Foundations for Tracing Functional Programs and the Correctness of Algorithmic Debugging

Olaf Chitil and Yong Luo

 $\label{eq:University} \begin{array}{c} \mbox{University of Kent, UK} \\ \mbox{Supported by EPSRC grant EP/C516605/1} \end{array}$

26th April 2006

Olaf Chitil and Yong Luo (Kent, UK)

Foundations for Tracing

26th April 2006 1 / 46

Why Tracing?

• Locate a fault (wrong output, run-time error, non-termination).

Comprehend a program.

< ロト < 同ト < ヨト < ヨト

Two-Phase Tracing: A Trace as Data Structure

- Liberates from time arrow of computation.
- Enables views based on different execution models. (small-step, big-step, interpreter with environment, denotational)
- Enables compositional views.

The Haskell Tracer Hat (www.haskell.org/hat)

Multi-View Tracer

• Trace = Augmented Redex Trail (ART); distilled as unified trace.

Aim: A theoretical model of this trace and its views.

- Definition of the Trace through Graph Rewriting
- Properties of the Trace
- Views of the Trace
 - Observation of Functions
 - Following Redex Trails
 - Algorithmic Debugging
- Correctness of Algorithmic Debugging
- Future Work & Summary

The Programming Language

Launchbury's and related semantics

- Subset of λ -calculus plus case for matching.
- Any program can be translated into this core calculus.

For tracing

- Close relationship between trace and original program essential.
- Language must have most frequently used features:
 - named functions
 - pattern matching

The Programming Language

Launchbury's and related semantics

- Subset of λ -calculus plus case for matching.
- Any program can be translated into this core calculus.

For tracing

- Close relationship between trace and original program essential.
- Language must have most frequently used features:
 - named functions
 - pattern matching

⇒ Higher-order term rewriting system

sort [] = [] or sort = foldr insert []
sort (x:xs) = insert x (sort xs)
insert x [] = [x]
insert x (y:ys) = if x > y then y: (insert x ys) else x:ys

 $\label{eq:program} Program + input \ determine \ every \ detail \ of \ computation.$

Program + input determine every detail of computation.

 \Rightarrow Trace gives efficient access to certain details of computation.

Program + input determine every detail of computation. \Rightarrow Trace gives efficient access to certain details of computation.

What is a computation? Semantics answers:

• Term rewriting: A sequence of expressions.

 $t_1 \rightarrow t_2 \rightarrow t_3 \rightarrow t_4 \rightarrow t_5 \rightarrow \ldots \rightarrow t_n$

• Natural semantics: A proof tree.

Program + input determine every detail of computation. \Rightarrow Trace gives efficient access to certain details of computation.

What is a computation? Semantics answers:

• Term rewriting: A sequence of expressions.

 $t_1 \rightarrow t_2 \rightarrow t_3 \rightarrow t_4 \rightarrow t_5 \rightarrow \ldots \rightarrow t_n$

• Natural semantics: A proof tree.

But

- Lots of redundancy.
- Much structure already lost.

Graph Rewriting I

Olaf Chitil and Yong Luo (Kent, UK)

2

・ロン ・四 ・ ・ ヨン ・ ヨン

Graph Rewriting I

sort [] = []
sort (x:xs) = insert x (sort xs)

- Create new nodes for right-hand-side.
- Nodes of subexpressions are shared.

Graph Rewriting I

sort [] = []
sort (x:xs) = insert x (sort xs)

- Create new nodes for right-hand-side.
- Nodes of subexpressions are shared.
- Some old nodes become garbage.

Graph Rewriting II

sort [] = []
sort (x:xs) = insert x (sort xs)
insert x [] = [x]
insert x (y:ys) = if x > y then y: (insert x ys) else x:ys

-

Graph Rewriting II

sort [] = []
sort (x:xs) = insert x (sort xs)
insert x [] = [x]
insert x (y:ys) = if x > y then y: (insert x ys) else x:ys

• Application node of redex replaced by new node.

Graph Rewriting II

sort [] = []
sort (x:xs) = insert x (sort xs)
insert x [] = [x]
insert x (y:ys) = if x > y then y: (insert x ys) else x:ys

• Application node of redex replaced by new node.

Graph Rewriting III

- < ∃ →

Image: A math a math

Graph Rewriting III

sort [] = []
sort (x:xs) = insert x (sort xs)
insert x [] = [x]
insert x (y:ys) = if x > y then y: (insert x ys) else x:ys

3

Graph Rewriting III

The Trace

-2

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

- New nodes for right-hand-side, connected via result pointer.
- Only add to graph, never remove.
- Sharing ensures compact representation.

The Trace

- New nodes for right-hand-side, connected via result pointer.
- Only add to graph, never remove.
- Sharing ensures compact representation.

- New nodes for right-hand-side, connected via result pointer.
- Only add to graph, never remove.
- Sharing ensures compact representation.

The Node Labels

pointers instead of edges

Olaf Chitil and Yong Luo (Kent, UK)

31

イロト イポト イヨト イヨト

The Node Naming Scheme

Aim

- not distinguish isomorphic graphs
- avoid inconvenience of isomorphism classes

The Node Naming Scheme

Aim

- not distinguish isomorphic graphs
- avoid inconvenience of isomorphism classes

Solution

- standard representation with node describing path from root
- path at creation time (sharing later)
- path independent of evaluation order

Olaf Chitil and Yong Luo (Kent, UK)

Foundations for Tracing

The Node Naming Scheme II

- Reduction edge implicitly given through existence of node.
- Node encodes parent = top node of redex causing its creation:

```
parent(nt) = n

parent(nl) = parent(n)

parent(nr) = parent(n)

parent(\varepsilon) = undefined
```

• Easy to identify right-hand-side of rule: same parent.

Projections

- Reduction edge implicitly given through existence of node.
- Every redex should be parent of at least one node. (otherwise reduction unreachable from computation result)

Projections

- Reduction edge implicitly given through existence of node.
- Every redex should be parent of at least one node. (otherwise reduction unreachable from computation result)
- \Rightarrow A projection requires an indirection as result.

Projections

- Reduction edge implicitly given through existence of node.
- Every redex should be parent of at least one node. (otherwise reduction unreachable from computation result)
- \Rightarrow A projection requires an indirection as result.

A trace G for initial term M and program P is a partial function from nodes to term constructors, $G : n \mapsto T$, defined by

- The unshared graph representation of M, graph_G(ε , M), is a trace.
- If G is a trace and
 - L = R an equation of the program P,
 - σ a substitution replacing argument variables by nodes,
 - match_G $(n, L\sigma)$,
 - $nt \notin dom(G)$,

then $G \cup \operatorname{graph}_{G}(nt, R\sigma)$ is a trace.

No evaluation order is fixed.

Unshared Graph Representation

Definition

graph(n, a) =	$\{(n,a)\}$		
$graph(n,m) = \{(n,m)\}$			
graph(n, MN) =	$\{(n, MN)\}$, if M , N are nodes	
	$\{(n, M nr)\} \cup graph(nr, N)$, if only M is a node	
	$\left\{ (n, n N) \right\} \cup graph(n M)$, if only N is a node	
	$\left(\{ (n, nl nr) \} \cup graph(nl, M) \cup graph(nr) \right)$, N), otherwise	

Olaf Chitil and Yong Luo (Kent, UK)

26th April 2006 25 / 46

Matching

Matching a node with an instance of the left-hand-side of an equation.

Definition

$$\begin{split} \mathsf{match}_G(n,M) &= \mathsf{if}\ M\ \mathsf{is\ a\ node\ then\ } n = M\ \mathsf{else\ match}\mathsf{T}_G(\mathsf{last}_G(n),M) \\ \mathsf{match}\mathsf{T}_G(a,M) &= (a = M) \\ \mathsf{match}\mathsf{T}_G(n,M) &= \mathsf{match}\mathsf{T}_G(\mathsf{last}_G(n),M) \\ \mathsf{match}\mathsf{T}_G(n\,o,M) &= \exists N, O.\ (N\,O = M) \land \mathsf{match}_G(n,N) \land \mathsf{match}_G(o,O) \\ \mathsf{last}_G(n) &= \mathsf{if}\ n\mathsf{t} \in \mathsf{dom}(G)\ \mathsf{then\ } \mathsf{last}_G(n\mathsf{t})\ \mathsf{else\ } G(n) \end{split}$$

The Most Evaluated Form of a Node

A node represents many terms, in particular a most evaluated one.

 $mef_G(tr) = [] \\ mef_G(\varepsilon) = (:) \quad 't' \quad []$

Definition

 $mef_G(n) = mefT_G(last_G(n))$ $mefT_G(a) = a$ $mefT_G(n) = mef_G(n)$ $mefT_G(n m) = mef_G(n) mef_G(m)$

Redexes and Big-Step Reductions

$$bigstep_G(t) = insert 't' [] = (:) 't' []$$

Definition

For any redex node *n*, i.e., $nt \in dom(G)$ $redex_G(n) = \begin{cases} mef_G(m) mef_G(o) & \text{, if } G(n) = m o \\ a & \text{, if } G(n) = a \end{cases}$ bigstep_G(n) = $redex_G(n) = mef_G(n)$

Olaf Chitil and Yong Luo (Kent, UK)

- closed (no dangling nodes)
- odomain prefix-closed
- acyclic
- strongly confluent
- no application contains a node ending in t
- only a node ending in t can be an indirection
- if $n \in dom(G)$, then G(n) = n m
- if $nr \in dom(G)$, then G(n) = m nr
- if nt ∈ dom(G), then redex_G(n) = Lσ and reduct_G(n) = Rσ for some program equation L = R and substitution σ

Give non-inductive definition of ART based on properties?

Reduct of a Small Step Reduction

- Observation of Expressions and Functions
- Following Redex Trails
- Algorithmic Debugging

Observation of Expressions and Functions

Olaf Chitil and Yong Luo (Kent, UK)

Observation of function sort:

```
sort "sort" = "os"
sort "ort" = "o"
sort "rt" = "r"
sort "t" = "t"
sort "" = ""
```

Big step reductions of redex nodes.

Observation of function insert:

insert	's'	"o" = "os"
insert	's'	"" = "s"
insert	'o'	"r" = "o"
insert	'r'	"t" = "r"
insert	't'	"" = "t"

Following Redex Trails

Olaf Chitil and Yong Luo (Kent, UK)

・ロト ・回ト ・ 回ト

Output: ------os\n

Trail: ------ Insert.hs line: 10 col: 25 -----<- putStrLn "os"
<- insert 's' "o" | if True
<- insert 'o' "r" | if False
<- insert 'r' "t" | if False
<- insert 't' []
<- sort []</pre>

- Go backwards from observed failure to fault.
- Which redex created this expression?
- To prove: every reduction step reachable from final result.

= nar

Algorithmic Debugging

```
sort "sort" = "os"? n
insert 's' "o" = "os"? y
sort "ort" = "o"? n
insert 'o' "r" = "o"? n
Bug identified:
  "Insert.hs":8-9:
  insert x [] = [x]
  insert x (y:ys) = if x > y then y:(insert x ys) else x:ys
```

▲ □ ▶ ▲ □ ▶ ▲ □ ▶ □ ● ○ ○ ○

Olaf Chitil and Yong Luo (Kent, UK)

26th April 2006 39 / 46

-

- ∢ ≣ →

-

- ∢ ≣ →

Olaf Chitil and Yong Luo (Kent, UK)

26th April 2006 39 / 46

-

- ∢ ≣ →

Olaf Chitil and Yong Luo (Kent, UK)

26th April 2006 39 / 46

Olaf Chitil and Yong Luo (Kent, UK)

26th April 2006 39 / 46

Olaf Chitil and Yong Luo (Kent, UK)

26th April 2006 39 / 46

Olaf Chitil and Yong Luo (Kent, UK)

The ART and the Evaluation Dependency Tree

- Every redex node *n* yields a tree node *n* labelled $\operatorname{bigstep}_G(n)$.
- Tree node *n* is child of tree node parent(*n*).
- Usually root label bigstep_G(ε) = main = ...

Correctness of Algorithmic Debugging: The Property

If node n incorrect and all its children correct, then node n faulty, i.e., its equation is faulty.

If tree node *n* faulty, then for its program equation L = R exists substitution σ such that $L\sigma \cong_{I} R\sigma$.

Olaf Chitil and Yong Luo (Kent, UK)

Foundations for Tracing

26th April 2006 42 / 46

Correctness of Algorithmic Debugging: Main Theorem

Theorem

Let n be a redex node. If for all redex nodes m with parent(m) = n we have $redex_G(m) \cong_I mef_G(m)$, then $reduct_G(n) \cong_I mef_G(n)$.

With redex_G(n) \cong_{I} mef_G(n) follows redex_G(n) \cong_{I} reduct_G(n).

Correctness of Algorithmic Debugging: Proof

Proof.

Generalise property: Let $n \in \text{dom}(G)$. If for all redex nodes m with parent(m) = parent(n) we have $\text{redex}_G(m) \cong_{\mathsf{I}} \text{mef}_G(m)$, then $\text{reductB}_G(n) \cong_{\mathsf{I}} \text{mef}_G(n)$.

Induction over $hight_G(n) = max\{|o| \mid o \in \{I, r\}^* \land no \in dom(G)\}.$

- Still play with definitions.
- Extend model further:
 - Drop non-needed nodes from ART (unevaluated expressions).
 - Model run-time error with error value.
 - Allow local function definitions (\Rightarrow free variables).
 - Share reductions of constants (\Rightarrow cycles in graph).
 - Describe strict and mixed semantics.
- Prove further properties.

- Simple model amenable to proof.
- Contains a wealth of information about computation.
- Models real-world trace of Haskell tracer Hat.
- Proved correctness of algorithmic debugging.

