Towards a Theory of Tracing for Functional Programs

based on Graph Rewriting

Olaf Chitil and Yong Luo

University of Kent, UK
Supported by EPSRC grant EP/C516605/1

1st April 2006

Olaf Chitil and Yong Luo (Kent, UK) A Theory of Tracing 1st April 2006 1/27

Tracing Functional Programs

Why Tracing?
@ Locate a fault (wrong output, run-time error, non-termination).
@ Comprehend a program.

Two-Phase Tracing: A trace as data structure

input output
1 2

@ Liberates from time arrow of computation.

@ Enables views based on different execution models.
(small-step, big-step, interpreter with environment, denotational)

@ Enables compositional views.

Olaf Chitil and Yong Luo (Kent, UK) A Theory of Tracing 1st April 2006

The Haskell Tracer Hat (www.haskell.org/hat)

@ Multi-View Tracer

Hat-Observe

input output /Hat—Detect
\ Hat-Trail

@ Trace = Augmented Redex Trail (ART); distilled as unified trace.

Aim: A theoretical model of the ART.

Olaf Chitil and Yong Luo (Kent, UK) A Theory of Tracing 1st April 2006 3/27

The Programming Language

Launchbury's and related semantics
@ Subset of A-calculus plus case for matching.
@ Any program can be translated into this core calculus.

For tracing
@ Close relationship between trace and original program essential.
@ Language has most frequently used features:

@ named functions
@ pattern matching

Olaf Chitil and Yong Luo (Kent, UK) A Theory of Tracing 1st April 2006

The Programming Language

Launchbury's and related semantics
@ Subset of A-calculus plus case for matching.
@ Any program can be translated into this core calculus.

For tracing

@ Close relationship between trace and original program essential.
@ Language has most frequently used features:

@ named functions
@ pattern matching

= Higher-order term rewriting system

sort [1 = []
sort (x:xs)

insert x (sort xs)

insert x [] = [x]
insert x (y:ys) = if x > y then y: (insert x ys) else x:ys

Olaf Chitil and Yong Luo (Kent, UK) A Theory of Tracing 1st April 2006 5/27

Graph Rewriting |

sort (°t’:[1) -

25

= =

/Q%@

O &>

sort [1 = []
sort (x:xs) = insert x (sort xs)

Olaf Chitil and Yong Luo (Kent, UK) A Theory of Tracing 1st April 2006 7 /27

Graph Rewriting |

\

- G G
/@@ Gimsert KEor
O CD

sort [1 = []
sort (x:xs) = insert x (sort xs)

@ Create new nodes for right-hand-side.
@ Nodes of subexpressions are shared.

Olaf Chitil and Yong Luo (Kent, UK) A Theory of Tracing 1st April 2006 7 /27

Graph Rewriting |

\

- G o
OE=DICSD
CtD

sort [1 = []
sort (x:xs) = insert x (sort xs)

@ Create new nodes for right-hand-side.
@ Nodes of subexpressions are shared.
@ Some old nodes become garbage.

Olaf Chitil and Yong Luo (Kent, UK) A Theory of Tracing 1st April 2006 7 /27

Graph Rewriting Il

—
=

oo @b

sort [1 = []
sort (x:xs) = insert x (sort xs)

insert x [] [x]
insert x (y:ys) = if x > y then y: (insert x ys) else x:ys

Olaf Chitil and Yong Luo (Kent, UK) A Theory of Tracing 1st April 2006 9 /27

Graph Rewriting Il

sort [1 = []
sort (x:xs) = insert x (sort xs)

insert x [1 = [x]
insert x (y:ys) = if x > y then y: (insert x ys) else x:ys

@ Application node of redex replaced by new node.

Olaf Chitil and Yong Luo (Kent, UK) A Theory of Tracing 1st April 2006 9 /27

Graph Rewriting Il

= S

Gasers> D

sort [1 = []
sort (x:xs) = insert x (sort xs)

insert x [1 = [x]
insert x (y:ys) = if x > y then y: (insert x ys) else x:ys

@ Application node of redex replaced by new node.

Olaf Chitil and Yong Luo (Kent, UK) A Theory of Tracing 1st April 2006 9 /27

/
A
SEC
CD

sort [] = []
sort (x:xs)

insert x (sort xs)

insert x [1 = [x]
insert x (y:ys) = if x > y then y: (insert x ys) else x:ys

Olaf Chitil and Yong Luo (Kent, UK) A Theory of Tracing 1st April 2006 11 /27

Graph Rewriting Il

P\@ . ??@
@\E

sort [] = []
sort (x:xs) = insert x (sort xs)

insert x [1 = [x]
insert x (y:ys) = if x > y then y: (insert x ys) else x:ys

Olaf Chitil and Yong Luo (Kent, UK) A Theory of Tracing 1st April 2006 11 /27

Graph Rewriting Il

®
) ©

sort [] = []
sort (x:xs)

insert x (sort xs)

insert x [1 = [x]
insert x (y:ys) = if x > y then y: (insert x ys) else x:ys

Olaf Chitil and Yong Luo (Kent, UK) A Theory of Tracing 1st April 2006 11 /27

The Trace

Olaf Chitil and Yong Luo (Ken A Theory of Tracing 1st April 2006 12 /27

@ New nodes for right-hand-side, connected via result pointer.
@ Only add to graph, never remove.

@ Sharing ensures compact representation.

Olaf Chitil and Yong Luo (Kent, UK) A Theory of Tracing 1st April 2006 12 /27

@ New nodes for right-hand-side, connected via result pointer.
@ Only add to graph, never remove.

@ Sharing ensures compact representation.

Olaf Chitil and Yong Luo (Kent, UK) A Theory of Tracing 1st April 2006 12 /27

= = 7

@ New nodes for right-hand-side, connected via result pointer.
@ Only add to graph, never remove.

@ Sharing ensures compact representation.

Olaf Chitil and Yong Luo (Kent, UK) A Theory of Tracing 1st April 2006 12 /

The Node Labels

term constructor T = a atom
| nm application of nodes
atom a = x| C|42]|... variable, data constructor

atomic literal, ...

@ pointers instead of edges

e
True && x = x
not True = False R Q

Olaf Chitil and Yong Luo (Kent, UK) A Theory of Tracing 1st April 2006 14 /27

The Node Labels

term constructor T = a atom
| nm application of nodes
| n indirection
atom a = x| C|42]|... variable, data constructor

atomic literal, ...

@ pointers instead of edges
@ a projection requires an indirection as result

(oo °

True && x = x
not True = False

< &

Olaf Chitil and Yong Luo (Kent, UK) A Theory of Tracing 1st April 2006 14 /27

The Node Labels

term constructor T = a atom
| nm application of nodes
| n indirection
atom a = x| C|42]|... variable, data constructor

atomic literal, ...

@ pointers instead of edges
@ a projection requires an indirection as result

(oo
True && x = x

{
not True = False ﬁ% Q @

Olaf Chitil and Yong Luo (Kent, UK) A Theory of Tracing 1st April 2006 14 /27

The Node Naming Scheme
R R

Aim
@ not distinguish isomorphic graphs
@ avoid inconvenience of isomorphism classes

Olaf Chitil and Yong Luo (Kent, UK) A Theory of Tracing 1st April 2006 15 / 27

The Node Naming Scheme

\6

Aim
@ not distinguish isomorphic graphs
@ avoid inconvenience of isomorphism classes
Solution
@ standard representation with node describing path from root
@ path at creation time (sharing later)
@ path independent of evaluation order

Olaf Chitil and Yong Luo (Kent, UK) A Theory of Tracing 1st April 2006 15 / 27

The Node Naming Scheme |l

~€ tt

Ce 2D

@ Reduction edge implicitly given through existence of node.
@ Node encodes parent; parent = top node of redex causing its

creation: parent(nt) = n

parent(nl) = parent(n)
parent(nr) = parent(n)
parent(e) = undefined

@ Easy to identify right-hand-side of rule: same parent.

Olaf Chitil and Yong Luo (Kent, UK) A Theory of Tracing 1st April 2006

The Augmented Redex Trail (ART)

An ART G for start term M, program P and semantics = is a partial
function from nodes to term constructors, G : n+— T, defined by

@ The unshared graph representation of M is an ART.
o If G isan ART and

o L = R an equation of the program P,

@ 0 a substitution replacing the variables of the equation by nodes not
ending in t,

n € dom(G) represents Lo,

nt ¢ dom(G),

G’ is the unshared graph representation of Ro,

Lo = Ro

then G U G’ is an ART.

¢ & ¢ ¢

Evaluation order is not fixed.

Olaf Chitil and Yong Luo (Kent, UK) A Theory of Tracing 1st April 2006 17 / 27

A Reduction Step

If G is an ART and
@ L = R an equation of the program P,

@ 0 a substitution replacing the variables of the equation by nodes not
ending in t,

n € dom(G) represents Lo,

nt ¢ dom(G),

G’ is the unshared graph representation of Ro,
@ Lo ZRo

then G U G’ is an ART.

T
True && x = x | /QD\r
not True = False @ @\
r

e © ©

Olaf Chitil and Yong Luo (Kent, UK) A Theory of Tracing 1st April 2006 19 / 27

A Reduction Step

If G is an ART and
@ L = R an equation of the program P,

@ 0 a substitution replacing the variables of the equation by nodes not
ending in t,

n € dom(G) represents Lo,

nt ¢ dom(G),

G’ is the unshared graph representation of Ro,
@ Lo ZRo

then G U G’ is an ART.

T
True && x = x | /QD\r "
not True = False @ %
|

e © ©

Olaf Chitil and Yong Luo (Kent, UK) A Theory of Tracing 1st April 2006 19 / 27

A Reduction Step

If G is an ART and
@ L = R an equation of the program P,
@ 0 a substitution replacing the variables of the equation by nodes not
ending in t,
n € dom(G) represents Lo,
nt ¢ dom(G),
G’ is the unshared graph representation of Ro,
@ Lo ZRo
then G U G’ is an ART.

e © ©

—

True && x = x | P\ /O

not True = False @ %
Ir

Olaf Chitil and Yong Luo (Kent, UK) A Theory of Tracing 1st April 2006 19 / 27

Properties of the ART

closed (no dangling nodes)

domain prefix-closed

no term constructor contains node ending in t

only a node ending in t can be an indirection

if nl € dom(G), then G(n) = nlm

if nr € dom(G), then G(n) = mnr

if nt € dom(G), then n and nt represent a reduction step
acyclic

subcommutative

®© © 6 ¢ 6 6 6 ¢ ¢ ¢

Give non-inductive definition of ART based on properties?

Olaf Chitil and Yong Luo (Kent, UK) A Theory of Tracing 1st April 2006

e ART: Algorithmic Debugging

sort "sort" = "os"? n
insert ’s’ "o" = "os"? y
sort "ort" = "o"? n
insert o’ "r" = "o"? n

Bug identified:
"Insert.hs":8-9:
insert x [] = [x]

insert x (y:ys) = if x > y then y:(insert x ys) else x:ys

Olaf Chitil and Yong Luo (Kent, UK) A Theory of Tracing

The Evaluation Dependency Tree

main = {IO}

sort "sort" =

IIOSII

putStrLn "os" = {IO0}

sort "ort" = "o" insert ’s’ "o" = "os"
’s? > 0’ = True insert ’s’ "" = "g"
Sort Ilrt n = Ilrll lnsert) o) Ilrll = lloll
[
SOI't lltll = lltll insert)r) lltll = llrll 7o) > 7r) = False
/
SOI‘t nn = nn insert) t) nn =

"t"||’r> > ’t’ = False

Olaf Chitil and Yong Luo (Kent, UK)

A Theory of Tracing

1st April 2006 24 /27

The Evaluation Dependency Tree

main = {IO}

sort "sort" =

IIOSII

putStrLn "os" = {IO0}

sort "ort" = "o" insert ’s’ "o" = "os"
’s? > 0’ = True insert ’s’ "" = "g"
Sort Ilrt n = Ilrll lnsert) o) Ilrll = lloll
[
SOI't lltll = lltll insert)r) lltll = llrll 7o) > 7r) = False
/
SOI‘t nn = nn insert) t) nn =

"t"||’r> > ’t’ = False

Olaf Chitil and Yong Luo (Kent, UK)

A Theory of Tracing

1st April 2006 24 /27

The Evaluation Dependency Tree

main = {IO}

sort "sort" =

os"| x putStrLn "os" = {IO0}

sort "ort" = "o" insert ’s’ "o" = "os"
’s? > 0’ = True insert ’s’ "" = "g"
sort "rt" = "r insert ’o0’ "r" = "o"
[
SOI't lltll = lltll insert)r) lltll = llrll 707 > 7r) = False
/
SOI‘t nn = nn insert) t 2 nn =

"t")r) > Jt)

Olaf Chitil and Yong Luo (Kent, UK)

A Theory of Tracing

1st April 2006 24 /27

The Evaluation Dependency Tree

main = {IO}

sort "sort" =

os"| x putStrLn "os" = {IO0}

sort "ort" = "o" insert ’s’ "o" = "os" \/
’s? > 0’ = True insert ’s’ "" = "g"
sort "rt" = "r insert ’o0’ "r" = "o"
[
SOI't lltll = lltll insert)r) lltll = llrll 707 > 7r) = False
/
SOI‘t nn = nn insert) t 2 nn =

"t")r) > Jt)

Olaf Chitil and Yong Luo (Kent, UK)

A Theory of Tracing

1st April 2006 24 /27

The Evaluation Dependency Tree

main = {IO}

sort "sort" =

os"| x putStrLn "os" = {IO0}

sort "ort" =

lloll X

insert ’s’ "o" =

"os" |/

= True insert ’s’ ""

)S? > Jo7

= ngn
sort "rt" = "r insert ’o0’ "r" = "o"
[
sort "t" = "g" insert ’r’ "t" = "r"|[|’0’ > ’r’ = False
/
sort "" = ""||[insert ’t’ "" =

"t")r) > Jt)

Olaf Chitil and Yong Luo (Kent, UK)

A Theory of Tracing

1st April 2006 24 /27

The Evaluation Dependency Tree

main = {IO}

sort "sort" =

os"| x putStrLn "os" = {IO0}

sort "ort" = "o"|[X insert ’s’ "o" = "os" \/
’s? > 0’ = True insert ’s’ "" = "g"
Sort Ilrt n = Ilrll insert) o) Ilrll = Iloll ><
[
SOI't lltll = lltll insert)r) lltll = llrll 7o) > 7r) = False
/
SOI‘t nn = nn insert)t) nn = |Itll Jr) > Jt) = False

Olaf Chitil and Yong Luo (Kent, UK)

A Theory of Tracing

1st April 2006 24 /27

The Evaluation Dependency Tree

main = {IO}

sort "sort" =

os"| x putStrLn "os" = {IO0}

sort "ort" = "o"|[X insert ’s’ "o" = "os" \/
’s? > 0’ = True insert ’s’ "" = "g"
Sort Ilrt n = Ilrll lnsert) o) Ilrll = lloll X
[
sort "t" = "g" insert ’r’ "t" =

"r"|[’0’ > ’r’ = False|./
/
Sort nn - nn

insert ’t’ "" =

"t")r) > Jt)

Olaf Chitil and Yong Luo (Kent, UK)

A Theory of Tracing

1st April 2006 24 /27

The ART and the Evaluation Dependency Tree

\5

sort (’t’:[1) = ’t’:[]

sort [1 = [] insert ’t’ [1 = ’t’:[]

Olaf Chitil and Yong Luo (Kent, UK) A Theory of Tracing 1st April 2006 26 / 27

Conclusions

Summary

@ simple model amenable to proof
@ contains a wealth of information about computation
@ models real-world trace of Haskell tracer Hat

@ proved correctness of algorithmic debugging
€ t

s

Future Work @ -

@ still play with definitions

@ drop non-needed nodes from ART

@ model run-time error with error value

@ allow local function definitions (= free variables)
@ share reductions of constants (= cycles in graph)

Olaf Chitil and Yong Luo (Kent, UK) A Theory of Tracing 1st April 2006 27 / 27

