Debugging Functional Programs

Olaf Chitil
Partially supported by EPSRC grant EP/C516605/1

University of
Kent
$12^{\text {th }}$ March 2008

Even Functional Programs have Bugs!

Well-typed programs cannot go wrong.
Robin Milner

At least
strong type system \Longrightarrow cannot corrupt run-time system

But

- wrong result
- abortion with run-time error
- non-termination

Conventional Debugging Methods

- The print / logging method: Add print statements to program.
- A stepping debugger such as the Data Display Debugger (DDD)

Why Debug Functional Programs Differently?

- Conventional methods are ill-suited for non-strict functional languages.
- New, more powerful methods can take advantage of properties of purely functional languages.

Haskell: A Non-Strict Purely Functional Programming Language

- Non-strict function: it has a well-defined result even when (parts of) arguments are unknown or ill-defined.
- Purely functional: an expression only denotes a value, no state transformation.

Properties:

- Rich but simple equational program algebra.
map f. map g = map (f . g)
- Can evaluate function arguments in any order (or not at all). f (g 3 4) (h 1 2) (i 5 (j 3 9) (k 4))
- Enables programming with recursive values, infinite data structures and efficient data-oriented programming.
pExp = pChar '(' >> pExp >> pChar '+' >> pExp >> pChar ') factorial $\mathrm{n}=$ product [1..n]

Evaluation of an expression

```
elem :: Int -> [Int] -> Bool
elem x xs = or (map (==x) xs)
    elem 42 [1..]
```


Evaluation of an expression

$$
\begin{aligned}
& \text { elem : : Int }-> {[\text { Int }] ~ } \\
& \text { elem } x \text { xs }=\text { or }(\operatorname{map}(==x) \text { xs }) \\
& \frac{\text { elem } 42[1 \ldots]}{\rightsquigarrow \operatorname{or}(\operatorname{map}(==42)[1 \ldots])}
\end{aligned}
$$

Evaluation of an expression

```
elem :: Int -> [Int] -> Bool
elem x xs = or (map (==x) xs)
    elem 42 [1..]
    \rightsquigarrowor (map (== 42) [1..])
    \rightsquigarrow or (map (== 42) (1:[2..]))
```


Evaluation of an expression

```
elem :: Int -> [Int] -> Bool
elem x xs = or (map (==x) xs)
    elem 42 [1..]
    wor (map (== 42) [1..])
    \rightsquigarrow or (map (== 42) (1:[2..]))
    @ or (False : map (== 42) [2..])
```


Evaluation of an expression

```
elem :: Int -> [Int] -> Bool
elem x xs = or (map (==x) xs)
    elem 42 [1..]
    wor (map (== 42) [1..])
    \rightsquigarrow or (map (== 42) (1:[2..]))
    or (False : map (== 42) [2..])
    or (map (== 42) [2..])
```


Evaluation of an expression

```
elem :: Int -> [Int] -> Bool
elem x xs = or (map (==x) xs)
    elem 42 [1..]
    ~ or (map (== 42) [1..])
    ~or (map (== 42) (1:[2..]))
    \rightsquigarrow or (False : map (== 42) [2..])
    \rightsquigarrow or (map (== 42) [2..])
    or (map (== 42) (2:[3..]))
```


Evaluation of an expression

$$
\begin{aligned}
& \text { elem :: Int -> [Int] -> Bool } \\
& \text { elem x xs }=\text { or (map (==x) xs) } \\
& \left.\left.\frac{\text { elem } 42[1 . .]}{\rightsquigarrow \operatorname{or}(\operatorname{map}(=}=42\right) \quad[1 . .]\right) \\
& \rightsquigarrow \text { or }(\operatorname{map}(==42)(1:[2 . .])) \\
& \rightsquigarrow \text { or (False : map (== 42) [2..]) } \\
& \rightsquigarrow \text { or (map }(==42) \text { [2..]) } \\
& \rightsquigarrow \text { or }(\operatorname{map}(==42)(2:[3 . .])) \\
& \rightsquigarrow \text { or (False : map (== 42) [3..]) }
\end{aligned}
$$

Evaluation of an expression

```
elem :: Int -> [Int] -> Bool
elem x xs = or (map (==x) xs)
    elem 42 [1..]
    \rightsquigarrowor (map (== 42) [1..])
    wor (map (== 42) (1:[2..]))
    @ or (False : map (== 42) [2..])
    or (map (== 42) [2..])
    or (map (== 42) (2:[3..]))
    or (False : map (== 42) [3..])
    or (map (== 42) [3..])
```


Evaluation of an expression

$$
\begin{aligned}
& \text { elem :: Int -> [Int] -> Bool } \\
& \text { elem x xs }=\text { or (map (==x) xs) } \\
& \left.\left.\frac{\text { elem } 42 \text { [1..] }}{\rightsquigarrow \operatorname{or}(\operatorname{map}(=}=42\right) \quad[1 . .]\right) \\
& \rightsquigarrow \text { or }(\operatorname{map}(==42)(1:[2 . .])) \\
& \rightsquigarrow \text { or (False : map (== 42) [2..]) } \\
& \rightsquigarrow \text { or (map }(==42) \text { [2..]) } \\
& \rightsquigarrow \text { or }(\operatorname{map}(==42)(2:[3 . .])) \\
& \rightsquigarrow \text { or (False : map (== 42) [3..]) } \\
& \rightsquigarrow \text { or (map (== 42) [3..]) }
\end{aligned}
$$

Evaluation of an expression

```
elem :: Int -> [Int] -> Bool
elem x xs = or (map (==x) xs)
                    elem 42 [1..]
    wor (map (== 42) (1:[2..]))
    @ or (False : map (== 42) [2..])
    or (map (== 42) [2..])
    wor (map (== 42) (2:[3..]))
    or (False : map (== 42) [3..])
    or (map (== 42) [3..])
    \vdots \vdots
    Mrue
```

Here reduction steps for map and or are skipped.

Why stepping doesn't work

- No stepping through sequence of statements in source code.
- Complex evaluation order.
- Run-time stack unrelated to static function call structure.
- Unevaluated subexpressions large and hard to read.

Why Printing doesn't work

```
Impure function traceShow :: String -> [Int] -> [Int]
insert :: Int -> [Int] -> [Int]
insert x [] = [x]
insert x (y:ys) =
    if x > y then y : (traceShow ">" (insert x ys))
        else x:y:ys
main = print (take 5 (insert 4 [1..]))
Output:
\([1>[2>[3>[4,4,5,6,7,8,9,10,11, \ldots\)
```

- output mixed up
- non-termination \Rightarrow observation changes behaviour

Properties of Functional Languages

- No canonical execution model.
- various reduction semantics (small step, big step)
- interpreters with environments (explicit substitutions)
- also denotational semantics
- An expression denotes only a value
- independent evaluation of subexpressions

$$
f\left(\begin{array}{ll}
\text { g } 3 & 4)(h 12)(i \operatorname{~})(\mathrm{j} 393)
\end{array}\right.
$$

Properties of Functional Languages

- No canonical execution model.
- various reduction semantics (small step, big step)
- interpreters with environments (explicit substitutions)
- also denotational semantics
- An expression denotes only a value
- independent evaluation of subexpressions

Advantages for Debugging

- Many semantic models as potential basis.
- Simple and compositional semantics.
- Freedom from sequentiality of computation.

Outline

(1) Two-Phase Tracing
(2) Views of Computation

- Observation of Functions
- Algorithmic Debugging
- Source-based Free Navigation
- Program Slicing
- Call Stack
- Redex Trails
- Animation
- ...
- Trusting
- New Views
(3) A Theory of Tracing
(3) Summary

Two-Phase Tracing

Liberates from time arrow of computation.

Two-Phase Tracing

Liberates from time arrow of computation.

Trace stored in

- Memory.
- File.
- Generated on demand by reexecution.

Two-Phase Tracing

Liberates from time arrow of computation.

Trace stored in

- Memory.
- File.
- Generated on demand by reexecution.

Trace Generation

- Program annotations + library.
- Program transformation.
- Modified abstract machine.

Hat

- Multi-View Tracer

- For Haskell $98+$ some extensions.
- Developed by Colin Runciman, Jan Sparud, Malcolm Wallace, Olaf Chitil, Thorsten Brehm, Tom Davie, Tom Shackell, ...

Faulty Insertion Sort

```
main = putStrLn (sort "sort")
sort :: Ord a => [a] -> [a]
sort [] = []
sort (x:xs) = insert x (sort xs)
insert :: Ord a => a -> [a] -> [a]
insert x [] = [x]
insert x (y:ys) = if x > y then y: (insert x ys) else x:ys
```

Output:
os

Observation of Expressions and Functions

Observation of Expressions and Functions

Observation of function sort:

```
sort "sort"= "Os"
sort "Ort" = "O"
sort "rt" = "r"
sort "t" = "t"
sort ||=||
```

Observation of function insert:

$$
\begin{aligned}
& \text { insert 's' }{ }^{\prime \prime} \mathrm{O}^{\prime \prime}={ }^{\prime \prime} \mathrm{Os} \text { " } \\
& \text { insert ' } S \text {, " " = "S" } \\
& \text { insert 'o' "r" }=\text { " } \mathrm{O} \text { " } \\
& \text { insert 'r" "t" = "r" } \\
& \text { insert 't' " " = "t" }
\end{aligned}
$$

Observation of Expressions and Functions

- Haskell Object Observation Debugger (Hood) by Andy Gill.
- A library.
- Programmer annotates expressions of interest.
- Annotated expressions are traced during computation.
- The print method for the lazy functional programmer.
- Observation of functions most useful.
- Relates to denotational semantics.

```
insert 3 (1:2:3:4:_) = 1:2:3:4:_
insert 3 (2:3:4:_) = 2:3:4:_
insert 3 (3:4:_) = 3:4:_
```


Algorithmic Debugging

Algorithmic Debugging

```
sort "sort" = "os" ?
n
insert 's' "o" = "os" ?
y
sort "ort" = "o" ?
n
insert 'o' "r" = "o" ?
n
Bug identified:
    "Insert.hs":8-9:
    insert x [] = [x]
    insert x (y:ys) = if x > y then y:(insert x ys) else x:ys
```


The Computation Tree

Fault located!

```
main = putStrLn (sort "sort")
sort :: Ord a => [a] -> [a]
sort [] = []
sort (x:xs) = insert x (sort xs)
insert :: Ord a => a -> [a] -> [a]
insert x [] = [x]
insert x (y:ys) = if x > y then y : (insert x ys) else x:ys
```

Faulty computation: insert '○' "r" = "○"

Algorithmic Debugging

- Shapiro for Prolog, 1983.
- Henrik Nilsson's Freija for lazy functional language, 1998.
- Bernie Pope's Buddha for Haskell, 2003.
- Correctness of tree node according to intended semantics.
- Incorrect node whose children are all correct is faulty.
- Each node relates to (part of) a function definition.
- Relates to natural, big-step semantics.

Higher-Order Insertion Sort

```
main :: String
main = sort "sort"
sort :: Ord a => [a] -> [a]
sort = foldr insert []
foldr :: (a -> b -> b) -> b -> [a] -> b
foldr f a [] = a
foldr f a (x:xs) = f x (foldr f a xs)
insert :: Ord a => a -> [a] -> [a]
insert x [] = [x]
insert x (y:ys) = if x > y then y : (insert x ys) else x:ys
```


Higher-Order Algorithmic Debugging

Higher-Order Algorithmic Debugging II

Higher-Order Algorithmic Debugging II

Higher-Order Algorithmic Debugging II

insert 's' "o" = "os"		insert 'o' "	= "O"	insert '	"t" = "r"	insert 't' " " = "t"
					Σ	
's'>'o' = True	insert 's' "" = "s"		'o'>'r'=False		'r'>'t'=False	

Higher-Order Algorithmic Debugging II

Higher-Order Algorithmic Debugging II

Higher-Order Algorithmic Debugging II

Source-based Free Navigation and Program Slicing

Source-based Free Navigation and Program Slicing

```
==== Hat-Explore 2.00 ==== Call 2/2 ==========================
    1. main = {IO}
    2. sort "sort" = "os"
    3.
        sort "ort"= "o"
---- Insert.hs ---- lines 5 to 10 ------------------------------
    if }x>y\mathrm{ then }y\mathrm{ : insert }x\mathrm{ ys
        else x : ys
sort :: [Char] -> [Char]
sort [] = []
sort (x:xs) = insert x ( sort xs )
```


Call Stack

Program terminated with error:
No match in pattern.
Virtual stack trace:
(Last.hs:6) last' []
(Last.hs:6) last' [_]
(Last.hs:6) last' [_,_]
(Last.hs:4) last' [8,_,_]
(unknown) main

Redex Trails

Redex Trails

```
Output:
os\n
Trail: ------- Insert.hs line: 10 col: 25 -------------------
<- putStrLn "os"
<- insert 's' "०" | if True
<- insert 'O' "r" | if False
<- insert 'r' "t" | if False
<- insert 't' []
<- sort []
```


Redex Trails

- Colin Runciman and Jan Sparud, 1997.
- Go backwards from observed failure to fault.
- Which redex created this expression?
- Based on graph rewriting semantics of abstract machine.

Animation of Lazy Evaluation

Output:

Animation:
-> sort "sort"
-> insert 's' (sort "ort")
-> insert 's' (insert 'o' (sort "rt"))
-> insert 's' (insert 'o' (insert 'r' (sort "t")))
-> insert 's' (insert 'o' (insert 'r' "t"))
-> "os"

Trusting

Trust a module: Do not trace functions in module.

- Smaller trace file.
- Avoid viewing distracting details.

$$
4+7=11
$$

Trusting

Trust a module: Do not trace functions in module.

- Smaller trace file.
- Avoid viewing distracting details.

$$
4+7=11
$$

A trusted function may call a non-trusted function:

```
map prime [2,3,4,5] = [True,True,False,True]
```


Trusting

Trust a module: Do not trace functions in module.

- Smaller trace file.
- Avoid viewing distracting details.

$$
4+7=11
$$

A trusted function may call a non-trusted function:

```
map prime [2,3,4,5] = [True,True,False,True]
```

In future?

- View-time trusting.
- Trusting of local definitions.

New Views

New Ideas

- Follow a value through computation.

New Views

New Ideas

- Follow a value through computation.

Combining Existing Views

- Can easily switch from one view to another.
- All-in-one tool $=$ egg-laying wool-milk-sow?
- Exploring combination of algorithmic debugging and redex trails.

New Views

New Ideas

- Follow a value through computation.

Combining Existing Views

- Can easily switch from one view to another.
- All-in-one tool = egg-laying wool-milk-sow?
- Exploring combination of algorithmic debugging and redex trails.

Refining Existing Views
Algorithmic Debugging:

- Different Tree-Traversal Strategies.
- Heuristics.

Why a Theory of Tracing?

- Implementations of tracing tools ahead of theoretical results.
- Correctness of tools?
- Clear methodology for using them?
- Development of advanced features?

What is a Good Trace?

Program + input determine every detail of computation.

What is a Good Trace?

Program + input determine every detail of computation. \Rightarrow Trace gives efficient access to certain details of computation.

What is a Good Trace?

Program + input determine every detail of computation. \Rightarrow Trace gives efficient access to certain details of computation.

What is a computation? Semantics answers:

- Term rewriting: A sequence of expressions. $t_{1} \rightarrow t_{2} \rightarrow t_{3} \rightarrow t_{4} \rightarrow t_{5} \rightarrow \ldots \rightarrow t_{n}$
- Natural semantics: A proof tree.

The Trace: Simple Graph Rewriting

Start with expression sort ('t': [])

The Trace: Simple Graph Rewriting

The Trace: Simple Graph Rewriting

The Trace: Simple Graph Rewriting


```
sort [] = []
sort (x:xs) = insert \(x\) (sort xs)
insert \(x\) [] = [x]
insert x (y:ys) \(=\) if \(\mathrm{x}>\mathrm{y}\) then \(\mathrm{y}:(\) insert x ys) else \(\mathrm{x}: \mathrm{ys}\)
```


The Trace: Simple Graph Rewriting

- New nodes for right-hand-side, connected via result pointer.
- Only add to graph, never remove.
- Sharing ensures compact representation.

The Node Naming Scheme

- not distinguish isomorphic graphs
- avoid inconvenience of isomorphism classes

The Node Naming Scheme

Aim

- not distinguish isomorphic graphs
- avoid inconvenience of isomorphism classes

Solution

- standard representation with node describing path from root
- path at creation time (sharing later)
- path independent of evaluation order

The Node Labels

Reduction edge implicitly given through existence of node.

Projections

- Reduction edge implicitly given through existence of node.
- Every redex should be parent of at least one node. (otherwise reduction unreachable from computation result)

```
True && x = x
not True = False
```


Projections

- Reduction edge implicitly given through existence of node.
- Every redex should be parent of at least one node. (otherwise reduction unreachable from computation result)
\Rightarrow A projection requires an indirection as result.

```
True && x = x
not True = False
```


atom $a:=x|C| 42 \mid \ldots$ variable, data constructor, \ldots

Projections

- Reduction edge implicitly given through existence of node.
- Every redex should be parent of at least one node. (otherwise reduction unreachable from computation result)
\Rightarrow A projection requires an indirection as result.

$$
\begin{aligned}
& \text { True \&\& } x=x \\
& \text { not True = False }
\end{aligned}
$$

$\begin{array}{cc}\text { label term } \quad T:= & a \\ & \left.\left\lvert\, \begin{array}{l}n m \\ \\ \\ \\ n\end{array}\right.\right)\end{array}$
atom $a:=x|C| 42 \mid \ldots$ variable, data constructor, \ldots

The Trace: The Augmented Redex Trail (ART)

A trace \mathcal{G} for initial term M and program P is a partial function from nodes to term constructors, $\mathcal{G}: n \mapsto T$, defined by

- The unshared graph representation of M, $\operatorname{graph}_{\mathcal{G}}(\varepsilon, M)$, is a trace.
- If \mathcal{G} is a trace and
- $L=R$ an equation of the program P,
- σ a substitution replacing argument variables by nodes,
- match $_{\mathcal{G}}(n, L \sigma)$,
- $n r \notin \operatorname{dom}(\mathcal{G})$,
then $\mathcal{G} \cup \operatorname{graph}_{\mathcal{G}}(n r, R \sigma)$ is a trace.

No evaluation order is fixed.

The Most Evaluated Form of a Node

A node represents many terms, in particular a most evaluated one.

$$
\operatorname{mef}_{\mathcal{G}}(\varepsilon)=(:)^{\prime} t^{\prime} \quad[]
$$

Definition

$$
\begin{aligned}
n \succ_{\mathcal{G}} m & \Leftrightarrow m=n r \vee \mathcal{G}(n)=m \\
\lceil n\rceil_{\mathcal{G}}=m & \Leftrightarrow n \succ_{\mathcal{G}}^{*} m \wedge \nexists o . m \succ_{\mathcal{G}} \circ
\end{aligned}
$$

Definition

$$
\operatorname{mef}_{\mathcal{G}}(n)=\operatorname{mef}_{\mathcal{G}}\left(\mathcal{G}\left(\lceil n\rceil_{\mathcal{G}}\right)\right)
$$

$$
\operatorname{mefT}_{\mathcal{G}}(a)=a
$$

$$
\operatorname{mefT}_{\mathcal{G}}(n)=\operatorname{mef}_{\mathcal{G}}(n)
$$

$$
\operatorname{mefT}_{\mathcal{G}}(n m)=\operatorname{mef}_{\mathcal{G}}(n) \operatorname{mef}_{\mathcal{G}}(m)
$$

Redexes and Big-Step Reductions

Definition

For any redex node n, i.e., $n r \in \operatorname{dom}(G)$

$$
\operatorname{redex}_{\mathcal{G}}(n)= \begin{cases}\operatorname{mef}_{\mathcal{G}}(m) \operatorname{mef}_{\mathcal{G}}(o) & , \text { if } \mathcal{G}(n)=m \circ \\ a & , \text { if } \mathcal{G}(n)=a\end{cases}
$$

$$
\operatorname{bigstep}_{\mathcal{G}}(n)=\operatorname{redex}_{\mathcal{G}}(n)=\operatorname{mef}_{\mathcal{G}}(n)
$$

From Trace to Big-Step Computation Tree

- Every redex node n yields a tree node n labelled bigstep $_{\mathcal{G}}(n)$.
- Tree node n is child of

$$
\begin{aligned}
\operatorname{parent}(n r) & =n \\
\operatorname{parent}(n f) & =\operatorname{parent}(n) \\
\operatorname{parent}(n a) & =\operatorname{parent}(n) \\
\operatorname{parent}(\varepsilon) & =\text { undefined }
\end{aligned}
$$

$$
\text { insert 't' }[]='^{\prime} \text { ' : }[]
$$ tree node parent (n).

Summary

- Two-Phase Tracing.

Liberates from time arrow of computation.

- There exist many useful different views of a computation.
- Observation of Functions
- Algorithmic Debugging
- Source-based Free Navigation
- Redex Trails
- Semantics.
- Inspire views.
- Enable formulation and proof of properties.
- But do not answer all questions.
- Still much to explore.

