
A Theory of Tracing Pure Functional
Programs

Olaf Chitil

University of Kent

United Kingdom

1

Tracing a Computation

program

input computation output

Aims:

• locate bugs (wrong output, abortion, non-termination)

• comprehend programs

2

Conventional Debugging

Techniques:

• print statements

• debuggers such as gdb

Show at a point of time in computation a part of computation state.

Properties:

• expose (abstract) machine

• erroneous value often observed long after bug

3

Declarative Languages

Abstract machines more complex, should be hidden from programmer.

elem :: Int -> [Int] -> Bool

elem x xs = or (map (==x) xs)

elem 42 [1..]

; or (map (== 42) [1..])

; or (map (== 42) (1:[2..]))

; or (False : map (== 42) [2..])

; or (map (== 42) [2..])

; . . .

Instead take advantage of purity: no side-effect, only result.

4

Algorithmic Debugging

insert :: Ord a => a -> [a] -> [a]

insert x [] = [x]

insert x (y:ys) =

if x > y then y : insert x ys

else x : ys

sort :: Ord a => [a] -> [a]

sort [] = []

sort (x:xs) = insert x (sort xs)

main = print (sort "sort")

sort "sort" = "os" ? n

insert ’s’ "o" = "os" ? y

sort "ort" = "o" ? n

insert ’o’ "r" = "o" ? n

’o’ <= ’r’ = True ? y

Error located:

second equation of ‘insert‘,

taking else branch.
Freja by Henrik Nilsson

5

The Evaluation Dependency Tree for Algorithmic Debugging

main = "os" ×

sort "sort" = "os" ×

sort "ort" = "o" × insert ’s’ "o" = "os"
√

’s’ <= ’o’ = False insert ’s’ "" = "s"

sort "rt" = "r" insert ’o’ "r" = "o" ×

sort "t" = "t" insert ’r’ "t" = "r" ’o’ <= ’r’ = True
√

sort "" = "" insert ’t’ "" = "t" ’r’ <= ’t’ = True

6

Source-Based Algorithmic Debugging

==== Hat-Explore 2.00 ==== Call 2/2 =============================

1. main = {IO}
2. sort "sort" = "os"

3. sort "ort" = "o"

---- Insert.hs ---- lines 5 to 10 -------------------------------

if x > y then y : insert x ys

else x : ys

sort :: [Char] -> [Char]

sort [] = []

sort (x:xs) = insert x (sort xs)

Hat by Colin Runciman, Malcolm Wallace, Olaf Chitil, ...

7

Observation of Expressions and Functions

Observation of function sort:

sort "sort" = "os"

sort "ort" = "o"

sort "rt" = "r"

sort "t" = "t"

sort "" = ""

Observation of function insert:

insert ’s’ "o" = "os"

insert ’s’ "" = "s"

insert ’o’ "r" = "o"

insert ’r’ "t" = "r"

insert ’t’ "" = "t"

Hood by Andy Gill

8

Redex Trails

Output: --

os\n

Trail: ------- Insert.hs line: 10 col: 25 --------------------------

<- putStrLn "os"

<- insert ’s’ "o" | if True

<- insert ’o’ "r" | if False

<- insert ’r’ "t" | if False

<- insert ’t’ []

<- sort []

Go backwards: which redex created this expression?

Original Hat by Colin Runciman and Jan Sparud

9

Implementations

Algorithmic Debugging: Freja, Hat, Buddha

Observations: Hood, Hugs-Hood, GHood, Hat

Redex Trails: Hat

• Two phases: trace generation + trace viewing

• Trace liberates from time arrow of computation

Architecture of Hat:

input output hat-explore

self-tracing

computation
trace hat-observe

hat-trail

10

Challenges

Problems:

• (In)correctness of Algorithmic Debugging

• What is tracing? Systems disagree

• Tracing of all language features

• Partial traces

Need to generalise:

• Tracing eager functional languages

• Flexible algorithmic debugging

⊲ factorial (-2) = 42 ?

• Multi-level algorithmic debugging

• Trace transformation before viewing

• Partial Traces

11

Summary

• Tracing techniques should take advantage of features of declarative

languages.

⊲ Algorithmic Debugging

⊲ Observations

⊲ Redex Trails

• Implementations are currently ahead of theoretical results.

12

