Foundations for the Debugging of Functional Programs

Olaf Chitil, Yong Luo and Thomas Davie

University of Kent, UK Supported by EPSRC grant EP/C516605/1

12th February 2008

Olaf Chitil (Kent, UK)

Foundations for Debugging

12th February 2008 1 / 32

Even functional programs!

strong type system \implies cannot corrupt run-time system

but

- wrong result
- abortion with run-time error
- on-termination

- No canonical execution model.
 - various reduction semantics (small step, big step)
 - interpreters with environments (explicit substitutions)
 - also denotational semantics
- No sequential execution of statements.
 - evaluation of expressions
 - evaluation of subexpressions is independent
 - f (g 3 4) (h 1 2) (i 5) (j 3 9 3)

- No canonical execution model.
 - various reduction semantics (small step, big step)
 - interpreters with environments (explicit substitutions)
 - also denotational semantics
- No sequential execution of statements.
 - evaluation of expressions
 - evaluation of subexpressions is independent
 - f (g 3 4) (h 1 2) (i 5) (j 3 9 3)

Conclusions

- Abstract from execution details: views for various semantics models.
- Take advantage of simple and compositional semantics.
- Liberate from sequentiality of computation.

The Haskell Tracer Hat

(www.haskell.org/hat)

Two-Phase Tracing: The trace as data structure.

- Liberates from the time arrow of computation.
- Enables many different views.

But where are formal definitions you can reason with?

Olaf Chitil (Kent, UK)

Foundations for Debugging

```
main :: String
main = sort "sort"
sort :: Ord a => [a] \rightarrow [a]
sort [] = []
sort (x:xs) = insert x (sort xs)
insert :: Ord a => a -> [a] \rightarrow [a]
insert x [] = [x]
insert x (y:ys) = if x > y then y : (insert x ys) else x:ys
```

```
There is a bug: main = "os" !
```

(日) (周) (三) (三)

Start with expression sort ('t':[])

Olaf Chitil (Kent, UK)

sort [] = []
sort (x:xs) = insert x (sort xs)
insert x [] = [x]
insert x (y:ys) = if x > y then y: (insert x ys) else x:ys

Image: A matrix of the second seco

sort [] = []
sort (x:xs) = insert x (sort xs)
insert x [] = [x]
insert x (y:ys) = if x > y then y: (insert x ys) else x:ys

Image: A matrix of the second seco

sort [] = []
sort (x:xs) = insert x (sort xs)
insert x [] = [x]
insert x (y:ys) = if x > y then y: (insert x ys) else x:ys

Image: A matrix of the second seco

- New nodes for right-hand-side, connected via result pointer.
- Only add to graph, never remove.
- Sharing ensures compact representation.

The Node Naming Scheme

Aim

- not distinguish isomorphic graphs
- avoid inconvenience of isomorphism classes

The Node Naming Scheme

Aim

- not distinguish isomorphic graphs
- avoid inconvenience of isomorphism classes

Solution

- standard representation with node describing path from root
- path at creation time (sharing later)
- path independent of evaluation order

Olaf Chitil (Kent, UK)

The Node Labels

Reduction edge implicitly given through existence of node.

Olaf Chitil (Kent, UK)

Projections

- Reduction edge implicitly given through existence of node.
- Every redex should be parent of at least one node. (otherwise reduction unreachable from computation result)

Projections

- Reduction edge implicitly given through existence of node.
- Every redex should be parent of at least one node. (otherwise reduction unreachable from computation result)
- \Rightarrow A projection requires an indirection as result.

12 / 32

Projections

- Reduction edge implicitly given through existence of node.
- Every redex should be parent of at least one node. (otherwise reduction unreachable from computation result)
- \Rightarrow A projection requires an indirection as result.

A trace \mathcal{G} for initial term M and program P is a partial function from nodes to term constructors, $\mathcal{G} : n \mapsto T$, defined by

- The unshared graph representation of M, graph_G(ε , M), is a trace.
- $\bullet~\mbox{If}~{\cal G}~\mbox{is a trace and}$
 - L = R an equation of the program P,
 - σ a substitution replacing argument variables by nodes,
 - match_{\mathcal{G}} $(n, L\sigma)$,
 - $nr \notin dom(\mathcal{G})$,

then $\mathcal{G} \cup \operatorname{graph}_{\mathcal{G}}(\operatorname{nr}, R\sigma)$ is a trace.

No evaluation order is fixed.

The Most Evaluated Form of a Node

A node represents many terms, in particular a most evaluated one.

$mef_{\mathcal{C}}(\varepsilon) = (:)$ 't' []	Definition
	$mef_\mathcal{G}(n) = mefT_\mathcal{G}(\mathcal{G}(\lceil n \rceil_\mathcal{G}))$
Definition	$mefT_{\mathcal{G}}(a) = a$
$n \succ_{\mathcal{G}} m \iff m = nr \lor \mathcal{G}(n) = m$	$mefT_{G}(n) = mef_{G}(n)$
$\lceil n \rceil_{\mathcal{G}} = m \iff n \succ_{\mathcal{G}}^* m \land \nexists o. m \succ_{\mathcal{G}} o$	$\operatorname{mefT}_{\mathcal{G}}(nm) = \operatorname{mef}_{\mathcal{G}}(n) \operatorname{mef}_{\mathcal{G}}(m)$

Olaf Chitil (Kent, UK)

Redexes and Big-Step Reductions

Definition

For any redex node *n*, i.e., $nr \in dom(G)$ redex_{*G*}(*n*) = $\begin{cases} mef_{\mathcal{G}}(m) mef_{\mathcal{G}}(o) &, \text{ if } \mathcal{G}(n) = mo \\ a &, \text{ if } \mathcal{G}(n) = a \end{cases}$ bigstep_{*G*}(*n*) = redex_{*G*}(*n*) = mef_{*G*}(*n*)

Olaf Chitil (Kent, UK)

From Trace to Big-Step Computation Tree

Olaf Chitil (Kent, UK)

Foundations for Debugging

12th February 2008 17 / 32


```
main :: String
main = sort "sort"
sort :: Ord a => [a] -> [a]
sort [] = []
sort (x:xs) = insert x (sort xs)
insert :: Ord a => a -> [a] \rightarrow [a]
insert x [] = [x]
insert x (y:ys) = if x > y then y : (insert x ys) else x:ys
```

Faulty computation: insert 'o' "r" = "o"

SON E

글 제 제 글 제

Correctness of Algorithmic Debugging: The Property

If node n incorrect and all its children correct, then node n faulty, i.e., its equation is faulty.

If tree node *n* faulty, then for its program equation L = R exists substitution σ such that $L\sigma \cong_{I} R\sigma$.

Olaf Chitil (Kent, UK)

12th February 2008 22 / 32

Soundness of Algorithmic Debugging: Main Theorem

Theorem

Let n be a redex node. If for all redex nodes m with parent(m) = n we have $redex_{\mathcal{G}}(m) \cong_I mef_{\mathcal{G}}(m)$, then $reduct_{\mathcal{G}}(n) \cong_I mef_{\mathcal{G}}(n)$.

With $\operatorname{redex}_{\mathcal{G}}(n) \ncong \operatorname{lnef}_{\mathcal{G}}(n)$ follows $\operatorname{redex}_{\mathcal{G}}(n) \ncong \operatorname{lned}_{\mathcal{G}}(n)$.


```
main :: String
main = sort "sort"
sort :: Ord a => [a] \rightarrow [a]
sort = foldr insert []
foldr :: (a \rightarrow b \rightarrow b) \rightarrow b \rightarrow [a] \rightarrow b
foldr f a [] = a
foldr f a (x:xs) = f x (foldr f a xs)
insert :: Ord a => a -> [a] \rightarrow [a]
insert x [] = [x]
insert x (y:ys) = if x > y then y : (insert x ys) else x:ys
```

SON E

Olaf Chitil (Kent, UK)

12th February 2008 27 / 32

3

- ∢ ≣ →

Olaf Chitil (Kent, UK)

12th February 2008 27 / 32

3

- ∢ ≣ →

Olaf Chitil (Kent, UK)

12th February 2008 27 / 32

-∢∃>

Olaf Chitil (Kent, UK)

12th February 2008 27 / 32

- ∢ ∃ →

Olaf Chitil (Kent, UK)

12th February 2008 27 / 32

- ∢ ∃ →

Olaf Chitil (Kent, UK)

.∋...> 12th February 2008 27 / 32

Olaf Chitil (Kent, UK)

.∋...> 12th February 2008 27 / 32

Olaf Chitil (Kent, UK)

.∋...> 12th February 2008 27 / 32

3

(日) (周) (三) (三)

Definition (Most evaluated form for finite maps)

$$\mathsf{mef}_{\mathcal{G}}^{\mathsf{M}}(n) = \begin{cases} \mathsf{fMap}_{\mathcal{G}}(n) &, \text{ if } M = f \ N_1 \dots N_k \land 0 \le k < \mathsf{arity}(f) \\ \{\} &, \text{ if } M = f \ N_1 \dots N_k \land k \ge \mathsf{arity}(f) \\ M &, \text{ otherwise} \\ \text{where } M = \mathsf{mea}_{\mathcal{G}}(n) \end{cases}$$

$$mea_{\mathcal{G}}(n) = meaT_{\mathcal{G}}(\mathcal{G}(\lceil n \rceil_{\mathcal{G}}))$$
$$meaT_{\mathcal{G}}(a) = a$$
$$meaT_{\mathcal{G}}(mn) = mea_{\mathcal{G}}(m) mef_{\mathcal{G}}^{\mathsf{M}}(n)$$

 $\mathsf{fMap}_{\mathcal{G}}(n) = \{\mathsf{mef}_{\mathcal{G}}^{\mathsf{M}}(o) \mapsto \mathsf{mef}_{\mathcal{G}}^{\mathsf{M}}(m) \mid \mathcal{G}(m) = n' \ o \ \land \ n' \succ_{\mathcal{G}}^{*} n \ \land \ \mathsf{mef}_{\mathcal{G}}^{\mathsf{M}}(m) \neq \{\}\}$

B → < B →

Image: A matrix of the second seco

Definition (Parent for finite maps)

 $\mathsf{parentFDT}_\mathcal{G} = \mathsf{parent} \cdot \mathsf{fun}_\mathcal{G}$

$$\operatorname{fun}_{\mathcal{G}}(n) = \begin{cases} n & , \text{ if } \mathcal{G}(n) = a \\ \operatorname{fun}_{\mathcal{G}}(\lceil m \rceil_{\mathcal{G}}) & , \text{ if } \mathcal{G}(n) = m o \end{cases}$$

Olaf Chitil (Kent, UK)

< A

Conclusions

- Simple model amenable to proof.
- Contains a wealth of information about computation.
- Models real-world trace of Haskell tracer Hat.
- Proves soundness of algorithmic debugging.

http://www.haskell.org/hat http://www.cs.kent.ac.uk/people/staff/oc/traceTheory.html