
Embedding effect systems
in Haskell (slides)

Dominic Orchard & Tomas Petricek

cabal install ixmonad

Haskell Symposium, Thursday 4th September, Gothenburg

@dorchard @tomaspetricek

Motivation

We want to program with effects	

 …. to use different effects at the same time	

 …. to understand where effects happen	

 …. to understand which effects happen

2

cabal install ixmonad

!
hello = do! name ← get!
! ! ! ! buff ← lift $ get!
! ! ! ! lift $ put (buff ++ “hi! “ ++ name)

Use monads?

• Not easily composed (see transformers above)	

• Information is low (binary: pure or effectful)

3

hello :: Monad m =>!
! ! ! ! StateT String (StateT String m) ()

!
hello = do! name ← get!
! ! ! ! buff ← lift $ get!
! ! ! ! lift $ put (buff ++ “hi! “ ++ name)

Use monads?

• Not easily composed (see transformers above)	

• Information is low (binary: pure or effectful)

4

hello :: Monad m =>!
! ! ! ! StateT String (StateT String m) ()

this work….

• Embed effect systems into (monadic) types	

‣ more information	

‣ aids composition: removes need for lifting

5

!
hello = do! name ← get Var::(Var “name")!
! ! ! ! buff ← get Var::(Var "buff")!
! ! ! ! put Var::(Var "buff")(buff ++ “hi! “ ++ name)

hello :: State !
! ! '["buff" :! String :! RW, "name" :! String :! R] ()

Classical effect systems [e.g. Gifford & Lucassen, 1986]

Γ ⊢ e : 𝜏, F

Γ ⊢ put y; get x : 𝜏, {Read(x), Write(y)}

x : a ∈ Γ
Γ ⊢ x : a, ∅

var

Γ, x : a ⊢ e2 : b, GΓ ⊢ e1 : a, F
Γ ⊢ let x = e1 in e2 : b, F ⊔ G

let

Γ ⊢ e : a, G
subΓ ⊢ e : a, F F ⊑ G

6

Technique

Technique

Marry effects to monads [Wadler & Thiemann, 2003]

e : m F 𝜏

x : a ∈ Γ
Γ ⊢ x : M ∅ a

var

Γ, x : a ⊢ e2 : M G bΓ ⊢ e1 : M F a
Γ ⊢ let x = e1 in e2 : M (F ⊔ G) b

let

Γ ⊢ e : M G a
subΓ ⊢ e : M F a F ⊑ G

7

Technique

Marry effects to monads semantically via

parametric effect monads [Katsumata 2014]
	

 also called indexed monads [Orchard, Petricek, Mycroft 2014]

+ epic GHC type system features 	

 = type-embedded classical effect systems

e : m F 𝜏
monoid (F,⊔,∅) + ⊑

8

class Effect (m :: k ! * ! *) where !
 type Unit m :: k!
 type Plus m s t :: k!
!
 return :: a ! m (Unit m) a!
 (>>=) :: m s a ! (a ! m t b) ! m (Plus m s t) b

Control.Effect
Parametric effect monads

(m i a) is not necessarily a monad

9

class Subeffect (m :: k → * → *) f g where
 sub :: m f a → m g a

are as follows, along with their types (where for brevity here we
elide the parameter m for Plus and Unit families and elide Inv):

(return x)>>= f :: m (Plus Unit i) a
⌘ f x :: m i a

m >>= return :: m (Plus i Unit) a
⌘ m :: m i a

m >>= (�x ! (f x)>>= g) :: m (Plus i (Plus j k)) a
⌘ (m >>= f)>>= g :: m (Plus (Plus i j) k) a

For these equalities to hold, the type-level operations Plus and
Unit must form a monoid, where Unit is the identity of Plus (for
the first two laws), and Plus is associative (for the last law).

Relation to monads All monads are also parametric effect mon-
ads with a trivial singleton effect, i.e., if we take Unit m = ()
and Plus m () () = (). We show the full construction to embed
monads into parametric effect monads in Section 7.

Relation to effect systems Figure 2(a) recalls the rules of a simple
type-and-effect system using sets of effect annotations. The corre-
spondence between type-and-effect systems (hereafter just effect
systems) and monads was made clear by Wadler and Thiemann,
who established a syntactic correspondence by annotating monadic
type constructors with the effect sets of an effect system [24]. This
is shown for comparison in Figure 2(b), showing a correspondence
between (var)-(unit), (let)-(bind), and (sub)-(does).

Wadler and Thiemann established soundness results between an
effect system and an operational semantics, and conjectured a “co-
herent semantics” of effects and monads in a denotational style.
They suggested associating to each effect F a different monad MF .
The effect-parameterised monad approach here differs: a type MF

of the indexed family may not be a monad itself. The monadic be-
haviour is “distributed” over the indexed family of types as spec-
ified by the monoidal structure on effects. Figure 2(c) shows the
effect system provided by our parametric effect monad encoding.

A key feature of effect systems is that the (abs) rule captures all
effects of the body as latent effects that happen when the function
is run (this is shown by an effect annotated arrow, e.g., F�!). This is
also the case in our Haskell embedding: �x ! do { ...} is a pure
function, returning a monadic computation.

The (sub) rule above provides subeffecting, where effects can
be overapproximated. Instances of the Sube↵ect class in Figure 1
provide the corresponding operation for parametric effect monads.

3. Defining type-level sets
Early examples of effect systems often generated sets of effect
information, combined via union [10], or in terms of lattices but
then specialised to sets with union [9]. Sets are appropriate for
effect annotations when the order of effects is irrelevant (or at
least difficult to predict, for example, in a lazy language) and when
effects can be treated idempotently, for example, when it is enough
to know that a memory cell is read, not how many times it is read.

Later effect system descriptions separated lattices of effects into
distinct algebraic structures for sequential composition, alternation,
and fixed-points [17]. Our encoding of parametric effect monads is
parameterised by a monoid with a preorder, but sets are an impor-
tant example used throughout. In this section, we develop a type-
level notion of sets (that is, sets of types, as a type) with a corre-
sponding value-level representation. We define set union (for the
sequential composition of effect information) and the calculation
of subsets– providing the monoid and preorder structure on effects.

Defining type-level sets would be easier in a dependently-typed
language, but perhaps the most interesting (and practically useful)
thing about this paper is that we can embed effect systems in a
language without resorting to a fully dependently-typed system.

(var)
v : ⌧ 2 �

� ` v : ⌧ ! ; (let)
� ` e1 : ⌧1 !F �, x : ⌧1 ` e2 : ⌧2 !G

� ` letx = e1 in e2 : ⌧2 !F [G

(abs)
�, v : � ` e : ⌧ !F

� ` �v.e : �
F�! ⌧ ! ;

(sub)
� ` e : ⌧ !F F ✓ G

� ` e : ⌧ !G

(a) Gifford-Lucassen-style effect system [9]

(unit)
E ` e : ⌧

E ` <e> : T;
⌧

(does)
E ` e : T�

⌧ �

0 w �

E ` e : T�0
⌧

(bind)
E ` e : T�

⌧ E , x : ⌧ ` e

0 : T�0
⌧

0

E ` letx(e in e0 : T�[�0
⌧

0

(b) The core effectful rules for Wadler and Thiemann’s Monad language for
unifying effect systems with a monadic metalanguage [24].

(unit)
� ` e : ⌧

� ` return e :m (Unit m) ⌧
(sub)

� ` e : m f ⌧ Sub f g
� ` sub e : m g ⌧

(let)
� ` e1 : m f ⌧1 �, x : ⌧1 ` e2 : m g ⌧2

� ` do {x e1; e2} : m (Plus m f g) ⌧2

(c) The type-embedded effect system provided in this paper by the paramet-
ric effect monad definition.

Figure 2. Comparison of different encodings of effect systems

Representing sets with lists We encode type-level sets using var-
ious advanced type system features of GHC. The main effort is in
preventing duplicate elements and enforcing the irrelevance of the
storage order for elements. These properties distinguish sets from
lists, which are much easier to define at the type level and will form
the basis of our encoding. Type-level functions will be used to re-
move duplicates and normalise the list (by sorting).

We start by inductively defining Set as a parameterised GADT:

data Set (n :: [⇤]) where

Empty :: Set ‘[]
Ext :: e ! Set s ! Set (e ‘: s)

where the parameter has the list kind [⇤] (the kind of lists of
types) [25]. This definition encodes heterogeneously-typed lists,
with a type-level list representation via type operators of kind:

‘[] :: [⇤] and (‘:) :: ⇤ ! [⇤]! [⇤]
These provide a compact notation for types. The data constructor
names Empty and Ext (for extension) remind us that we will treat
values of this type as sets, rather than lists.

The first step in using lists to represent sets is to make the order-
ing irrelevant by (perhaps ironically) fixing an arbitrary ordering on
elements of the set and normalising by sorting. We use bubble sort
here as it is straightforward to implement at the type level.

A single pass of the bubble sort algorithm recurses over a list
and orders successive pairs of elements as follows:

type family Pass (l :: [⇤]) :: [⇤] where

Pass ‘[] = ‘[]
Pass ‘[e] = ‘[e]
Pass (e ‘: f ‘: s) = Min e f ‘: (Pass ((Max e f) ‘: s))

type family Min (a :: k) (b :: k) :: k
type family Max (a :: k) (b :: k) :: k

Here, Min and Max are open type families which are given in-
stances later for specific applications. The definition of Pass here
uses a closed type family [7]. Closed type families define all of

(k, Unit m, Plus m) is a monoid

10

(ask x; … ask y; … ask z; …) ::

Example 1: Reader effects

Reader {x :! A, y :! B, z :! C} t

11

Effect sets of variable-type pairs

Variable-type pairs (mappings) :! :: Symbol ! * ! *

Variables Var :: Symbol ! *
Var :: Var “name”e.g.

• Unordered container without duplicates	

• Our approach:	

‣ type-level lists of pairs “v” :! t	

! ! !

Problem: type-level sets?

12

1[Yorgey, Weirich, Cretin, Peyton Jones, Vytiniotis, Magalhaes, 2012]
2[Eisenberg, Vytiniotis, Peyton Jones, Weirich, 2014]

‣ normalise by sorting based on symbols	

‣ removing duplicates	

!

• Uses data kinds1 & closed types families2

Type-level sets
data Set (n :: [*]) where!
 Empty :: Set '[]!
 Ext :: e ! Set s ! Set (e ': s)

type Union s t = Nub (Sort (Append s t))

type family Nub t where!
 Nub '[] = '[]!
 Nub '[e] = '[e]!
 Nub (e ': e ': s) = Nub (e ': s)!
 Nub (e ': f ': s) = e ': Nub (f ': s)!

13

bubble sort based on Symbols “v” in “v” :! t

kind of lists of types

foo = do x ← ask (Var::(Var “name”))!
 return ("Name " ++ x)

foo :: R ’[“name” :! String] String

bar = do x ← ask (Var::(Var “name”))!
 y ← ask (Var::(Var “age”))!
 return ("Name " ++ x ++ ". Age " ++ (show y))

bar :: Show a => R ‘[“age” :! a, “name” :! String] String

*Main> runReader bar (Ext (Var :-> “Dom”) (Ext (Var :-> 28) Empty))

14

!

ask :: Var v ! R '[v :! a] a

"Name Dom. Age 28"!

instance Effect (!) where !
 type Unit (!) = ‘[] !
!
!
 return :: a ! (Empty ! a)!
 return x = \Empty ! x!
!
!
!

 type Plus (!) s t = Union s t

(>>=) :: (s ! a) ! (a ! (t ! b)) ! (Union s t ! b)!
 e >>= k = \st ! let (s, t) = split st!
 in (k (e s)) t

Control.Effect.Reader

15

Reader r a = r ! a

ask :: Var v ! (‘[v :! a] ! a)!
ask Var = \(Ext (Var :-> a) Empty) ! a

split :: (Union s t) ! (s, t)

data Counter (n :: Nat) a = Counter { forget :: a }!
!
instance Effect Counter where !
 type Unit Counter = 0 !
!
!
 return :: a ! (Counter 0 a)!
 return x = Counter x!
!
!
!

Control.Effect.Counter

 type Plus Counter n m = n + m

(>>=) :: Counter n a ! (a ! Counter m b) ! Counter (n + m) b!
(Counter a) >>= k = Counter . forget $ k a

Example 2: Counter

16 [Danielsson 2008]

tick :: a ! Counter 1 a!
tick x = Counter x

Example 2: Counter

!
!
map f Nil = return Nil!
map f (Cons x xs) = do y ← f x!
 ys ← map f xs!
 return (Cons y ys)

17

verify complexity of map

map :: (a ! Counter t b) !!
!
!
! ! Vector n a ! Counter (n * t) (Vector n b)

Examples in the paper

m
:: k → * → * k Unit m

:: k
Plus m

:: k → k → k

Sub m
:: k → k →
Constraint

read [Symbol :→ *] ‘[] U ⊆

write [Symbol :→ *] ‘[] U ⊆

update Maybe * Nothing V Sub Nothing
Just

state [Symbol :→ * :! Eff] ‘[] U* ⊆

counter Nat 0 + ≤
array reader [Sign Nat] ‘[] U ⊇

data Eff = R | W | RW18

Example 3: state (briefly)

get :: Var v ! State '[v :! a :! R] a

put :: Var v ! a ! State '[v :! a :! W] ()

19

type family Nub t where!
 Nub '[] = '[]!
 Nub '[e] = '[e]!
 Nub (e ': e ': as) = Nub (e ': as)!
 Nub ((k :! a :! s) ': (k :! a :! t) ': as) = !
! ! ! ! ! ! ! ! ! ! Nub ((k :! a :! RW) ': as)!
 Nub (e ': f ': as) = e ': Nub (f ': as)

Example 3: state (briefly)

get :: Var v ! State '[v :! a :! R] a

put :: Var v ! a ! State '[v :! a :! W] ()

20

type family Nub t where!
 Nub '[] = '[]!
 Nub '[e] = '[e]!
 Nub (e ': e ': as) = Nub (e ': as)!
 Nub ((k :! a :! s) ': (k :! a :! t) ': as) = !
! ! ! ! ! ! ! ! ! ! Nub ((k :! a :! RW) ': as)!
 Nub (e ': f ': as) = e ': Nub (f ': as)

Also in the paper
• Lots of examples	

• Effect polymorphism	

• Coeffects and implicit parameters	

	

	

 	

 	

 	

 implicit parameters = coeffect system!	

	

	

 [can couple coeffects with codo notation]	

• All the details of type/value-level sets	

• Subeffecting

21

class Monad m => Put a m where put :: a -> m ()!
class Monad m => Get a m where get :: m a

Compositionality & generality

• An alternate approach to combining effects

• Constraints are sets	

• But less general (parametric effect monads
parameterised by arbitrary monoid)

22

Concluding thoughts 1

• Intermediate between monads & effect handlers	

• Could use as an effect system for handlers	

 e.g. for [Kammar, Lindley, Oury, ICFP13]	

• No need for language extensions / macros	

• Embeds easily with existing monadic approach

23

!

• GHC types very rich but still lots of cruft	

• Sometimes extra signatures needed :/	

• Native type-level sets would be nice!

24

ICFP 2015?!

ICFP 2015?!

Concluding thoughts 2

Thanks!
cabal install ixmonad

http://github.com/dorchard/ixmonad

@dorchard @tomaspetricek

Summary:

Parametrisable effect system for the do-
notation embedded into the types via
parametric effect monads

