
Towards a Theory of Tracing for Functional Programs
based on Graph Rewriting

Olaf Chitil and Yong Luo

University of Kent, UK
Supported by EPSRC grant EP/C516605/1

1st April 2006

Olaf Chitil and Yong Luo (Kent, UK) A Theory of Tracing 1st April 2006 1 / 27

Tracing Functional Programs

Why Tracing?

Locate a fault (wrong output, run-time error, non-termination).

Comprehend a program.

Two-Phase Tracing: A trace as data structure

input output

computation trace view

︸ ︷︷ ︸

1

︸ ︷︷ ︸

2

Liberates from time arrow of computation.

Enables views based on different execution models.
(small-step, big-step, interpreter with environment, denotational)

Enables compositional views.

Olaf Chitil and Yong Luo (Kent, UK) A Theory of Tracing 1st April 2006 2 / 27

The Haskell Tracer Hat (www.haskell.org/hat)

Multi-View Tracer

Hat-Observe

input output Hat-Detect

computation trace Hat-Explore

Hat-Trail

. . .

Trace = Augmented Redex Trail (ART); distilled as unified trace.

Aim: A theoretical model of the ART.

Olaf Chitil and Yong Luo (Kent, UK) A Theory of Tracing 1st April 2006 3 / 27

The Programming Language

Launchbury’s and related semantics

Subset of λ-calculus plus case for matching.

Any program can be translated into this core calculus.

For tracing

Close relationship between trace and original program essential.

Language has most frequently used features:
named functions
pattern matching

Olaf Chitil and Yong Luo (Kent, UK) A Theory of Tracing 1st April 2006 5 / 27

The Programming Language

Launchbury’s and related semantics

Subset of λ-calculus plus case for matching.

Any program can be translated into this core calculus.

For tracing

Close relationship between trace and original program essential.

Language has most frequently used features:
named functions
pattern matching

⇒ Higher-order term rewriting system

sort [] = []

sort (x:xs) = insert x (sort xs)

insert x [] = [x]

insert x (y:ys) = if x > y then y : (insert x ys) else x : ys

Olaf Chitil and Yong Luo (Kent, UK) A Theory of Tracing 1st April 2006 5 / 27

Graph Rewriting I

sort (’t’:[])

’t’:

[]• •

• •sort

• •

sort [] = []

sort (x:xs) = insert x (sort xs)

Olaf Chitil and Yong Luo (Kent, UK) A Theory of Tracing 1st April 2006 7 / 27

Graph Rewriting I

’t’:

[]• •

• •sort

• •

sort

• •

insert

• •

• •

→

sort [] = []

sort (x:xs) = insert x (sort xs)

Create new nodes for right-hand-side.

Nodes of subexpressions are shared.

Olaf Chitil and Yong Luo (Kent, UK) A Theory of Tracing 1st April 2006 7 / 27

Graph Rewriting I

’t’

[] sort

• •

insert

• •

• •

→

sort [] = []

sort (x:xs) = insert x (sort xs)

Create new nodes for right-hand-side.

Nodes of subexpressions are shared.

Some old nodes become garbage.

Olaf Chitil and Yong Luo (Kent, UK) A Theory of Tracing 1st April 2006 7 / 27

Graph Rewriting II

’t’ []sort

• •

insert

• •

• •

sort [] = []

sort (x:xs) = insert x (sort xs)

insert x [] = [x]

insert x (y:ys) = if x > y then y : (insert x ys) else x : ys

Olaf Chitil and Yong Luo (Kent, UK) A Theory of Tracing 1st April 2006 9 / 27

Graph Rewriting II

’t’ []sort

• •

insert

• • → []

• •

sort [] = []

sort (x:xs) = insert x (sort xs)

insert x [] = [x]

insert x (y:ys) = if x > y then y : (insert x ys) else x : ys

Application node of redex replaced by new node.

Olaf Chitil and Yong Luo (Kent, UK) A Theory of Tracing 1st April 2006 9 / 27

Graph Rewriting II

’t’insert

• • []

• •

sort [] = []

sort (x:xs) = insert x (sort xs)

insert x [] = [x]

insert x (y:ys) = if x > y then y : (insert x ys) else x : ys

Application node of redex replaced by new node.

Olaf Chitil and Yong Luo (Kent, UK) A Theory of Tracing 1st April 2006 9 / 27

Graph Rewriting III

’t’

[]

insert

• •

• •

sort [] = []

sort (x:xs) = insert x (sort xs)

insert x [] = [x]

insert x (y:ys) = if x > y then y : (insert x ys) else x : ys

Olaf Chitil and Yong Luo (Kent, UK) A Theory of Tracing 1st April 2006 11 / 27

Graph Rewriting III

’t’

[]

insert

• •

• •
→

:

• • []

• •

sort [] = []

sort (x:xs) = insert x (sort xs)

insert x [] = [x]

insert x (y:ys) = if x > y then y : (insert x ys) else x : ys

Olaf Chitil and Yong Luo (Kent, UK) A Theory of Tracing 1st April 2006 11 / 27

Graph Rewriting III

’t’ :

• • []

• •

sort [] = []

sort (x:xs) = insert x (sort xs)

insert x [] = [x]

insert x (y:ys) = if x > y then y : (insert x ys) else x : ys

Olaf Chitil and Yong Luo (Kent, UK) A Theory of Tracing 1st April 2006 11 / 27

The Trace

’t’:

[]• •

• •sort

• •

Olaf Chitil and Yong Luo (Kent, UK) A Theory of Tracing 1st April 2006 12 / 27

The Trace

’t’:

[]• •

• •sort

• •

sort

• •

insert

• •

• •

New nodes for right-hand-side, connected via result pointer.

Only add to graph, never remove.

Sharing ensures compact representation.

Olaf Chitil and Yong Luo (Kent, UK) A Theory of Tracing 1st April 2006 12 / 27

The Trace

’t’:

[]• •

• •sort

• •

sort

• •

insert

• •

• •

[]

New nodes for right-hand-side, connected via result pointer.

Only add to graph, never remove.

Sharing ensures compact representation.

Olaf Chitil and Yong Luo (Kent, UK) A Theory of Tracing 1st April 2006 12 / 27

The Trace

’t’:

[]• •

• •sort

• •

sort

• •

insert

• •

• •

[]

:

• • []

• •

New nodes for right-hand-side, connected via result pointer.

Only add to graph, never remove.

Sharing ensures compact representation.

Olaf Chitil and Yong Luo (Kent, UK) A Theory of Tracing 1st April 2006 12 / 27

The Node Labels

term constructor T := a atom
| n m application of nodes

atom a := x | C | 42 | . . . variable, data constructor
atomic literal, . . .

pointers instead of edges

True && x = x

not True = False

TruenotTrue(&&)

• •• •

• •

Olaf Chitil and Yong Luo (Kent, UK) A Theory of Tracing 1st April 2006 14 / 27

The Node Labels

term constructor T := a atom
| n m application of nodes
| n indirection

atom a := x | C | 42 | . . . variable, data constructor
atomic literal, . . .

pointers instead of edges

a projection requires an indirection as result

True && x = x

not True = False

TruenotTrue(&&)

• •• •

• • •

Olaf Chitil and Yong Luo (Kent, UK) A Theory of Tracing 1st April 2006 14 / 27

The Node Labels

term constructor T := a atom
| n m application of nodes
| n indirection

atom a := x | C | 42 | . . . variable, data constructor
atomic literal, . . .

pointers instead of edges

a projection requires an indirection as result

True && x = x

not True = False

TruenotTrue(&&)

• •• •

• • •

False

Olaf Chitil and Yong Luo (Kent, UK) A Theory of Tracing 1st April 2006 14 / 27

The Node Naming Scheme

’t’:

[]• •

• •sort

• •

sort

• •

insert

• •

• •

[]

:

• • []

• •

Aim

not distinguish isomorphic graphs

avoid inconvenience of isomorphism classes

Olaf Chitil and Yong Luo (Kent, UK) A Theory of Tracing 1st April 2006 15 / 27

The Node Naming Scheme

rlr

’t’
rll

:

rr

[]
rl

• •

r

• •
l

sort

ǫ

• •

trl

sort

tr

• •
tll

insert

tl

• •

t

• •
trt

[]

ttll

:

ttl

• •
ttr

[]

tt

• •

Aim

not distinguish isomorphic graphs

avoid inconvenience of isomorphism classes

Solution

standard representation with node describing path from root

path at creation time (sharing later)

path independent of evaluation order
Olaf Chitil and Yong Luo (Kent, UK) A Theory of Tracing 1st April 2006 15 / 27

The Node Naming Scheme II

rlr

’t’
rll

:

rr

[]
rl

• •

r

• •
l

sort

ǫ

• •

trl

sort

tr

• •
tll

insert

tl

• •

t

• •
trt

[]

ttll

:

ttl

• •
ttr

[]

tt

• •

Reduction edge implicitly given through existence of node.
Node encodes parent; parent = top node of redex causing its
creation: parent(nt) = n

parent(nl) = parent(n)
parent(nr) = parent(n)
parent(ǫ) = undefined

Easy to identify right-hand-side of rule: same parent.

Olaf Chitil and Yong Luo (Kent, UK) A Theory of Tracing 1st April 2006 16 / 27

The Augmented Redex Trail (ART)

An ART G for start term M, program P and semantics ∼= is a partial
function from nodes to term constructors, G : n 7→ T , defined by

The unshared graph representation of M is an ART.

If G is an ART and

L = R an equation of the program P ,
σ a substitution replacing the variables of the equation by nodes not
ending in t,
n ∈ dom(G) represents Lσ,
nt /∈ dom(G),
G ′ is the unshared graph representation of Rσ,
Lσ ∼= Rσ

then G ∪ G ′ is an ART.

Evaluation order is not fixed.

Olaf Chitil and Yong Luo (Kent, UK) A Theory of Tracing 1st April 2006 17 / 27

A Reduction Step

If G is an ART and

L = R an equation of the program P,

σ a substitution replacing the variables of the equation by nodes not
ending in t,

n ∈ dom(G) represents Lσ,

nt /∈ dom(G),

G ′ is the unshared graph representation of Rσ,

Lσ ∼= Rσ

then G ∪ G ′ is an ART.

True && x = x

not True = False

rr

True
rl

not
lr

True
ll

(&&)

r

• •
l

• •

ǫ

• •

Olaf Chitil and Yong Luo (Kent, UK) A Theory of Tracing 1st April 2006 19 / 27

A Reduction Step

If G is an ART and

L = R an equation of the program P,

σ a substitution replacing the variables of the equation by nodes not
ending in t,

n ∈ dom(G) represents Lσ,

nt /∈ dom(G),

G ′ is the unshared graph representation of Rσ,

Lσ ∼= Rσ

then G ∪ G ′ is an ART.

True && x = x

not True = False

rr

True
rl

not
lr

True
ll

(&&)

r

• •
l

• •

ǫ

• •
rt

False

Olaf Chitil and Yong Luo (Kent, UK) A Theory of Tracing 1st April 2006 19 / 27

A Reduction Step

If G is an ART and

L = R an equation of the program P,

σ a substitution replacing the variables of the equation by nodes not
ending in t,

n ∈ dom(G) represents Lσ,

nt /∈ dom(G),

G ′ is the unshared graph representation of Rσ,

Lσ ∼= Rσ

then G ∪ G ′ is an ART.

True && x = x

not True = False

rr

True
rl

not
lr

True
ll

(&&)

r

• •
l

• •

ǫ

• •
t

•
rt

False

Olaf Chitil and Yong Luo (Kent, UK) A Theory of Tracing 1st April 2006 19 / 27

Properties of the ART

closed (no dangling nodes)

domain prefix-closed

no term constructor contains node ending in t

only a node ending in t can be an indirection

if nl ∈ dom(G), then G (n) = nlm

if nr ∈ dom(G), then G (n) = m nr

if nt ∈ dom(G), then n and nt represent a reduction step

acyclic

subcommutative

. . .

Give non-inductive definition of ART based on properties?

Olaf Chitil and Yong Luo (Kent, UK) A Theory of Tracing 1st April 2006 20 / 27

Using the ART: Algorithmic Debugging

sort "sort" = "os"? n

insert ’s’ "o" = "os"? y

sort "ort" = "o"? n

insert ’o’ "r" = "o"? n

Bug identified:

"Insert.hs":8-9:

insert x [] = [x]

insert x (y:ys) = if x > y then y:(insert x ys) else x:ys

Olaf Chitil and Yong Luo (Kent, UK) A Theory of Tracing 1st April 2006 22 / 27

The Evaluation Dependency Tree

main = {IO}

sort "sort" = "os" putStrLn "os" = {IO}

sort "ort" = "o" insert ’s’ "o" = "os"

’s’ > ’o’ = True insert ’s’ "" = "s"

sort "rt" = "r" insert ’o’ "r" = "o"

sort "t" = "t" insert ’r’ "t" = "r" ’o’ > ’r’ = False

sort "" = "" insert ’t’ "" = "t" ’r’ > ’t’ = False

Olaf Chitil and Yong Luo (Kent, UK) A Theory of Tracing 1st April 2006 24 / 27

The Evaluation Dependency Tree

main = {IO}

sort "sort" = "os" putStrLn "os" = {IO}

sort "ort" = "o" insert ’s’ "o" = "os"

’s’ > ’o’ = True insert ’s’ "" = "s"

sort "rt" = "r" insert ’o’ "r" = "o"

sort "t" = "t" insert ’r’ "t" = "r" ’o’ > ’r’ = False

sort "" = "" insert ’t’ "" = "t" ’r’ > ’t’ = False

Olaf Chitil and Yong Luo (Kent, UK) A Theory of Tracing 1st April 2006 24 / 27

The Evaluation Dependency Tree

main = {IO}

sort "sort" = "os" × putStrLn "os" = {IO}

sort "ort" = "o" insert ’s’ "o" = "os"

’s’ > ’o’ = True insert ’s’ "" = "s"

sort "rt" = "r" insert ’o’ "r" = "o"

sort "t" = "t" insert ’r’ "t" = "r" ’o’ > ’r’ = False

sort "" = "" insert ’t’ "" = "t" ’r’ > ’t’ = False

Olaf Chitil and Yong Luo (Kent, UK) A Theory of Tracing 1st April 2006 24 / 27

The Evaluation Dependency Tree

main = {IO}

sort "sort" = "os" × putStrLn "os" = {IO}

sort "ort" = "o" insert ’s’ "o" = "os"
√

’s’ > ’o’ = True insert ’s’ "" = "s"

sort "rt" = "r" insert ’o’ "r" = "o"

sort "t" = "t" insert ’r’ "t" = "r" ’o’ > ’r’ = False

sort "" = "" insert ’t’ "" = "t" ’r’ > ’t’ = False

Olaf Chitil and Yong Luo (Kent, UK) A Theory of Tracing 1st April 2006 24 / 27

The Evaluation Dependency Tree

main = {IO}

sort "sort" = "os" × putStrLn "os" = {IO}

sort "ort" = "o" × insert ’s’ "o" = "os"
√

’s’ > ’o’ = True insert ’s’ "" = "s"

sort "rt" = "r" insert ’o’ "r" = "o"

sort "t" = "t" insert ’r’ "t" = "r" ’o’ > ’r’ = False

sort "" = "" insert ’t’ "" = "t" ’r’ > ’t’ = False

Olaf Chitil and Yong Luo (Kent, UK) A Theory of Tracing 1st April 2006 24 / 27

The Evaluation Dependency Tree

main = {IO}

sort "sort" = "os" × putStrLn "os" = {IO}

sort "ort" = "o" × insert ’s’ "o" = "os"
√

’s’ > ’o’ = True insert ’s’ "" = "s"

sort "rt" = "r" insert ’o’ "r" = "o" ×

sort "t" = "t" insert ’r’ "t" = "r" ’o’ > ’r’ = False

sort "" = "" insert ’t’ "" = "t" ’r’ > ’t’ = False

Olaf Chitil and Yong Luo (Kent, UK) A Theory of Tracing 1st April 2006 24 / 27

The Evaluation Dependency Tree

main = {IO}

sort "sort" = "os" × putStrLn "os" = {IO}

sort "ort" = "o" × insert ’s’ "o" = "os"
√

’s’ > ’o’ = True insert ’s’ "" = "s"

sort "rt" = "r" insert ’o’ "r" = "o" ×

sort "t" = "t" insert ’r’ "t" = "r" ’o’ > ’r’ = False
√

sort "" = "" insert ’t’ "" = "t" ’r’ > ’t’ = False

Olaf Chitil and Yong Luo (Kent, UK) A Theory of Tracing 1st April 2006 24 / 27

The ART and the Evaluation Dependency Tree

rlr

’t’
rll

:

rr

[]
rl

• •

r

• •
l

sort

ǫ

• •

trl

sort

tr

• •
tll

insert

tl

• •

t

• •
trt

[]

ttll

:

ttl

• •
ttr

[]

tt

• •

ǫ

sort (’t’:[]) = ’t’:[]

tr

sort [] = []
t

insert ’t’ [] = ’t’:[]

Olaf Chitil and Yong Luo (Kent, UK) A Theory of Tracing 1st April 2006 26 / 27

Conclusions

Summary

simple model amenable to proof

contains a wealth of information about computation

models real-world trace of Haskell tracer Hat

proved correctness of algorithmic debugging

rr

True
rl

not
lr

True
ll

(&&)

r

• •
l

• •

ǫ

• •
t

•
rt

False

Future Work

still play with definitions

drop non-needed nodes from ART

model run-time error with error value

allow local function definitions (⇒ free variables)

share reductions of constants (⇒ cycles in graph)

Olaf Chitil and Yong Luo (Kent, UK) A Theory of Tracing 1st April 2006 27 / 27

