Foundations for the Debugging of Functional Programs

Olaf Chitil, Yong Luo and Thomas Davie
University of Kent, UK
Supported by EPSRC grant EP/C516605/1

12th February 2008

Programs have Bugs

Even functional programs!

strong type system \Longrightarrow cannot corrupt run-time system
but

- wrong result
- abortion with run-time error
- non-termination

Why Debug Functional Programs Differently?

- No canonical execution model.
- various reduction semantics (small step, big step)
- interpreters with environments (explicit substitutions)
- also denotational semantics
- No sequential execution of statements.
- evaluation of expressions
- evaluation of subexpressions is independent f (g 3 4) (h 1 2) (i 5) (j 39 3)

Why Debug Functional Programs Differently?

- No canonical execution model.
- various reduction semantics (small step, big step)
- interpreters with environments (explicit substitutions)
- also denotational semantics
- No sequential execution of statements.
- evaluation of expressions
- evaluation of subexpressions is independent f (g 3 4) (h 1 2) (i 5) (j 39 3)

Conclusions

- Abstract from execution details: views for various semantics models.
- Take advantage of simple and compositional semantics.
- Liberate from sequentiality of computation.

The Haskell Tracer Hat (www.haskell.org/hat)

Two-Phase Tracing: The trace as data structure.

- Liberates from the time arrow of computation.
- Enables many different views.

But where are formal definitions you can reason with?

Example: Insertion Sort

```
main :: String
main = sort "sort"
sort :: Ord a => [a] -> [a]
sort [] = []
sort (x:xs) = insert x (sort xs)
insert :: Ord a => a -> [a] -> [a]
insert x [] = [x]
insert x (y:ys) = if x > y then y : (insert x ys) else x:ys
```

There is a bug: main = "os" !

The Trace: Simple Graph Rewriting

Start with expression sort ('t': [])

The Trace: Simple Graph Rewriting

The Trace: Simple Graph Rewriting

The Trace: Simple Graph Rewriting


```
sort [] = []
sort (x:xs) = insert \(x\) (sort xs)
insert \(x\) [] = [x]
insert x (y:ys) \(=\) if \(\mathrm{x}>\mathrm{y}\) then \(\mathrm{y}:(\) insert x ys) else \(\mathrm{x}: \mathrm{ys}\)
```


The Trace: Simple Graph Rewriting

- New nodes for right-hand-side, connected via result pointer.
- Only add to graph, never remove.
- Sharing ensures compact representation.

The Node Naming Scheme

Aim

- not distinguish isomorphic graphs
- avoid inconvenience of isomorphism classes

The Node Naming Scheme

Aim

- not distinguish isomorphic graphs
- avoid inconvenience of isomorphism classes

Solution

- standard representation with node describing path from root
- path at creation time (sharing later)
- path independent of evaluation order

The Node Labels

Reduction edge implicitly given through existence of node.

Projections

- Reduction edge implicitly given through existence of node.
- Every redex should be parent of at least one node. (otherwise reduction unreachable from computation result)

```
True && x = x
not True = False
```


Projections

- Reduction edge implicitly given through existence of node.
- Every redex should be parent of at least one node. (otherwise reduction unreachable from computation result)
\Rightarrow A projection requires an indirection as result.

```
True && x = x
not True = False
```


$\begin{array}{ccc}\text { label term } \quad T: & a \\ & \left\lvert\, \begin{array}{l}n m \\ \\ \\ \\ \end{array} \quad n\right.\end{array}$
atom $a:=x|C| 42 \mid \ldots$ variable, data constructor, \ldots

Projections

- Reduction edge implicitly given through existence of node.
- Every redex should be parent of at least one node. (otherwise reduction unreachable from computation result)
\Rightarrow A projection requires an indirection as result.

```
True && x = x
not True = False
```


$$
\begin{array}{lll}
\text { label term } \quad T:= & a \\
& \left\lvert\, \begin{array}{ll}
n m \\
& n
\end{array}\right., ~
\end{array}
$$

atom $\quad a \quad:=x|C| 42 \mid \ldots$ variable, data constructor, \ldots

The Trace: The Augmented Redex Trail (ART)

A trace \mathcal{G} for initial term M and program P is a partial function from nodes to term constructors, $\mathcal{G}: n \mapsto T$, defined by

- The unshared graph representation of M, $\operatorname{graph}_{\mathcal{G}}(\varepsilon, M)$, is a trace.
- If \mathcal{G} is a trace and
- $L=R$ an equation of the program P,
- σ a substitution replacing argument variables by nodes,
- match $_{\mathcal{G}}(n, L \sigma)$,
- $n r \notin \operatorname{dom}(\mathcal{G})$,
then $\mathcal{G} \cup \operatorname{graph}_{\mathcal{G}}(n r, R \sigma)$ is a trace.

No evaluation order is fixed.

The Most Evaluated Form of a Node

A node represents many terms, in particular a most evaluated one.

$$
\operatorname{mef}_{\mathcal{G}}(\varepsilon)=(:)^{\prime} t{ }^{\prime} \quad[]
$$

Definition

$$
\operatorname{mef}_{\mathcal{G}}(n)=\operatorname{mef}_{\mathcal{G}}\left(\mathcal{G}\left(\lceil n\rceil_{\mathcal{G}}\right)\right)
$$

$\operatorname{mefT}_{\mathcal{G}}(a)=a$
$\operatorname{mefT}_{\mathcal{G}}(n)=\operatorname{mef}_{\mathcal{G}}(n)$
$\operatorname{mefT}_{\mathcal{G}}(n m)=\operatorname{mef}_{\mathcal{G}}(n) \operatorname{mef}_{\mathcal{G}}(m)$

Definition

$$
\begin{aligned}
n \succ_{\mathcal{G}} m & \Leftrightarrow m=n r \vee \mathcal{G}(n)=m \\
\lceil n\rceil_{\mathcal{G}}=m & \Leftrightarrow n \succ_{\mathcal{G}}^{*} m \wedge \nexists o \cdot m \succ_{\mathcal{G}} O
\end{aligned}
$$

Redexes and Big-Step Reductions

Definition

For any redex node n, i.e., $n r \in \operatorname{dom}(G)$

$$
\operatorname{redex}_{\mathcal{G}}(n)= \begin{cases}\operatorname{mef}_{\mathcal{G}}(m) \operatorname{mef}_{\mathcal{G}}(o) & , \text { if } \mathcal{G}(n)=m \circ \\ a & , \text { if } \mathcal{G}(n)=a\end{cases}
$$

$$
\operatorname{bigstep}_{\mathcal{G}}(n)=\operatorname{redex}_{\mathcal{G}}(n)=\operatorname{mef}_{\mathcal{G}}(n)
$$

From Trace to Big-Step Computation Tree

- Every redex node n yields a tree node n labelled bigstep $_{\mathcal{G}}(n)$.
- Tree node n is child of

$$
\begin{aligned}
\operatorname{parent}(n r) & =n \\
\operatorname{parent}(n f) & =\operatorname{parent}(n) \\
\operatorname{parent}(n a) & =\operatorname{parent}(n) \\
\operatorname{parent}(\varepsilon) & =\text { undefined }
\end{aligned}
$$

$$
\text { insert 't' }[]={ }^{\prime} \text { t': }[]
$$

Algorithmic Debugging with the Computation Tree

Fault located!

```
main :: String
main = sort "sort"
sort :: Ord a => [a] -> [a]
sort [] = []
sort (x:xs) = insert x (sort xs)
insert :: Ord a => a -> [a] -> [a]
insert x [] = [x]
insert x (y:ys) = if x > y then y : (insert x ys) else x:ys
```

Faulty computation: insert 'o' "r" = "o"

Correctness of Algorithmic Debugging: The Property

If node n incorrect and all its children correct, then node n faulty, i.e., its equation is faulty.

Definition
 Tree node n incorrect $\Leftrightarrow \operatorname{redex}_{\mathcal{G}}(n) \neq \operatorname{mef}_{\mathcal{G}}(n)$. Tree node n faulty $\Leftrightarrow \operatorname{redex}_{\mathcal{G}}(n) \neq \operatorname{reduct}_{\mathcal{G}}(n)$.

If tree node n faulty, then for its program equation $L=R$ exists substitution σ such that $L \sigma \not \neq 1^{R \sigma}$.

Soundness of Algorithmic Debugging: Main Theorem

Theorem

Let n be a redex node. If for all redex nodes m with parent $(m)=n$ we have $\operatorname{redex}_{\mathcal{G}}(m) \cong_{l} \operatorname{mef}_{\mathcal{G}}(m)$, then $\operatorname{reduct}_{\mathcal{G}}(n) \cong_{l} \operatorname{mef}_{\mathcal{G}}(n)$.

Higher-Order Insertion Sort

```
main :: String
main = sort "sort"
sort :: Ord a => [a] -> [a]
sort = foldr insert []
foldr :: (a -> b -> b) -> b -> [a] -> b
foldr f a [] = a
foldr f a (x:xs) = f x (foldr f a xs)
insert :: Ord a => a -> [a] -> [a]
insert x [] = [x]
insert x (y:ys) = if x > y then y : (insert x ys) else x:ys
```


Higher-Order Algorithmic Debugging

Higher-Order Algorithmic Debugging II

Modify a Few Definitions I

Definition (Most evaluated form for finite maps)

$$
\left.\begin{array}{rl}
\operatorname{mef}_{\mathcal{G}}^{M}(n)= \begin{cases}\left\{\operatorname{fMap}_{\mathcal{G}}(n)\right. & , \text { if } M=f N_{1} \ldots N_{k} \wedge 0 \leq k<\operatorname{arity}(f) \\
\{ \} & , \text { if } M=f N_{1} \ldots N_{k} \wedge k \geq \operatorname{arity}(f) \\
M & , \text { otherwise }\end{cases} \\
\text { where } M=\operatorname{mea}_{\mathcal{G}}(n)
\end{array}\right\} \begin{aligned}
\operatorname{mea}_{\mathcal{G}}(n) & =\operatorname{meaT}_{\mathcal{G}}\left(\mathcal{G}\left(\lceil n\rceil_{\mathcal{G}}\right)\right) \\
\operatorname{meaT}_{\mathcal{G}}(a) & =a \\
\operatorname{meaT}_{\mathcal{G}}(m n) & =\operatorname{mea}_{\mathcal{G}}(m) \operatorname{mef}_{\mathcal{G}}^{M}(n)
\end{aligned}
$$

$$
\operatorname{fMap}_{\mathcal{G}}(n)=\left\{\operatorname{mef}_{\mathcal{G}}^{\mathrm{M}}(o) \mapsto \operatorname{mef}_{\mathcal{G}}^{\mathrm{M}}(m) \mid \mathcal{G}(m)=n^{\prime} \circ \wedge n^{\prime} \succ_{\mathcal{G}}^{*} n \wedge \operatorname{mef}_{\mathcal{G}}^{\mathrm{M}}(m) \neq\{ \}\right\}
$$

Modify a Few Definitions II

Definition (Parent for finite maps)

parentFDT $\mathcal{G}_{\mathcal{G}}=$ parent \cdot fun $_{\mathcal{G}}$

$$
\operatorname{fun}_{\mathcal{G}}(n)= \begin{cases}n & , \text { if } \mathcal{G}(n)=a \\ \operatorname{fun}_{\mathcal{G}}\left(\lceil m\rceil_{\mathcal{G}}\right) & , \text { if } \mathcal{G}(n)=m \circ\end{cases}
$$

Conclusions

- Simple model amenable to proof.
- Contains a wealth of information about computation.
- Models real-world trace of Haskell tracer Hat.
- Proves soundness of algorithmic debugging.

http://www.haskell.org/hat
http://www.cs.kent.ac.uk/people/staff/oc/traceTheory.html

