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Tracing Functional Programs

Why Tracing?

Locate a fault (wrong output, run-time error, non-termination).

Comprehend a program.

Two-Phase Tracing: A trace as data structure

input output

computation trace view

︸ ︷︷ ︸

1

︸ ︷︷ ︸

2

Liberates from time arrow of computation.

Enables views based on different execution models.
(small-step, big-step, interpreter with environment, denotational)

Enables compositional views.
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The Haskell Tracer Hat (www.haskell.org/hat)

Multi-View Tracer

Hat-Observe

input output Hat-Detect

computation trace Hat-Explore

Hat-Trail

. . .

Trace = Augmented Redex Trail (ART); distilled as unified trace.

Aim: A theoretical model of the ART.
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The Programming Language

Launchbury’s and related semantics

Subset of λ-calculus plus case for matching.

Any program can be translated into this core calculus.

For tracing

Close relationship between trace and original program essential.

Language has most frequently used features:
named functions
pattern matching
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The Programming Language

Launchbury’s and related semantics

Subset of λ-calculus plus case for matching.

Any program can be translated into this core calculus.

For tracing

Close relationship between trace and original program essential.

Language has most frequently used features:
named functions
pattern matching

⇒ Higher-order term rewriting system

sort [] = []

sort (x:xs) = insert x (sort xs)

insert x [] = [x]

insert x (y:ys) = if x > y then y : (insert x ys) else x : ys
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Graph Rewriting I

sort (’t’:[])

’t’:

[]• •

• •sort

• •

sort [] = []

sort (x:xs) = insert x (sort xs)
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Graph Rewriting I

’t’:

[]• •

• •sort

• •

sort

• •

insert

• •

• •

→

sort [] = []

sort (x:xs) = insert x (sort xs)

Create new nodes for right-hand-side.

Nodes of subexpressions are shared.
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Graph Rewriting I

’t’

[] sort

• •

insert

• •

• •

→

sort [] = []

sort (x:xs) = insert x (sort xs)

Create new nodes for right-hand-side.

Nodes of subexpressions are shared.

Some old nodes become garbage.
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Graph Rewriting II

’t’ []sort

• •

insert

• •

• •

sort [] = []

sort (x:xs) = insert x (sort xs)

insert x [] = [x]

insert x (y:ys) = if x > y then y : (insert x ys) else x : ys
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Graph Rewriting II

’t’ []sort

• •

insert

• • → []

• •

sort [] = []

sort (x:xs) = insert x (sort xs)

insert x [] = [x]

insert x (y:ys) = if x > y then y : (insert x ys) else x : ys

Application node of redex replaced by new node.
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Graph Rewriting II

’t’insert

• • []

• •

sort [] = []

sort (x:xs) = insert x (sort xs)

insert x [] = [x]

insert x (y:ys) = if x > y then y : (insert x ys) else x : ys

Application node of redex replaced by new node.
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Graph Rewriting III

’t’

[]

insert

• •

• •

sort [] = []

sort (x:xs) = insert x (sort xs)

insert x [] = [x]

insert x (y:ys) = if x > y then y : (insert x ys) else x : ys
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Graph Rewriting III

’t’

[]

insert

• •

• •
→

:

• • []

• •

sort [] = []

sort (x:xs) = insert x (sort xs)

insert x [] = [x]

insert x (y:ys) = if x > y then y : (insert x ys) else x : ys
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Graph Rewriting III

’t’ :

• • []

• •

sort [] = []

sort (x:xs) = insert x (sort xs)

insert x [] = [x]

insert x (y:ys) = if x > y then y : (insert x ys) else x : ys
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The Trace

’t’:

[]• •

• •sort

• •
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The Trace

’t’:

[]• •

• •sort

• •

sort

• •

insert

• •

• •

New nodes for right-hand-side, connected via result pointer.

Only add to graph, never remove.

Sharing ensures compact representation.
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The Trace
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sort

• •
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• •

• •
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New nodes for right-hand-side, connected via result pointer.

Only add to graph, never remove.
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The Trace

’t’:

[]• •

• •sort

• •

sort

• •

insert

• •

• •

[]

:

• • []

• •

New nodes for right-hand-side, connected via result pointer.

Only add to graph, never remove.

Sharing ensures compact representation.
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The Node Labels

term constructor T := a atom
| n m application of nodes

atom a := x | C | 42 | . . . variable, data constructor
atomic literal, . . .

pointers instead of edges

True && x = x

not True = False

TruenotTrue(&&)

• •• •

• •
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The Node Labels

term constructor T := a atom
| n m application of nodes
| n indirection

atom a := x | C | 42 | . . . variable, data constructor
atomic literal, . . .

pointers instead of edges

a projection requires an indirection as result

True && x = x

not True = False

TruenotTrue(&&)

• •• •

• • •
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The Node Labels

term constructor T := a atom
| n m application of nodes
| n indirection

atom a := x | C | 42 | . . . variable, data constructor
atomic literal, . . .

pointers instead of edges

a projection requires an indirection as result

True && x = x

not True = False

TruenotTrue(&&)

• •• •

• • •

False
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The Node Naming Scheme

’t’:

[]• •

• •sort

• •

sort

• •

insert

• •

• •

[]

:

• • []

• •

Aim

not distinguish isomorphic graphs

avoid inconvenience of isomorphism classes
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The Node Naming Scheme

rlr

’t’
rll

:

rr

[]
rl

• •

r

• •
l

sort

ǫ

• •

trl

sort

tr

• •
tll

insert

tl

• •

t

• •
trt

[]

ttll

:

ttl

• •
ttr

[]

tt

• •

Aim

not distinguish isomorphic graphs

avoid inconvenience of isomorphism classes

Solution

standard representation with node describing path from root

path at creation time (sharing later)

path independent of evaluation order
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The Node Naming Scheme II

rlr

’t’
rll

:

rr

[]
rl

• •

r

• •
l

sort

ǫ

• •

trl

sort

tr

• •
tll

insert

tl

• •

t

• •
trt

[]

ttll

:

ttl

• •
ttr

[]

tt

• •

Reduction edge implicitly given through existence of node.
Node encodes parent; parent = top node of redex causing its
creation: parent(nt) = n

parent(nl) = parent(n)
parent(nr) = parent(n)
parent(ǫ) = undefined

Easy to identify right-hand-side of rule: same parent.
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The Augmented Redex Trail (ART)

An ART G for start term M, program P and semantics ∼= is a partial
function from nodes to term constructors, G : n 7→ T , defined by

The unshared graph representation of M is an ART.

If G is an ART and

L = R an equation of the program P ,
σ a substitution replacing the variables of the equation by nodes not
ending in t,
n ∈ dom(G ) represents Lσ,
nt /∈ dom(G ),
G ′ is the unshared graph representation of Rσ,
Lσ ∼= Rσ

then G ∪ G ′ is an ART.

Evaluation order is not fixed.
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A Reduction Step

If G is an ART and

L = R an equation of the program P,

σ a substitution replacing the variables of the equation by nodes not
ending in t,

n ∈ dom(G ) represents Lσ,

nt /∈ dom(G ),

G ′ is the unshared graph representation of Rσ,

Lσ ∼= Rσ

then G ∪ G ′ is an ART.

True && x = x

not True = False

rr

True
rl

not
lr

True
ll

(&&)

r

• •
l

• •

ǫ

• •
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Properties of the ART

closed (no dangling nodes)

domain prefix-closed

no term constructor contains node ending in t

only a node ending in t can be an indirection

if nl ∈ dom(G ), then G (n) = nlm

if nr ∈ dom(G ), then G (n) = m nr

if nt ∈ dom(G ), then n and nt represent a reduction step

acyclic

subcommutative

. . .

Give non-inductive definition of ART based on properties?
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Using the ART: Algorithmic Debugging

sort "sort" = "os"? n

insert ’s’ "o" = "os"? y

sort "ort" = "o"? n

insert ’o’ "r" = "o"? n

Bug identified:

"Insert.hs":8-9:

insert x [] = [x]

insert x (y:ys) = if x > y then y:(insert x ys) else x:ys
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The Evaluation Dependency Tree

main = {IO}

sort "sort" = "os" putStrLn "os" = {IO}

sort "ort" = "o" insert ’s’ "o" = "os"

’s’ > ’o’ = True insert ’s’ "" = "s"

sort "rt" = "r" insert ’o’ "r" = "o"

sort "t" = "t" insert ’r’ "t" = "r" ’o’ > ’r’ = False

sort "" = "" insert ’t’ "" = "t" ’r’ > ’t’ = False
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The Evaluation Dependency Tree

main = {IO}
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sort "ort" = "o" insert ’s’ "o" = "os"
√

’s’ > ’o’ = True insert ’s’ "" = "s"

sort "rt" = "r" insert ’o’ "r" = "o"

sort "t" = "t" insert ’r’ "t" = "r" ’o’ > ’r’ = False

sort "" = "" insert ’t’ "" = "t" ’r’ > ’t’ = False

Olaf Chitil and Yong Luo (Kent, UK) A Theory of Tracing 1st April 2006 24 / 27



The Evaluation Dependency Tree

main = {IO}

sort "sort" = "os" × putStrLn "os" = {IO}

sort "ort" = "o" × insert ’s’ "o" = "os"
√

’s’ > ’o’ = True insert ’s’ "" = "s"

sort "rt" = "r" insert ’o’ "r" = "o"

sort "t" = "t" insert ’r’ "t" = "r" ’o’ > ’r’ = False

sort "" = "" insert ’t’ "" = "t" ’r’ > ’t’ = False

Olaf Chitil and Yong Luo (Kent, UK) A Theory of Tracing 1st April 2006 24 / 27



The Evaluation Dependency Tree

main = {IO}

sort "sort" = "os" × putStrLn "os" = {IO}

sort "ort" = "o" × insert ’s’ "o" = "os"
√

’s’ > ’o’ = True insert ’s’ "" = "s"

sort "rt" = "r" insert ’o’ "r" = "o" ×

sort "t" = "t" insert ’r’ "t" = "r" ’o’ > ’r’ = False

sort "" = "" insert ’t’ "" = "t" ’r’ > ’t’ = False

Olaf Chitil and Yong Luo (Kent, UK) A Theory of Tracing 1st April 2006 24 / 27



The Evaluation Dependency Tree

main = {IO}

sort "sort" = "os" × putStrLn "os" = {IO}
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√

’s’ > ’o’ = True insert ’s’ "" = "s"

sort "rt" = "r" insert ’o’ "r" = "o" ×

sort "t" = "t" insert ’r’ "t" = "r" ’o’ > ’r’ = False
√
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The ART and the Evaluation Dependency Tree

rlr

’t’
rll

:

rr

[]
rl

• •

r

• •
l

sort

ǫ

• •

trl

sort

tr

• •
tll

insert

tl

• •

t

• •
trt

[]

ttll

:

ttl

• •
ttr

[]

tt

• •

ǫ

sort (’t’:[]) = ’t’:[]

tr

sort [] = []
t

insert ’t’ [] = ’t’:[]
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Conclusions

Summary

simple model amenable to proof

contains a wealth of information about computation

models real-world trace of Haskell tracer Hat

proved correctness of algorithmic debugging

rr

True
rl

not
lr

True
ll

(&&)

r

• •
l

• •

ǫ

• •
t

•
rt

False

Future Work

still play with definitions

drop non-needed nodes from ART

model run-time error with error value

allow local function definitions (⇒ free variables)

share reductions of constants (⇒ cycles in graph)
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