
Foundations for the Debugging of Functional Programs

Olaf Chitil, Yong Luo and Thomas Davie

University of Kent, UK
Supported by EPSRC grant EP/C516605/1

12th February 2008

Olaf Chitil (Kent, UK) Foundations for Debugging 12th February 2008 1 / 32

Programs have Bugs

Even functional programs!

strong type system =⇒ cannot corrupt run-time system

but

wrong result

abortion with run-time error

non-termination

Olaf Chitil (Kent, UK) Foundations for Debugging 12th February 2008 2 / 32

Why Debug Functional Programs Differently?

No canonical execution model.

various reduction semantics (small step, big step)
interpreters with environments (explicit substitutions)
also denotational semantics

No sequential execution of statements.

evaluation of expressions
evaluation of subexpressions is independent
f (g 3 4) (h 1 2) (i 5) (j 3 9 3)

Olaf Chitil (Kent, UK) Foundations for Debugging 12th February 2008 3 / 32

Why Debug Functional Programs Differently?

No canonical execution model.

various reduction semantics (small step, big step)
interpreters with environments (explicit substitutions)
also denotational semantics

No sequential execution of statements.

evaluation of expressions
evaluation of subexpressions is independent
f (g 3 4) (h 1 2) (i 5) (j 3 9 3)

Conclusions

Abstract from execution details: views for various semantics models.

Take advantage of simple and compositional semantics.

Liberate from sequentiality of computation.

Olaf Chitil (Kent, UK) Foundations for Debugging 12th February 2008 3 / 32

The Haskell Tracer Hat (www.haskell.org/hat)

Hat-Observe

input output Hat-Detect

computation trace Hat-Explore

Hat-Trail

. . .

︸ ︷︷ ︸

1

︸ ︷︷ ︸

2

Two-Phase Tracing: The trace as data structure.

Liberates from the time arrow of computation.

Enables many different views.

But where are formal definitions you can reason with?
Olaf Chitil (Kent, UK) Foundations for Debugging 12th February 2008 4 / 32

Example: Insertion Sort

main :: String

main = sort "sort"

sort :: Ord a => [a] -> [a]

sort [] = []

sort (x:xs) = insert x (sort xs)

insert :: Ord a => a -> [a] -> [a]

insert x [] = [x]

insert x (y:ys) = if x > y then y : (insert x ys) else x:ys

There is a bug: main = "os" !

Olaf Chitil (Kent, UK) Foundations for Debugging 12th February 2008 6 / 32

The Trace: Simple Graph Rewriting

’t’:

[]• •

• •sort

• •

Start with expression sort (’t’:[])

Olaf Chitil (Kent, UK) Foundations for Debugging 12th February 2008 7 / 32

The Trace: Simple Graph Rewriting

’t’:

[]• •

• •sort

• •

sort

• •

insert

• •

• •

sort [] = []

sort (x:xs) = insert x (sort xs)

insert x [] = [x]

insert x (y:ys) = if x > y then y : (insert x ys) else x : ys

Olaf Chitil (Kent, UK) Foundations for Debugging 12th February 2008 7 / 32

The Trace: Simple Graph Rewriting

’t’:

[]• •

• •sort

• •

sort

• •

insert

• •

• •

[]

sort [] = []

sort (x:xs) = insert x (sort xs)

insert x [] = [x]

insert x (y:ys) = if x > y then y : (insert x ys) else x : ys

Olaf Chitil (Kent, UK) Foundations for Debugging 12th February 2008 7 / 32

The Trace: Simple Graph Rewriting

’t’:

[]• •

• •sort

• •

sort

• •

insert

• •

• •

[]

:

• • []

• •

sort [] = []

sort (x:xs) = insert x (sort xs)

insert x [] = [x]

insert x (y:ys) = if x > y then y : (insert x ys) else x : ys

Olaf Chitil (Kent, UK) Foundations for Debugging 12th February 2008 7 / 32

The Trace: Simple Graph Rewriting

’t’:

[]• •

• •sort

• •

sort

• •

insert

• •

• •

[]

:

• • []

• •

New nodes for right-hand-side, connected via result pointer.

Only add to graph, never remove.

Sharing ensures compact representation.

Olaf Chitil (Kent, UK) Foundations for Debugging 12th February 2008 7 / 32

The Node Naming Scheme

’t’:

[]• •

• •sort

• •

sort

• •

insert

• •

• •

[]

:

• • []

• •

Aim

not distinguish isomorphic graphs

avoid inconvenience of isomorphism classes

Olaf Chitil (Kent, UK) Foundations for Debugging 12th February 2008 8 / 32

The Node Naming Scheme

afa

’t’
aff

:

aa

[]
af

• •

a

• •
f

sort

ε

• •

raf

sort

ra

• •
rff

insert

rf

• •

r

• •
rar

[]

rrff

:

rrf

• •
rra

[]

rr

• •

Aim

not distinguish isomorphic graphs

avoid inconvenience of isomorphism classes

Solution

standard representation with node describing path from root

path at creation time (sharing later)

path independent of evaluation order

Olaf Chitil (Kent, UK) Foundations for Debugging 12th February 2008 8 / 32

The Node Labels

afa

’t’
aff

:

aa

[]
af

• •

a

• •
f

sort

ε

• •

raf

sort

ra

• •
rff

insert

rf

• •

r

• •
rar

[]

rrff

:

rrf

• •
rra

[]

rr

• •

node n := {f, a, r}∗

label term T := a atom
| n m application of nodes

atom a := f | C | 42 | . . . defined variable, data constructor
atomic literal, . . .

Reduction edge implicitly given through existence of node.
Olaf Chitil (Kent, UK) Foundations for Debugging 12th February 2008 10 / 32

Projections

Reduction edge implicitly given through existence of node.

Every redex should be parent of at least one node.
(otherwise reduction unreachable from computation result)

True && x = x

not True = False

aa

True
af

not
fa

True
ff

&&

a

• •
f

• •

ε

• •

Olaf Chitil (Kent, UK) Foundations for Debugging 12th February 2008 12 / 32

Projections

Reduction edge implicitly given through existence of node.

Every redex should be parent of at least one node.
(otherwise reduction unreachable from computation result)

⇒ A projection requires an indirection as result.

True && x = x

not True = False

aa

True
af

not
fa

True
ff

&&

a

• •
f

• •

ε

• •
r

•

label term T := a atom
| n m application of nodes
| n indirection

atom a := x | C | 42 | . . . variable, data constructor, . . .

Olaf Chitil (Kent, UK) Foundations for Debugging 12th February 2008 12 / 32

Projections

Reduction edge implicitly given through existence of node.

Every redex should be parent of at least one node.
(otherwise reduction unreachable from computation result)

⇒ A projection requires an indirection as result.

True && x = x

not True = False

aa

True
af

not
fa

True
ff

&&

a

• •
f

• •

ε

• •
r

•
ar

False

label term T := a atom
| n m application of nodes
| n indirection

atom a := x | C | 42 | . . . variable, data constructor, . . .

Olaf Chitil (Kent, UK) Foundations for Debugging 12th February 2008 12 / 32

The Trace: The Augmented Redex Trail (ART)

A trace G for initial term M and program P is a partial function from
nodes to term constructors, G : n 7→ T , defined by

The unshared graph representation of M, graphG(ε, M), is a trace.

If G is a trace and

L = R an equation of the program P ,
σ a substitution replacing argument variables by nodes,
matchG(n, Lσ),
nr /∈ dom(G),

then G ∪ graphG(nr, Rσ) is a trace.

No evaluation order is fixed.

Olaf Chitil (Kent, UK) Foundations for Debugging 12th February 2008 13 / 32

The Most Evaluated Form of a Node

A node represents many terms, in particular a most evaluated one.

afa

’t’
aff

:

aa

[]
af

• •

a

• •
f

sort

ε

• •

raf

sort

ra

• •

rff

insert

rf

• •

r

• •

rar

[]

rrff

:

rrf

• •
rra

[]

rr

• •

mefG(ε) = (:) ’t’ []

Definition
n ≻G m ⇔ m = nr ∨ G(n) = m

⌈n⌉G = m ⇔ n ≻∗
G m ∧ ∄o. m ≻G o

Definition
mefG(n) = mefTG(G(⌈n⌉G))

mefTG(a) = a

mefTG(n) = mefG(n)

mefTG(n m) = mefG(n) mefG(m)

Olaf Chitil (Kent, UK) Foundations for Debugging 12th February 2008 14 / 32

Redexes and Big-Step Reductions

afa

’t’
aff

:

aa

[]
af

• •

a

• •
f

sort

ε

• •

raf

sort

ra

• •

rff

insert

rf

• •

r

• •

rar

[]

rrff

:

rrf

• •
rra

[]

rr

• •

redexG(r) = insert ’t’ []

bigstepG(r) = insert ’t’ [] = (:) ’t’ []

Definition

For any redex node n,
i.e., nr ∈ dom(G)

redexG(n) =

{

mefG(m) mefG(o) , if G(n) = m o

a , if G(n) = a

bigstepG(n) = redexG(n) = mefG(n)

Olaf Chitil (Kent, UK) Foundations for Debugging 12th February 2008 15 / 32

From Trace to Big-Step Computation Tree

afa

’t’
aff

:

aa

[]
af

• •

a

• •
f

sort

ε

• •

raf

sort

ra

• •

rff

insert

rf

• •

r

• •

rar

[]

rrff

:

rrf

• •
rra

[]

rr

• •

ε

sort (’t’:[]) = ’t’:[]

ra

sort [] = []
r

insert ’t’ [] = ’t’:[]

Every redex node n yields
a tree node n labelled bigstepG(n).

Tree node n is child of
tree node parent(n).

parent(nr) = n
parent(nf) = parent(n)
parent(na) = parent(n)
parent(ε) = undefined

Olaf Chitil (Kent, UK) Foundations for Debugging 12th February 2008 17 / 32

Algorithmic Debugging with the Computation Tree

main = "os"

sort "sort" = "os"

sort "ort" = "o" insert ’s’ "o" = "os"

’s’ > ’o’ = True insert ’s’ "" = "s"

sort "rt" = "r" insert ’o’ "r" = "o"

sort "t" = "t" insert ’r’ "t" = "r" ’o’ > ’r’ = False

sort "" = "" insert ’t’ "" = "t" ’r’ > ’t’ = False

Olaf Chitil (Kent, UK) Foundations for Debugging 12th February 2008 19 / 32

Algorithmic Debugging with the Computation Tree

main = "os" ×

sort "sort" = "os"

sort "ort" = "o" insert ’s’ "o" = "os"

’s’ > ’o’ = True insert ’s’ "" = "s"

sort "rt" = "r" insert ’o’ "r" = "o"

sort "t" = "t" insert ’r’ "t" = "r" ’o’ > ’r’ = False

sort "" = "" insert ’t’ "" = "t" ’r’ > ’t’ = False

Olaf Chitil (Kent, UK) Foundations for Debugging 12th February 2008 19 / 32

Algorithmic Debugging with the Computation Tree

main = "os" ×

sort "sort" = "os" ×

sort "ort" = "o" insert ’s’ "o" = "os"

’s’ > ’o’ = True insert ’s’ "" = "s"

sort "rt" = "r" insert ’o’ "r" = "o"

sort "t" = "t" insert ’r’ "t" = "r" ’o’ > ’r’ = False

sort "" = "" insert ’t’ "" = "t" ’r’ > ’t’ = False

Olaf Chitil (Kent, UK) Foundations for Debugging 12th February 2008 19 / 32

Algorithmic Debugging with the Computation Tree

main = "os" ×

sort "sort" = "os" ×

sort "ort" = "o" insert ’s’ "o" = "os"
√

’s’ > ’o’ = True insert ’s’ "" = "s"

sort "rt" = "r" insert ’o’ "r" = "o"

sort "t" = "t" insert ’r’ "t" = "r" ’o’ > ’r’ = False

sort "" = "" insert ’t’ "" = "t" ’r’ > ’t’ = False

Olaf Chitil (Kent, UK) Foundations for Debugging 12th February 2008 19 / 32

Algorithmic Debugging with the Computation Tree

main = "os" ×

sort "sort" = "os" ×

sort "ort" = "o" × insert ’s’ "o" = "os"
√

’s’ > ’o’ = True insert ’s’ "" = "s"

sort "rt" = "r" insert ’o’ "r" = "o"

sort "t" = "t" insert ’r’ "t" = "r" ’o’ > ’r’ = False

sort "" = "" insert ’t’ "" = "t" ’r’ > ’t’ = False

Olaf Chitil (Kent, UK) Foundations for Debugging 12th February 2008 19 / 32

Algorithmic Debugging with the Computation Tree

main = "os" ×

sort "sort" = "os" ×

sort "ort" = "o" × insert ’s’ "o" = "os"
√

’s’ > ’o’ = True insert ’s’ "" = "s"

sort "rt" = "r" insert ’o’ "r" = "o" ×

sort "t" = "t" insert ’r’ "t" = "r" ’o’ > ’r’ = False

sort "" = "" insert ’t’ "" = "t" ’r’ > ’t’ = False

Olaf Chitil (Kent, UK) Foundations for Debugging 12th February 2008 19 / 32

Algorithmic Debugging with the Computation Tree

main = "os" ×

sort "sort" = "os" ×

sort "ort" = "o" × insert ’s’ "o" = "os"
√

’s’ > ’o’ = True insert ’s’ "" = "s"

sort "rt" = "r" insert ’o’ "r" = "o" ×

sort "t" = "t" insert ’r’ "t" = "r" ’o’ > ’r’ = False
√

sort "" = "" insert ’t’ "" = "t" ’r’ > ’t’ = False

Olaf Chitil (Kent, UK) Foundations for Debugging 12th February 2008 19 / 32

Fault located!

main :: String

main = sort "sort"

sort :: Ord a => [a] -> [a]

sort [] = []

sort (x:xs) = insert x (sort xs)

insert :: Ord a => a -> [a] -> [a]

insert x [] = [x]

insert x (y:ys) = if x > y then y : (insert x ys) else x:ys

Faulty computation: insert ’o’ "r" = "o"

Olaf Chitil (Kent, UK) Foundations for Debugging 12th February 2008 21 / 32

Correctness of Algorithmic Debugging: The Property

If node n incorrect and all its children correct, then node n faulty, i.e., its
equation is faulty.

ε

sort (’t’:[]) = ’t’:[]

ra

sort [] = []
r

insert ’t’ [] = ’t’:[]

Definition

Tree node n incorrect ⇔ redexG(n) 6∼=I mefG(n).
Tree node n faulty ⇔ redexG(n) 6∼=I reductG(n).

If tree node n faulty, then for its program equation L = R exists
substitution σ such that Lσ 6∼=I Rσ.

Olaf Chitil (Kent, UK) Foundations for Debugging 12th February 2008 22 / 32

Soundness of Algorithmic Debugging: Main Theorem

Theorem

Let n be a redex node. If for all redex nodes m with parent(m) = n we

have redexG(m) ∼=I mefG(m), then reductG(n) ∼=I mefG(n).

With redexG(n) 6∼=I mefG(n) follows redexG(n) 6∼=I reductG(n).

afa

’t’
aff

:

aa

[]
af

• •

a

• •
f

sort

ε

• •

raf

sort

ra

• •

rff

insert

rf

• •

r

• •

rar

[]

rrff

:

rrf

• •
rra

[]

rr

• •

Olaf Chitil (Kent, UK) Foundations for Debugging 12th February 2008 23 / 32

Higher-Order Insertion Sort

main :: String

main = sort "sort"

sort :: Ord a => [a] -> [a]

sort = foldr insert []

foldr :: (a -> b -> b) -> b -> [a] -> b

foldr f a [] = a

foldr f a (x:xs) = f x (foldr f a xs)

insert :: Ord a => a -> [a] -> [a]

insert x [] = [x]

insert x (y:ys) = if x > y then y : (insert x ys) else x:ys

Olaf Chitil (Kent, UK) Foundations for Debugging 12th February 2008 25 / 32

Higher-Order Algorithmic Debugging

main = "os"

foldr insert [] "sort" = "os" sort = foldr insert []

foldr insert [] "ort" = "o" insert ’s’ "o" = "os"

’s’ > ’o’ = True insert ’s’ "" = "s"

foldr insert [] "rt" = "r" insert ’o’ "r" = "o"

foldr insert [] "t" = "t" insert ’r’ "t" = "r" ’o’ > ’r’ = False

foldr insert [] "" = "" insert ’t’ "" = "t" ’r’ > ’t’ = False

Olaf Chitil (Kent, UK) Foundations for Debugging 12th February 2008 27 / 32

Higher-Order Algorithmic Debugging

main = "os" ×

foldr insert [] "sort" = "os" sort = foldr insert []

foldr insert [] "ort" = "o" insert ’s’ "o" = "os"

’s’ > ’o’ = True insert ’s’ "" = "s"

foldr insert [] "rt" = "r" insert ’o’ "r" = "o"

foldr insert [] "t" = "t" insert ’r’ "t" = "r" ’o’ > ’r’ = False

foldr insert [] "" = "" insert ’t’ "" = "t" ’r’ > ’t’ = False

Olaf Chitil (Kent, UK) Foundations for Debugging 12th February 2008 27 / 32

Higher-Order Algorithmic Debugging

main = "os" ×

foldr insert [] "sort" = "os" sort = foldr insert []
√

foldr insert [] "ort" = "o" insert ’s’ "o" = "os"

’s’ > ’o’ = True insert ’s’ "" = "s"

foldr insert [] "rt" = "r" insert ’o’ "r" = "o"

foldr insert [] "t" = "t" insert ’r’ "t" = "r" ’o’ > ’r’ = False

foldr insert [] "" = "" insert ’t’ "" = "t" ’r’ > ’t’ = False

Olaf Chitil (Kent, UK) Foundations for Debugging 12th February 2008 27 / 32

Higher-Order Algorithmic Debugging

main = "os" ×

foldr insert [] "sort" = "os" × sort = foldr insert []
√

foldr insert [] "ort" = "o" insert ’s’ "o" = "os"

’s’ > ’o’ = True insert ’s’ "" = "s"

foldr insert [] "rt" = "r" insert ’o’ "r" = "o"

foldr insert [] "t" = "t" insert ’r’ "t" = "r" ’o’ > ’r’ = False

foldr insert [] "" = "" insert ’t’ "" = "t" ’r’ > ’t’ = False

Olaf Chitil (Kent, UK) Foundations for Debugging 12th February 2008 27 / 32

Higher-Order Algorithmic Debugging

main = "os" ×

foldr insert [] "sort" = "os" × sort = foldr insert []
√

foldr insert [] "ort" = "o" insert ’s’ "o" = "os"
√

’s’ > ’o’ = True insert ’s’ "" = "s"

foldr insert [] "rt" = "r" insert ’o’ "r" = "o"

foldr insert [] "t" = "t" insert ’r’ "t" = "r" ’o’ > ’r’ = False

foldr insert [] "" = "" insert ’t’ "" = "t" ’r’ > ’t’ = False

Olaf Chitil (Kent, UK) Foundations for Debugging 12th February 2008 27 / 32

Higher-Order Algorithmic Debugging

main = "os" ×

foldr insert [] "sort" = "os" × sort = foldr insert []
√

foldr insert [] "ort" = "o" × insert ’s’ "o" = "os"
√

’s’ > ’o’ = True insert ’s’ "" = "s"

foldr insert [] "rt" = "r" insert ’o’ "r" = "o"

foldr insert [] "t" = "t" insert ’r’ "t" = "r" ’o’ > ’r’ = False

foldr insert [] "" = "" insert ’t’ "" = "t" ’r’ > ’t’ = False

Olaf Chitil (Kent, UK) Foundations for Debugging 12th February 2008 27 / 32

Higher-Order Algorithmic Debugging

main = "os" ×

foldr insert [] "sort" = "os" × sort = foldr insert []
√

foldr insert [] "ort" = "o" × insert ’s’ "o" = "os"
√

’s’ > ’o’ = True insert ’s’ "" = "s"

foldr insert [] "rt" = "r" insert ’o’ "r" = "o" ×

foldr insert [] "t" = "t" insert ’r’ "t" = "r" ’o’ > ’r’ = False

foldr insert [] "" = "" insert ’t’ "" = "t" ’r’ > ’t’ = False

Olaf Chitil (Kent, UK) Foundations for Debugging 12th February 2008 27 / 32

Higher-Order Algorithmic Debugging

main = "os" ×

foldr insert [] "sort" = "os" × sort = foldr insert []
√

foldr insert [] "ort" = "o" × insert ’s’ "o" = "os"
√

’s’ > ’o’ = True insert ’s’ "" = "s"

foldr insert [] "rt" = "r" insert ’o’ "r" = "o" ×

foldr insert [] "t" = "t" insert ’r’ "t" = "r" ’o’ > ’r’ = False
√

foldr insert [] "" = "" insert ’t’ "" = "t" ’r’ > ’t’ = False

Olaf Chitil (Kent, UK) Foundations for Debugging 12th February 2008 27 / 32

Higher-Order Algorithmic Debugging II

main = "os"

sort = {"sort" -> "os"}

foldr {’s’ "o"->"os",’o’ "r"->"o",’r’ "t"->"r",’t’ ""->"t"} [] "sort" = "os"

foldr {’s’ "o"->"os",’o’ "r"->"o",’r’ "t"->"r",’t’ ""->"t"} [] "ort" = "o"

foldr {’s’ "o"->"os",’o’ "r"->"o",’r’ "t"->"r",’t’ ""->"t"} [] "rt" = "r"

foldr {’s’ "o"->"os",’o’ "r"->"o",’r’ "t"->"r",’t’ ""->"t"} [] "t" = "t"

foldr {’s’ "o"->"os",’o’ "r"->"o",’r’ "t"->"r",’t’ ""->"t"} [] "" = ""

insert ’s’ "o" = "os" insert ’o’ "r" = "o" insert ’r’ "t" = "r" insert ’t’ "" = "t"

’s’>’o’ = True insert ’s’ "" = "s" ’o’>’r’ = False ’r’>’t’ = False

Olaf Chitil (Kent, UK) Foundations for Debugging 12th February 2008 29 / 32

Modify a Few Definitions I

Definition (Most evaluated form for finite maps)

mefMG (n) =







fMapG(n) , if M = f N1 . . .Nk ∧ 0 ≤ k < arity(f)

{} , if M = f N1 . . .Nk ∧ k ≥ arity(f)

M , otherwise

where M = meaG(n)

meaG(n) = meaTG(G(⌈n⌉G))

meaTG(a) = a

meaTG(m n) = meaG(m) mefMG (n)

fMapG(n) = {mefMG (o) 7→ mefMG (m) | G(m) = n′ o ∧ n′ ≻∗
G n ∧ mefMG (m) 6= {}}

Olaf Chitil (Kent, UK) Foundations for Debugging 12th February 2008 30 / 32

Modify a Few Definitions II

Definition (Parent for finite maps)

parentFDTG = parent · funG

funG(n) =

{

n , if G(n) = a

funG(⌈m⌉G) , if G(n) = m o

Olaf Chitil (Kent, UK) Foundations for Debugging 12th February 2008 31 / 32

Conclusions

Simple model amenable to proof.

Contains a wealth of information about computation.

Models real-world trace of Haskell tracer Hat.

Proves soundness of algorithmic debugging.

aa

True
af

not
fa

True
ff

&&

a

• •
f

• •

ε

• •
r

•
ar

False

http://www.haskell.org/hat

http://www.cs.kent.ac.uk/people/staff/oc/traceTheory.html

Olaf Chitil (Kent, UK) Foundations for Debugging 12th February 2008 32 / 32

