let ∆ be a multi-diagram. The context of ∆ is defined to be

χ(∆) =
⋃

D∈∆


 ⋃

〈P,Q〉∈χ(D)

ζ∆(〈P, Q〉)



If 〈P, Q〉 ∈ χ(∆) then 〈P, Q〉 is zero in the context of ∆, denoted 〈P, Q〉 =∆ 0.

The context of ∆ = {{d1, d2}, {d3, d4}} in figure 13 is

χ(∆) = {〈{A,C}, {B}〉, 〈{A}, {B, C}〉}
Therefore 〈{A,C}, {B}〉 =∆ 0 and 〈{A}, {B,C}〉 =∆ 0.

Definition 9. Let ∆ be a multi-diagram,
∑n

i=1〈Pi, Qi〉 and
∑m

j=1〈P ′j , Q′
j〉 be

sums of splits.
∑n

i=1〈Pi, Qi〉 and
∑m

j=1〈P ′j , Q′
j〉 are said to be equal in the

context of ∆, denoted
∑n

i=1〈Pi, Qi〉 =∆

∑m
j=1〈P ′j , Q′

j〉, if and only if there

exists
∑k

i=1〈Ri, Si〉 and
∑l

j=1〈R′j , S′j〉 such that
∑n

i=1〈Pi, Qi〉 =
∑k

i=1〈Ri, Si〉,
∑m

j=1〈P ′j , Q′
j〉 =

∑l
j=1〈R′j , S′j〉 and

∀ i (∃ j • 〈Ri, Si〉 = 〈R′j , S′j〉) ∨ 〈Ri, Si〉 =∆ 0 and

∀ j (∃ i • 〈R′j , S′j〉 = 〈Ri, Si〉) ∨ 〈R′j , S′j〉 =∆ 0.



In figure 13, taking ∆ = {{d1, d2}, {d3, d4}} we have,

〈{A}, {B}〉+ 〈{B}, {A}〉 = 〈{A,C}, {B}〉+ 〈{A}, {B,C}〉+ 〈{B}, {A}〉
=∆ 〈{B}, {A}〉

Definition 10. Let ∆ be a multi-diagram and d1, d2 be unitary diagrams such
that d1 ∈ D1, d2 ∈ D2 where {D1, D2} ⊆ ∆. Let r1 and r2 be regions of d1 and
d2 respectively. Region r1 is said to correspond in the context of ∆ to region
r2, denoted r1 ≡∆ r2, if and only if ρ(r1) =∆ ρ(r2).

Corresponding regions have the same semantic interpretation. Consider regions
r1 = {z1}, r2 = {z1, z2}, r3 = {z2} and r4 = {z3} in figure 13.

ρ(r1) = 〈{A}, {B}〉 =∆ 0
ρ(r2) = 〈{A}, {B}〉+ 〈{B}, {A}〉

=∆ 〈{B}, {A}〉
ρ(r3) = 〈{B}, {A}〉
ρ(r4) = 〈{B}, {A}〉

Thus r1 6≡∆ r2 and r2 ≡∆ r4. Interestingly, we also have r2 ≡∆ r3 (r2 and r3

are different regions in the same diagram).

Theorem 3. The relation ≡∆ is an equivalence relation on regions of unitary
diagrams contained in ∆.

5 The Counterpart Relations of Shin and Hammer

The basic idea of the counterpart relation on Venn diagrams is to identify cor-
responding basic regions (i.e., the region enclosed by a closed curve) and then
to recursively define the relation on unions, intersections and complements of
regions. Shin only defines the counterpart on basic regions and leaves the rest
implicit. Hammer defines the relation as follows for Venn diagrams:
The counterpart relation is an equivalence relation defined as follows. Two basic
regions are counterparts if and only if they are both regions enclosed by rectan-
gles or else both regions enclosed by curves having the same label. If r and r′ are
regions of diagram D, s and s′ are regions of diagram D′, r is the counterpart
of s, and r′ is the counterpart of s′, then r ∪ r′ is the counterpart of s ∪ s′ and
r̄ is the counterpart of s̄.

This definition works very well for Venn diagrams where all minimal regions
must occur. In figure 14, the two regions enclosed by the rectangles are coun-
terparts, and so are the two crescent-shaped regions within the circles labelled
A but outside the circles labelled B; the region within all three curves in the



U U
A A BB

C

d1 d2

Fig. 14. Two Venn diagrams.

left-hand diagram has no counterpart in the other one. The counterpart relation
is obviously equivalent to the correspondence relation defined in §3.

Hammer defines a counterpart relation on Euler diagrams, but only for dia-
grams with the same label set:
Suppose m and m′ are minimal regions of two Euler diagrams D and D′, respec-
tively. Then m and m′ are counterparts if and only if there are curves B1, . . . , Bm

and Bm+1, . . . , Bn of D and curves B′
1, . . . , B

′
m and B′

m+1, . . . , B
′
n of D′ such

that (1) for each i, 1 ≤ i ≤ n, Bi and B′
i are tagged by the same label; (2) m is

the minimal region within B1, . . . , Bm but outside Bm+1, . . . , Bn; and (3) m′ is
the minimal region within B′

1, . . . , B
′
m but outside B′

m+1, . . . , B
′
n.

This definition is sufficient for Hammer’s purposes, but it only covers a special
case of Euler diagrams. Consider the two Euler diagrams in figure 15. Minimal
region 1 is the counterpart of minimal region a, 2 is the counterpart of b and
3 is the counterpart of d. Minimal region c has no counterpart in the left-hand
diagram.

1 a

2 b dc3

U U
A A BB

d1 d2

Fig. 15. Two Euler diagrams.

The correspondence relation defined in §4 agrees with this interpretation
when the context is the disjunction of the two diagrams. It also agrees in the
case in which the context is the conjunction of the two diagrams but adds in
further correspondences such as region 2 corresponds with region b ∪ c.

6 Conclusions and Further Work

We have constructed a purely syntactic definition of corresponding regions in
Euler diagrams and shown it to be an equivalence relation and a generalization of



the counterpart relations introduced by Shin and Hammer. At the semantic level,
two corresponding regions represent the same set. The system of Euler diagrams
we considered in this paper is in conjunctive normal form. However, we wish to
reason in the more general case where we consider any combination of disjuncts
and conjuncts of diagrams such as in constraint trees [7]. The correspondence
relation defined in this paper can be adapted for such systems.

The general aim of this work is to provide the necessary mathematical under-
pinning for the development of software tools to aid reasoning with diagrams. In
particular, we aim to develop the tools that will enable diagrammatic reasoning
to become part of the software development process.
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