
Electronic Notes in Theoretical Computer Science 72 No. 3 (2002)
URL: http://www.elsevier.nl/locate/entcs/volume72.html 10 pages

Modelling with Heterogeneous Notations

Jean Flower, John Howse and John Taylor

School of Computing & Mathematical Sciences
University of Brighton, Brighton, UK

{J.A.Flower, John.Howse, John.Taylor}@brighton.ac.uk

Abstract

There is a range of modelling notations, both textual and diagrammatic, whose
semantics are based on first-order predicate logic. This paper presents a visual
framework for organizing models of systems which allows a mixture of notations,
diagrammatic or text-based, to be used. The framework is based on the use of
templates for connective operations which can be nested and sometimes flattened.
It is modular and can be used to structure the constraint space of the system, making
it scalable with appropriate tool support. It is also flexible and extensible: users
can choose which notations to use, mix them and add new notations or templates.

The goal of this work is to provide more intuitive and expressive languages and
frameworks to support the construction and presentation of rich and precise models.

Keywords Visual formalisms, software specification, heterogeneous framework.

1 Introduction

There is a range of notations available for the modelling of software sys-
tems whose semantics are based on first-order predicate logic (FOPL). Text-
based examples include FOPL itself, or structured variants such as Z [14] and
VDM [8], and the Object Constraint Language (OCL) [15], which is part of
the Unified Modelling Language (UML) [11]. Diagrammatic examples include
constraint diagrams [4] and UML class and state diagrams. A heterogeneous
framework in which these and other notations can be used together might be
of benefit to modellers. In this paper we present such a framework, discussing
the advantages and disadvantages of different approaches.

Part of the rationale in the development of both OCL and constraint dia-
grams was to construct a developer-friendly notation for expressing constraints
in object-oriented modelling, as an alternative to traditional mathematical
syntax. Notation is notoriously a matter of taste. Having a range of notations
available enables us to choose which is the most appropriate approach for our
needs or our tastes. Some expressions, such as those which require navigation

c©2002 Published by Elsevier Science B. V.



Flower, Howse and Taylor

between sets and statements about set inclusion and disjointness are proba-
bly shown better diagrammatically than textually; other statements, such as
those involving numbers, are frequently better expressed textually.

A further problem when modelling industrial-sized systems is scalability;
the number and complexity of constraints can be overwhelming. The frame-
work developed in this paper is modular and can be used to structure the
constraint space of the system. It is also flexible and extensible. Users can
choose which notations to use and can mix them; they can choose the ways in
which the notations are combined and they can add their own notations. All
the formal notations in the family should be based upon FOPL, and expres-
sions are built from atomic expressions using connectives. The framework is
flexible enough to deal with informal notations such as natural language or rich
pictures and also examples such as UML object diagrams. Expressions within
the framework will have formal semantics if and only if all their components
are formally defined.

Diagrammatic reasoning can take many forms as can be evidence by glanc-
ing at [1] or [5]. In [2], Barwise and Etchemendy argue that reasoning is het-
erogeneous in nature. They applaud the recent resurgence of interest in “non-
linguistic” representations in reasoning but strike a note of caution about the
potential of nonlinguistic representations. Just as it is unreasonable to suggest
that first-order logic is a universal representational language, it is also unrea-
sonable to strive for a universal nonlinguistic representational language. They
suggest that the search for any universal scheme of representation, text-based
or diagrammatic, is a mistake and that reasoning is inescapably heterogeneous
in nature. We fully concur with these sentiments.

In the next section, we introduce the concept of a template. Our frame-
work for heterogeneous notations is built from templates, and users can add
their own templates. First we consider binary, commutative and associative
connective operations such as conjunction and disjunction. They can be ex-
tended to n-ary operations because they are associative. Later, we consider
other operations which may not be commutative (e.g. implication) or binary
(e.g. negation). One use of unary templates for predicates and quantifiers
is outlined in §2.6. In §3 we show how templates can combine in a nested
expression and discuss flattening nested expressions. In §4 we formalise the
notation.

2 Templates

An expression is either atomic or made up of components, using some connec-
tive operation. A view of an expression is a concrete (diagrammatic or text-
based) representation of an expression. A view can be built up out of views
of its components. The component views are combined using a template. We
will consider the templates tree, chain, box, and partition, see figures 1 and 3.

To create a view of an expression, use a template for each application of a

2



Flower, Howse and Taylor

connective operation. The framework is flexible and extensible, because users
can introduce their own templates or adapt existing ones. The templates we
introduce here serve only as examples.

2.1 Binary commutative templates

Binary operations are shown using binary templates. An outer rectangle con-
tains two empty inner rectangles to hold views of the components. The space
between the bounding rectangle and the inner rectangles is filled differently
for different templates. Commutative operations allow templates that don’t
enforce an ordering on the inner rectangles. The component parts can be read
in any order. The simplest binary commutative template is box, which simply
has two rectangles drawn inside a bounding box. A line can be drawn between
the inner rectangles to give a different template: chain.

Partition
 Box
 Chain
 Tree


Fig. 1. Four binary templates

A third template uses a new rectangle (smaller than the others) to represent
the operation which brings together the components. Lines link the view of
the operation to the inner rectangles. This template is called tree. The fourth
possibility shown in figure 1 makes most efficient use of space on the diagram.
The two inner rectangles occupy the whole of the bounding rectangle. One
line has been used to partition the bounding box into parts, ready to hold
views of the components.

The partition template is inspired by the use of dashed lines to indicate
orthogonal behaviour in state diagrams in UML, which originated in Harel’s
statecharts [6]. The chain syntax draws upon our work on reasoning with spi-
der diagrams [7], which itself builds upon the work of Shin [13] and Peirce [12].
The tree template develops from the idea of a constraint tree used for com-
bining OCL and constraint diagrams [10].

2.2 n-ary commutative templates

If a binary operation is associative, then the repeated application of that
operation can be constructed without explicit reference to the pairs of com-
ponents which are combined first. Figure 2 shows how a binary commutative
associative template can become a ternary template. In this way, the binary
templates shown in figure 1 become the ternary templates seen in figure 3 and,
of course, the process can be extended to produce n-ary templates.

3



Flower, Howse and Taylor

P
 Q
 R

=


P
 Q
 R


op


op
 op


P


Q
 R

=
 P
 Q
 R


Fig. 2. The associative law

Partition
 Box
 Chain
 Tree


Fig. 3. Ternary templates

2.3 Use of operation annotations

For diagrams representing expressions involving different operations, it is use-
ful to be able to annotate the diagram with operation labels or signifiers.
Figure 4 shows some annotated binary templates.

Partition
 Box
 Chain
 Tree


op
 op
 op


op
 op
 op


Fig. 4. Annotated templates

Sometimes we can use diagrammatic notations instead of textual annota-
tions; examples of this are found in the next two subsections.

2.4 Unary templates

A unary template needs only a bounding box and a single inner box. Unary
templates can be thought of as frames, or wrappers, of an inner view. The not
operation is unary, and two possible templates are shown in figure 5, one in
which the template is annotated with the label ¬ and the other in which the
negation is indicated diagrammatically as a bar above the inner box. Probably

Fig. 5. Templates for not

the only unary operation we will require is negation. However, in §2.6, we show
how a unary template can be used to express quantification.

4



Flower, Howse and Taylor

2.5 Non-commutative templates

A non-commutative operation can be shown using a template which imposes
an ordering on its inner boxes. Two possible templates for implication are
shown in figure 6. In one the two boxes are linked with an arrow resembling an
“implies” sign (⇒), while in the other the two boxes are linked with an arrow
which is annotated with the label ⇒. Of course, we could have annotated the
arrow with the word implies rather than the symbol. An implies template can

Fig. 6. Templates for implication

only be binary as the operation is not associative. Another similar template
could be developed for if then else statements. See §6 for an example from [3]
for such a conditional construction.

2.6 Predicates and quantifiers

Quantifiers are easily represented by unary templates to represent the quan-
tifier and variable name. The inner box of the template should then be filled
with a predicate. The most obvious template employs a simple text-based la-
bel as in figure 7 although one could envisage representations where universal
and existential quantification are distinguished diagrammatically.

b


P
(
b
)


Fig. 7. A unary quantification template

The scope of a quantifier is represented directly by the bounding box. For
example, figure 8 represents the proposition ∀a ∃b • P (a, b)∧Q(b) in the left-
hand diagram and the predicate ∀a • P (a, b) ∧ (∃b • Q(b)) in the right-hand
diagram.

b


a


P
(
a
,
b
)
 Q
(
b
)


b


a


P
(
a
,
b
)


Q
(
b
)


Fig. 8. The scope of quantifiers

5



Flower, Howse and Taylor

3 Nesting templates

The nesting of templates allows for compound expressions to be built up which
can contain different connectives. Figure 9 shows how different templates can
combine in a nested expression. The most flexible notation is obtained by

Q


R

P


P

Q


R


P


R
Q


Fig. 9. Nested templates

allowing the use of any template for any instance of any operator. A more
rigid notation is obtained by insisting on a consistent use of a unique template
for each connective. A schema could be chosen which uses the tree template
for conjunction and the box template for disjunction. If a schema assigns
unique templates for each operation, then annotations can be omitted and
every diagram has well-defined semantics. On the other hand, a schema which
duplicates the use of a template then requires annotation for those occurrences
of the template to specify which operation is being represented.

P


Q
 R


op1


op2


R


Q


op1
 op2
 P

Q


R

P


op1

op2


Fig. 10. Annotated nested templates

3.1 Modularity and scalability

In a modelling situation, we may wish to use notation such as natural language,
without clear semantics. A mix of formal and informal statements allows for
vague statements to be made, elaborated upon, and made precise at a later
time. The semantics of nested expressions can be built up modularly. The
semantics of a compound expression exists if and only if we can give semantics
to each component part.

The modularity of the framework allows for scalable models. With appro-
priate tool support, see §5, we can zoom in and out of the model, exploding
and collapsing views, expressing the whole model but concentrating only on
manageable sized chunks of the system at any time; these chunks can range
from an overview of the whole model down to very detailed views of the small-
est components.

6



Flower, Howse and Taylor

3.2 Flattening

Templates are required to have a bounding box in order to permit unam-
biguous nesting, but in some cases diagrams may be simplified by removing
some of the bounding boxes. We call this process flattening. The associative
law illustrated in Figure 2 is an example of flattening, but more interesting
examples arise when more than one operation appears in the represented ex-
pression. The existing notations of spider diagrams [7] and constraint trees [10]
both employ flattening as illustrated respectively in Figure 11 (representing
(P ∨Q) ∧ (R ∨ S ∨ T )) and Figure 12 (representing P ∧ (Q ∨R)).

Q


P


S


R


T

Q


P


S


R


T


Fig. 11. Flattening in spider diagrams

P


Q
 R


=
P


Q
 R


Fig. 12. Flattening in constraint trees

Flattening is possible in some cases where each operation is associated
with a particular template style. In the spider diagram notation, disjunction
is always represented by chain templates and conjunction is always represented
by box templates. Similarly, in the constraint tree notation both disjunction
and conjunction are represented by tree templates. We call such an association
of operations to template styles in this way a (template) schema (see §4 for
the formal definition). Not all schemas admit flattening. For example, the
‘box-box’ schema that represents both conjunction and disjunction as box
templates does not permit flattening; see Figure 13.

P

Q


R


Fig. 13. A schema that does not admit flattening

We regard the chain and tree templates as being connected and the box
template as being disconnected. Since connected templates are, in a visual
sense, more ‘tightly bound’ than disconnected templates, a schema that as-
signs one operation to a connected template and one to a disconnected tem-
plate has an implicit operator hierarchy that permits flattening. This is the

7



Flower, Howse and Taylor

diagrammatic counterpart of the operator hierarchy in algebra where multi-
plication binds more tightly than addition allowing the convention that xy+z
can be unambiguously interpreted as (x× y) + z rather than x× (y + z).

Flattening simplifies diagrams, but there is a cost. For those diagrams
that employ a schema that assigns one operation to a connected template
and one to a disconnected template, flattening imposes a normal form on the
notation. For example, flattened spider diagrams (illustrated in the right-hand
diagram of Figure 11) represent expressions in conjunctive normal form where
disjunction binds more tightly than conjunction. Reversing the assignment
(conjunction to chain templates and disjunction to box templates) produces
diagrams that represent expressions in disjunctive normal form.

4 Formalisation

An n-ary template is a diagram consisting of n disjoint, empty boxes within
a bounding box. The space between the outer box and the inner boxes may
contain shading, lines, annotation, or other diagrammatic components. An
n-ary template is also referred to as a template of degree n. Let T be the
set of templates. A view of a logical expression is a representation of that
expression in some concrete notation, which can be diagrammatic or textual,
and is contained in a bounding box. A template view is a diagram in which
each inner box of a template contains a view and the template contains a
representation of a logical operation or quantifier. These views can be atomic
views or template views. An atomic view does not contain any other view. Let
V be the set of views, AV the set of atomic views and TV the set of template
views. Then V = AV ∪ TV and AV ∩ TV = ∅. Further, let Op be the set
of operations, which can include quantifiers. Then TV = Op × V n. Note
that an atomic view represents a logical expression which can include logical
connectives and quantifiers; it is not necessarily an “atomic” expression.

Views and Templates are concrete concepts. An (abstract) logical expres-
sion can have many concrete views in many different notations. The style of a
template determines what kinds of diagrammatic structure is present between
the bounding box and the inner boxes of a template. Let TS be the set of
template styles. Say that a template conforms to a template style if the tem-
plate structure satisfies the template style rule. If template t ∈ T conforms
to template style ts ∈ TS, we write t ∼ ts. We have considered four tem-
plate styles in this paper: box, chain, partition and tree, but there are many
other possibilities and users can develop their own styles. The differences be-
tween the styles is purely a matter of concrete notation and therefore of taste.
However, some logical expressions cannot be expressed in some styles.

8



Flower, Howse and Taylor

4.1 Semantics

Each view represents a logical expression. We define a semantic function Ψ
that interprets each view as a logical expression in FOPL. Let tv ∈ TV . Then
tv = (op, v1, ..., vn) and

Ψ(tv) = Ψ(op)(Ψ(v1), ..., Ψ(vn)).

4.2 Flattening

The flattening processes described in §3.2 can be formalised as transformation
rules. For example, associative binary operations can be extended to n-ary
operations as described earlier. This gives rise to the following transformation
rule:

The associative operation flattening rule. Let op be an associative oper-
ation. Let tv = (op, v1, ..., vn) and tv′ = (op, tv1, vn) be template views where
tv1 = (op, v1, ..., vn−1). Then tv′ can be replaced by tv.

Theorem 4.1 The associative operation flattening rule is valid

The proof is obtained by showing that Ψ(tv) = Ψ(tv′).

5 Conclusion

In this paper we have developed the idea of a visual framework for organiz-
ing models of systems which allows a mixture of notations, diagrammatic or
text-based, to be used. The framework is based on the use of templates for
connective operations which can be nested and sometimes flattened. It is mod-
ular and can be used to structure the constraint space of the system, making
it scalable with the appropriate tool support. It is also flexible and extensible:
users can choose which notations to use, mix them and add new notations or
templates. The goal of this work is to provide more intuitive and expressive
languages and frameworks to support the construction and presentation of
rich and precise models.

Acknowledgements

This research was partially supported by UK EPSRC grant GR/R63516.

References

[1] G. Allwein and J. Barwise. Logical Reasoning with Diagrams. OUP, 1996.

[2] J. Barwise and J. Etchemendy. Heterogeneous logic. In J. Glasgow, N. H.
Narayan, and B. Chandrasekaran, editors, Diagrammatic Reasoning, pages 211–
234. MIT Press, 1995.

9



Flower, Howse and Taylor

[3] P. Bottoni, M. Koch, F. Parisi-Presicce, and G. Taentzer. A visualization of ocl
using collaborations. In Proceedings of UML01, 2001.

[4] J. Gil, J. Howse, and S. Kent. Towards a formalization of constraint diagrams.
In Proc Symp on Human-Centric Computing. IEEE Press, Sept 2001.

[5] J. Glasgow, N. Hari Narayanan, and B. Chandrasekaran, editors. Diagrammatic
Reasoning. MIT Press.

[6] D. Harel. On visual formalisms. In J. Glasgow, N. H. Narayan, and
B. Chandrasekaran, editors, Diagrammatic Reasoning, pages 235–271. MIT
Press, 1995.

[7] J. Howse, F. Molina, and J. Taylor. On the completeness and expressiveness
of spider diagram systems. In Proceedings of Diagrams 2000, pages 26–41.
Springer-Verlag, 2000.

[8] C. Jones. Systematic Software Development using VDM. Prentice Hall, 1990.

[9] S. Kent and J. Howse. Mixing visual and textual constraint languages. In
Proceedings of UML99, 1999.

[10] S. Kent, J. Howse, and S. Gaito. Constraint trees. In A. Clark and J. Warmer,
editors, Advances in Object Modelling with OCL. Springer Verlag, to appear,
2002.

[11] OMG. UML specification, version 1.3. Available from www.omg.org.

[12] C. Peirce. Collected Papers, volume 4. Harvard Univ. Press, 1933.

[13] S.-J. Shin. The Logical Status of Diagrams. Cambridge University Press, 1994.

[14] J.M. Spivey. The Z Notation. Prentice Hall, 1989.

[15] J. Warmer and A. Kleppe. The Object Constraint Language: Precise Modeling
with UML. Addison-Wesley, 1998.

10


