
Proving the Correctness of Algorithmic Debugging

for Functional Programs

Yong Luo and Olaf Chitil

University of Kent, UK

19th April 2006

Aims and Outline

Aims

I Model the Haskell tracer Hat

I Provide theoretical foundation

I Guide implementation

Outline

I Augmented Redex Trail (ART)

I Evaluation dependency Tree (EDT)

I Correctness of Algorithmic Debugging

I Proofs

I Future work

An example

not True = True
not False = True

id x = x

main = id (not True)

main t tt

idtl
tr

True trt

Truenottrl trr

Language

I Terms

M = x

| c

| f x

I Patterns

P = x

| cp1...pn

where the arity of c is n

I Rewriting rules
fp1...pn = M

Formalising ART (1)

main t tt

idtl
tr

True trt

Truenottrl trr

I An ART is a graph

I Starts from �main�

I General function graph to add new graphs

I Sharing

Formalising ART (2)

main t tt

idtl
tr

True trt

Truenottrl trr

I Independence from evaluation order

I Node naming Scheme

I not distinguish isomorphic graphs
I given parent node implicitly

EDT

An EDT is generated from an ART
Example

main t tt

idtl
tr

True trt

Truenottrl trr

id True = True not True = True

main = True

t tr

Correctness of Algorithmic debugging

Faulty nodes

 f = R

 g1 = R1 g2 = R2 gn = Rn... ...

Yes Yes Yes

No

Correctness

I If the equation of a faulty node is fa1...an = R , then the
de�nition of the function f in the program is faulty

Proofs

The di�culties

I suitable reduction principle

I more general induction hypothesis

For a faulty node m, fa1...an 6'I R . We de�ne reduct(mt) and
mef (mt) = R .
We are going to prove fa1...an →P reduct(mt) 'I mef (mt).
In order to prove reduct(mt) 'I mef (mt), we prove a more general
result reduct(n) 'I mef (n) for all n ∈ G .

Future work

I Replace the unevaluated parts

I Consider di�erent reduction strategies and add error messages
to an ART when there is a pattern matching failure

I Add local rewriting rules

I Add rewriting rules for constants

