Foundations for Tracing Functional Programs and the Correctness of Algorithmic Debugging

Olaf Chitil and Yong Luo
University of Kent, UK
Supported by EPSRC grant EP/C516605/1

26th April 2006

Why Tracing?

- Locate a fault (wrong output, run-time error, non-termination).
- Comprehend a program.

Two-Phase Tracing: A Trace as Data Structure

- Liberates from time arrow of computation.
- Enables views based on different execution models. (small-step, big-step, interpreter with environment, denotational)
- Enables compositional views.

The Haskell Tracer Hat (www.haskell.org/hat)

- Multi-View Tracer

- Trace $=$ Augmented Redex Trail (ART); distilled as unified trace.

Aim: A theoretical model of this trace and its views.

Overview

(1) Definition of the Trace through Graph Rewriting
(2) Properties of the Trace
(3) Views of the Trace

- Observation of Functions
- Following Redex Trails
- Algorithmic Debugging
(3) Correctness of Algorithmic Debugging
(3) Future Work \& Summary

The Programming Language

Launchbury's and related semantics

- Subset of λ-calculus plus case for matching.
- Any program can be translated into this core calculus.

For tracing

- Close relationship between trace and original program essential.
- Language must have most frequently used features:
- named functions
- pattern matching

The Programming Language

Launchbury's and related semantics

- Subset of λ-calculus plus case for matching.
- Any program can be translated into this core calculus.

For tracing

- Close relationship between trace and original program essential.
- Language must have most frequently used features:
- named functions
- pattern matching
\Rightarrow Higher-order term rewriting system

```
sort [] = [] or sort = foldr insert []
sort (x:xs) = insert x (sort xs)
insert x [] = [x]
insert x (y:ys) = if x > y then y:(insert x ys) else x:ys
```


What is a Good Trace?

Program + input determine every detail of computation.

What is a Good Trace?

Program + input determine every detail of computation. \Rightarrow Trace gives efficient access to certain details of computation.

What is a Good Trace?

Program + input determine every detail of computation. \Rightarrow Trace gives efficient access to certain details of computation.

What is a computation? Semantics answers:

- Term rewriting: A sequence of expressions. $t_{1} \rightarrow t_{2} \rightarrow t_{3} \rightarrow t_{4} \rightarrow t_{5} \rightarrow \ldots \rightarrow t_{n}$
- Natural semantics: A proof tree.

What is a Good Trace?

Program + input determine every detail of computation. \Rightarrow Trace gives efficient access to certain details of computation.

What is a computation? Semantics answers:

- Term rewriting: A sequence of expressions. $t_{1} \rightarrow t_{2} \rightarrow t_{3} \rightarrow t_{4} \rightarrow t_{5} \rightarrow \ldots \rightarrow t_{n}$
- Natural semantics: A proof tree.

But

- Lots of redundancy.
- Much structure already lost.

Graph Rewriting I

sort ('t': [])


```
sort [] = []
sort (x:xs) = insert x (sort xs)
```


Graph Rewriting I

sort [] = []
sort (x:xs) = insert x (sort x s)

- Create new nodes for right-hand-side.
- Nodes of subexpressions are shared.

Graph Rewriting I

sort [] = []
sort (x:xs) $=$ insert x (sort $x s$)

- Create new nodes for right-hand-side.
- Nodes of subexpressions are shared.
- Some old nodes become garbage.

Graph Rewriting II


```
sort [] = []
sort (x:xs) = insert \(x\) (sort \(x\) )
insert x [] = [x]
insert \(x\) (y:ys) = if \(x>y\) then \(y:(i n s e r t ~ x y s) ~ e l s e ~ x: y s\)
```


Graph Rewriting II


```
sort [] = []
sort (x:xs) = insert x (sort xs)
insert x [] = [x]
insert x (y:ys) = if x > y then y: (insert x ys) else x:ys
```

- Application node of redex replaced by new node.

Graph Rewriting II


```
sort [] = []
sort (x:xs) = insert x (sort xs)
insert x [] = [x]
insert x (y:ys) = if x > y then y:(insert x ys) else x:ys
```

- Application node of redex replaced by new node.

Graph Rewriting III


```
sort [] = []
sort (x:xs) = insert \(x\) (sort \(x\) )
insert x [] = [x]
insert x ( \(\mathrm{y}: \mathrm{ys}\) ) \(=\) if \(\mathrm{x}>\mathrm{y}\) then \(\mathrm{y}:(\) insert \(\mathrm{x} y s)\) else \(\mathrm{x}: \mathrm{ys}\)
```


Graph Rewriting III

$$
\begin{aligned}
& \text { sort }[]=[] \\
& \text { sort }(x: x s)=\text { insert } x \text { (sort } x s) \\
& \text { insert } x[]=[x] \\
& \text { insert } x(y: y s)=\text { if } x>y \text { then } y:(\text { insert } x \text { ys) else } x: y s
\end{aligned}
$$

Graph Rewriting III


```
sort [] = []
sort (x:xs) = insert \(x\) (sort \(x\) )
insert \(x\) [] = [x]
insert \(x\) (y:ys) = if \(x>y\) then \(y:(i n s e r t ~ x ~ y s) ~ e l s e ~ x: y s ~\)
```


The Trace

The Trace

- New nodes for right-hand-side, connected via result pointer.
- Only add to graph, never remove.
- Sharing ensures compact representation.

The Trace

- New nodes for right-hand-side, connected via result pointer.
- Only add to graph, never remove.
- Sharing ensures compact representation.

The Trace

- New nodes for right-hand-side, connected via result pointer.
- Only add to graph, never remove.
- Sharing ensures compact representation.

The Node Labels

term constructor $\begin{aligned} T:= & a \\ & \mid n m\end{aligned}$
atom application of nodes
atom $a:=f|C| 42 \mid \ldots$ defined variable, data constructor atomic literal, . . .

- pointers instead of edges

The Node Naming Scheme

Aim

- not distinguish isomorphic graphs
- avoid inconvenience of isomorphism classes

The Node Naming Scheme

Aim

- not distinguish isomorphic graphs
- avoid inconvenience of isomorphism classes

Solution

- standard representation with node describing path from root
- path at creation time (sharing later)
- path independent of evaluation order

The Node Naming Scheme II

- Reduction edge implicitly given through existence of node.
- Node encodes parent $=$ top node of redex causing its creation:

$$
\begin{aligned}
\operatorname{parent}(n t) & =n \\
\operatorname{parent}(n I) & =\operatorname{parent}(n) \\
\operatorname{parent}(n r) & =\operatorname{parent}(n) \\
\operatorname{parent}(\varepsilon) & =\text { undefined }
\end{aligned}
$$

- Easy to identify right-hand-side of rule: same parent.

Projections

- Reduction edge implicitly given through existence of node.
- Every redex should be parent of at least one node. (otherwise reduction unreachable from computation result)

```
True && x = x
```

not True = False

Projections

- Reduction edge implicitly given through existence of node.
- Every redex should be parent of at least one node. (otherwise reduction unreachable from computation result)
\Rightarrow A projection requires an indirection as result.

```
True && x = x
not True = False
```


term constructor	T	$:=$	a	atom
			$n m$	application of nodes
		n	indirection	

Projections

- Reduction edge implicitly given through existence of node.
- Every redex should be parent of at least one node. (otherwise reduction unreachable from computation result)
\Rightarrow A projection requires an indirection as result.

```
True && x = x
not True = False
```


term constructor	T	a	atom
$n m$		application of nodes	
n	indirection		

$$
\text { atom } a:=x|C| 42 \mid \ldots \text { variable, data constructor, } \ldots
$$

The Trace: The Augmented Redex Trail (ART)

A trace G for initial term M and program P is a partial function from nodes to term constructors, $G: n \mapsto T$, defined by

- The unshared graph representation of $M, \operatorname{graph}_{G}(\varepsilon, M)$, is a trace.
- If G is a trace and
- $L=R$ an equation of the program P,
- σ a substitution replacing argument variables by nodes,
- match ${ }_{G}(n, L \sigma)$,
- $n t \notin \operatorname{dom}(G)$,
then $G \cup \operatorname{graph}_{G}(n t, R \sigma)$ is a trace.

No evaluation order is fixed.

Unshared Graph Representation

For the initial term and right-hand-sides of equation.

$$
\operatorname{graph}(\mathrm{t}, \text { insert rlr }(\text { sort rr }))=
$$

Definition

$$
\begin{aligned}
\operatorname{graph}(n, a) & =\{(n, a)\} \\
\operatorname{graph}(n, m) & =\{(n, m)\} \\
\operatorname{graph}(n, M N) & = \begin{cases}\{(n, M N)\} & , \text { if } M, N \text { are nodes } \\
\{(n, M n r)\} \cup \operatorname{graph}(n r, N) & \text { if only } M \text { is a node } \\
\{(n, n l N)\} \cup \operatorname{graph}(n l, M) & \text { if only } N \text { is a node } \\
\{(n, n l n r)\} \cup \operatorname{graph}(n l, M) \cup \operatorname{graph}(n r, N), \text { otherwise }\end{cases}
\end{aligned}
$$

Matching

Matching a node with an instance of the left-hand-side of an equation.

$\operatorname{match}_{G}(\varepsilon, \operatorname{sort}(r l r: r r))$

Definition

match $_{G}(n, M)=$ if M is a node then $n=M$ else match $T_{G}\left(\operatorname{last}_{G}(n), M\right)$
$\operatorname{match}_{G}(a, M)=(a=M)$
$\operatorname{match}^{G}(n, M)=\operatorname{match}^{G}\left(\operatorname{last}_{G}(n), M\right)$
match $T_{G}(n o, M)=\exists N, O .(N O=M) \wedge \operatorname{match}_{G}(n, N) \wedge \operatorname{match}_{G}(o, O)$

$$
\operatorname{last}_{G}(n)=\text { if } n t \in \operatorname{dom}(G) \text { then } \operatorname{last}_{G}(n t) \text { else } G(n)
$$

The Most Evaluated Form of a Node

A node represents many terms, in particular a most evaluated one.

$$
\begin{aligned}
\operatorname{mef}_{G}(\operatorname{tr}) & =[] \\
\operatorname{mef}_{G}(\varepsilon) & =(:) \quad, t, \quad[]
\end{aligned}
$$

Definition

$$
\begin{aligned}
\operatorname{mef}_{G}(n) & =\operatorname{mefT}_{G}\left(\operatorname{last}_{G}(n)\right) \\
\operatorname{mefT}_{G}(a) & =a \\
\operatorname{mefT}_{G}(n) & =\operatorname{mef}_{G}(n) \\
\operatorname{mefT}_{G}(n m) & =\operatorname{mef}_{G}(n) \operatorname{mef}_{G}(m)
\end{aligned}
$$

Redexes and Big-Step Reductions

$$
\begin{aligned}
\operatorname{redex}_{G}(\mathrm{t}) & =\text { insert 't' } \quad[] \\
\operatorname{bigstep}_{G}(\mathrm{t}) & =\text { insert 't' } \quad[]=(:) \quad \text { 't' } \quad[]
\end{aligned}
$$

Definition

For any redex node n, i.e., $n t \in \operatorname{dom}(G)$

$$
\begin{aligned}
\operatorname{redex}_{G}(n) & = \begin{cases}\operatorname{mef}_{G}(m) \operatorname{mef}_{G}(o) & , \text { if } G(n)=m o \\
a & , \text { if } G(n)=a\end{cases} \\
\operatorname{bigstep}_{G}(n) & =\operatorname{redex}_{G}(n)=\operatorname{mef}_{G}(n)
\end{aligned}
$$

Properties of the ART

- closed (no dangling nodes)
- domain prefix-closed
- acyclic
- strongly confluent
- no application contains a node ending in t
- only a node ending in t can be an indirection
- if $n l \in \operatorname{dom}(G)$, then $G(n)=n l m$
- if $n r \in \operatorname{dom}(G)$, then $G(n)=m n r$
- if $n t \in \operatorname{dom}(G)$, then $\operatorname{redex}_{G}(n)=L \sigma$ and $\operatorname{reduct}_{G}(n)=R \sigma$ for some program equation $L=R$ and substitution σ

Give non-inductive definition of ART based on properties?

Reduct of a Small Step Reduction

Definition

reduct $_{G}(n)=$ reduct $_{G}(n t)$

$$
\operatorname{reductB}_{G}(n)= \begin{cases}a & , \text { if } G(n)=a \\ \operatorname{mef}_{G}(m) & , \text { if } G(n)=m \\ \operatorname{reductB}_{G}(n l) \operatorname{reductB}_{G}(n r), \text { if } G(n)=n l n r \\ \operatorname{reductB}_{G}(n l) \operatorname{mef}_{G}(o) & , \text { if } G(n)=n l o \text { and } o \neq n r \\ \operatorname{mef}_{G}(m) \operatorname{reductB}_{G}(n r) & , \text { if } G(n)=m n r \text { and } m \neq n l \\ \operatorname{mef}_{G}(m) \operatorname{mef}_{G}(o) & , \text { if } G(n)=m o, m \neq n l \text { and } o \neq n r\end{cases}
$$

Views of the Trace

- Observation of Expressions and Functions
- Following Redex Trails
- Algorithmic Debugging

Observation of Expressions and Functions

Observation of Expressions and Functions

Observation of function sort:

```
sort "sort" = "os"
sort "ort" = "○"
sort "rt" = "r"
sort "t" = "t"
sort "" = ""
```

Observation of function insert:

```
insert 's' "o" = "os"
insert 's' "" = "s"
insert 'o' "r" = "o"
insert 'r' "t" = "r"
insert 't' "" = "t"
```

Big step reductions of redex nodes.

Following Redex Trails

Following Redex Trails

```
Output:
os\n
Trail: ------- Insert.hs line: 10 col: 25 --------------------
<- putStrLn "os"
<- insert 's' "o" | if True
<- insert 'o' "r" | if False
<- insert 'r' "t" | if False
<- insert 't' []
<- sort []
```

- Go backwards from observed failure to fault.
- Which redex created this expression?
- To prove: every reduction step reachable from final result.

Algorithmic Debugging

```
sort "sort" = "os"? n
insert 's' "o" = "os"? y
sort "ort" = "o"? n
insert 'o' "r" = "о"? n
Bug identified:
    "Insert.hs":8-9:
    insert x [] = [x]
    insert x (y:ys) = if x > y then y:(insert x ys) else x:ys
```


The Evaluation Dependency Tree

The ART and the Evaluation Dependency Tree

- Every redex node n yields a tree node n labelled bigstep ${ }_{G}(n)$.
- Tree node n is child of tree node parent (n).
- Usually root label $\operatorname{bigstep}_{G}(\varepsilon)=$ main $=\ldots$

Correctness of Algorithmic Debugging: The Property

If node n incorrect and all its children correct, then node n faulty, i.e., its equation is faulty.

Definition
 Tree node n incorrect $\Leftrightarrow \operatorname{redex}_{G}(n) \not \neq 1^{\operatorname{mef}_{G}(n) \text {. }}$ Tree node n faulty $\Leftrightarrow \operatorname{redex}_{G}(n) \not ⿻_{\text {I }} \operatorname{reduct}_{G}(n)$.

If tree node n faulty, then for its program equation $L=R$ exists substitution σ such that $L \sigma \not \neq 1^{R \sigma}$.

Correctness of Algorithmic Debugging: Main Theorem

Theorem

Let n be a redex node. If for all redex nodes m with parent $(m)=n$ we have $\operatorname{redex}_{G}(m) \cong_{l} \operatorname{mef}_{G}(m)$, then $\operatorname{reduct}_{G}(n) \cong_{I} \operatorname{mef}_{G}(n)$.

Correctness of Algorithmic Debugging: Proof

Proof.

Generalise property: Let $n \in \operatorname{dom}(G)$. If for all redex nodes m with parent $(m)=\operatorname{parent}(n)$ we have $\operatorname{redex}_{G}(m) \cong_{1} \operatorname{mef}_{G}(m)$, then $\operatorname{reduct}_{G}(n) \cong_{1} \operatorname{mef}_{G}(n)$.
Induction over $\operatorname{hight}_{G}(n)=\max \left\{|0| \mid o \in\{1, r\}^{*} \wedge n o \in \operatorname{dom}(G)\right\}$.

Future Work

- Still play with definitions.
- Extend model further:
- Drop non-needed nodes from ART (unevaluated expressions).
- Model run-time error with error value.
- Allow local function definitions (\Rightarrow free variables).
- Share reductions of constants (\Rightarrow cycles in graph).
- Describe strict and mixed semantics.
- Prove further properties.

Conclusions

- Simple model amenable to proof.
- Contains a wealth of information about computation.
- Models real-world trace of Haskell tracer Hat.
- Proved correctness of algorithmic debugging.

