Foundations for the Debugging of Functional Programs

Olaf Chitil, Yong Luo and Thomas Davie

University of Kent, UK
Supported by EPSRC grant EP/C516605/1

12th February 2008

Olaf Chitil (Kent, UK) Foundations for Debugging 12th February 2008 1/32

Programs have Bugs

Even functional programs!

strong type system = cannot corrupt run-time system

but
@ wrong result
@ abortion with run-time error

@ non-termination

Olaf Chitil (Kent, UK)

Foundations for Debugging 12th February 2008 2/32

Why Debug Functional Programs Differently?

@ No canonical execution model.
@ various reduction semantics (small step, big step)
@ interpreters with environments (explicit substitutions)
o also denotational semantics

@ No sequential execution of statements.

@ evaluation of expressions
@ evaluation of subexpressions is independent
f (g34) (h12) (i5) (G393

Olaf Chitil (Kent, UK) Foundations for Debugging 12th February 2008 3/32

Why Debug Functional Programs Differently?

@ No canonical execution model.

@ various reduction semantics (small step, big step)
@ interpreters with environments (explicit substitutions)
@ also denotational semantics

@ No sequential execution of statements.

@ evaluation of expressions
@ evaluation of subexpressions is independent
f (g34) (h12) (i5) (G393

Conclusions
@ Abstract from execution details: views for various semantics models.
@ Take advantage of simple and compositional semantics.

@ Liberate from sequentiality of computation.

Olaf Chitil (Kent, UK) Foundations for Debugging 12th February 2008 3/32

The Haskell Tracer Hat (www.haskell.org/hat)

Hat-Observe

input output /Hat_Detect

Hat-Explore

\ Hat-Trail

1 2

Two-Phase Tracing: The trace as data structure.
@ Liberates from the time arrow of computation.

@ Enables many different views.

But where are formal definitions you can reason with?

Olaf Chitil (Kent, UK) Foundations for Debugging

12th February 2008 4/ 32

Example: Insertion Sort

main :: String
main = sort "sort"

sort :: Ord a => [a] -> [a]

sort [] = []

sort (x:xs) = insert x (sort xs)
insert :: Ord a => a -> [a] -> [a]
insert x [] = [x]

insert x (y:ys) = if x > y then y : (insert x ys) else x:ys

There is a bug: main = "os" !

Olaf Chitil (Kent, UK) Foundations for Debugging 12th February 2008 6 /32

The Trace: Simple Graph Rewriting
\S

= =

@@

O D

Start with expression sort (’t’:[])

Olaf Chitil (Kent, UK) Foundations for Debugging 12th February 2008 7/ 32

= =R
gg GO GO

(0), Gasert> [Gort
© CD

sort [1 = []
sort (x:xs)

insert x (sort xs)

[x]

insert x (y:ys) = if x > y then y: (insert x ys) else x:ys

insert x []

Olaf Chitil (Kent, Foundations for Debugging 12th February 2008 7/ 32

The Trace: Simple Graph Rewriting

@ G (O

sort [1 = []

sort (x:xs) = insert x (sort xs)

insert x [] = [x]
insert x (y:ys) = if x > y then y: (insert x ys) else x:ys

Olaf Chitil (Kent, Foundations for Debugging 12th February 2008 7/ 32

The Trace: Simple Graph Rewriting
D T s

sort [1 = []

sort (x:xs) = insert x (sort xs)

insert x [1 = [x]

insert x (y:ys) = if x > y then y: (insert x ys) else x:ys

Olaf Chitil (Kent, UK) Foundations for Debugging 12th February 2008 7/ 32

The Trace: Simple Graph Rewriting
D S s

@ New nodes for right-hand-side, connected via result pointer.
@ Only add to graph, never remove.

@ Sharing ensures compact representation.

Olaf Chitil (Kent, UK) Foundations for Debugging 12th February 2008 7 /32

The Node Naming Scheme
R R

Aim
@ not distinguish isomorphic graphs
@ avoid inconvenience of isomorphism classes

Olaf Chitil (Kent, UK) Foundations for Debugging 12th February 2008 8 /32

The Node Naming Scheme

~f r rr

Aim
@ not distinguish isomorphic graphs
@ avoid inconvenience of isomorphism classes
Solution
@ standard representation with node describing path from root
@ path at creation time (sharing later)
@ path independent of evaluation order

Olaf Chitil (Kent, UK) Foundations for Debugging 12th February 2008 8 /32

The Node Labels

~E r rr

node n = {far}*
label term T = a atom
| nm application of nodes
atom a = f|C|42]|... defined variable, data constructor

atomic literal, ...

Reduction edge implicitly given through existence of node.

Olaf Chitil (Kent, UK) Foundations for Debugging 12th February 2008 10 / 32

@ Reduction edge implicitly given through existence of node.

@ Every redex should be parent of at least one node.
(otherwise reduction unreachable from computation result)

15

T
True && x = x ¢ fg\a
not True = False R 0
£ fa af

EICIED,

Olaf Chitil (Kent, UK) Foundations for Debugging 12th February 2008 12 / 32

@ Reduction edge implicitly given through existence of node.

@ Every redex should be parent of at least one node.
(otherwise reduction unreachable from computation result)

=- A projection requires an indirection as result.

€ r
TTTT—(ee °
True && x = x f

not True = False
ff f
[EDICIED

label term T = atom
| nm application of nodes
| n indirection
atom a := x| C|42]|... variable, data constructor, ...

Olaf Chitil (Kent, UK) Foundations for Debugging 12th February 2008

@ Reduction edge implicitly given through existence of node.

@ Every redex should be parent of at least one node.
(otherwise reduction unreachable from computation result)

=- A projection requires an indirection as result.

True && x = x

not True = False R 0 a

ff fa af aa
Go
label term T = a atom
| nm application of nodes
| n indirection

atom a variable, data constructor, ...

Il
x
@)

s

Olaf Chitil (Kent, UK) Foundations for Debugging 12th February 2008 12 / 32

The Trace: The Augmented Redex Trail (ART)

A trace G for initial term M and program P is a partial function from
nodes to term constructors, G : n+— T, defined by

@ The unshared graph representation of M, graphg(e, M), is a trace.
o If G is a trace and

@ L = R an equation of the program P,

o a substitution replacing argument variables by nodes,
matchg(n, Lo),

nr ¢ dom(G),

then G U graphg(nr, Ro) is a trace.

¢ ¢ ©

No evaluation order is fixed.

Olaf Chitil (Kent, UK) Foundations for Debugging 12th February 2008 13 / 32

The Most Evaluated Form of a Node

A node represents many terms, in particular a most evaluated one.
~—F

Definition
)
Definition)=a
n=gm < m=nVG(n)=m mefTg(n) = mefg(n)
[nlg=m & n>gmAfo.m>go mefTg(nm) = mefg(n) mefg(m)

Olaf Chitil (Kent, UK) Foundations for Debugging 12th February 2008 14 / 32

Redexes and Big-Step Reductions

\5

redexg(r) = insert ’t’ []
bigstepg(r) = insert ’t’ [1 = (:) ’t’ []

Definition

For any redex node n, redexg(n) = mefg(m) mefg(o) , if G(n)=mo
i.e., nr € dom(G) a L if G(n)=a

bigstepg(n) = redexg(n) = mefg(n)

Olaf Chitil (Kent, UK) Foundations for Debugging 12th February 2008 15 / 32

From Trace to Big-Step Computation Tree

sort (Ct’:[]) = ’t?:[]

ra r
sort [] = [] insert ’t’ [] = ’t’:[]

parent(nr) = n
parent(nf) = parent(n)

parent(na) = parent(n)
parent(e) = undefined

@ Every redex node n yields
a tree node n labelled bigstep;(n).

@ Tree node n is child of
tree node parent(n).

Olaf Chitil (Kent, UK) Foundations for Debugging 12th February 2008 17 / 32

Algorithmic Debugging with the Computation Tree

main = "os"

sort "sort" = "os"

sort "ort" =

"oll lnsert 7s) "oll = IIOSII
’s? > 0’ = True insert ’s’ "" = "g"
Sort Ilrt n = Ilrll lnsert) o) Ilrll = lloll
[
SOI't lltll = lltll insert)r) lltll = llrll 7o) > 7r) = False
/
SOI‘t nn = nn insert) t) nn =

"t"||’r> > ’t’ = False

Olaf Chitil (Kent, UK)

Foundations for Debugging

12th February 2008 19 / 32

Algorithmic Debugging with the Computation Tree

main = "os" | X

sort "sort" = "os"

sort "ort" =

"oll lnsert 7s) "oll = IIOSII
’s? > 0’ = True insert ’s’ "" = "g"
Sort Ilrt n = Ilrll lnsert) o) Ilrll = lloll
[
SOI't lltll = lltll insert)r) lltll = llrll 7o) > 7r) = False
/
SOI‘t nn = nn insert) t) nn =

"t"||’r> > ’t’ = False

Olaf Chitil (Kent, UK)

Foundations for Debugging

12th February 2008 19 / 32

Algorithmic Debugging with the Computation Tree

main = "os" | X

sort "sort" = "os"

sort "ort" =

"oll lnsert 7s) "oll = IIOSII
’s? > 0’ = True insert ’s’ "" = "g"
Sort Ilrt n = Ilrll lnsert) o) Ilrll = lloll
[
SOI't lltll = lltll insert)r) lltll = llrll 7o) > 7r) = False
/
SOI‘t nn = nn insert) t) nn =

"t"||’r> > ’t’ = False

Olaf Chitil (Kent, UK)

Foundations for Debugging

12th February 2008 19 / 32

Algorithmic Debugging with the Computation Tree

main = "os" | X

sort "sort" = "os"

sort "ort" =

lloll

insert ’s’

"o = Nngog" \/

’s? > 0’ = True insert ’s’ "" = "g"
sort "rt" = "r" insert ’o0’ "r" = "o"
[
sort "t" = "g" insert ’r’ "t" = "r"|[|’0’ > ’r’ = False
/
sort "" = ""||[insert ’t’ "" =

"t")r) > Jt)

Olaf Chitil (Kent, UK)

Foundations for Debugging

12th February 2008 19 / 32

Algorithmic Debugging with the Computation Tree

main = "os" | X
[
sort "sort" = "os"| X
sort "ort" = "o"|[X insert ’s’

"o = Nngog" \/

’s? > 0’ = True insert ’s’ "" = "g"
sort "rt" = "r" insert ’o0’ "r" = "o"
[
sort "t" = "g" insert ’r’ "t" = "r"|[|’0’ > ’r’ = False
/
sort "" = ""||[insert ’t’ "" =

"t")r) > Jt)

Olaf Chitil (Kent, UK)

Foundations for Debugging

12th February 2008 19 / 32

Algorithmic Debugging with the Computation Tree

main = "os" | X
[
sort "sort" = "os"| X
sort "ort" = "o"|[X insert ’s’ "o" = "os" \/
’s? > 0’ = True insert ’s’ "" = "g"
Sort Ilrt n = Ilrll insert) o) Ilrll = Iloll ><
[
SOI't lltll = lltll insert)r) lltll = llrll 7o) > 7r) = False
/
SOI‘t nn = nn insert)t) nn = |Itll Jr) > Jt) = False

Olaf Chitil (Kent, UK) Foundations for Debugging 12th February 2008 19 / 32

Algorithmic Debugging with the Computation Tree

main = "os" | X
[
sort "sort" = "os"| X
sort "ort" = "o"|[X insert ’s’ "o" = "os"
’s? > 0’ = True insert ’s’ "" "g"
Sort Ilrt n = Ilrll lnsert) o) Ilrll = lloll X
[
SOI't lltll = lltll insert)r) lltll -_— llrll 7o) > 7r) = False \/
/
SOI‘t nn = nn insert)t) nn = |Itll Jr) > Jt) = False

Olaf Chitil (Kent, UK)

Foundations for Debugging

12th February 2008

19 / 32

Fault located!

main :: String
main = sort "sort"

sort :: Ord a => [a] -> [a]

sort [] = [

sort (x:xs) = insert x (sort xs)
insert :: Ord a => a -> [a] -> [a]
insert x [] = [x]

insert x (y:ys) = if x > y then y : (insert x ys) else x:ys

Faulty computation: insert ’o0’ "r" = "o"

Olaf Chitil (Kent, UK) Foundations for Debugging 12th February 2008 21 /32

Correctness of Algorithmic Debugging: The Property

If node n incorrect and all its children correct, then node n faulty, i.e., its
equation is faulty.

sort (°t’:[]) = ’t’:[]

ra r
sort [] [] insert ’t’> [1 = ’t’:[]

Definition

Tree node nincorrect < redexg(n) 2 mefg(n).
Tree node n faulty < redexg(n) % reductg(n).

If tree node n faulty, then for its program equation L = R exists
substitution ¢ such that Lo 2| Ro.

Olaf Chitil (Kent, UK) Foundations for Debugging 12th February 2008

Soundness of Algorithmic Debugging: Main Theorem

Let n be a redex node. If for all redex nodes m with parent(m) = n we
have redexg(m) =, mefg(m), then reductg(n) =; mefg(n).

With redexg(n) 22 mefg(n) follows redexg(n) 24 reductg(n).

Olaf Chitil (Kent, UK) Foundations for Debugging 12th February 2008 23 /32

Higher-Order Insertion Sort

main :: String
main = sort "sort"

sort :: Ord a => [a] -> [a]
sort = foldr insert []

foldr :: (a->b ->b) =>b ->[a] -> b
foldr f a [] = a
foldr f a (x:xs) = f x (foldr £ a xs)

insert :: Ord a => a -> [a] -> [a]
insert x [] = [x]
insert x (y:ys)

if x > y then y : (insert x ys) else x:ys

Olaf Chitil (Kent, UK) Foundations for Debugging 12th February 2008 25 /32

Higher-Order Algorithmic Debugging

main = "os"
foldr insert [] "sort" = "os" sort = foldr insert []
/
foldr insert [] "ort" = "o" insert ’s’ "o" = '"os"
’s’ > 0’ = True insert ’s’ "" = "g"
foldr insert [] "rt" = "r" insert ’o’ "r" = "o"
|
foldr insert [] "t" = "t" || insert ’r’> "t" = "r" >0’ > ’r’ = False
/
foldr insert [J"" = "" [insert ’t’> "" = "g" ’r’ > ’t’ = False

Olaf Chitil (Kent, UK) Foundations for Debugging 12th February 2008 27 / 32

Higher-Order Algorithmic Debugging

main = "os" | X
foldr insert [] "sort" = "os" sort = foldr insert []
/
foldr insert [] "ort" = "o" insert ’s’ "o" = '"os"
’s’ > 0’ = True insert ’s’ "" = "g"
foldr insert [] "rt" = "r" insert ’o’ "r" = "o"
|
foldr insert [] "t" = "t" || insert ’r’> "t" = "r" >0’ > ’r’ = False
/
foldr insert [J"" = "" [insert ’t’> "" = "g" ’r’ > ’t’ = False

Olaf Chitil (Kent, UK) Foundations for Debugging 12th February 2008 27 /

Higher-Order Algorithmic Debugging

main = "os" | X
foldr insert [] "sort" = "os" sort = foldr insert []|\/
/
foldr insert [] "ort" = "o" insert ’s’ "o" = '"os"
’s’ > 0’ = True insert ’s’ "" = "g"
foldr insert [] "rt" = "r" insert ’o’ "r" = "o"
[
foldr insert [] "t" = "t" || insert ’r’> "t" = "r" >0’ > ’r’ = False
/
foldr insert [J"" = "" [insert ’t’> "" = "g" ’r’ > ’t’ = False

Olaf Chitil (Kent, UK) Foundations for Debugging 12th February 2008 27 / 32

Higher-Order Algorithmic Debugging

main = "os" | X
foldr insert [] "sort" = "os"|[x |sort = foldr insert []|\/
/
foldr insert [] "ort" = "o" insert ’s’ "o" = '"os"
’s’ > 0’ = True insert ’s’ "" = "g"
foldr insert [] "rt" = "r" insert ’o’ "r" = "o"
[
foldr insert [] "t" = "t" || insert ’r’> "t" = "r" >0’ > ’r’ = False
/
foldr insert [J"" = "" [insert ’t’> "" = "g" ’r’ > ’t’ = False

Olaf Chitil (Kent, UK) Foundations for Debugging 12th February 2008 27 / 32

Higher-Order Algorithmic Debugging

main = "os"|X
foldr insert [] "sort" = "os"|[x |sort = foldr insert []|\/
[
foldr insert [] "ort" = "o" insert ’s’ "o" = "os"|y/
’s’ > 0’ = True insert ’s’ "" = "g"
foldr insert [] "rt" = "r" insert ’o’ "r" = "o"
[
foldr insert [] "t" = "t"||insert ’r’ "t" = "r" >0’ > ’r’ = False
/
foldr insert [J"" = ""| insert ’t’> "" = "t" ’r’ > ’t’ = False

Olaf Chitil (Kent, UK) Foundations for Debugging 12th February 2008 27 / 32

Higher-Order Algorithmic Debugging

main = "os"|X
foldr insert [] "sort" = "os"|[x |sort = foldr insert []|\/
[
foldr insert [] "ort" = "o"|Xx insert ’s’ "o" = "os"|y/
’s’ > 0’ = True insert ’s’ "" = "g"
foldr insert [] "rt" = "r" insert ’o’ "r" = "o"
[
foldr insert [] "t" = "t"||insert ’r’ "t" = "r" >0’ > ’r’ = False
/
foldr insert [J"" = ""| insert ’t’> "" = "t" ’r’ > ’t’ = False

Olaf Chitil (Kent, UK) Foundations for Debugging 12th February 2008 27 / 32

Higher-Order Algorithmic Debugging

main = "os"|X
foldr insert [] "sort" = "os"|[x |sort = foldr insert []|\/
[
foldr insert [] "ort" = "o"|Xx insert ’s’ "o" = "os"|y/
’s’ > 0’ = True insert ’s’ "" = "g"
foldr insert [] "rt" = "r"||insert ‘o’ "r" = "o"|[Xx
[
foldr insert [] "t" = "t"||insert ’r’ "t" = "r" >0’ > ’r’ = False
/
foldr insert [J"" = ""| insert ’t’> "" = "t" ’r’ > ’t’ = False

Olaf Chitil (Kent, UK) Foundations for Debugging 12th February 2008 27 / 32

Higher-Order Algorithmic Debugging

main = "os" [X
foldr insert [] "sort" = "os"|[x |sort = foldr insert []|\/
[
foldr insert [] "ort" = "o"|Xx insert ’s’ "o" = "os"|y/
’s’ > 0’ = True insert ’s’ "" = "g"
foldrinsert [] "rt" = "r"| |[insert ’o’ "r" = "o" |l X
[
foldr insert [] "t" = "t"||insert ’r’ "t" = "r" >0’ > ’r’ = False|y
/
foldr insert [J"" = ""| insert ’t’> "" = "t" ’r’ > ’t’ = False

Olaf Chitil (Kent, UK)

Foundations for Debugging

12th February 2008

27 / 32

Higher-Order Algorithmic Debugging Il

main = "os"

|sort = {"sort" -> "os"} }—

|f01dr{’s’ "O"_>"OS",’O’ Ilrll_>lloll’ Ty lltll_>l|rl|’)t) l|ll_>l|tl|} [] "sort" ="os" |

|foldr{’s’ lloll_>llosll’7o7 llrll_>lloll,)r) Iltll_>llrll’7t7 llll_>lltll} [] "ort"
T
|foldr{’s’ "O"_>"OS",’O’ llrll_>lloll,;r; lltll_>llrll,;t; l|ll_>l|tl|} [] Nyt

[
°

I
H

|foldr{’s’ "0"->"OS",’O’ "I'"—>"0",’I" "t"—>"r",’t’ ||||_>||t||} [] nen =

|f01dr{’s’ Iloll_>llosll’ ’0? "I'"_>"O", Ty lltll_)llrll’ v lll|_>lltll} [] nn

| insert ’s’ "o" ="os" | insert o’ "r"="o" | insert ’r’ "t"="¢" || insert ’t’ ""="¢"

| ’s’>’0’ =True " insert ’s’ ""="g" ” ’0’>’r’ =False || ‘r’>’t? =False|

Olaf Chitil (Ke Foundations for Debugging 12th February 2008 29 /3

Modify a Few Definitions |

Definition (Most evaluated form for finite maps)

fMapg(n) ,if M =FfN;... N A0 < k <arity(f)
JEM=1FNy...Ne A k > arity(f)

, otherwise

where M = meag(n)

mefg/'(n) = f\j

meag(n) = mealg(G([n]g))
mealg(a) = a

meal g(m n) = meag(m) mefy (n)

fMapg(n) = {mefg'(o) — mefg'(m) |G(m)=n"oAn" =5 nA mefg'(m) #{}})

Olaf Chitil (Kent, UK) Foundations for Debugging 12th February 2008 30/ 32

Modify a Few Definitions Il

Definition (Parent for finite maps)

parentFDT; = parent - fung

una(n) — n , it G(n)
i) {fung(fnﬂg) it 6(n)

a

mo

Olaf Chitil (Kent, UK) Foundations for Debugging 12th February 2008 31/32

Conclusions

@ Simple model amenable to proof.
@ Contains a wealth of information about computation.
@ Models real-world trace of Haskell tracer Hat.

@ Proves soundness of algorithmic debugging.

http://www.haskell.org/hat
http://www.cs.kent.ac.uk/people/staff/oc/traceTheory.html

Olaf Chitil (Kent, UK) Foundations for Debugging 12th February 2008 32/32

