
Debugging and Tracing Functional Programs

Olaf Chitil

University of Kent, UK

5th December 2005

Olaf Chitil (University of Kent, UK) Debugging and Tracing Functional Programs 5th December 2005 1 / 45

Why We Need Tracing Tools and Methods

insert :: Ord a => a -> [a] -> [a]

insert x [] = [x]
insert x (y:ys) =

if x > y then y : insert x ys
else x : ys

sort :: Ord a => [a] -> [a]
sort [] = []
sort (x:xs) = insert x (sort xs)

main = getLine >>= putStrLn . sort

program

sample text alms

input computation output

Olaf Chitil (University of Kent, UK) Debugging and Tracing Functional Programs 5th December 2005 3 / 45

Why We Need Tracing Tools and Methods

insert :: Ord a => a -> [a] -> [a]

insert x [] = [x]
insert x (y:ys) =

if x > y then y : insert x ys
else x : ys

sort :: Ord a => [a] -> [a]
sort [] = []
sort (x:xs) = insert x (sort xs)

main = getLine >>= putStrLn . sort

program

sample text ? ? ? ? ? ? ? alms

input computation output

Presence of fault already established:
wrong output
run-time error
non-termination

Locate fault.
Comprehend programs.

Olaf Chitil (University of Kent, UK) Debugging and Tracing Functional Programs 5th December 2005 3 / 45

Conventional Tracing Tools and Methods

A stepping debugger such as DDD

The print method

Add print statements to program.
Olaf Chitil (University of Kent, UK) Debugging and Tracing Functional Programs 5th December 2005 4 / 45

Properties of Conventional Tracing Tools and Methods

Show at a point in time in computation a part of computation state.

Based on one (operational) execution model.

program counter
state
stack

Computation is a sequence (in time) of states.

Forward stepping of limited value:

Fault often only noticed long after executing faulty program part.

Olaf Chitil (University of Kent, UK) Debugging and Tracing Functional Programs 5th December 2005 5 / 45

Properties of Functional and Logic Programming

Languages

No canonical execution model.

various reduction semantics (small step, big step)
interpreters with environments (explicit substitutions)
also denotational semantics

No sequential execution of statements.

evaluation of expressions
evaluation of subexpressions is independent
f (g 3 4) (h 1 2) (i 5) (j 3 9 3)

Olaf Chitil (University of Kent, UK) Debugging and Tracing Functional Programs 5th December 2005 6 / 45

Properties of Functional and Logic Programming

Languages

No canonical execution model.

various reduction semantics (small step, big step)
interpreters with environments (explicit substitutions)
also denotational semantics

No sequential execution of statements.

evaluation of expressions
evaluation of subexpressions is independent
f (g 3 4) (h 1 2) (i 5) (j 3 9 3)

Conclusions for Tracing

Many semantic models as potential basis for tracing.

Take advantage of simple and compositional semantics.

Freedom from sequentiality of computation.

Olaf Chitil (University of Kent, UK) Debugging and Tracing Functional Programs 5th December 2005 6 / 45

Lazy Functional Programming Languages

elem :: Int -> [Int] -> Bool

elem x xs = or (map (==x) xs)

elem 42 [1..]

Olaf Chitil (University of Kent, UK) Debugging and Tracing Functional Programs 5th December 2005 8 / 45

Lazy Functional Programming Languages

elem :: Int -> [Int] -> Bool

elem x xs = or (map (==x) xs)

elem 42 [1..]

 or (map (== 42) [1..])

Olaf Chitil (University of Kent, UK) Debugging and Tracing Functional Programs 5th December 2005 8 / 45

Lazy Functional Programming Languages

elem :: Int -> [Int] -> Bool

elem x xs = or (map (==x) xs)

elem 42 [1..]

 or (map (== 42) [1..])

 or (map (== 42) (1:[2..]))

Olaf Chitil (University of Kent, UK) Debugging and Tracing Functional Programs 5th December 2005 8 / 45

Lazy Functional Programming Languages

elem :: Int -> [Int] -> Bool

elem x xs = or (map (==x) xs)

elem 42 [1..]

 or (map (== 42) [1..])

 or (map (== 42) (1:[2..]))

 or (False : map (== 42) [2..])

Olaf Chitil (University of Kent, UK) Debugging and Tracing Functional Programs 5th December 2005 8 / 45

Lazy Functional Programming Languages

elem :: Int -> [Int] -> Bool

elem x xs = or (map (==x) xs)

elem 42 [1..]

 or (map (== 42) [1..])

 or (map (== 42) (1:[2..]))

 or (False : map (== 42) [2..])

 or (map (== 42) [2..])

Olaf Chitil (University of Kent, UK) Debugging and Tracing Functional Programs 5th December 2005 8 / 45

Lazy Functional Programming Languages

elem :: Int -> [Int] -> Bool

elem x xs = or (map (==x) xs)

elem 42 [1..]

 or (map (== 42) [1..])

 or (map (== 42) (1:[2..]))

 or (False : map (== 42) [2..])

 or (map (== 42) [2..])
...

...

 True

Olaf Chitil (University of Kent, UK) Debugging and Tracing Functional Programs 5th December 2005 8 / 45

Lazy Functional Programming Languages

elem :: Int -> [Int] -> Bool

elem x xs = or (map (==x) xs)

elem 42 [1..]

 or (map (== 42) [1..])

 or (map (== 42) (1:[2..]))

 or (False : map (== 42) [2..])

 or (map (== 42) [2..])
...

...

 True

Complex execution model:

Complex evaluation order.

Unevaluated subexpressions large and hard to read.

Run-time stack unrelated to static function call structure.

Olaf Chitil (University of Kent, UK) Debugging and Tracing Functional Programs 5th December 2005 8 / 45

Naive Printing in Haskell

Impure function traceShow :: String -> Int -> Int

insert :: Int -> [Int] -> [Int]

insert x [] = [x]

insert x (y:ys) =

if x > y then y : (traceShow ">" (insert x ys))

else x:y:ys

main = print (take 5 (insert 4 [1..]))

Output:

[1>[2>[3>[4,4,5,6,7,8,9,10,11,. . .

output mixed up

non-termination ⇒ observation changes behaviour

Olaf Chitil (University of Kent, UK) Debugging and Tracing Functional Programs 5th December 2005 10 / 45

Outline

1 Two-Phase Tracing
2 Views of Computation

Observation of Functions
Algorithmic Debugging
Source-based Free Navigation
Program Slicing
Call Stack
Redex Trails
Animation
. . .

Trusting
New Views

3 A Theory of Tracing

4 Summary

Olaf Chitil (University of Kent, UK) Debugging and Tracing Functional Programs 5th December 2005 11 / 45

Two-Phase Tracing

input output

computation trace view

︸ ︷︷ ︸

1

︸ ︷︷ ︸

2

Liberates from time arrow of computation.

Olaf Chitil (University of Kent, UK) Debugging and Tracing Functional Programs 5th December 2005 12 / 45

Two-Phase Tracing

input output

computation trace view

︸ ︷︷ ︸

1

︸ ︷︷ ︸

2

Liberates from time arrow of computation.

Trace stored in

Memory.

File.

Generated on demand by
reexecution.

Olaf Chitil (University of Kent, UK) Debugging and Tracing Functional Programs 5th December 2005 12 / 45

Two-Phase Tracing

input output

computation trace view

︸ ︷︷ ︸

1

︸ ︷︷ ︸

2

Liberates from time arrow of computation.

Trace stored in

Memory.

File.

Generated on demand by
reexecution.

Trace Generation

Program annotations + library.

Program transformation.

Modified abstract machine.

Olaf Chitil (University of Kent, UK) Debugging and Tracing Functional Programs 5th December 2005 12 / 45

Hat

Multi-View Tracer

Hat-Observe

input output Hat-Detect

computation trace Hat-Explore

Hat-Trail

. . .

For Haskell 98 + some extensions.

Developed by Colin Runciman, Jan Sparud, Malcolm Wallace, Olaf
Chitil, Thorsten Brehm, Tom Davie, Tom Shackell, . . .

Olaf Chitil (University of Kent, UK) Debugging and Tracing Functional Programs 5th December 2005 13 / 45

Faulty Insertion Sort

main = putStrLn (sort "sort")

sort :: Ord a => [a] -> [a]

sort [] = []

sort (x:xs) = insert x (sort xs)

insert :: Ord a => a -> [a] -> [a]

insert x [] = [x]

insert x (y:ys) = if x > y then y : (insert x ys) else x : ys

Output:

os

Olaf Chitil (University of Kent, UK) Debugging and Tracing Functional Programs 5th December 2005 15 / 45

Observation of Expressions and Functions

Olaf Chitil (University of Kent, UK) Debugging and Tracing Functional Programs 5th December 2005 17 / 45

Observation of Expressions and Functions

Observation of function sort:

sort "sort" = "os"

sort "ort" = "o"

sort "rt" = "r"

sort "t" = "t"

sort "" = ""

Observation of function insert:

insert ’s’ "o" = "os"

insert ’s’ "" = "s"

insert ’o’ "r" = "o"

insert ’r’ "t" = "r"

insert ’t’ "" = "t"

Olaf Chitil (University of Kent, UK) Debugging and Tracing Functional Programs 5th December 2005 17 / 45

Observation of Expressions and Functions

Haskell Object Observation Debugger (Hood) by Andy Gill.

A library.
Programmer annotates expressions of interest.
Annotated expressions are traced during computation.
The print method for the lazy functional programmer.

Observation of functions most useful.

Relates to denotational semantics.

insert 3 (1:2:3:4:_) = 1:2:3:4:_

insert 3 (2:3:4:_) = 2:3:4:_

insert 3 (3:4:_) = 3:4:_

Olaf Chitil (University of Kent, UK) Debugging and Tracing Functional Programs 5th December 2005 19 / 45

Algorithmic Debugging

Olaf Chitil (University of Kent, UK) Debugging and Tracing Functional Programs 5th December 2005 21 / 45

Algorithmic Debugging

sort "sort" == "os"

n

insert ’s’ "o" == "os"

y

sort "ort" == "o"

n

insert ’o’ "r" == "o"

n

Bug identified:

"Insert.hs":8-9:

insert x [] = [x]

insert x (y:ys) = if x > y then y:(insert x ys) else x:ys

Olaf Chitil (University of Kent, UK) Debugging and Tracing Functional Programs 5th December 2005 21 / 45

The Evaluation Dependency Tree

main = {IO}

sort "sort" = "os" putStrLn "os" = {IO}

sort "ort" = "o" insert ’s’ "o" = "os"

’s’ > ’o’ = True insert ’s’ "" = "s"

sort "rt" = "r" insert ’o’ "r" = "o"

sort "t" = "t" insert ’r’ "t" = "r" ’o’ > ’r’ = False

sort "" = "" insert ’t’ "" = "t" ’r’ > ’t’ = False

Olaf Chitil (University of Kent, UK) Debugging and Tracing Functional Programs 5th December 2005 23 / 45

The Evaluation Dependency Tree

main = {IO}

sort "sort" = "os" putStrLn "os" = {IO}

sort "ort" = "o" insert ’s’ "o" = "os"

’s’ > ’o’ = True insert ’s’ "" = "s"

sort "rt" = "r" insert ’o’ "r" = "o"

sort "t" = "t" insert ’r’ "t" = "r" ’o’ > ’r’ = False

sort "" = "" insert ’t’ "" = "t" ’r’ > ’t’ = False

Olaf Chitil (University of Kent, UK) Debugging and Tracing Functional Programs 5th December 2005 23 / 45

The Evaluation Dependency Tree

main = {IO}

sort "sort" = "os" × putStrLn "os" = {IO}

sort "ort" = "o" insert ’s’ "o" = "os"

’s’ > ’o’ = True insert ’s’ "" = "s"

sort "rt" = "r" insert ’o’ "r" = "o"

sort "t" = "t" insert ’r’ "t" = "r" ’o’ > ’r’ = False

sort "" = "" insert ’t’ "" = "t" ’r’ > ’t’ = False

Olaf Chitil (University of Kent, UK) Debugging and Tracing Functional Programs 5th December 2005 23 / 45

The Evaluation Dependency Tree

main = {IO}

sort "sort" = "os" × putStrLn "os" = {IO}

sort "ort" = "o" insert ’s’ "o" = "os"
√

’s’ > ’o’ = True insert ’s’ "" = "s"

sort "rt" = "r" insert ’o’ "r" = "o"

sort "t" = "t" insert ’r’ "t" = "r" ’o’ > ’r’ = False

sort "" = "" insert ’t’ "" = "t" ’r’ > ’t’ = False

Olaf Chitil (University of Kent, UK) Debugging and Tracing Functional Programs 5th December 2005 23 / 45

The Evaluation Dependency Tree

main = {IO}

sort "sort" = "os" × putStrLn "os" = {IO}

sort "ort" = "o" × insert ’s’ "o" = "os"
√

’s’ > ’o’ = True insert ’s’ "" = "s"

sort "rt" = "r" insert ’o’ "r" = "o"

sort "t" = "t" insert ’r’ "t" = "r" ’o’ > ’r’ = False

sort "" = "" insert ’t’ "" = "t" ’r’ > ’t’ = False

Olaf Chitil (University of Kent, UK) Debugging and Tracing Functional Programs 5th December 2005 23 / 45

The Evaluation Dependency Tree

main = {IO}

sort "sort" = "os" × putStrLn "os" = {IO}

sort "ort" = "o" × insert ’s’ "o" = "os"
√

’s’ > ’o’ = True insert ’s’ "" = "s"

sort "rt" = "r" insert ’o’ "r" = "o" ×

sort "t" = "t" insert ’r’ "t" = "r" ’o’ > ’r’ = False

sort "" = "" insert ’t’ "" = "t" ’r’ > ’t’ = False

Olaf Chitil (University of Kent, UK) Debugging and Tracing Functional Programs 5th December 2005 23 / 45

The Evaluation Dependency Tree

main = {IO}

sort "sort" = "os" × putStrLn "os" = {IO}

sort "ort" = "o" × insert ’s’ "o" = "os"
√

’s’ > ’o’ = True insert ’s’ "" = "s"

sort "rt" = "r" insert ’o’ "r" = "o" ×

sort "t" = "t" insert ’r’ "t" = "r" ’o’ > ’r’ = False
√

sort "" = "" insert ’t’ "" = "t" ’r’ > ’t’ = False

Olaf Chitil (University of Kent, UK) Debugging and Tracing Functional Programs 5th December 2005 23 / 45

Algorithmic Debugging

Shapiro for Prolog, 1983.

Henrik Nilsson’s Freija for lazy functional language, 1998.

Bernie Pope’s Buddha for Haskell, 2003.

Correctness of tree node according to intended semantics.

Incorrect node whose children are all correct is faulty.

Each node relates to (part of) a function definition.

Relates to natural, big-step semantics.

Olaf Chitil (University of Kent, UK) Debugging and Tracing Functional Programs 5th December 2005 24 / 45

Source-based Free Navigation and Program Slicing

Olaf Chitil (University of Kent, UK) Debugging and Tracing Functional Programs 5th December 2005 26 / 45

Source-based Free Navigation and Program Slicing

==== Hat-Explore 2.00 ==== Call 2/2 =======================

1. main = {IO}
2. sort "sort" = "os"

3. sort "ort" = "o"

---- Insert.hs ---- lines 5 to 10 -------------------------

if x > y then y : insert x ys

else x : ys

sort :: [Char] -> [Char]

sort [] = []

sort (x:xs) = insert x (sort xs)

Olaf Chitil (University of Kent, UK) Debugging and Tracing Functional Programs 5th December 2005 26 / 45

Call Stack

Program terminated with error:

No match in pattern.

Virtual stack trace:

(Last.hs:6) last’ []

(Last.hs:6) last’ [_]

(Last.hs:6) last’ [_,_]

(Last.hs:4) last’ [8,_,_]

(unknown) main

Olaf Chitil (University of Kent, UK) Debugging and Tracing Functional Programs 5th December 2005 28 / 45

Redex Trails

Olaf Chitil (University of Kent, UK) Debugging and Tracing Functional Programs 5th December 2005 30 / 45

Redex Trails

Output: --

os\n

Trail: ------- Insert.hs line: 10 col: 25 ------------------

<- putStrLn "os"

<- insert ’s’ "o" | if True

<- insert ’o’ "r" | if False

<- insert ’r’ "t" | if False

<- insert ’t’ []

<- sort []

Olaf Chitil (University of Kent, UK) Debugging and Tracing Functional Programs 5th December 2005 30 / 45

Redex Trails

Colin Runciman and Jan Sparud, 1997.

Go backwards from observed failure to fault.

Which redex created this expression?

Based on graph rewriting semantics of abstract machine.

Olaf Chitil (University of Kent, UK) Debugging and Tracing Functional Programs 5th December 2005 31 / 45

Animation of Lazy Evaluation

Output: --

Animation: ---

-> sort "sort"

-> insert ’s’ (sort "ort")

-> insert ’s’ (insert ’o’ (sort "rt"))

-> insert ’s’ (insert ’o’ (insert ’r’ (sort "t")))

-> insert ’s’ (insert ’o’ (insert ’r’ "t"))

-> "os"

Olaf Chitil (University of Kent, UK) Debugging and Tracing Functional Programs 5th December 2005 33 / 45

Trusting

Trust a module: Do not trace functions in module.

Smaller trace file.

Avoid viewing distracting details.
4 + 7 = 11

Olaf Chitil (University of Kent, UK) Debugging and Tracing Functional Programs 5th December 2005 34 / 45

Trusting

Trust a module: Do not trace functions in module.

Smaller trace file.

Avoid viewing distracting details.
4 + 7 = 11

A trusted function may call a non-trusted function:

map prime [2,3,4,5] = [True,True,False,True]

Olaf Chitil (University of Kent, UK) Debugging and Tracing Functional Programs 5th December 2005 34 / 45

Trusting

Trust a module: Do not trace functions in module.

Smaller trace file.

Avoid viewing distracting details.
4 + 7 = 11

A trusted function may call a non-trusted function:

map prime [2,3,4,5] = [True,True,False,True]

In future?

View-time trusting.

Trusting of local definitions.

Olaf Chitil (University of Kent, UK) Debugging and Tracing Functional Programs 5th December 2005 34 / 45

New Views

New Ideas

Follow a value through computation.

Olaf Chitil (University of Kent, UK) Debugging and Tracing Functional Programs 5th December 2005 35 / 45

New Views

New Ideas

Follow a value through computation.

Combining Existing Views

Can easily switch from one view to another.

All-in-one tool = egg-laying wool-milk-sow?

Exploring combination of algorithmic debugging and redex trails.

Olaf Chitil (University of Kent, UK) Debugging and Tracing Functional Programs 5th December 2005 35 / 45

New Views

New Ideas

Follow a value through computation.

Combining Existing Views

Can easily switch from one view to another.

All-in-one tool = egg-laying wool-milk-sow?

Exploring combination of algorithmic debugging and redex trails.

Refining Existing Views
Algorithmic Debugging:

Different Tree-Traversal Strategies.

Heuristics.

Olaf Chitil (University of Kent, UK) Debugging and Tracing Functional Programs 5th December 2005 35 / 45

Why a Theory of Tracing?

Implementations of tracing tools ahead of theoretical results.

Correctness of tools?

Clear methodology for using them?

Development of advanced features?

Olaf Chitil (University of Kent, UK) Debugging and Tracing Functional Programs 5th December 2005 36 / 45

What is a Good Trace?

Program + input determine every detail of computation.

Olaf Chitil (University of Kent, UK) Debugging and Tracing Functional Programs 5th December 2005 37 / 45

What is a Good Trace?

Program + input determine every detail of computation.
⇒ Trace gives efficient access to certain details of computation.

Olaf Chitil (University of Kent, UK) Debugging and Tracing Functional Programs 5th December 2005 37 / 45

What is a Good Trace?

Program + input determine every detail of computation.
⇒ Trace gives efficient access to certain details of computation.

What is a computation? Semantics answers:

Term rewriting: A sequence of expressions.
t1 → t2 → t3 → t4 → t5 → . . . → tn

Natural semantics: A proof tree.

Olaf Chitil (University of Kent, UK) Debugging and Tracing Functional Programs 5th December 2005 37 / 45

Graph Rewriting I

sort (’t’:[]) •

’t’:

[]• •

• •sort

• •

sort [] = []

sort (x:xs) = insert x (sort xs)

Olaf Chitil (University of Kent, UK) Debugging and Tracing Functional Programs 5th December 2005 39 / 45

Graph Rewriting I

•

’t’:

[]• •

• •sort

• •

sort

• •

insert

• •

• •

→

sort [] = []

sort (x:xs) = insert x (sort xs)

Create new nodes for right-hand-side.

Nodes of subexpressions are shared.

Olaf Chitil (University of Kent, UK) Debugging and Tracing Functional Programs 5th December 2005 39 / 45

Graph Rewriting I

•

’t’

[] sort

• •

insert

• •

• •

→

sort [] = []

sort (x:xs) = insert x (sort xs)

Create new nodes for right-hand-side.

Nodes of subexpressions are shared.

Some old nodes become garbage.

Olaf Chitil (University of Kent, UK) Debugging and Tracing Functional Programs 5th December 2005 39 / 45

Graph Rewriting II

•

’t’ []sort

• •

insert

• •

• •

sort [] = []

sort (x:xs) = insert x (sort xs)

insert x [] = [x]

insert x (y:ys) = if x > y then y : (insert x ys) else x : ys

Olaf Chitil (University of Kent, UK) Debugging and Tracing Functional Programs 5th December 2005 41 / 45

Graph Rewriting II

•

’t’ []sort

• •

insert

• • → []

• •

sort [] = []

sort (x:xs) = insert x (sort xs)

insert x [] = [x]

insert x (y:ys) = if x > y then y : (insert x ys) else x : ys

Application node of redex replaced by new node.

Olaf Chitil (University of Kent, UK) Debugging and Tracing Functional Programs 5th December 2005 41 / 45

Graph Rewriting II

•

’t’insert

• • []

• •

sort [] = []

sort (x:xs) = insert x (sort xs)

insert x [] = [x]

insert x (y:ys) = if x > y then y : (insert x ys) else x : ys

Application node of redex replaced by new node.

Olaf Chitil (University of Kent, UK) Debugging and Tracing Functional Programs 5th December 2005 41 / 45

Graph Rewriting III

•

’t’

[]

insert

• •

• •

sort [] = []

sort (x:xs) = insert x (sort xs)

insert x [] = [x]

insert x (y:ys) = if x > y then y : (insert x ys) else x : ys

Olaf Chitil (University of Kent, UK) Debugging and Tracing Functional Programs 5th December 2005 43 / 45

Graph Rewriting III

•

’t’

[]

insert

• •

• •
→

:

• • []

• •

sort [] = []

sort (x:xs) = insert x (sort xs)

insert x [] = [x]

insert x (y:ys) = if x > y then y : (insert x ys) else x : ys

Olaf Chitil (University of Kent, UK) Debugging and Tracing Functional Programs 5th December 2005 43 / 45

Graph Rewriting III

•

’t’ :

• • []

• •

sort [] = []

sort (x:xs) = insert x (sort xs)

insert x [] = [x]

insert x (y:ys) = if x > y then y : (insert x ys) else x : ys

Olaf Chitil (University of Kent, UK) Debugging and Tracing Functional Programs 5th December 2005 43 / 45

The Trace

•

’t’:

[]• •

• •sort

• •

Olaf Chitil (University of Kent, UK) Debugging and Tracing Functional Programs 5th December 2005 44 / 45

The Trace

•

’t’:

[]• •

• •sort

• •

sort

• •

insert

• •

• •

New nodes for right-hand-side, connected via result pointer.

Olaf Chitil (University of Kent, UK) Debugging and Tracing Functional Programs 5th December 2005 44 / 45

The Trace

•

’t’:

[]• •

• •sort

• •

sort

• •

insert

• •

• •

[]

New nodes for right-hand-side, connected via result pointer.

Olaf Chitil (University of Kent, UK) Debugging and Tracing Functional Programs 5th December 2005 44 / 45

The Trace

•

’t’:

[]• •

• •sort

• •

sort

• •

insert

• •

• •

[]

:

• • []

• •

New nodes for right-hand-side, connected via result pointer.

Olaf Chitil (University of Kent, UK) Debugging and Tracing Functional Programs 5th December 2005 44 / 45

The Trace

•

trlr

’t’
trll

:

trr

[]
trl

• •

tr

• •
tl

sort

t

• •

ttrl

sort

ttr

• •
ttll

insert

ttl

• •

tt

• •
ttrt

[]

tttll

:

tttl

• •
tttr

[]

ttt

• •

New nodes for right-hand-side, connected via result pointer.

Unique node names

Node names independent of evaluation strategy.
No graph isomorphism needed.
Node name encodes history (parent redex, also reduct).

Olaf Chitil (University of Kent, UK) Debugging and Tracing Functional Programs 5th December 2005 44 / 45

Summary

Two-Phase Tracing.
input output

computation trace view

︸ ︷︷ ︸

1

︸ ︷︷ ︸

2

Liberates from time arrow of computation.
There exist many useful different views of a computation.

Observation of Functions
Algorithmic Debugging
Source-based Free Navigation
Redex Trails
. . .

Semantics.
Inspire views.
Enable formulation and proof of properties.
But do not answer all questions.

Still much to explore.

Olaf Chitil (University of Kent, UK) Debugging and Tracing Functional Programs 5th December 2005 45 / 45

