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Introduction to the Convention 
The AISB Convention 2015—the latest in a series of events that have been happening since 
1964—was held at the University of Kent, Canterbury, UK in April 2015. Over 120 delegates 
attended and enjoyed three days of interesting talks and discussions covering a wide range of 
topics across artificial intelligence and the simulation of behaviour. This proceedings volume 
contains the papers from the Symposium on AI and Games, one of eight symposia held as 
part of the conference. Many thanks to the convention organisers, the AISB committee, 
convention delegates, and the many Kent staff and students whose hard work went into 
making this event a success. 

—Colin Johnson, Convention Chair 
 

Copyright in the individual papers remains with the authors. 
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Modelling Cultural, Religious and Political Affiliation in 
Artificial Intelligence Decision-Making

Mark R Johnson1

Abstract.  This paper examines cutting-edge work in the 
generation of individual AI actors who behave according to 
procedurally-generated social, cultural, political and religious 
norms. Based on the author’s ongoing development of the game 
Ultima Ratio Regum (URR) – built with a hand-made game 
engine in Python – the paper explores three core aspects of 
URR’s AI actors. Firstly, the generation of a full world 
population of AI actors and ensuring that they are distributed 
appropriately and logically for a culturally-varied world; 
secondly the procedural generation of densely complex religious, 
political, cultural and socially normative values to assign to these 
AI actors, and how their decision-making processes are 
determined by these allegiances; and thirdly and lastly how this 
game, among other objectives, seeks to forward what I term 
“qualitative AI” where culture and society, not pathfinding and 
“optimal” decision-making, are the primary determinants of 
behaviour. The paper concludes with a summary of both these 
three points and the future plans for the game’s AI systems. 1 

1 INTRODUCTION 
This exploratory paper is based on the author’s own 

work, having been for the last three years the sole developer of 
the roguelike game “Ultima Ratio Regum” (URR). Set during 
the Scientific Revolution, almost everything within the game is 
procedurally generated – this ranges from the “macro” level of 
2000+ years of detailed history, historical figures, empires and 
nations, religions, wars, dozens of vast cities and a vast world 
population of procedurally-generated non-player characters 
(NPCs) unique to each playthrough, to the “micro” level of 
individual towns and cities, individual NPCs, specific buildings 
and items, and flora and fauna. Inspired by the works of 
Umberto Eco and Jorge Luis Borges, the game is an exploration 
of a number of themes including historiography and the writing 
of the historical record, metanarrative and political ideology, and 
the philosophical idealism of George Berkeley. Most crucially 
the work aims to specifically integrate this “thematic” content 
with the game’s mechanics, rather than leaving such content as 
“background” or “lore” that the player can take or leave. Much 
of this will be achieved through the use of innovative AI actors 
currently being developed at time of writing. Every aspect of the 
behaviour of these actors – their greetings, their insults, their 
dress, their farewells, their behaviour in challenging situations, 
their reaction to those from other nations, and much else – is 
procedurally generated, and fore-grounded in their decision-
making algorithms. It is these actors and the roles they play 
which this paper focuses upon, and the break they represent from 

                                                 
1 Science & Technology Studies Unit, Dept. of Sociology, Univ. of 
York, YO10 5DD, UK. Email: mrj503@york.ac.uk.  

much traditional AI research into decision-making optimization 
[1] and pathfinding [2]. 

2 PROCEDURAL GENERATION AND 
ARTIFICIAL INTELLIGENCE 

Firstly, the paper explores the procedural content 
generation of the game, and how this affects the AI actors. An 
“average” generated URR world has a population of 
approximately ten million NPCs. Naturally for such numbers, 
the management of these NPCs takes place at a number of 
different “levels” in the game depending on the player’s 
activities – many of the NPCs are “abstracted out” at any given 
time. The game also contains a system which identifies the most 
“important” NPCs and ensures that their actions and decisions 
are always simulated regardless of the player’s location (roughly 
500-700 NPCs on average are considered “important” by the 
game’s algorithm at any one time, and their actions are carried 
out constantly, unless one falls below the metric for 
“importance”, at which point that actor is then abstracted out 
once more). NPCs within the game vary according to a 
significant range of variables: according to their race, language, 
cultural background and cultural norms, sex and gender, age, 
political alignment, religious beliefs (if any), national 
citizenship, and interests and agendas. A rough calculation 
currently suggests that there are over 1 trillion possible AI actors 
that may be procedurally generated within the game world who 
will, crucially, behave differently according to the social and 
cultural context within which they are generated. The agendas of 
these actors (returned to later in this abstract) are largely 
dependent on their cultural and religious backgrounds, leading to 
a densely complex world within which the player will uncover 
information about religious feuds, cultural differences, long-
standing war bitterness, language difficulties, and many similar 
concepts of a sort not normally explored in games. The paper 
will therefore examine the generation of the AI actors from a 
creative standpoint; the management of so many AIs from a 
technical standpoint; and the integration of the two into a 
culturally and socially variegated and dense world.  
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Figure 1. Example of Generated Political Divisions 

 
Secondly, the paper explores how this content 

generation creates a deeply complex environmental simulation, 
arguably one of the most detailed and dense generated worlds 
ever created in a game. As above, the agendas of these AIs are 
dependent on the procedural generation of their origins. A 
generated URR world contains approximately forty civilizations 
(Figure 1) designed to emulate the massive variety in real-world 
civilizations from this historical era. Some may be nomadic 
desert peoples who travel in lengthy caravan routes across the 
world, or hunter-gatherer tribes in close to the Arctic Circle who 
construct their buildings from ice and stone and have limited 
trading relations with a nearby civilization, or feudal 
civilizations who range from the imperialist and the expansionist 
to the protectionist or isolationist, and have widely differing 
cultural preferences on issues such as aesthetics, slavery, 
gladiatorial sport, ethics and morality, and so forth. This variety 
extends into other areas, such as religion, where a complex 
algorithm can procedurally create over a million detailed 
religions with information about their beliefs, their god(s), what 
festivals or special events are on their religious calendar, their 
relationships with other religions, their presence in civilizations, 
eschatological and creation beliefs, the appearance of their altars, 
expectations from worshippers, etc. All of these “cultural actors” 
inform the creation of the AI actors who exist within these 
contexts. Crucially, therefore, rather than presenting this 
civilizational/cultural/religious detail as “background” or “lore” 
as many games do, they are foregrounded in the AI actors, 
whose motivations, interests and agendas can only be understood 
via a detailed understanding of the generated cultural 
backgrounds from which they originate. In turn, this affects their 
willingness to interact with the player, to assist or communicate 
with the player, and to potentially oppose the player if the player 
has aligned themselves with religions or cultures inimical to 
those of other NPCs. At the same time, it is a game of 
incomplete information [cf 3] where both the player, and NPCs, 
must make judgements about the opinions of others based on the 
data they possess. The actions of AIs are dependent upon the 
social conditions and expectations into which they are “born”, 

and therefore strongly differentiate between all the procedurally-
generated AI actors in a given instance of the game. Equally, the 
greater the knowledge the player has attained about the world’s 
culture, the more able the player is to make their wishes felt 
within the game world.  

3 TOWARDS QUALITATIVE AI 

Thirdly, the paper brings these together to explore the 
use of this integration of procedural generation and sociological 
concepts as a method for game-based learning in the fields of 
philosophy, sociology, and the humanities more generally. AIs 
respond and behave according to their political, cultural, social 
and religious affiliations, and this transforms these concepts in 
the social sciences into gameplay mechanics that affect the 
behaviour of AI and the world the player explores, rather than 
simply a method for constructing a game world which then has 
no further impact upon the player’s experience. This is in part 
akin to the world by Mateas on “expressive AI” [4] and 
Gruenworldt and Katchabaw’s “Realistic Reaction System” [5] 
but develops it into further qualitative and social science 
domains, and integrates far broader “relationship” structures of 
religions and cultures into the interpersonal dimension previous 
focused upon. The paper therefore explores how the game 
depicts the influence of these many factors on social interaction, 
and how these influences are represented in the actions, 
decisions and interests of the game’s AI. In turn, this leads to 
game-based learning where understanding the cultural, political 
and religious motivations of AI actors is actually essential to 
success or failure within the game world. Lastly, this also serves 
to illustrate the potential for the development of ‘qualitative’ 
game mechanics in video games more generally, and highlights 
the potential for the use of complex AI actors in moving away 
from the ubiquitous stat-based gameplay of levels, items, 
rewards, and so forth, and towards developing “AI” that can be 
understood in terms of their as full actors with a range of interest 
and agendas, rather than as only actors in combat or strategy 
situations. 

4 CONCLUSIONS 

The paper explores three central components to the 
game’s AI – the emphasis on procedural content generation and 
the integration between that and artificial intelligence; the 
emphasis within this on creating cultures, societies and religions, 
and having these directly influence AI decisions; and thirdly the 
potential for this game to develop “qualitative AI” and to create 
gameplay mechanics based on political, sociological and 
humanist concepts rarely explored in interactive media. It notes 
the potential educational and pedagogic value of these, the 
potential for new forms of gameplay rarely explored in computer 
games, and the paper lastly notes the planned future 
developments of the game’s in-development system. 
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Discerning Human and Procedurally Crafted Content for
Video Games

Tommy Thompson1 and Rob Watling2

Abstract. We discuss the results of a preliminary study where par-
ticipants discern between human and computationally crafted con-
tent for a video game. Participants were tasked with completing a
portion of the game with the knowledge that segments were created
either by a procedural generation algorithm or by a game designer.
When asked to discern which segments were built by humans and
vice versa, overall accuracy of participant guesses is relatively low.
However, rationale reached by participants in making these conclu-
sions leads to some interesting discussion about expectations of pro-
cedural generation systems and requirements for future studies.

1 Introduction

Procedural Content Generation (PCG) is a popular design paradigm
found in video game development. While the origins of this method
can be found in the likes of Elite [3] to overcome hardware lim-
itations, the emphasis has shifted towards experimentation and
challenge. This is typified by the Borderlands series [5]: where
weapons and tools are presented for the player to discover, adopt
or discard based upon personal preference. Meanwhile, Diablo [4]
and Spelunky [21] adopt PCG for map generation in an effort to retain
variety, novelty and challenge for even the most seasoned of players

If we consider this transition of the role of PCG systems, what
is most interesting is that players perception of in-game content is
becoming of greater focus. As problem scope increases, developers
place a stronger emphasis on ensuring content is as interesting as it
is varied. This has resulted in significant work in Artificial Intelli-
gence (AI) to create intelligent PCG processes [19], with efforts to
create ‘custom’ and more bespoke content [6, 20] and tools to aid the
development process [8].

In this paper, we discuss preliminary work in generating content
for an ‘endless runner’ game entitled Sure Footing3. The game tasks
players with navigating a hazardous environment for as long as pos-
sible. Players are presented an early build of the game that carries
content designed both by the developers and an early build of a PCG
system. The task for participants was to identify the human-built and
PCG samples and give a rationale for why they reached their con-
clusion. Our hypothesis was that if we were to base our PCG system
on a meta-creative approach; adopting principles from a human de-
signer, that players by-and-large would struggle to identify any key
differences.

1 University of Derby, UK, email: tommy@t2thompson.com
2 University of Derby, UK, email: therobwatling@gmail.com
3 A game being developed by Table Flip Games Ltd.: http://www.
tableflipgames.co.uk

Figure 1. A screenshot of the Sure Footing video game, where the player,
represented by a blue cube, must navigate a series of platforms and

environmental hazards.

2 Sure Footing & Endless Runner Games

Sure Footing, shown in Figure 1 is an ‘endless runner’, where the
player must navigate through a hazardous environment for as long as
possible. Player’s must traverse a collection of platforms and avoid
obstacles placed upon them whilst evading an enemy that is follow-
ing them throughout. Should the player fail a jump between plat-
forms or be captured by their pursuer, the game will restart from the
beginning of the current segment of play.

The endless runner genre is an effective platform for experiment-
ing in PCG given that players are seldom aware of what is ahead of
them. This allows for sudden change to the world that the player must
adapt to. This is part of the novelty and charm that drove the popular-
ity of seminal endless runner Canabalt [13] and subsequently titles
such as Flappy Bird [10], and Temple Run [7].

Endless runners have a difficult balance to attain due to their un-
predictable nature: should changes prove too sudden, players may
subsequently lose interest. Ultimately, it is crucial that players feel
the challenge of the game comes from their own ability to master
game mechanics, rather than unfair design of the game. Equally play-
ers should be able to understand how to proceed through the game,
irrespective of whether particular ‘chunks’ of level design have pre-
viously been seen in play. As discussed in Section 5, we place an
emphasis on difficulty and progression in each participant’s play-
through.
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3 Related Work
Arguably the most established research in PCG for platforming
games can be found in the Mario AI Competition which ran from
2009 to 2012 and has since been succeeded by the Platformer AI
Competition4. The competition is dependent upon participants adopt-
ing a clone of the popular Super Mario Bros. [11] series. While orig-
inally intended to focus on gameplay, a level generation track was
introduced in 2010 [18], with each entrant required to adopt player
data from the an initial test level [14]. While the emphasis is to gen-
erate an intelligent and customised level generator, the focus of the
competition is to find levels that judges deem ‘interesting’, rather
than accurately reflect the designs of the Super Mario Bros. series.
As such, the competition refrains from having judges compare PCG
levels to original Super Mario levels built by human designers.

This work, among others in the AI field, focusses on search-based
procedural generation. While this is an intelligent process that aims
to create customised and unique content, there is seldom any empha-
sis on modelling the creative processes adopted by human designers
in game development [2]. There have been notable exceptions to this,
with one of the most prominent examples being the ‘Sentient Sketch-
book’ project. As detailed in [8, 12, 9], this project carries a stronger
emphasis on the use of PCG for human-designers as a tool; allowing
for intelligent and useful content to be created in line with a designers
expectations and habits.

The inspiration for this project is the Tanagra project detailed
in [17]: a mixed-initiative design tool that aids in the creation of lev-
els for 2D platformer games. The system allows for a designer to
establish a timeline of ‘beats’: setting the pace of gameplay. The first
phase of this work detailed in [15] is adopted in this project, where
levels are built courtesy of rhythm groups which establish activities
that take place.

4 System Design
In this section we give a brief overview of the PCG system adopted
for this experiment. As we continue to discuss the design behind
this system, we adhere to the taxonomy for PCG techniques defined
in [19].

As noted in Section 3, our level generator adopts the rhythm ap-
proach discussed in [15]. The generator adopts a generate and test
approach: creating and refining the rhythm of play followed by the
geometry. The rhythm generator is comprised of a grammar repre-
senting player actions. This is encompassed by what is referred to
as a sprint, a vector of game actions that lasts no longer than 60-90
seconds in-game. Actions are constrained to particular durations, de-
noted as short (� 1 second), normal (1 � 3 seconds) or long (3 � 5
seconds). A full list of all available actions can be found in Table 1.

Once a full sprint vector is established, a critic will briefly evaluate
to ensure a sense of flow is retained: the critic may swap pairs of
activities, or add segments to give players a brief respite. This vector
is passed into the geometry generator to create the level for play.
This geometry generator is responsible not only for the selection of
geometry but its subsequent placement within the game scene.

Each of the activities identified in Table 1 have one or more pre-
fabricated pieces of geometry, hereby referred to as prefabs, that ef-
fectively represent the intended behaviour from the player. An exam-
ple of this can be seen in Figure 2, which is one of the ‘hopscotch’
prefabs. The geometry generator places these items into the scene,
aligning them such that a complete level is constructed. Once a sprint

4 http://www.platformersai.com/

is completed, a ‘rest’ prefab is placed into the world. Typically this
whole procedure is an online process and takes place during play.
However, as discussed in Section 5, this process is made offline for
the duration of this experiment.

Figure 2. One of the prefab geometry pieces adopted by the geometry
generator for the ‘hopscotch’ activity in Table 1.

5 Experiment Design
Our experiment was conducted during the GameCity festival in Not-
tingham, UK5. The focus of the experiment was to determine whether
users could differentiate between levels crafted by a prototype PCG
system, versus levels designed by one of the authors. In an effort to
prepare for the festival, we exported six levels from the PCG system
and stored them for later use. In addition to the PCG levels, six levels
of equivalent length were crafted in the game engine by one of the
authors.

While each level that was designed was unique, there are similar-
ities that can be seen throughout. This is in part due to the prefabs
discussed in Section 4 which were adopted in all level creation. In
addition, given that the PCG system detailed in Section 4 was writ-
ten by one author, with the other responsible for building the human
levels, there is an argument to be made in that design habits of the
authors have been injected, albeit rigidly, into the rhythm system.
We return to these points in Section 6.1 and note the limitations they
present as well as future steps for improvement.

Table 2. A breakdown of the percentage of participants who guessed either
human or PCG-crafted level after each stage of completion. Followed by the

success rates of those guesses at that particular stage.

Breakdown of Designer Guesses
Level Human Level PCG-Level Unsure
1 63.15% 23.7% 13.15%
2 50% 23.7% 26.3%
3 28.9% 42.1% 29%

Success Rates
1 71.43% 25% N/A
2 92.86% 12.5% N/A
3 28.57% 37.5% N/A

Each play-through of Sure Footing comprised of three ‘levels’.
With a minimum of one human and one PCG-crafted level per play-
through. The third and final level was selected at random from the

5 The festival took place during 25th October to 1st November 2014: http:
//www.gamecity.org
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Action Duration Description
Run Short, Normal, Long A flat section of terrain which the player must run across.

Jump Short A gap between platforms which may carry a variation in height, such that can either jump or
fall depending upon the context.

Incline Normal A series of short platforms closely placed to one another or a ramp that gradually increases in
height.

Decline Normal A series of short platforms closely placed to one another or a ramp that gradually decrease in
height.

Hopscotch Normal A series of short platforms with one in the middle that is higher than the others, forcing the
player to hop atop or over it.

Fall Normal, Long Two platforms with separated by a significant vertical drop. Players are expected to fall or
jump down to the lower platform.

Spring Normal, Long A long platform with a spring attached to the end that will launch the player to a much higher
platform.

Table 1. The collection of actions that can take place in a given ‘sprint’ of play.

Table 3. A table showing the frequency of reasons left by participants. Including the percentage of responses that left a given reason, followed by a
breakdown with respect to whether they guessed a level was human or PCG-crafted.

Reasons For Decision
Difficulty Pace Variety Length Item Placement Don’t Know Other

All Responses 35.09% 36.84% 29.82% 14.91% 29.82% 7.89% 8.77%
No Vote 0.88% 2.63% 0.88% 0.88% 1.75% 4.39% 3.51%

Decided Human-Crafted Level
All Guessed Human 18.42% 23.68% 14.04% 10.53% 19.30% 0.88% 0.88%

Correctly Guessed Human 10.53% 7.89% 7.02% 5.26% 7.89% 0.88% 0%
Decided PCG-Crafted Level

All Guessed PCG 15.79% 10.53% 14.91% 3.51% 8.77% 2.63% 4.39%
Correctly Guessed PCG 7.89% 4.39% 7.02% 2.63% 3.51% 0.88% 1.75%

PCG and human-designed sets, thus certain users would be exposed
to each type of content, with one type more-so than the other.

At the beginning of the play-through, players were briefed that
they would play at minimum one of each kind of level and that their
task was to discern between the two types. Upon completion, the next
level was immediately loaded into the game for the player to com-
plete. In the event that players found these levels too challenging,
the option was given to allow for a level to be skipped. Players were
given as many tries as was necessary to complete the set of three
levels. Upon completion, participants we asked if they could identify
PCG and human samples; identifying whether level difficulty, pace,
variety of rhythm, length and placement of items informed their deci-
sion. In addition, players were also given the option to express in de-
tail additional elements that helped cement their opinion. Only after
this questionnaire was completed and the game saved performance
data was it revealed to users whether a given level was indeed crafted
by a human or PCG system.

6 Results & Discussion

The results from 45 participants can be seen in Table 2, showing the
breakdown of guesses at each stage of the process. In addition, we
provide a breakdown of the frequency that particular reasons were
given and their success in Table 3.

There are a number of interesting results, noting not only grad-
ual trends in guessing patterns, but also the reasons given in certain
circumstances. Firstly, we note that players were more likely to cor-

rectly denote a level as being crafted by a human than by the PCG
system. This is perhaps not surprising, given that players would as-
sume by default that content was man-made if they found it fun or en-
gaging. Another interesting element is that not only is the success rate
for voting PCG-levels less accurate, but players are more likely to be
left unsure in their decision. Despite the level of accuracy behind hu-
man guesses, players became less confident over time in voting for a
human-designed level, arguably due to not discovering a significant
difference in the content that was being shown during gameplay. We
believe this could be a limitation of the current generator, given PCG
levels may appear remarkably similar to human-crafted content.

If we look further at the feedback from Table 3, it is interesting to
note that that pace and difficulty followed by variety and item place-
ment are deemed the biggest factors for making a given decision.
Despite this, in certain circumstances this proved to be an incorrect
assertion. For example, less than half of all participants who blamed
pace for a human-designed level were proven correct. Overall, there
does not appear to be a real consensus from this study for understand-
ing whether a level was human or PCG-crafted.

In addition to the provided reasons, there was written feedback
that was provided through the ‘Other’ column of the questionnaire.
This yield some equally interesting yet contradictory reasons for par-
ticipants decisions. Specific written feedback from participants noted
that levels were “very good” or “intriguing”, with several participants
noting “flow” as one of the reasons for human-crafted samples, only
to be proven wrong. One participant went so far as to criticise the
design of one level, noting that “no human would place” a particular
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segment of prefabs together and was correct in that assertion.
We note that the average success rate was 25%, with 29% of par-

ticipants failing to recognise any level successfully. Meanwhile 13%
were capable of scoring 100% accuracy, identifying all PCG and
human-crafted levels. It is arguably their written feedback or experi-
ence that proved most valuable. One participant was an independent
game developer who could ‘see’ the patterns at play. Meanwhile an-
other noted that item placement in particular showed an emphasis
on human design. Given blocks and power-ups would be dropped
in what they deemed “easier” segments of play. One fact that is not
made visible in Table 2 is that in two cases, participants completely
ignored the briefing given to them and stated that all levels were man-
made. We would argue that part of this challenge in the eyes of play-
ers originates in the problem domain. As discussed in Section 2, the
endless runners constrain the amount of change available to the de-
signer. In addition, there are still numerous limitations in our system
which we will now discuss.

6.1 Study Limitations
While this study does yield some interesting results, there are some
notable limitations both with the study as well as the current genera-
tion system that we aim to address in future studies.

Firstly, the Sure Footing generator is a weak computationally cre-
ative system [1]: given it is largely reliant upon the pre-conceived no-
tions of the human authors. Art assets are stored in pre-built chunks
the system is reliant upon and the generator is not overly flexible. As
such, any level built will carry heavy influences from human design-
ers. More importantly, this generator was not particularly expressive,
with only differing configurations of one base level ’template’ that
could be achieved. While the range of expression permitted to the
generator must be improved, relating back to our previous point, fu-
ture studies must also focus on measuring the full expressivity of
the system. This notion, as discussed in [16], can help us identify
the range of content the generator can establish and subsequently
what impact this has on player perceptions. In addition, this would al-
low for assessment of whether current generators can build the same
range of content as a human designer.

Furthermore, future studies would benefit from multiple genera-
tors for players to consider: ranging from humans, to intelligent pro-
cedural generations systems, with a variety of purely random gen-
erators in between. Lastly, future studies would benefit from testers
being able to identify particular areas of gameplay where their suspi-
cions of PCG or human-driven design are raised.

7 Conclusion
In this paper we highlighted a short study assessing players percep-
tions of procedurally generated versus human-crafted content for an
endless-runner game. Players proved more successful in identifying
human-crafted content than one by a PCG system, which in some
respects is a positive step for the level generator; given that the ma-
jority of players could not find any patterns or trends that identified a
given sample as procedurally generated. Given that this generator is
influenced by a human creative process, it is perhaps to be expected
that players find it harder to identify PCG-crafted levels. However,
when we consider that the PCG system is rather rigid in this current
version, it is surprising that the majority of users do not identify any
real differences.

The feedback from this process has been adopted by the Sure Foot-
ing team who aim to build an improved level generator. Future work

is focussed on building a more intelligent solution, in addition to ad-
dressing the issues raised in Section 6.1, such that a second study may
be conducted over a longer period. This would allow for richer dis-
cussion of players perceptions of procedurally generated content as
the generator becomes more expressive and their restrictions lifted.
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Hybrid Procedural Content Generation: A Proposal
Michael Cook and Simon Colton1

Abstract. Procedural content generation in games tends to target
content that is abstract, dry and devoid of connection with the game’s
meaning. This paper proposes merging user-driven content genera-
tion approaches with procedural content generation to create a new
paradigm which we call Hybrid Procedural Content Generation. By
replacing aspects of existing procedural generation techniques with
humans, we can give rise to new kinds of game experiences.

1 Introduction
Procedural content generation and user-generated content (PCG and
UGC respectively) are two concepts which are familiar to anyone
who has played or made games in the past decade. The idea that
content for a game can be created after it has shipped enables many
new kinds of game experience, as well as engaging players in new
kinds of activities, including creative involvement in the game. They
also provide interesting research platforms to ask new questions and
build intelligent systems to help shape these new ideas about games.

In this paper we introduce the concept of Hybrid Procedu-
ral Content Generation (HPCG), a fusion of user-generated and
procedurally-generated content that similarly offers new kinds of
game design and also new opportunities for artificial intelligence in
games. By incorporating players into procedural content generation
systems we can produce hybrid systems that are much stronger than
standard procedural or user-driven generative approaches.

We illustrate the concept of HPCG by giving three examples of
prototype games which incorporate some kind of HPCG system into
their game design. Murder is an assassination game set in a Cluedo-
esque mansion at a dinner party, in which the player must perform
several narrative actions and then kill another character at the party.
Mystery is a Poirot-style detective game in which the player must
solve a murder using deduction and exploration. The Book Of A
Thousand Tales is a roleplaying game in which the player leads a
band of heroes through a branching narrative.

The remainder of the paper is organised as follows: in Background
we discuss both PCG and UGC and their relative weaknesses. In Hy-
brid PCG we briefly introduce the concept of HPCG, its motivating
factors and how we see it being used within games. We then de-
scribe two simple game designs that comprise a HPCG system. Fi-
nally in Opportunities for Computational Intelligence we talk about
the longer-term impact of such approaches and the potential for new
research directions HPCG could give rise to. We then sum up our
proposal in Conclusions

2 Background
According to [6], most PCG systems can be categorised as either
constructive or generate-and-test systems. In the former, content is

1 Computational Creativity Group, Goldsmiths, University of London

gradually built up out of successive passes at generation, and each
layer of generation is “guaranteed to never produce broken con-
tent” [6]. Spelunky 2 is a good example of this style of generation,
where dungeon levels are built out of several different layers of con-
tent which are hand-crafted to some extent to guard against failure
[7]. Generate-and-test approaches employ a generative step that pro-
duces content, and then an evaluative step which assess what was
generated and either triggers further generation/alteration (such as
an evolutionary system which will run many times to evolve a re-
sult, as in [2]) or simply reject the generated content and begin again
from scratch. Dwarf Fortress 3 employs a generate-and-test approach
during its world generation.

PCG has been applied very effectively to many kinds of content
generation, particularly level design [3] and general game content
such as item generation in roleplaying games. However, many types
of content are hard to generate using either of the above approaches.
In particular, content which requires an understanding of context of
the real world is hard to generate, such as game narratives or repli-
cating human-like qualities in NPC actions such as deception or fal-
libility. These dynamic kinds of content rely on an understanding
of the real-world, from cultural knowledge (like understanding sym-
bolism when constructing a narrative) to common-sense reasoning
(when deciding how a character should react to a particular situa-
tion, for instance). As a result, most content generation focuses on
abstract data that is detached from the game’s setting and theme (the
levels in Spelunky are simply arrays of numbers, for instance – the
system does not need to understand what a cave looks like or what
an explorer does).

User-generated content (UGC) is also a common feature in many
modern games. Allowing the player to create content for a game both
increases the amount of content available at no extra cost to the de-
veloper, and gives players a sense of engagement and investment in
the game world by allowing them to contribute to it. Spore 4 is a
prominent example of user-generated content – players designed an-
imal species for inclusion in their games using an assortment of body
parts and customisations. These animal species propagated not only
throughout the player’s world but also to their friends’ worlds via
cloud sharing online.

UGC is one of the biggest recent trends in the mainstream industry
thanks to the enormous success of Minecraft 5, which merged user-
generated content with the core mechanics of the game. In Minecraft,
generating content is how one plays the game: building structures,
artworks and shaping the world as the player sees fit. UGC has draw-
backs, however. In the case of generators like Spore’s, which present
themselves as tasks outside of gameplay, the user is consciously

2 Mossmouth Games, 2009
3 2006, Bay Twelve Games
4 Maxis, 2008
5 Mojang, 2011
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aware that they are generating content. As a result they are thinking
about how the content will be perceived by others, which has an im-
pact on how and what they create. This can be seen somewhat in the
comedic nature of many of Spore’s creatures – players know they are
creating things which will amuse or confuse other people. While this
may be seen as a positive for some tasks (in Spore’s case the objec-
tive is specific content generation) because the player is consciously
considering the design of their content, for other tasks it may be less
good – particularly those that take place in a fictional context. For ex-
ample, in Minecraft it is possible to construct floating houses, which
may break the suspension of disbelief for other players. It is prefer-
able here that all players construct buildings in a similar way, so that
they can maintain the narrative fiction for everyone equally.

The second drawback is that players tend not to be designers, and
UGC systems rarely have any kind of feedback mechanism or assis-
tive aspect to them. Content is either used wholesale or not used at
all, and frequently even this decision is made by players rather than
an intelligent software system. Creatures in Spore are uploaded and
shared online, structures in a Minecraft world exist for all players
in that world and can’t be edited or changed by the game. UGC is
all-or-nothing and thus lives or dies on the skill and appreciation of
the players using these systems. In some cases this can be worked
around – ratings systems in games such as LittleBigPlanet 6 simply
filter the best creations and downplay the rest. In this case, however,
UGC simply becomes a means by which to discover talented people
and get them to produce content, rather than allowing everyone to
contribute equally.

3 Hybrid PCG
We propose that PCG and UGC approaches can be combined in
a single approach that solves some of the problems mentioned
in the previous section while opening up new challenges and re-
search questions for computational intelligence research to tackle.
We call this combined approach Hybrid PCG because it synthesises
software-driven content generation with player activity. The underly-
ing premise is to replace generative systems or parts of systems with
playable games, resulting in new ways of generating, evaluating and
filtering content, not just for single games by potentially for many
different games at once.

To illustrate this approach, we will describe in this section two in-
development game prototypes, Murder and Mystery, which utilise a
HPCG approach to generate a large corpus of content and filter it.
These games not only supply content to one another: by generating
content that is transferred between games, they also produce a corpus
that can be used by other games or intelligent systems. After describ-
ing the games we will discuss the new affordances such a setup offers
and then lead into a discussion of the opportunities for computational
intelligence they represent.

3.1 Illustrative Example - Murder/Mystery
In Murder the player takes on the role of a character attending a din-
ner party at a mansion, as either a guest, a family member, or an em-
ployee of the host. Like most of the people present they have a mo-
tive to kill the host, and must do so at some point during the evening.
In addition, they must also complete one or more objectives relat-
ing to their motive (such as confronting the host in an argument, or
breaking into a room and stealing something). The game operates in

6 Media Molecule, 2008

a ‘sandbox’ style, where the player can explore the house freely and
approach their objectives in many different ways. However, the game
simulates player action carefully and records things like fingerprints
left on surfaces, sightings by other people in the house, and so on.

At the end of the game, once their tasks are completed, the player
can choose to ‘discover’ the body themselves or wait for it to be dis-
covered by someone else. They are then asked to provide an account
of their whereabouts for the evening by being shown their actual
movements and then editing them to change their version of events
– for example, by claiming they were never in a particular room at
a certain time, and so on. The game then assesses how quietly and
quickly they completed the game, as well as how well their alibi
compares to the evidence they left behind, and gives them a rating.

In Mystery the player takes on the role of a detective tasked with
solving a murder at a dinner party. They play a point-and-click ad-
venture in which they can examine the alibis and backgrounds of the
characters present, ask for accounts of events, and walk around the
house looking for clues or analysing parts of the crime scene. The
case files are built from case descriptions produced by Murder, po-
tentially converted using an automated system that can filter the case
to make it harder or easier (by making certain evidence more or less
conclusive or adjusting the memories of other characters, for exam-
ple) or simply presented to players unaltered – we discuss this further
in section 4.

There is a time and resource limit on solving a case - if the player
takes too long or uses up all of their investigative resources (such as
sending objects for fingerprinting) the case remains unsolved. What-
ever the result, the case file data gets sent back to a central server
which both affects the value of a case (repeatedly unsolved cases rise
in value to detectives) and the reputation of the player who created
the case file in Murder.

3.2 HPCG in Murder/Mystery
Both Murder and Mystery are standalone games that are effectively
separate from one another. If the data format for case files is open,
anyone could design a game which retrieved case files produced by
Murder players and use them in their game. Similarly, several games
might produce case files with the right format that could be used by
Mystery as game content for the player to investigate and solve. The
games are not intrinsically linked except through the exchange of
information about the case files and whether or not they are solvable
by players.

In the language of PCG, players of Murder are acting as a gen-
erator of case files, in the first step of a generate-and-test system.
There are two important consequences of this. Firstly, unlike UGC
approaches, the players are engaged in a game while generating con-
tent, pursuing objectives in whatever way they see fit. We argue that
this leads to more natural behaviour by players and therefore a more
human-like kind of content generated than if players had been asked
to manually design case files as authors. Secondly, the content being
generated is complex - it involves creative problem-solving and asks
the player to respond to social situations (such as confronting some-
one about a personal relationship, or making small-talk at a dinner
party). Such content is difficult to generate automatically without a
lot of involvement from a designer, and even with such involvement
the content is likely to be lacking in variety over a long period of play.
By using players to generate it, we make this difficult generative task
easier.

To continue the PCG metaphor, players of Mystery act as evalua-
tors of the content generated by Murder players. Let us assume that
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Mystery either does not edit the case files at all, or at most edits them
in order to ensure that they can be solved by some process of deduc-
tion (by ensuring that at least one piece of incriminating evidence
exists, for instance). Players solving, or attempting to solve, cases
are providing data about how easy a case is to solve. The routes play-
ers took, the order in which they examined evidence or questioned
people, and their ultimate success at solving the murder can all be
recorded as additional metadata attached to the original case file. In
the same way that people can be used to generate content that re-
quires complex understanding of the real world, people can also be
used to provide evaluation metrics that would be difficult to encode
into a system by hand (and too subjective to source from a single
designer).

3.3 Desirable Properties of HPCG Scenarios
While this remains a preliminary proposal for HPCG, and the idea
still needs much exploration, we posit that certain game designs or
scenarios are better suited for the application of HPCG. We discuss
them briefly here, and hope to clarify this in future work after more
experimentation and prototype development.

3.3.1 Asynchronous Activity

The most important property for employing HPCG is that the games
involved deal with asynchronous activity. Murder/Mystery work well
because the two game phases are chronologically non-overlapping:
one player commits a crime, then after they are finished the second
player can arrive and solve it. This means that no player is left waiting
for action to be completed in real-time, which could affect the experi-
ence of either player and slow down gameplay, and it also means that
any PCG systems have complete information from the other game or
games when they begin generating content.

3.3.2 Well-Defined And Decoupled Interfaces

Keeping the interfaces between games as simple as possible is a good
feature if the designer intends for other systems to feed data into
the HPCG besides their own. For Murder/Mystery we noted that in
theory it is possible for other games to generate crimes for Mystery
to solve, or to design other games which use Murder case files as
input content. In order to enable this, it’s important that the interfaces
between the games are very well-defined and public so that other
developers can take advantage of them. Making sure the games can
export data as well (such as putting Murder’s case files in external
text documents) also makes this easier.

3.3.3 Guided Player Activity

Depending on the kind of content being generated or the roles the
players are taking on in the larger HPCG system, it may be desirable
for the gameplay to be very directed or guided. The reason for this
is that the HPCG system is making assumptions that the data they
collect represents a certain kind of behaviour from the player - for
example, committing a crime, not wanting to leave evidence behind,
acting in order to blend in. It’s important to be able to encourage
and motivate the player to work towards certain objectives so that
these assumptions carry through into the data they generate, and can
then be relied upon to generate good quality content in other areas
of the HPCG system. If a player begins acting differently, or isn’t
sufficiently motivated to play properly, the HPCG system will still

proceed with the data and this can generate undesirable outcomes in
other games.

4 Opportunities for Computational Intelligence
On the surface, HPCG appears to replace software-driven PCG sys-
tems with players that perform the same tasks, therefore resulting
in systems that involve less computational intelligence, rather than
more. However, HPCG systems open up new research questions that
demand answers, and also create opportunities to build even more
complex generative software. In this section we discuss several pos-
sibilities in brief.

4.1 Learning From Human Generators
One possible outcome from HPCG systems is that they eventually
transition back into being PCG systems which use a player’s in-game
activity as a source of training data. In [4] Orkin and Roy describe
The Restaurant Game (TRG), an experiment in which participants
played through an interactive scenario in pairs and their behaviour
was then recorded and later analysed using machine learning to build
behaviour models of characters in those situations. TRG suffers from
some of the same problems that we mentioned in the context of UGC
earlier in the sense that players are aware they are generating content
as they play. Nevertheless, the authors’ argument is that automatic
content generation (in this case speech and behaviour patterns) can
be mined from large-scale data corpora [5].

By employing HPCG to tackle complex generative tasks, like the
generation of creative behaviour in Murder, such systems produce
special cases of the kinds of corpora Orkin and Roy present with
The Restaurant Game. They are special cases in the sense that they
are obtained through observing players at a time when their primary
concern is completing a game rather than performing for another ob-
server (whether that observer is a human or a data-mining program).
The player is not participating in an experiment, nor is their ultimate
goal to provide good data. Instead, they are focused on achieving
objectives and are immersed in a ludic task. As a result, we argue
that their behaviour is more natural and as a result more valuable, re-
sulting in useful corpora of data that can be mined, as with TRG, to
obtain behaviour. In the case of games such as Murder, the available
information is particularly valuable because the player is providing
information that an ordinary PCG system would not have access to
- such as solving problems in creative or innovative ways, as well as
failing at tasks in a natural, humanlike way.

4.2 The Computer As Curator
The game Murder can be seen as a generator of content for the game
Mystery, but raw generated case files from the game may not be in-
teresting, fun to solve or, indeed, solvable at all. Building Murder as
a HPCG system provides us with a wealth of generated murder cases
for players to solve, but it doesn’t guarantee their quality or difficulty
level. If a player plays a perfect game, it will be fairly unsatisfying
for players of Mystery to repeatedly fail to solve. Similarly, the player
may make an obvious mistake that renders a case trivial. This poses
an interesting problem: how can software curate, tweak and improve
raw HPCG output to ensure consistently entertaining content for an-
other player?

There are many factors to tweak in a case file produced by Murder
– both the actions of the players and the other characters, the evidence
left behind, the ordering of events. Altering this information requires
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an understanding of how people’s behaviour is interpreted by oth-
ers, to assess whether a change will make a case easier or harder to
solve for a player detective. HPCG systems leverage human play-
ers to solve creative, complex problems that are hard to solve using
generative software alone. It follows, therefore, that curating and im-
proving the results of a HPCG problem requires an understanding of
how these players reason about problems and act in certain situations.
The task of curating complex creative content sourced from humans
may have parallels with the problem of curating and evaluating in
Computational Creativity [1].

Recall that in section 2 we discussed the problems with existing
UGC and PCG paradigms. One problem with UGC approaches is
that players are not designers, and expecting them to be able to pro-
duce quality game content, either knowingly or not, is unreasonable
and often results in a large volume of low-quality content that no-
one wants to use. HPCG offers an opportunity to leverage the output
of users and improve it using computational intelligence, obtaining
content that has its foundations in the creativity of real players, but
has been curated and refined by software to be of higher quality.
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6 Conclusions
In this paper we briefly outlined a proposal for Hybrid Procedural
Content Generation or HPCG, a synthesis of user-generated con-
tent and procedural content generation where subsystems in a content
generation pipeline are replaced with players playing games achiev-
ing similar tasks. We illustrated the idea with two connected games
– Murder and Mystery – in which players of the former acted as a
generator of content which was then filtered and evaluated by play-
ers of the latter. We discussed what new avenues of research such an
approach might offer and how it solves some of the problems that
procedural content generation and user-generated content can have.

This paper is an early proposal for such games and systems to be
designed, but we hope that it will spark discussion and potentially
lead to interesting new kinds of games and intelligent software. We
believe that working with game developers may be of essence here,
to leverage good game design alongside new kinds of computational
intelligence. Collaboration is difficult, but we believe this is a promis-
ing avenue to explore.
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Revealing Social Identity Phenomena in Videogames with
Archetypal Analysis

Chong-U Lim1 and D. Fox Harrell2

Abstract. In this paper, we present a novel approach toward reveal-
ing social identity phenomena in videogames using archetypal anal-
ysis (AA). Conventionally used as a dimensionality reduction tech-
nique for multivariate data, we demonstrate how AA can reveal so-
cial phenomena and inequity such as gender/race-related steretoyp-
ing and marginalization in videogame designs. We analyze charac-
ters and default attribute distributions of two critically acclaimed and
commercially successful videogames (The Elder Scrolls IV: Obliv-
ion and Ultima IV) together with 190 characters created by players
in a user-study using a third system of our own design. We show that
AA can computationally 1) reveal implicit categorization of char-
acters in videogames (e.g., base player roles and hybrid roles), 2)
model real world racial stereotypes and stigma using character at-
tributes (e.g., physically dominant attributes for Oblivion’s ostensibly
African-American “Redguard” race) and 3) model gender marginal-
ization and bias (e.g., males characterized as more archetypal rep-
resentations of each race than females across attributes.) We high-
light how AA is an effective approach for computationally modeling
identity representations and how it provides a systematic way for the
critical assessment of social identity phenomena in videogames.

1 INTRODUCTION

Videogames often construct virtual environments and worlds that are
populated with virtual characters. Both these worlds and characters
may be represented in a multitude of ways. Graphical 2-dimensional
(2D) or 3-dimensional (3D) assets grant visual appearances, textual
descriptions provide intriguing narrative, backstories, and character-
istics, while numerical statistical attributes provide quantifiable mea-
surements defining character skills and capabilities for a variety of
interactions, from dealing damage against a mighty adversary, to
charming a non-playable character into handing over an elusive item.

Though often considered to be purely virtual, these representations
are in fact blended real/virtual identities that are both affected by, and
capable of influencing, aspects of real world identities. Even in the
case of a fairly rudimentary character such as Pac-Man, in action
we have a blend of a real users control with a 2D animated sprite.
Recent studies have shown how representations of race and gender
within videogames have deep social implications [8]. In the commer-
cially successful and critically acclaimed role-playing game (RPG)
The Elder Scrolls IV: Oblivion, some character designs “implement
and amplify many disempowering social identity constructions” [9].

1 Computer Science & Artificial Intelligence Laboratory, Massachusetts In-
stitute of Technology, USA, email: culim@mit.edu

2 Computer Science & Artificial Intelligence Laboratory, Comparative Me-
dia Studies Program, Massachusetts Institute of Technology, USA, email:
fox.harrell@mit.edu

“Females of some races are more intelligent than their male coun-
terparts and individuals of the ostensibly French ‘race’ (Bretons)
are twenty points more intelligent than their ostensibly Norwegian
(Nords) counterparts, regardless of gender” [9]. It highlights the im-
portance of the underlying implementations and data structures used
to construct these representations. If developed without due consid-
eration, undesirable social implications related to identity such as
marginalization and stereotyping may be further perpetuated. Re-
search has shown that peoples’ performances are impacted by stereo-
types [20] and behaviors in the physical worlds are altered by their
avatar use [22].

However, it is important to recognize that these issues are not sim-
ply technical in nature. We adopt a critical computing [9] approach,
using algorithmic processing and data structuring for critically as-
sessing and providing commentary about the real world and related
social phenomena. In this paper, we demonstrate an how archetypal
analysis can be used as an Artificial Intelligence (AI) tool for such
critical assessments of computational identity-related social phenom-
ena in two commercial videogames, as well as a character creation
system of our own design. The upshot is that we found that AA
is a robust method for computationally modeling underlying social
identity phenomena grounded in cognitive science. We use AA to
model social phenomena within games, such as male characters be-
ing favored over female characters based on statistical attribute dis-
tributions or in-game races having real world stereotypes imparted
upon them (e.g., ostensibly African-American “Redguard” charac-
ters in Oblivion given better physical but lower mental stats.) To the
best of our knowledge, this application of cognitive science (apart
from some notable exceptions like Santa Ana’s work on discrimina-
tion and racism [17] and Lakoff’s work on political affiliations [12])
and AI has not often been applied to analyze nuances of identity.
Most computational systems, like videogames, are built with classi-
cal models and categories explicitly built into software. Hence, they
provide a good venue to critically assess such cognitively grounded
AI approaches to studying digital identity.

2 BACKGROUND
In this section, we present the theoretical framework for our work
and provide an overview of the videogames used for our analysis.

2.1 Cognitive Categorization and the
Sociology of Classification
Our view of categorization is based upon cognitive scientist George
Lakoff’s work in cognitive categorization [11] termed category gra-
dience and psychologist Eleanor Rosch’s protoypes [16]. As op-
posed to outmoded classical or “folk” approaches, which character-
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ize category membership to be defined by a fixed set of characteris-
tics, centrality gradience recognizes that some members are typically
deemed “better examples” of a category than others. Extending upon
this, we use the following concepts from the sociology of classifi-
cation by Geoffrey Bowker and Susan Leigh Star [3] for describing
categorization-related social phenomena. Membership is the expe-
rience of encountering and interacting with objects within certain so-
cial groups, and increasingly engaging in naturalized relationships
with them. Naturalization is the deepening familiarity of such in-
teractions within a given social group. Marginalization is a result of
enforced naturalization occurring where members of a marginal cate-
gory exist outside of social groups, or are less prototypical members
of communities. It is also characterized by exclusion from a social
group or an individual having multiple memberships and often refers
to exclusion or difference from normative behaviors (Stigma) [7, 9].
Markedness indicates that, unlike normative categories, marginal
categories are demarcated visually and linguistically.

To reconcile these concepts with the systems in this paper, we
use a cognitively-grounded model for critically assessing comput-
ing systems for social analysis [9]. It suggests that category gradi-
ence enables semantic relations to be structured or ranked accord-
ing to how constitutive they are of the category. Naturalization may
be assessed by user actions and attributes that reinforce category
semantics, resulting in a higher degree of membership. Marginal-
ization may be implemented through enabling degrees of member-
ship and represented as being further away from the prototypes.
Normative groups that are often unnamed and unmarked may pos-
sess implicitly assumed normative privileges that may be identified
and modeled. This theoretical framework forms the basis for using
archetypal analysis as an approach for social analysis and empower-
ment through critically assessing the statistical attributes of charac-
ters within videogames for revealing implicitly-derived social phe-
nomena such as gender-related marginalization and stereotyping.

2.2 Archetypal Analysis

Archetypal Analysis (AA), introduced by Cutler and Breiman [5], is
a method for reducing the dimensionality of multivariate data [1].
Given a set of multivariate data points, the aim of AA is to be
able to represent each data point as a convex combination of a set
of key data points called archetypes. For example, applying AA
on a dataset of basketball players and their statistics [6] compu-
tationally revealed and represented the following four archetypes
– “benchwarmer,” “rebounder,” “three-point shooter,” and “offen-
sive.” Every individual player in the entire data set could then be
represented as a hybrid mixture of these archetypes [18]. Formally,
given a data set of points {x1, x2, ..., xn}, AA seeks to find a set

of archetypes {z1, z2, ..., zk}, where zj =
n�

i=1

�ijxi, and enables

each data point xi to be represented in terms of the k archetypes as

xi =
k�

j=1

�jizj . The objective function minimizes the residual sum

of squares RSS = ||xi �
k�

j=1

�ijzj ||2 under the constraints that the

weights
�

�ij = 1 �ij � 0 and coefficients
�

�ji = 1 �ji � 0.
These ensure the archetypes meaningfully resemble and are convex
mixtures of the data. These archetypes are located on the data convex
hull [5] and are represented are combinations of individual points,
making them more easily interpretable [1], unlike other dimension-
ality reduction techniques like Principal Component Analysis [10]

and Non-negative Matrix Factorization [13]. AA has been shown
to be effective compared to other techniques for various AI-related
problems. Compared to other recommender models (nearest neigh-
bor, two popularity, random baseline) AA provided the highest recall
rates for archetypal recommender systems [19] in games, demon-
strating robustness for finding relevant recommendations. Here, AA
is an appropriate approach given our aim to computationally model
individuals that are more “prototypical” than others (archetypes) and
being able to measure the “centrality gradience” of each individual
with respect to these archetypes. As described in Section 2.1, we
believe that such models would enable us to begin critically assess
social phenomena such as marginalization and stereotyping compu-
tationally.

2.3 Overview of Videogames

We provide an overview of the two commercially successful
videogames used in this paper. Both are important open-world single-
player RPGs with strong customization. Ultima IV: Quest of the
Avatar is arguably the most influential game on the open world RPG
genre and The Elder Scrolls IV: Oblivion is a stunning recent success
with a strong customization system and diversity. Even in excellent
games, there is the potential for implicit stereotypes and inequity. Our
observations are meant to be useful for improvement in this regard.

The Elder Scrolls IV: Oblivion is the fourth installment of the
popular Elder Scrolls computer role-playing game series, developed
by Bethesda. In the lore of the game designed by game designers
there are several races, each with their own fictional background
stories and histories. Three basic player roles exist in the game –
“Fighter”, “Mage” and “Thief” [15], which are derived from com-
mon roles across most RPGs stemming from old table-top RPGs like
Dungeons and Dragons. Each race is associated with the three basic
roles in varying degrees (hybrid roles), which compliment the game’s
lore about its people and races. Players choose to play as one of the
ten different races available, customizing characters over 7 basic at-
tributes (strength, intelligence, willpower, agility, speed, endurance,
and personality,) together with their height and weight.

Ultima IV: Quest of the Avatar is the fourth installment of the
Ultima series of role-playing games, and the first in the “Age of En-
lightenment” trilogy, Ultima IV was first released in 1985 by Origin
Systems. The player is assigned one of eight classes to play and does
not directly choose or assign values to attributes. Instead, the user
is posed several questions embedded within the games narrative at
the beginning, resulting in the players ranking of eight virtues in
the game based on the game’s three principles of Truth, Love, and
Courage. There are seven companions that the player may choose to
form a party with. Each character has a particular class, each associ-
ated with a virtue, and possesses seven numerical attributes (strength,
dexterity, intelligence, hit points (HP), magic points (MP), level, and
experience,) an armor type, a weapon type, and their gender.

3 APPROACH

1. Analyzing existing systems for designer-centered phenomena.
In order to assess the kinds of categorization and social identity phe-
nomena that arise as a result of designer choices (top-down), we ap-
plied archetypal analysis to the statistical attribute allocation for new
characters in both Oblivion and Ultima IV. For Oblivion, the vari-
ables included the races, gender, and eight attributes. For Ultima IV,
the variables included the character classes and seven attributes.

AISB Convention 2015: Symposium on AI and Games 13



2. Analyzing emergent phenomena with a system of our own
creation. For the purpose of assessing the kinds of categorization
and social phenomena that may be implicitly-derived from players
(bottom-up), we conducted a user-study with 190 players where they
constructed avatars in an avatar constructor of our own creation.
Players customized both their character’s visual appearance and sta-
tistical attributes values of six commonly used videogame attributes
(strength, endurance, dexterity, intelligence, charisma, and wisdom)
on a 7-point Likert scale with a total of 27 allocatable points. The
avatar constructor used our avatar game data-mining system called
AIRvatar [14], that stores each created avatar, the statistical attribute
allocations, and textual descriptions made by the players.
3. Determining the number of archetypes During AA, we varied
the number of archetypes k in the range 1 � k � 10. We adopt the
convention of the Cattell scree test [4] for using the residual sum-
of-squares (RSS) to determine the optimal number of archetypes by
picking the value of k matching the first point of the “elbow” of a
screeplot with corresponding to the biggest change in RSS. This bal-
ances the trade off between minimizing RSS and overfitting.

4 RESULTS

We present results describing the archetypes obtained from analyzing
the statistical attributes of each system using archetypal analysis.

4.1 Oblivion

In Oblivion we found k = 3 to be optimal. Both Archetypes 2 and
3 were pure archetypes (�j = 1). The ternary plot in Figure 2(a)
of the Appendix shows a visualization of the � coefficients of these
archetypes. We also observed the following characteristics:

• Archetype 1 had the highest “Strength” and “Endurance”, but low-
est “Intelligence”. Archetype 1 had the biggest “Size”.

• Archetype 2 was relatively balanced across the attributes, with
highest “Willpower” and “Personality”.

• Archetype 3 had highest “Intelligence”, “Agility” and “Speed”,
but lowest “Willpower”. Archetype 3 had a relatively small “Size”.

4.2 Ultima IV

In Ultima IV, we found k = 3 to be optimal. All three were pure
archetypes. The ternary plot in Figure 2(b) of the Appendix visual-
izes the � coefficients of these archetypes. We also observed that :

• Archetype 1 had the lowest values across all attributes.
• Archetype 2 had the highest values across all attributes, except for

“Intelligence” and “Magic Points”.
• Archetype 3 had the highest “Intelligence” and “Magic Points”.

4.3 AIRvatar

For characters created using AIRvatar, we found k = 3 to be opti-
mal. The bar plot in Figure 1 shows the three archetypes obtained,
represented with the same six RPG attributes. We observed the fol-
lowing:

• Archetype 1 had highest “Intelligence” and “Wisdom” attributes,
but lowest “Strength” and “Endurance”.

• Archetype 2 had the highest “Strength”, “Endurance”, and “Dex-
terity” attributes, but the lowest “Wisdom”.

• Archetype 3 had the highest “Charm” but lowest “Dexterity”.

5 FINDINGS
5.1 Classes, Roles, and Category Gradience
In Oblivion, we found that each archetype corresponded with
the primary roles of the game, namely “Fighter” (Archetype 1),
“Mage” (Archetype 2), and “Thief” (Archetype 3). We used descrip-
tions in the Unofficial Elder Scrolls Pages [15], to help identify these
roles from obtained archetypes. “Fighters” ‘rely heavily upon melee
combat to attack enemies, expect to receive a lot of damage rely upon
high health...’, “Mages” ‘avoid combat, use decoys, and rely upon
magical attacks.’ Magicka, used for spells and magic, is affected by
both “Intelligence” (Capacity) and “Willpower” (Regeneration). A
“Thief” ‘relies upon sneak attacks and avoids face-to-face combat,
uses a poisoned bow as a primary means of attack,’ corresponding
to the high “Speed” and “Dexterity” (Bow Accuracy) attributes.

Likewise, in Ultima IV, we observed from our results that each
archetype corresponded with characters of primary roles in the
game. Katrina the Shephard is Archetype 1 as her description in the
Unofficial Ultima IV Strategy Wiki [21] states “. . . she has the low-
est attributes, no magic power and a limited selection of equipment;
start the game with her if you’re looking for a challenge”. Archetype
2 corresponds to “Iolo the Bard”, who has the highest “Dexterity”
described as “probably the most important attribute because it rules
the probability of hitting enemies, avoiding traps and dodging ene-
mies.”Archetype 3 corresponds to “Mariah the Mage”, with highest
“Intelligence” (determines maximum “Magic Points”.)

For characters created by players in AIRvatar, we observed
from our results that the archetypes corresponded with traditional
RPG roles used in games, which we term “Intelligent/Wise-Cleric”
(Archetype 1), “Physical-Fighter,” (Archetype 2) and “Charming-
Thief” (Archetype 3). We the descriptions of traditional Dun-
geons and Dragons classes to match against the highest-scoring
attributes of each archetype to identify these roles. Magic using
“Mages/Clerics” focus on magic, and generally have lower strength.
“Fighters” are usually strong in attack and defense, but usually have
little to no magic capabilities, while “Thieves” often are in-between,
but have high capabilities in social skills, cunning and stealth.

We validate this based on the free-text responses that players pro-
vided for their avatars, in addition to customizing their characters.
We provide selected responses from the highest scoring players for
each archetype to highlight this behavior:

1. Archetype 1 (Intelligent/Wise-Cleric): “Stephanie is a wander-
ing wolf mage. She was born to a poor family, but her parents did
their best to support her academic ventures. She studied hard and
was eventually admitted to the nation’s most prestigious arcane
academy.”

2. (Archetype 2 (Physical-Fighter): “Gerald . . . is a veteran of
many wars in Elibca, serving as a knight and later as a general
for the kingdom of Calmenia . . . living the remainder of his life in
modesty as he nurses old scars.” & “Saya is an independent Mer-
cenary selling her contract not to the highest bidder, but to those
she deems in the most need of her services. Secretly, she dreams
of becoming a Paladin some day but believes that she has far too
candor in her speech and methodology to fit in . . . ”

3. Archetype 3 (Charming-Thief): “She is friendly and ready to
reach out to the other villages. She prefers talking to fighting, but
is tough enough to fight if she needs to. ”

These results shows that AA can effectively model implicit cate-
gories, such as intended player roles and relationships between at-
tributes from analyzing raw statistical attribute data. For example, in

AISB Convention 2015: Symposium on AI and Games 14



both Oblivion and AIRvatar, “Strength” and “Intelligence” attributes
are always maximized on different archetypes, while “Strength” and
“Endurance” were be maximized on archetypes together. Addition-
ally, with archetypes corresponding to prototypical player roles, we
observed that each individuals could meaningful represented as
mixtures of these archetypes, corresponding to hybrid roles in-
tended by most designers.

5.2 Revealing Stereotypes, Marginalization, and
Inequity

5.2.1 Race-related Stereotyping

From the archetypal analysis results on characters in Oblivion, we
were able to observe that some of the in-game races were deemed
more “prototypical” with respect to player roles and that we
could observe how these in-game races reflected real world
stereotypes. To visualize this, we make use of the ternary plot of
results shown in Figure 2(a) of the Appendix. This is best visualized
using a ternary plot, as shown in Figure 2(a) of the Appendix. We ob-
serve that the ostensibly Norwegian “Nords” are viewed as archety-
pal Fighters, the ostensibly French “Bretons” as archetypal Mages,
and ostensibly South American “Bosmers” as archetypal Thieves.
Additionally, the obstensibly African-American “Redguards” stereo-
typically close to the physical-fighter archetype with no character-
istics of the intelligence-mage archetype, though exhibiting some
stealth-thief archetype characteristics. This corresponds with find-
ings by Harrell in his assessment of racial stereotypes in Oblivion [9].

5.2.2 Gender-related Inequity & Marginalized Characters

In Oblivion we also note that for each race, male characters are
consistently deemed more prototypical than their female coun-
terparts than their female counterparts. This is illustrated in Fig-
ure 2(a), where for each archetype, the male characters are always
at least as close, or closer to the archetypes, than their counter-
part female characters. Insight into the significance of characters
being closer to the centers (i.e., further away from archetypes) is
highlighted in the design choices made in Ultima IV, wherein the
NES version of Ultima IV, “Julia” was replaced by a male charac-
ter “Julius”, with no modification to the stats. From the ternary plot
in Figure 2(b) of the Appendix, it can be seen that “Julia” is the
character with negligible “Intelligence” and “MP” attributes and lo-
cated between the overall lowest and highest-performing archetypes,
possessing multiple memberships. This computational modeling of
a less prototypical individual would, by Lakoff’s definitions [11],
represent the marginalization of that individual. We hypothesize
that the implications of this made it seem “low-stakes” to swap her
gender within the game and that it might have been more difficult
to swap the genders of an archetype instead (i.e., making a Katrina a
male to have the lowest stats or Iolo a female while having the highest
stats.) To validate the effects of marginalization (being further away
from archetypes), we sampled characters created with AIRvatar that
had coefficient values .3 � �k � 0.6 for all three archetypes. These
reflected characters that players created to be less prototypical.

• Character #41: “Pinkie is a girl with a unique gift for magic,
. . . works best in a team but can hold her own when needed.”

• Character #102: “A spellcaster . . . a love for forbidden magics.
Chaotic good, generally tries to do the right thing but isn’t afraid
to crack a few eggs to make an omlette.”

5.2.3 Gender-related Stereotyping

In the results of characters created using AIRvatar, we observed
that players constructed characters with more homogeneous gen-
der distributions between archetypes and also when close to the
archetypes. We define close as individuals with coefficient values
�k >= 0.80. In Table 1 of the Appendix, we observe that all
three archetypes had a mixture of male and female avatars close
to each of them. Both Archetype 1 (“Intelligent/Wise-Cleric”) and
Archetype 3 (“Charming-Thief”) had more female avatars closer to
the the archetypes than male avatars, while Archetype 2 (“Physical-
Fighter”) had more male avatars closer to it. These results share
similarities with those of Oblivion, Ultima IV, as well as our pre-
cious analyses in [14] where males avatars were associated with more
physical roles, and female avatars with magic-related roles. For the
“Charming-Thief” role, neither females nor males were closely as-
sociated with it – showing that “Thief”-like roles have less gender
stereotyping associated with them. These results appears to suggest
that taken collectively, players seek to reduce the degree of marginal-
ization or privilege of either gender relative to what designers com-
monly portray. We hypothesize that perhaps, in the absence of a well-
known game series, people relied more on real-world gender stereo-
types. Thus, these results may reveal what people do without being
restricted to canonical classes and roles – an observation perhaps use-
ful for developers incorporating race and gender into their designs.

6 LIMITATIONS & FUTURE WORK

Here we discuss several limitations of our approach and describe po-
tential avenues for overcoming them with future work and directions.
1. Determining the number of archetypes The approach we out-
lined in Section 3 adopts Occam’s Razor [2] in that we pick the
lowest number of archetypes k from the minimization of the resid-
ual sum-of-squares (RSS). However, this may not always be effec-
tive, with the result possibly being that the archetypes discovered are
not sufficient to adequately represent the rest of the data points. For
example, with k = 3 archetypes applied to results from AIRvatar,
we discovered that no close individuals (�j >= .9) for one of the
archetypes. It is possible that other metrics for determining k could
be employed (e.g., choosing higher values of a scree plot’s elbow.)
2. Normalizing Statistical Attributes While there are similarities
between the statistical attributes used for defining characters in vari-
ous videogames, there are issues with standardizing the number, the
descriptions, and the effects that each attribute has. Also, there is a
tension between the gaming use of these terms like “Intelligence”
or “Wisdom.” and their real meanings. Additionally, different games
use different numerical scales (e.g., upon-100 in Oblivion but upon-7
in AIRvatar) for these attributes. It is difficult to translate the signifi-
cance of each point due to different granularities. A standardized list
and scale would be useful for such cross-platform comparisons.
3. Representation Beyond Statistical Attributes Representation in
computing systems spans across several other technical components
of the system, including graphical assets and textual descriptions [8].
Our next step is to analyze additional data collected using AIRvatar,
which include the images of the constructed avatars, textual descrip-
tions made by players, and other behavioral data obtained using the
analytical capabilities of AIRvatar. We believe that these additional
sources of information will enable further insight into the types of
social phenomena that players experience and encounter through vir-
tual representations in videogames and other computing systems.
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7 CONCLUSION
We have demonstrated a novel approach to computationally model
cognitively grounded social identity phenomena in videogames us-
ing archetypal analysis (AA). Previous work in this area has relied
on qualitative methods (e.g., self-reported surveys) to identity and
assess the presence of social identity-related issues such as marginal-
ization, stereotyping, and discrimination. We demonstrated AA’s ef-
fectiveness for modeling gender-related marginalization and biases
like males being represented as closer archetypes than females and
race-related stereotypes like in-game races possessing attributes that
reflect characteristics of real-world stereotypes. AA was also able
to reveal implicit categories like prototypical RPG roles used in
videogames, which had implications to such race and gender-related
phenomena. Being able to reveal such emergent phenomena through
analyzing the data structures and designs of systems mean that com-
puting systems can be analyzed in a systematic way, enabling quan-
tifiable insight to be gained while minimizing the common effects
of subjective evaluations such as survey bias. We believe that these
findings contribute towards substantiating the use of AI to better un-
derstand the effects of virtual characters on players behaviors.
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A COEFFICIENT TABLES
Description �1 �2 �3

Player
Gender

Avatar
Gender

Archetype 1
( “Intelligent/Wise-

Cleric”)
*1.00 0.00 0.00 Female Female

0.90 0.00 0.10 Female Female
0.82 0.17 0.01 Male Male

Archetype 2
(“Physical-Fighter”) 0.00 *1.00 0.00 Male Male

0.00 *1.00 0.00 Female Female
0.00 *1.00 0.00 Male Male
0.00 *1.00 0.00 Male Male
0.00 *1.00 0.00 Male Male
0.00 0.88 0.12 Male Female
0.00 0.87 0.13 Male Male
0.14 0.86 0.00 Male Male
0.15 0.85 0.00 Male Male
0.14 0.85 0.02 Female Female
0.00 0.83 0.17 Female Male
0.00 0.80 0.20 Male Male

Archetype 3
(“Charming-Thief”) 0.10 0.00 *0.90 Male Male

0.00 0.11 0.89 Female Female
0.15 0.00 0.85 Female Female

Table 1. Table of characters created with AIRvatar with high �
coefficients to each archetype. Values � 0.90 are bolded. * marks the closest

individual(s) of each archetype.

B BAR PLOTS

STR END DEX INT CHA WIS

0
1

2
3

4
5

6
7

Arch. 1 (Intelligent/Wise-Cleric)
Arch. 2 (Physical-Fighter)
Arch. 3 (Charming-Thief)

Attribute

V
al
ue

Archetypes in AIRvatar

Figure 1. The plot above shows the k = 3 archetypes obtained from
archetypal analysis on the data set of players and their statistical attribute

allocations to each of their avatars. Due to convexity constraints, archetypes
can be meaningfully represented with the same features of the original data.
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C TERNARY PLOTS
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Figure 2. Ternary plots representing characters as mixtures of archetypal

archetypes in The Elder Scrolls IV: Oblivion, Ultima IV, and from our
AIRvatar system. Labels for (a) denote races in Oblivion, (b) denote names

in Ultima IV, and (c) player gender in AIRvatar.
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PALAIS: A 3D Simulation Environment
for Artificial Intelligence in Games

Patrick Schwab and Helmut Hlavacs1

Abstract. In this paper we present PALAIS — a virtual simula-
tion environment for Artificial Intelligence (AI) in games. The envi-
ronment provides functionality for prototyping, testing, visualisation
and evaluation of game AI. It allows definition and execution of ar-
bitrary, three-dimensional game scenes and behaviors. Additionally,
PALAIS incorporates a plugin system that supports swift integration
of custom AI algorithms. As a result, PALAIS effectively reduces the
effort necessary to research, develop, prototype and showcase behav-
iors used for non-player characters in games. Finally, we demonstrate
the power of the provided plugin system by exemplarily extending
the functionality of PALAIS with an external module. PALAIS is avail-
able at http://www.palais.io.

1 INTRODUCTION
The development of game AI typically requires a testbed environ-
ment to validate and visualise results in a virtual-world scenario.
Game developers and researchers frequently employ either game en-
gines or custom-coded game scenes as their testbed environments.
Using these environments for simulation has several disadvantages:
suboptimal code reuse, significant barriers to entry and increased
development time over using a more domain-specific environment.
PALAIS attempts to solve these issues by providing commonly re-
quired functionality, such as a graphical user interface (GUI), loading
required assets, data visualisation, scripting, entity management and
rendering, in an existing, accessible framework. Having this frame-
work in place enables the user to focus her efforts on AI-related code.

Moreover, custom-built solutions are often not easily distributed.
We propose a container format that stores all scene-related assets in
standardised formats. In PALAIS these scene containers are called
scenarios. Any instance of PALAIS can execute these scenarios. The
scenario structure, which is further described in section 3, and its
distribution process is depicted in figure 1. The scenario structure al-
lows users to share their scene definitions, graphical assets and game
AI. This simplified distribution process gives others the opportunity
to learn from, and build on, existing work. Consequently, our tool is
also suitable for use in game AI education. Teachers can utilise the
provided environment to supply students with interactive demonstra-
tions of game AI techniques. We believe this form of hands-on edu-
cation, where students can monitor and adapt execution parameters
in actual game scenarios, can significantly increase the accessibil-
ity of game AI. Similarly, the simulation environment can serve as a
demonstration platform for researchers to showcase their algorithms
and techniques.

1 University of Vienna, Faculty of Computer Science, Research Group
Entertainment Computing, Austria, email: a0927193@unet.univie.ac.at
and helmut.hlavacs@univie.ac.at









scenario

logic

plugins
assets 






Figure 1. A schematic overview of the scenario structure and its
distribution.

2 RELATED WORK
As mentioned, game developers and researchers commonly turn to
commercial [15][7], open-source [14] or in-house engines for AI
simulation. These general game engines overlap in functionality
with PALAIS, particularly in the 3D rendering domain. PALAIS is
more suitable for the simulation of game AI, because it provides
the domain-specific functionality required for game AI development.
Other toolkits, such as MASON [11], BREVE [10] and NetLogo
[17], also provide full simulation environments. A significant draw-
back of some of the listed alternative simulation toolkits is the lack
of extensibility via native code. Game developers strive to reach the
maximum performance possible with the available computational re-
sources. Thus, time-critical AI code for games is frequently written
in native code. Our proposed simulation environment pays tribute to
this by offering a plugin system [6] that allows extension through
native, dynamically loaded libraries. The plugin system enables de-
velopers to test, prototype and evaluate the same native code that they
use in their game engine. Ultimately, the ability to interface with na-
tive plugins also leads to more independent AI code compared to
alternative simulation environments, because only the minimal nec-
essary application programming interface (API) is exposed to plu-
gins. Although the level of abstraction is not as high as it is with
realisation-independent approaches. For example, [16] present such
an realisation-independent approach.

Additionally, PALAIS provides a scripting API to increase its gen-
eral accessibility and suitability for rapid prototyping. The scripting
API is accessed via ECMAScript [5]. ECMAScript is one of the most
widely-understood programming languages. Its most notable imple-
mentation is JavaScript, which is used to perform client-side script-
ing in Internet browsers. As a result of its prevalence, ECMAScript
is a natural choice to provide scripting functionality in PALAIS.

To summarise, compared with the mentioned, existing works, the
key distinguishing features of PALAIS are domain-specific function-
ality, interactivity, accessibility and extensibility.
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Figure 2. A schematic overview of the most significant interactions
between the internal components of the simulation environment and its

external accessors.

3 SCENARIO STRUCTURE

Scenarios are the entity corresponding to a given game scene in
PALAIS. They encapsulate specific game situations defined by users.
The common use case is to define scenarios that provide a minimal
environment for evaluation of AI behaviors and algorithms. Essen-
tially, these scenarios are self-contained packages that include the
assets, logic scripts and plugins necessary to execute a game scene.
The following sections describe the components of a scenario.

3.1 Assets

The term ’assets’ in the context of scenarios refers to all scene-related
data files that don’t contain, native or interpretable, code. Typically,
assets mainly consist of the files needed for rendering the scene, such
as 3D mesh data, textures and materials. PALAIS can load scene files
created with external 3D modelling tools like [1]. However, PALAIS
currently only supports the scene and mesh formats native to OGRE.

3.2 Logic Scripts

Logic scripts are the files containing ECMAScript code. PALAIS in-
terprets these files at runtime. Since no compilation is required, the
user can simply reload scripts after changes. The ability to reload
scripts allows for frictionless development of behaviors, as the re-
sults of code changes can be evaluated quickly.

3.3 Plugins

Plugins are the other group of code attached to a game scene. Plug-
ins, unlike logic scripts, contain compiled code. Plugins are standard
shared libraries. Their specific file format depends on the operating
system (OS) and the processor architecture for which the code was
compiled. Relying on platform-specific formats impedes the porta-
bility of scenarios across platforms. However, we accept this price to
support the integration of precompiled code. In practice, this means
that a scenario must contain plugins compiled for every required tar-
get platform.

Figure 3. The GUI of PALAIS after loading a scenario. The left panel lists
all active actors in the game scene. The right panel shows the knowledge

inspector. The center panel displays a rendering of the scene itself.

4 PROGRAMMING MODEL
We call programmable entities within a scenario in PALAIS actors. A
generic key-value store, labeled blackboard, represents the individual
knowledge of every actor. As the naming suggests, blackboard sys-
tems [3] inspired this form of knowledge representation. We chose a
blackboard architecture because it offers flexibility and is conceptu-
ally easy to grasp and use for developers. To represent global knowl-
edge, the game scene itself incorporates a blackboard as well. For
visualisation, all actors must be connected to a rendered object in the
3D game scene. PALAIS implicitly makes all rendered objects within
a game scene available as actors. Additionally, native or interpreted
code can instantiate new actors at runtime.

4.1 Time Simulation
All code instances, native and interpreted alike, receive notifications
of time advances. These tick events are independent of the frame rate
of the simulation and represent fixed, simulated time steps. PALAIS
adjusts the simulation speed by adapting the rate at which it emits
these tick events relative to the passed time. This ensures the simula-
tion results are the same, regardless of simulation speed.

5 INTERFACES
Figure 2 depicts a general overview of the interfaces of PALAIS.
PALAIS exposes several external interfaces to fulfil the previously
mentioned requirements.

5.1 Graphical User Interface
For users, the main external interface is the graphical user interface
(GUI) provided by the runtime of PALAIS. Its main purpose is to
display the data related to the currently active scenario. Most impor-
tantly, it displays the current state of the scenario in a 3D game scene.
We integrated the open-source rendering engine OGRE [14] with the
Qt framework [4] to provide a cross-platform GUI and 3D view. The
GUI (figure 3) allows the user to configure certain rendering param-
eters, such as the camera’s 3D orientation, zoom level and viewing
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direction. The user can also view blackboards of the scenario and
actors in the knowledge inspector panel of the GUI.

5.2 Scripting API
The scripting API is another external interface of PALAIS. The script-
ing layer is primarily meant to enable definition of arbitrary sce-
nario logic as well as to facilitate rapid prototyping of algorithms
and behaviors. PALAIS integrates a scripting engine to interpret EC-
MAScript code. The scripting API provides access to the currently
loaded scenario and its actors. Scripts are able to read and write
knowledge to the blackboards of the scenario and the actors. Lastly,
scripts can consume core functionality provided by the runtime en-
vironment, e.g. dynamic actor instantiation, destruction and ray cast-
ing.

5.3 Plugin API
The last external interface to access PALAIS is the plugin API. The
plugin system allows dynamic loading of third-party code. This core
feature makes PALAIS suitable for integration of existing, custom AI
code. The plugin API offers the same functionality as the scripting
API, plus some more advanced features. Also, plugins are able to
expose their functionality to the scripting layer by installing custom
bindings. Custom bindings allow the use of arbitrary interaction pat-
terns between native code in plugins and interpreted code in scripts.

5.4 Using Interpreted or Native Code in PALAIS
In essence, either scripting or plugins can be used to implement the
same resulting scene logic. In fact, internally, the scripting interface
is simply another layer on top of the same functionality. There is a
performance overhead associated with the use of the the scripting
layer, due to the additional code interpretation. Practically, that over-
head means that computationally intensive tasks and tasks that run
multiple times per time tick are more suited for implementation as
plugins. Thus, the suggested workflow is to make all computation-
ally intensive tasks available to the scripting layer via bindings. The
extended scripting API can then be used to orchestrate the scene-
specific logic.

6 INTEGRATING AN EXTERNAL MODULE
To demonstrate the power of its extension system we extended
PALAIS with an external pathfinding module. The module is based
on the A* search algorithm [9]. Our implementation of the pathfind-
ing system follows the one described in [12]. A* pathfinding is a
technique for determining shortest paths. It allows non-player char-
acters (NPCs) to navigate game worlds. In this role, A* pathfinding
is part of the standard repertoire of AI in games. Therefore, it is well-
suited to serve as an example for exhibiting the potential of PALAIS.
In particular, adding the functionality of the pathfinding module to
PALAIS shows how easily existing AI code can be integrated with its
environment.

6.1 Pathfinding Module
The pathfinding module provides methods for constructing and
searching shortest paths on navigation graphs. As is typical for game
middleware, the module is implemented in C++. The compiled, ex-
ecutable code is in binary form. It contains native code that depends

on the processor architecture. Consequently, to integrate the module,
we must exploit the ability of PALAIS to load native code as plugins.

6.2 Plugin Integration Workflow
A shared library must conform to a simple, well-defined interface to
be loadable in the plugin system of PALAIS. In the current version of
PALAIS, said interface consists of just 5 methods. Specifically, it con-
sists of two methods corresponding to the loading and tear-down of
the plugin, two methods corresponding to the loading and tear-down
of a scenario and one method realising the time tick notification. The
methods for the loading and tear-down of plugins give plugins an op-
portunity to initialise and destroy any general setup structures they
require. Similarly, the methods for the loading and tear-down of sce-
narios can be used to initialise and destroy per-scenario bookkeeping
information and to install script bindings with the script engine of the
scenario. Finally, the time tick event initiates all time-dependent or
regularly scheduled functionality. As a complementary measure, the
user can register script bindings to define additional entry points.

6.2.1 Example

As is the case with most custom AI code, our pathfinding module
does not conform to the plugin interface. Adapting existing code to
the defined interface is the integration effort required to make the
functionality of a plugin available to PALAIS. We employ the adaptor
design pattern [8] to adapt the interface of our pathfinding module to
the interface required by the plugin system of PALAIS. The following
steps are necessary to integrate the pathfinding module:

1. First, we use the method corresponding to the initialisation of a
scenario to load the navigation mesh of the currently active sce-
nario. A navigation mesh [12] is a continuous representations of
the walkable area in a game scene. After loading, the pathfind-
ing module constructs a navigation graph from this navigation
mesh. The resulting navigation graph can be searched in response
to navigation requests. Furthermore, we install a script binding to
make the pathfinding functionality available to scripts. These are
the per-scenario steps necessary to provide a pathfinding service.

2. Next, we implement the process of searching a path. The first
step in this process is initiated by script code calling the plugin
via the binding registered previously. In response, the pathfinding
system writes the shortest path to the blackboard of the actor that
requested the shortest path.

3. Lastly, we add the actual actor movement according to the plans
stored in their blackboards. For this, we use the time tick event:
We sequentially check the blackboard of every actor for remaining
paths to determine which actors in the current scenario must be
moved. Finally, we remove a path node from the blackboard, once
the actor that it belongs to reaches it.

This example demonstrates the potency of the blackboard architec-
ture used in PALAIS. Due to the blackboard architecture the plugin
system requires only a minimalist plugin interface. As a result, the
blackboard architecture effectively decreases the effort required to
integrate existing AI code with PALAIS.

6.3 Data Visualisation
Procedures for the in-scene visualisation of data are part of the
core functionality of PALAIS. In addition to providing rendering
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Figure 4. A rendering in PALAIS showing the navigation mesh used by the
pathfinding module.

of arbitrary textured meshes, PALAIS provides means for render-
ing coloured primitives, such as lines, circles, quads, cuboids and
spheres. As an example, the pathfinding module renders the naviga-
tion graph using the visualisation primitives of PALAIS. Figure 4 and
figure 5 depict renderings of the navigation mesh and the navigation
graph in PALAIS.

6.4 Accessing the Pathfinding Module

The plugin installs its script bindings when a scene is loaded. In
our pathfinding example, all scripts in a scenario, that includes the
pathfinding plugin, can invoke the process to navigate an actor to a
goal along a shortest path. The script delegates the computation and
handling of the movement to the plugin. This abstraction provided
by plugins also allows the reuse of plugins in different scenarios.

7 CONCLUSION

PALAIS is a powerful environment for the simulation of AI in games.
It caters specifically to the needs of game developers by granting
access to its programming interface via interpreted and native code.
Our exemplary integration of an external pathfinding module demon-
strates that PALAIS is an apt choice for the simulation of scenes that
depend on third-party AI libraries. Additionally, the ability to extend
PALAIS with plugins lowers the barrier to entry for the usage of the
simulation environment, since the same native code, that is used for
the simulation in PALAIS, can easily be shared with game engines.

8 FUTURE WORK

The work on the simulation environment PALAIS is part of a larger,
ongoing project to build a unified framework for game AI develop-
ment. The framework includes functionality for each of the layers
of the game AI model proposed in [12]. Particularly, it encompasses
algorithms that facilitate the implementation of movement, decision
making and strategy for non-player characters in games. Pathfinding,
Behavior Trees [2] and Goal-Oriented Action Planning (GOAP) [13]
are among the standard techniques the framework implements. These
techniques will be integrated with PALAIS in the form of plugins to
provide users with a solid foundation that allows the rapid develop-
ment of AI behaviors. On the feature side, future work on PALAIS
could involve refinement by adding support for physics-based dy-
namics and statistical evaluation of behaviors.

Figure 5. A rendering in PALAIS showing the navigation graph constructed
from the navigation mesh in figure 4.
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Simulating Autonomous Non-Player Characters in a
Capture the Flag Scenario Using PALAIS

Patrick Schwab and Helmut Hlavacs1

Abstract. PALAIS is a 3D simulation environment for artificial in-
telligence (AI) in games. It has built-in support for much of the stan-
dard functionality required when simulating AI behaviors. Most im-
portantly, PALAIS allows users to define their own arbitrary game
scenes with custom game rules. This paper presents the workflow of
authoring game scenes in PALAIS by the example of a Capture the
Flag scene. In particular, we demonstrate how users can take advan-
tage of the provided scripting layer to rapidly define their simulation
logic. This paper also serves as a description of the content of the
accompanying demonstration given at the conference.

1 Simulation Environment

Game scenes in PALAIS are defined in packages called scenarios.
These scenarios contain all code and graphical assets required for
the simulation of the game scene. Users define the visual appearance
of scenarios in an external 3D modelling tool. At runtime, users can
access the functionality of PALAIS via a scripting or a native pro-
gramming interface. The scripting interface can be accessed from
the ECMAScript [2] programming language. Additionally, users can
extend the functionality available to scripts by utilising the plugin
system [3] incorporated in PALAIS. The combination of plugins and
scripts allows for the definition of rich interaction patterns.

PALAIS automatically creates a blackboard [1] for each actor in
a scenario. This form of knowledge representation provides a very
flexible means of managing the data flow between the different com-
ponents of a scenario. The contents of the blackboards of each actor
can be examined during the simulation of a scenario. Figure 1 shows
the knowledge inspector in action.

2 Capture the Flag Scenario

We chose a Capture the Flag Scenario as our exemplary game sce-
nario. The Capture the Flag scenario involves two opposing teams.
Each team has to capture the flag of the opposing team to score
points. Characters can capture a flag by taking it from the initial
spawning point of the opposing team to the initial spawning point
of their own team. Implementing AI for non-player characters in a
Capture the Flag scenario is a standard problem in game AI. Thus, it
is well-suited to showcase the abilities of PALAIS. The arena of the
implemented Capture the Flag scenario is shown in figure 2.

1 University of Vienna, Faculty of Computer Science, Research Group
Entertainment Computing, Austria, email: a0927193@unet.univie.ac.at
and helmut.hlavacs@univie.ac.at

3 Authoring Workflow
To implement the Capture the Flag scenario we employ plugins that
provide standard algorithms of game AI. These plugins allow us to
delegate computationally intensive tasks, such as pathfinding, to na-
tive code. We use the scripting interface of PALAIS to orchestrate the
actors of the scenario and to define the possible actions they can take.

Figure 1. A demonstration of the live inspection of blackboards available
in PALAIS. The panel on the right shows the contents of the blackboard of

the frontmost actor of the green team.

Figure 2. A rendering in PALAIS that shows the arena of the Capture the
Flag scenario.
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EmohawkVille: Virtual City for Everyone
David Holaň and Jakub Gemrot and Martin Černý and Cyril Brom 1

Abstract. Despite recent progress, behavior of non-player charac-
ters (NPCs) in contemporary games is still kept rather simple. This
is an opportunity for the academia to develop novel techniques and
tools that would allow for easier creation of complex behaviors that
are resilient to the dynamicity implied by the presence of the player.
There already exist languages within multiagent community that are
thought to be suitable for NPC behaviors creation, but they are usu-
ally tested in simplistic environments and our experience indicates
that applying them to complex 3D worlds introduces significant ob-
stacles. This is part of the reason why simple reactive techniques are
prevalent in game industry practice. Moreover there is no publicly
available research-friendly 3D virtual world with sufficient complex-
ity that would allow developers to evaluate their languages and tools
in a more realistic setting and improve them toward practical applica-
bility. In this demo we present EmohawkVille: an open-source first-
person 3D virtual world that is a candidate for such an environment.

1 Introduction
Many contemporary computer games take a great effort to achieve a
high level of believability of their virtual worlds. This is especially
true for games with large open worlds, where the user is free to dis-
cover the environment on his own and is relatively unconstrained by
the game. One of the challenges that arise in this scenario is the prob-
lem of choosing the right higher-level action for the NPCs (e.g., move
to a point, pick up an item, use an item, . . . ). Since the game industry
relies almost exclusively on simple reactive techniques which make
creation of complex behaviors rather time-consuming and costly,
non-player characters (NPCs) display complex behaviors only during
crucial game events. In between, the NPC behaviors are schematic at
best.

The main issue is that going beyond simple behavior and still
maintaining the suspension of disbelief introduces significant diffi-
culties to the NPC behavior authoring. There are many possible ob-
stacles to NPC goals and if they are not taken into account, the NPCs
are easy for the player to “break” and may provide even worse illu-
sion of a real world than rather static NPCs.

For a truly alive open world, dozens of different and often com-
plex scenarios are needed, which implies that the world needs to be
equipped with a rich ontology of items and actions NPCs (as well as
the player) can perform.

As the world ontology grows, the number of meaningful NPC ac-
tion sequences increases and the behavior complexity rises. Not only
the means-ends analysis becomes more demanding, new problems
emerge such as transitional behaviors, joint behaviors, behaviors or-
dering or behaviors interleaving [6]. At the same time, game studios

1 Charles University in Prague, Czech Republic email:
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usually cannot afford to let an expert AI programmer design such
day-to-day behaviors, because that would be cost-prohibitive. Most
of the NPC design is thus usually carried out with the aid of some
visual tool by scripters with little programming experience.

At this place, academia could provide action selection mech-
anisms (ASM) and accompanying tools that would help inexpert
scripters to create complex behaviors that are interactively believ-
able, that is, behaviors that sustain their believability under non-
determinism brought by the player. However, most of the academic
research is carried out in environments that either have simple ontolo-
gies or are static or discrete. Games on the other hand are dynamic,
multi-agent environments that can be for all practical purposes con-
sidered continuous in both time and space. There are languages and
techniques that can be applied to such worlds: either from the mul-
tiagent community or the field of robotics or automated planning.
However, to our knowledge, there is currently no 3D virtual world
publicly available that would provide rich ontology for NPCs out of
the box. This means that in this particular problem area, academia is
one step behind the industry — we do not even have an environment
to work with.

Note that raw frameworks such as Unity [7] are not sufficient as
creating a rich world in a raw framework is a substantial amount of
work. An important part of the environment is also the possibility to
develop the NPC behavior with a high-level language such as Java
since nearly all agent languages of interest can be invoked from Java
code. We are not aware of any complex 3D environment that would
meet all those requirements. See our paper [4] for a thorough com-
parison of possible candidates.

Previous research has shown that applying agent languages to 3D
environments is neither straightforward nor guaranteed to yield bet-
ter results than using a general programming language [2, 5]. Com-
mon issues with agent languages are incomplete debugging and tool
support, some of the architectures are also hard to debug in princi-
ple (e.g., because of inherent paralellism). Many agent languages are
also declarative in nature, while game worlds feature lots of mechan-
ics that are hard to express declaratively (e.g., determining which
object is hit by an arrow). Proper evaluation of agent languages is
thus critical.

In this demo, we present an extension of the Pogamut 3 plat-
form [3] called EmohawkVille, the first step towards an open-sourced
complex simulation of NPC everyday life in 3D virtual world. We
believe that creating a fully working, accessible and polished envi-
ronment fosters academic progress. The large amount of research
work evaluated on Pogamut for Unreal Tournament 2004 supports
this view. We have also exerted great effort to make EmohawkVille
a mature tool. In practice, there is a long chain of components that
are needed to fully connect high-level AI with an NPC: sensors and
actuators interface, navigation and pathfinding, character animation
support are among the most important, but the list is far from exhaus-
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tive. In EmohawkVille, we have resolved large part of those issues on
behalf of the researcher. The quality of the EmohawkVille environ-
ment was evaluated in a small-scale user study and by use of the
environment in our teaching curriculum.

2 General Description
EmohawkVille is a first-person virtual world with detailed interac-
tive elements of day-to-day life. There is a general framework that
supports interaction with items, continual actions and processes and
inter-agent communication including trade. There is a set of ready-
made assets for a cooking scenario. For example, an agent or a hu-
man player can pick up a piece of meat, put it on a chopping board
and slice it and then fry the slices on a pan (charring the food if he
does not add oil or forgets to flip the meat). The cooking scenario
was chosen as our first because it features plethora of complex pro-
cedures yet it is easy to grasp by programmers and non-programmers
alike and is gender-neutral.

EmohawkVille is based on Unreal Development Kit (UDK) [1]
and thus is capable of displaying the world in state-of-the-art graph-
ics. UDK is free for educational and non-commercial use and Emo-
hawkVille itself is available under GPLv32.

In EmohawkVille the world mechanics are implemented in Un-
realScript - a proprietary language deployed with the UDK toolkit.
The Pogamut platform provides a high-level Java interface to the
UDK for writing the actual AI and takes care of many common tasks
(pathfinding with A* and smooth path following, caching sensory
data to a blackboard, etc.). Both the UDK and the Java part have
been designed with possible further extensions in mind and the ba-
sic NPC support is separated from the model of the general Emo-
hawkVille ontology, which is in turn separated from the implemen-
tation of the specific mechanics for our cooking scenario. The UDK
part also fully supports interaction with a human user through the
UDK visual client.

At this moment, EmohawkVille features 20 item types (food, cut-
lery, cooking tools, . . . ) and a cooking stove (part of the environ-
ment). Interaction is provided by 14 actions, of which nine are instant
and four initiate a longer-lasting process, e.g., chopping a vegetable
or stirring a broth. An overview of the available items is visible in
Figure 1.

Figure 1. A screenshot of the environment.

The central complexity of the NPC behavior stems from the sim-
ulation of cooking. Some ingredients can be boiled, some fried. The
2 EmohawkVille may be downloaded from http://pogamut.cuni.
cz/main/tiki-index.php?page=EmohawkVille

speed of cooking is determined by the temperature of respective
stoves. Water evaporates from pots and ingredients may burn or char
if not stirred or flipped in the pot or the pan. The cooking theme
provides important challenges to the NPC behavior creation: cook-
ing a meal may require a long sequence of actions (more than 20),
effectivity is increased by performing processes in parallel possibly
requiring cooperation of multiple chefs, the player may both support
and sabotage the cooking NPC.

Every aspect of the environment and the agents is programmable.
EmohawkVille is ready for a researcher to plugin any high-level de-
cision making mechanism (planning, machine learning, . . . ) without
the need to handle low-level details. More detail of the environment
is given in our paper [4].

3 Demo Presentation
In our demo presentation we would like to show the environment and
its richness, let the spectators interact with the environment them-
selves, helping a preprogrammed agent to cook a complex meal or
sabotaging his effort. We would also like to show that programming
the behaviors is easy and EmohawkVille thus lets the researcher fo-
cus on the action selection exclusively. This will be demonstrated
by a live creation of a cooking NPC and we would enable hands-on
programming experience to the spectators.

A video presentation of the environment may be found at http:
//www.youtube.com/watch?v=G7lKXkR2Xgg
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An interactive, generative Punch and Judy show
using institutions, ASP and emotional agents

Matt Thompson 1 and Julian Padget and Steve Battle

Abstract. Using Punch and Judy as a story domain, we describe an
interactive puppet show, where the flow and content of the story can be
influenced by the actions of the audience. As the puppet show is acted
out, the audience reacts to events by cheering or booing the characters.
This changes the emotional state of each agent, potentially causing
them to change their actions, altering the course of the narrative. An
institutional model is used to ensure that the narrative is constrained
to remain consistent with the Punch and Judy canon.

1 Introduction

Agent-based approaches for interactive narrative generation use intel-
ligent agents to model the characters in a story. The agents respond
to the interactions of a player with dialogue or actions fitting the
shape of a story. However, these agents have little autonomy in their
actions, bound as they are to the strict requirements of their role in
the narrative.

An institutional model can be used as normative framework for
governing the actions of agents in a story. By describing the rules of a
narrative in terms of social expectations, the agents are encouraged
to perform certain types of actions while still remaining free to break
free of these expectations. As in society in the real world, breaking
agreed norms comes with consequences, and only generally happens
in exceptional circumstances.

One situation where this is desirable is with the use of emotional
agents. An agent experiencing an extreme emotion in an emotional
model (such as rage or depression) may be allowed to act unusually
or uncharacteristically. Allowing characters to break from narrative
norms enables them to be ‘pushed too far’ by circumstances, with
results that add an extra dimension of richness to a story.

Through this implementation, we introduce two novel approaches:
(i) the use of an institutional model to describe a narrative ‘world’ or
domain, and (ii) how emotional models can give intelligent agents
some degree of autonomy to both act in idiosyncratic ways and to
react emotionally to input from the audience.

The puppets in the show are each belief-desire-intention (BDI)
agents with a valence, arousal, dominance (VAD) emotional model
described in section 5. The story is modelled by a set of institutional
norms (section 6.1) that describe the Punch and Judy story domain
in terms of Propp’s ‘story moves’ [8] (section 3). The agents com-
municate with their environment using the Bath Sensor Framework,
described in section 6.3 [6]. In the final sections, we describe the
animation system that functions as the agents’ environment (section
6.4), and how the audience interacts with the system (section 7).

1 University of Bath, United Kingdom, email: m.r.thompson@bath.ac.uk

2 Propp moves and roles
To express story events as an institution, we must look to narrative
theory for inspiration. Instead of describing parts of the Punch and
Judy story explicitly (such as ‘Punch is expected to hit the policeman
in this scene’), it is more desirable to describe scenes in a more
abstract way (‘The villain fights the victim in this scene’). The use of
more general story components allows us to reuse them in multiple
scenes, or even in other stories.

Narratology, and structuralism in particular, supply such gener-
alised building blocks for stories. Russian formalism is an early move-
ment in narrative theory to formalise the elements of narrative, of
which Vladimir Propp is a prominent figure.

In order to direct the course of the narrative, we use a model built
upon Propp’s 1928 formalism of Russian folktales, The Morphol-
ogy of the Folktale [8]. In this formalism, Propp identifies recurring
characters and motifs in Russian folklore, distilling them down to a
concise syntax with which to describe stories.

In this formalism, characters have roles, such as hero, villain, dis-
patcher, false hero, and more. Characters performing a certain role
are able to perform a subset of story moves, which are actions that
make the narrative progress. For example, the dispatcher might send
the hero on a quest, or the victim may issue an interdiction to the
villain, which is then violated.

Propp defines a total of 31 distinct story functions, some of which
can have subtle variations from story to story. Each function is given
a number and symbol in order to create a succinct way of describing
entire stories. Examples of such functions are:

• One of the members of a family absents himself from home: ab-
sentation.

• An interdiction is addressed to the hero: interdiction.
• The victim submits to deception and thereby unwittingly helps his

enemy: complicity.
• The villain causes harm or injury to a member of the family: vil-

lainy.

Each of these functions can vary to a great degree. For example,
the villainy function can be realised as one of 19 distinct forms of
villainous deed, including the villain abducts a person, the villain
seizes the daylight, and the villain makes a threat of cannibalism.

These functions are enacted by characters following certain roles.
Each role (or dramatis personae in Propp’s definition) has a sphere of
action consisting of the functions that they are able to perform at any
point in the story. Propp defines seven roles that have distict spheres
of action: villain, donor, helper, princess, dispatcher, hero, and false
hero.

In a typical story, one story function will follow another as the tale
progresses in a sequential series of cause and effect. However, Propp’s
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formalism also allows for simultaneous story functions to occur at
once.

2.1 Propp example: sausages and crocodile scene
The common elements of Punch and Judy are easily described in
terms of Propp’s story functions. Here we pick one scene from the
Punch and Judy show to use as an example: the scene where Punch
battles a crocodile in order to safeguard some sausages.

In this scene, Joey the clown (our narrator) asks Punch to guard
the sausages. Once Joey has left the stage, a crocodile appears and
eats the sausages. Punch fights with the crocodile, but it escapes. Joey
then returns to find that his sausages are gone.

The appropriate story functions are:

1. Joey tells Punch to look after the sausages (interdiction).
2. Joey has some reservations, but decides to trust Punch (complicity).
3. Joey gives the sausages to Punch (provision or receipt of a magical

agent).
4. Joey leaves the stage (absentation).
5. A crocodile enters the stage and eats the sausages (violation).
6. Punch fights with the crocodile (struggle).
7. Joey returns to find that the sausages are gone (return).

3 Institutional model
An institution describes a set of ‘social’ norms describing the per-
mitted and obligated behaviour of interacting agents. Noriega’s ‘Fish
Market’ thesis [7] describes how an institutional model can be used
to regiment the actions of agents in a fish market auction. Cliffe [3],
Baines and Lee [6] extend this idea to build systems where institutions
actively regulate the actions of agents, while still allowing them to
decide what to do. Adapting this idea to the world of narrative, we
use an institutional model to describe the story world of Punch and
Judy in terms of Propp moves and character roles.

Institutional models use deontic logic to describe obligations and
permissions that act on interacting agents in an environment. By
combining this approach with Propp’s concepts of roles and story
moves, we describe a Propp-style formalism of Punch and Judy in
terms of what agents are obligated and permitted to do at certain
points in the story.

For example, in one Punch and Judy scene a policeman enters the
stage and attempts to apprehend Punch. According to the rules of the
Punch and Judy world, Punch has an obligation to kill the policeman
by the end of the scene (as this is what the audience expects to happen,
having seen other Punch and Judy shows). The policeman has an
obligation to try his best to catch Punch. Both agents have permission
to be on the stage during the scene. The policeman only has permission
to chase Punch if he can see him (Punch is obligated to hide from him
at the start of the scene).

The permissions an agent has constrain the choices of actions
available to them at any given moment. Obligations affect the goals of
an agent. Whether or not an agent actively tries to fulfil an obligation
depends on their emotional state.

3.1 Institution example
Here we continue the ‘sausages and crocodile’ scene example from
section 3.1, taking the Propp story functions and describing them as
an institutional model.

We define our institution in terms of fluents, events, powers, per-
missions and obligations.

3.1.1 Fluents

Fluents are properties that may or may not hold true at some instant
in time. Institutional events are able to initiate or terminate fluents at
points in time. A fluent could describe whether a character is currently
on stage, the current scene of a story, or whether or not the character
is happy at that moment in time.

Domain fluents (D) describe domain-specific properties that can
hold at a certain point in time. In the Punch and Judy domain, these
can be whether or not an agent is on stage, or their role in the narrative
(equation 1).

D = {onstage, hero, villain, victim, donor, item} (1)

Institutional fluents consist of institutional powers, permissions
and obligations.

An institutional power (W) describes whether or not an exter-
nal event has the authority to meaningfully generate an institutional
event. Using Propp as an example, an absentation event can only be
generated by an external event coming from a donor character (such
as their leaving the stage). Therefore, any characters other than the
donor character would not have the institutional power to generate an
absentation institutional event when they leave the stage.

Equation 2 shows a list of possible empowerments, essentially a
list of institutional events.

W = {pow(introduction, interdiction, give, absentation,

violation, return)} (2)

Permissions (M) are external actions that agents are permitted to
do at a certain instant in time. These can be thought of as the set of
socially permitted actions available to an agent. While it is possible
for an agent to perform other actions, societal norms usually prevent
them from doing so.

For example, it would make sense in the world of Punch and Judy
if Punch were to give the sausages to the Policeman. It is always
Joey who gives the sausages to Punch. Also, it would be strange
if Joey were to do this in the middle of a scene where Punch and
Judy are arguing. We make sure agents’ actions are governed so as to
allow them only a certain subset of permitted actions at any one time.
Equation 3 shows a list of permission fluents.

M = {perm(leavestage, enterstage, die, kill,

hit, give, fight)} (3)

Obligations (O) are actions that agents should do before a certain
deadline. If the action is not performed in time, a violation event is
triggered, which may result in a penalty being incurred. While an
agent may be obliged to perform an action, it is entirely their choice
whether or not they actually do so. They must weigh up whether or
not pursuing other courses of action is worth suffering the penalty
that an unfulfilled obligation brings.

Anybody who has seen a Punch and Judy show knows that at some
point Joey tells Punch to guard some sausages, before disappearing
offstage. Joey’s departure is modelled in the institution as the absen-
tation event. It could be said that Joey has an obligation to leave the
stage as part of the absentation event, otherwise the story function
is violated. Equation 4 shows how this would be described in the
institution.

O = {obl(leavestage, absentation, viol(absentation))} (4)
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3.1.2 Events

Cliffe’s model specifies three types of event: external events (or ‘ob-
served events’, Eobs), institutional events (Einstact) and violation
events (Eviol).

External events are observed to have happened in the agents’ en-
vironment, which can generate institutional events which act only
within the institional model, initiating or terminating fluents, permis-
sions, obligations or institutional powers. An external event could be
an agent leaving the stage, an agent hitting another, or an agent dying.
Internal events include narrative events such as scene changes, or the
triggering of Propp story functions such as absentation or interdiction
(described in section 3). Violation events occur when an agent has
failed to fulfil an obligation before the specified deadline. These can
be implemented in the form of a penalty, by decreasing an agent’s
health, for example.

Eobs = {startshow, leavestage, enterstage, die, give,

harmed, hit, fight, kill, escape} (5)
Einstact = {introduction, interdiction, give, absentation,

violation, return, struggle, defeat, complicity,

victory, escape} (6)
Eviol = {viol(introduction), viol(interdiction), viol(give),

viol(absentation), viol(violation), viol(return),

viol(struggle), viol(defeat), viol(complicity)

viol(victory), viol(escape)} (7)

3.1.3 Event Generation and Consequences

An event generation function, G, describes how events (usually exter-
nal) can generate other (usually institutional) events. For example, if
an agent leaves the stage while the interdiction event holds, they trig-
ger the leavestage event. This combination generates the absentation
institutional event (equation 11).

Event generation functions follow a �preconditions� �
{postconditions} format: �G(X , E)� � {Eout}, where X is a set of
fluents that hold at that time, E is an event that has occurred, and Eout

are the events that are generated. They are generally used to generate
internal, institutional events from external events.

Consider the Punch and Judy scenario described in section 3.1.
There are seven institutional events (story functions) that occur during
this scene: interdiction, complicity, receipt (from Propp’s receipt of a
magical agent) absentation, violation, struggle, return. These institu-
tional events are all generated by external events. The interdiction is
generated when Joey tells Punch to protect the sausages. Punch agree-
ing amounts to complicity. Joey gives punch the sausages (receipt),
then leaves the stage (absentation). The crocodile eating the sausages
is a violation of Punch’s oath, the agents fight (struggle), then Joey
enters the stage again (return).

It is desirable that these story function occur in this sequence in
order for a satisfying narrative to emerge. Agents may decide to
perform actions that diverge from this set of events, but the institution
is guiding them towards the most fitting outcome for a Punch and
Judy world. For this reason, a currently active story function can be
the precondition for event generation. For example, the receipt event
may only be triggered if an agent externally performs a give action
and if the complicity event currently holds (equation 10).

Examples of event generation function for this scenario, complete
with preconditions, are listed in equations 8 to 14.

G(X , E) :��, tellprotect(donor, villain, item)�
� {interdiction} (8)

�{interdiction}, agree(villain))�
� {complicity} (9)

��, give(donor, villain, item))�
� {receipt} (10)

�{interdiction}, leavestage(donor)�
� {absentation} (11)

�{interdiction}, harmed(item)�
� {violation} (12)

�{interdiction, absentation},

enterstage(donor), onstage(villain)�
� {return} (13)

��, hit(donor, villain)�
� {struggle} (14)

Consequences consist of fluents, permissions and obligations that
are initiated (C�) or terminated (C�) by institutional events. For ex-
ample, the institutional event give could initiate the donor agent’s
permission to leave the stage, triggering the absentation event (equa-
tion 16). When the interdiction event is currently active and a violation
event occurs, the interdiction event is terminated (21). Equations 15
to 22 describe the initiation and termination of fluents in the Punch
and Judy sausages scenario detailed in section 3.1.

C�(X , E) :��, interdiction�
� {perm(give(donor, villain, item))}

(15)

��, receipt�
� {perm(leavestage(donor))} (16)

{active(interdiction)}, violation�
� {perm(enterstage(dispatcher))} (17)

{active(absentation), active(violation)}, return�
� {perm(hit(donor, villain))} (18)

C�(X , E) :��, interdiction�
� {perm(give(donor, villain, item))}

(19)

�{active(interdiction)}, absentation�
� {perm(leavestage(donor))} (20)

�{active(interdiction)}, violation�
� {active(interdiction)} (21)

�{active(absentation), active(violation)}, return�
� {active(absentation)} (22)

4 VAD emotional model
In order to make the agents acting out the Punch and Judy show more
believable, we apply an emotional model to affect their actions and
decisions. For this, we use the valence-arousal (circumplex) model
first described by Russell [10].

In order to give each character its own distinct personality, we
extend this model with an extra dimension: dominance, as used by
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Figure 1. VAD emotional values, adapted from Ahn et al [1]

Ahn et al in their model for conversational virtual humans [1]. This
dominance level is affected by the reactions of the audience to the
agents’ actions. For example, Judy may become more dominant as her
suggestions to hit Punch with a stick are cheered on by the audience,
emboldening her into acting out her impulses.

Figure 1 shows how valence, arousal and dominance values map to
identifiable emotions. Valence, arousal and dominance can each have
a value of low, medium or high. This allows the agents to have a total
of 27 distinct emotional states.

Valence and arousal levels of each agent are affected by the actions
of other agents. For example, a character being chased around the
stage by Punch will see their valence level drop while their arousal
increases. According to Russell’s circumplex model of emotion [10],
this would result in them becoming afraid (if their dominance level is
low).

An agent’s emotional state affects its ability to fulfil its institutional
obligations. An agent that is furious would have no problem carrying
out an obligation that requires them to kill another agent. If that
same agent is happy or depressed, however, they might not have the
appropriate motivation to perform such a violent action.

5 Architecture
5.1 Multi-Agent System
We use the JASON framework for belief-desire-intention (BDI) agents
[2], programming our agents in the AgentSpeak language.

The VAD emotional model is represented inside each agent as a
set of beliefs. Each agent has beliefs for its valence, arousal and
dominance levels, each of which can take the value of low, medium or
high. This combination of VAD values creates one of the 27 emotional
states shown in figure 1, affecting whether or not an agent breaks from
its permitted or obliged behaviour.

5.2 Institutional Framework
To describe our institutional model, we use instAL [3], a DSL for
describing institutions that compiles to AnsProlog, a declarative pro-
gramming language for Answer Set Programming (ASP). instAL’s
semantics are based upon the Situation Calculus [9] and the Event
Calculus [5]. It is used to describe how external events generate insti-
tutional events, which then can initiate or terminate fluents that hold
at certain instances in time. These fluents can include the permissions
and obligations that describe what an agent is permitted or obligated
to do at specific points in time.

For example, if an agent with the role of dispatcher leaves the stage,
it generates the absentation Propp move in the institution:

1 l eaveStage (X) gene ra t e s intAbsentat ion (X) i f
r o l e (X, d i spa t che r ) , ac t iveFunct ion (
i n t e r d i c t i o n ) ;

The absentation institutional event gives the crocodile permission
to enter the stage if there are any sausages on the stage. It also termi-
nates the permission of the absented agent to leave the stage, as they
have already done so:

1 in tAbsentat ion (X) i n i t i a t e s perm( ente rStage (
c roc ) ) i f objStage ( sausages ) ;

2 in tAbsentat ion (X) te rminate s onStage (X) , perm(
l eaveStage (X) ) ;

instAL rules like those shown above are compiled into AnsProlog
ASP rules. Once the instAL model is compiled to AnsProlog, we use
the clingo answer set solver [4] to ground the logical variables, and
‘solve’ queries by finding all permissions and obligations that apply to
any agents, given a sequence of events as the query input. The agents’
percepts are then updated with their permitted and obliged actions
from that moment in time onwards.

5.3 Bath Sensor Framework
The Bath Sensor Framework (BSF) [6] is a framework supporting
publish/subscribe-style communication between distributed software
components, in this case connecting intelligent agents with their vir-
tual environments. It uses the XMPP publish/subscribe protocol to
allow the communication between agents and their environments.
Each agent subscribes to receive notifications of environment changes
via XMPP server, which relays messages between publishers and
subscribers. If any environment change occurs, all subscribed agents
are informed of the changes.

This allows agents’ environments to be created using entirely differ-
ent technologies and programming languages from the agents them-
selves. In our case, BSF is especially useful as the animation engine
that acts as the agents’ environment is written in Javascript and runs
in the browser. This means that the clingo solver and JASON agent
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Figure 2. System architecture

framework can run on a central web server and communicate to any
connected clients using BSF and XMPP.

Figure 2 shows how BSF is used to coordinate the components
of the system. An XMPP server runs two publish/subscribe nodes.
One node is for events related to changes in the environment (the
environment node), the other is for changes in agents’ permissions
and obligations (the norm node).

All agents (in this case, Punch, Judy, the Policeman, etc) are sub-
scribed to both the environment and norm nodes. They can also pub-
lish events to the environment node, but not the norm node. Only
the institution manager (connected to the clingo solver) can publish
permissions and obligations to the norm node. This manager (labelled
in figure 2 as institution manager) is subscribed to the environment
node of the XMPP server, watching it for events. These events then
get passed to the clingo solver with the institutional model, which
outputs the new permissions and obligations, publishing them to the
norm node.

The animation engine is subscribed to the environment node, watch-
ing it for any events that need animating for the puppet show. In ad-
dition, it can publish input from the audience (‘cheers’ or ‘boos’) as
events to the same node.

5.4 Animation
The animation engine that shows the visual output of the agents
actions is written in Javascript and the Phaser game framework. It
runs entirely in a browser, and communicates with BSF using the
Strophe XMPP library.

If the user allows the program access to their microphone, they can
cheer or boo the actions of the agents by shouting into the microphone.
Otherwise, they can simulate these actions by clicking on ‘cheer’ or
‘boo’ buttons at the bottom of the screen.

6 Audience Interaction
The puppet show is designed to be run in front of either a single
user’s computer, or on a large display in front of an audience. The

Figure 3. A screenshot of the Punch and Judy show

user/audience is instructed to cheer or boo the actions of the characters
of the show, which will be picked up by a microphone and ‘heard’
by the agents. This will then affect the emotional state of the agents
and change the actions they make in the show. Their actions are
constrained by the set of ‘Punch and Judy’ world norms as described
in the institutional model.

There are many different ways in which the audience’s responses
can affect the outcomes of the show. If the audience craves a more
‘traditional’ Punch and Judy experience, then they can cheer Punch
into beating and killing all of his adversaries (including his wife,
Judy). Alternatively, a more mischievous audience could goad Judy
into killing Punch and then taking over his role as sadist and killer for
the rest of the show. The narrative outcomes are dependent on how
the audience responds to the action, yet still conform to the rules of
the Punch and Judy story world.

7 Conclusion
With our approach to interactive narrative generation, we regulate the
rules of the story domain using an institutional model. This model
describes what each agent is permitted and obligated to do at any
point in the story. This approach alone would be too rigid, however.
Though the audience’s interactions (cheering or booing) may alter
the course of the narrative, the agents would still have to blindly
follow a pre-determined set of paths. By giving our agents emotional
models that change their willingness to follow the narrative, a degree
of unpredictability is added to each run-through of the show, giving
the impression that the agents are indeed characters capable of free
will.
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Search and Recall for RTS Tactical Scenarios
Jason Traish, James Tulip and Wayne Moore 1

Abstract. The success of a Real-Time Strategy agent is heavily
dependent on its ability to respond well to a large number of diverse
tactical situations. We present a novel method of tactical decision
making called Search and Recall (S&R) which is a hybrid of Search
and Case Based Reasoning (CBR) methods. S&R allows an agent to
learn and retain strategies discovered over the agent’s history of play,
and to adapt quickly in novel circumstances.

The sense of memory that S&R provides an RTS AI agent allows
it to improve its performance over time as better responses are dis-
covered. S&R demonstrates an minimum win rate of 92% in standard
scenarios evaluated in this paper.

S&R decouples search from the main game loop which allows ar-
bitrary computational complexity and execution time for search sim-
ulations. Meanwhile in-game decision making is based on CBR and
remains fast and simple.

This paper presents an S&R model which extends the ability of an
RTS AI agent to deal with complex tactical situations. These situa-
tions include special unit abilities, fog of war, path finding, collision
detection and terrain analysis.

1 Introduction

Real-time strategy (RTS) games are a popular genre of commercial
games that require substantial practice, skill and experience to mas-
ter. In order to conquer an opponent, a player must manage a number
of in-game systems with precision, using a large number of possi-
ble commands. In-game systems include research, economics, explo-
ration, managing an army, and executing a strategy with the potential
of defeating the opponent’s strategy. On top of all this complexity a
player is expected to complete all these tasks in a real-time environ-
ment of uncertainty.

The number of in-game systems and possible commands illustrate
the complexity of the RTS genre and form the basis of it’s appeal to
players and researchers alike. Developing an RTS agent poses many
challenges that are not present in traditional strategy board game en-
vironments such as GO and Chess. In particular, the large number of
units and possible commands, the uncertain environment, the effect
of terrain, and the real-time execution constraints are unique to the
computer based RTS genre.

It is very difficult to write scripted agents that vary their responses
in different situations. This results in easily exploited AI agents
which fail to give experienced players an enjoyable challenge.

Case Based Reasoning is one approach that has been used to create
adaptive RTS AI agents [1, 2, 8, 9]. Search based methods have also
became a point of interest to the RTS research community [3, 4, 12].
However, both approaches have intrinsic limitations.
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1.1 Case Based Reasoning and Search in RTS AI
Case based reasoning (CBR) methods have been used successfully
to create adaptive RTS agents. In general, such methods store plans
with an associated game state and use this data to reason about future
encounters.

Aha et al. [1] demonstrated a CBR agent capable of identifying
and adapting to a randomly selected opponent which demonstrated
good results. Their agent relied on the availability of a set of pre-
generated responses, each capable of winning against an opponent
from a given position.

McGinty et al. [8] improved CBR approaches by changing the
structuring and case retrieval approach, leading to significantly better
results. Their agent demonstrated a high win rate in experiments with
imperfect information. Other CBR methods have focused on the use
of recorded human player interactions to make decisions [2, 9].

However, while CBR has been successful in creating adaptive RTS
agents, they face a number of challenges. Responses derived from
human players can be of inconsistent quality due to the diversity of
human player skills and the nature of human play. Standard CBR ap-
proaches are also ill equipped to make decisions if there is no similar
recorded context.

As a result, search based methods, and in particular Monte Carlo
simulations have gained the interest of the RTS AI research com-
munity [3, 4, 5, 6, 12]. Search based methods enable an agent to
adapt in real-time to whatever circumstances it is currently facing,
assuming the simulator can correctly predict the outcome of a given
response action. Significant research on adaptive agents using search
based techniques has been performed in the context Chess and GO
[7] and the application of such techniques to RTS games is an attrac-
tive prospect.

However, complexities such as path finding and collision detection
are required for an agent to appropriately handle commercial game
type tactical situations. Such situations include moving units in a en-
vironment affected by terrain, or engaging armies of many varied
unit types, some with special abilities.

The complexity inherent in commercial RTS games places huge
computational demands on the simulations required to perform a
search for a tactical solution. For this reason most of the published
search simulation approaches are very simple relative to the demands
of fully realised commercial game agents and ignore issues such as
terrain, path finding, and collisions between units.

The problem is that simulations conducted within the game loop
are heavily constrained to execute in an extremely limited amount of
time, due to the demands of other aspects of the game loop such as
animation and rendering.

In the rest of this paper we present a hybrid search/CBR approach
called Search and Recall (S&R) which enables simulations capable
of dealing with commercial grade RTS game complexity, while offer-
ing CBR level in-game performance. We demonstrate these capabil-
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ities in the context of Starcraft Broodwar; a commercial RTS which
has become a popular RTS AI research platform.

The main contribution of this work is to demonstrate the utility of
responses generated using Search simulations as recorded responses
in a CBR-like database. The technique was inspired by case base rea-
soning literature that focused on constructing databases using player
responses [10]. We also demonstrate an approach for making com-
putationally intensive search simulations feasible in the context of a
real-time game.

2 Search and Recall - Overview

Search and Recall (S&R) is a novel method of tactical decision mak-
ing which is a hybrid of Search and Case Based Reasoning (CBR)
methods. It allows an agent to learn and retain strategies discovered
over the agent’s history of play, and to adapt quickly in novel circum-
stances.

Similarly to CBR methods, S&R uses a database of previously dis-
covered successful responses associated with a collection of identi-
fied game states. S&R agents use these responses to quickly identify
a solution without extensive simulation within the game loop. How-
ever, unlike other CBR methods, S&R does not populate it’s response
database with a static set of game states identified from previously
played games. Rather, it populates the database dynamically with the
results of search simulations conducted in response to actual game
states encountered during play.

By combining the adaptive learning of MCS with the memory of
CBR, S&R allows an agent to improve the quality of its responses
over the course of multiple games.

In essence, we decouple the search tasks from the game loop by al-
lowing them to execute asynchronously and in parallel with the game
loop. Searches are pushed into concurrent threads, allowing them
to take as long as necessary without delaying game rendering. The
agent makes its decisions based on its current database of solutions,
and the search tasks update that database asynchronously with the
results of new simulations based on possible responses to the current
game state. As many searches can be carried out as are appropriate
to the CPU resources available to the game.

Search time is limited only by the length of a game or an arbitrary
stopping condition, and is substantially longer than the 5ms generally
allocated for an agent’s decision making process within the standard
game loop. The downside is that the longer it takes to evaluate poten-
tial decisions the more likely it is that the response will come too late
to be useful in the current situation. However, the next time a similar
situation is encountered, the simulation results will be available in
the CBR database (response library) ready for near instant access.

Search results are used to update a CBR like database as they be-
come available, and the AI task within the game loop is reduced to
selecting the appropriate response as in a conventional CBR system.

We apply this architecture in the context of the commercial game
Starcraft Broodwar. Starcraft is an immensely popular and sophisti-
cated RTS game, famous for its balanced asymmetric game play and
status as a professional spectator sport in Korea. Starcraft Broodwar
is a version of Starcraft for which an external programming interface
has been developed called the Brood War API (BWAPI). The avail-
ability of BWAPI has made Broodwar an attractive platform for RTS
AI research.

3 Search and Recall - Agent Components
The S&R agent is composed of a recall-playback component (RPC),
a search component (SC), and a response library (RL). This basic ar-
chitecture is illustrated in Figure 1. The RPC component acts as coor-
dinator for the agent and interacts with the BWAPI interface. As soon
as a Broodwar game begins the S&R agent starts the recall-playback
component and initialises the search component with a number of
threads.

3.1 Recall/Playback Component (RPC)
The RPC matches the current game state against the game states cur-
rently recorded in the response library. Game states in the database
are identified by a simplified descriptor containing only the number
and types of unit present.

The RPC then retrieves the response associated with the current
game state from the response library. The response associated with
a game state is always the most favourable response generated by
the search simulations carried out in the search component. If no
matching game state is found, the RPC assigns random behaviours
to the agent’s units. If a response was loaded earlier from a previous
game state then those previous behaviours are not changed.

The RPC has a simulator similar to those being used for searching.
It uses this to simulate a single time step using the unit actions speci-
fied in the response. This step is carried out in order to map from the
actions specified in the response to a set of Broodwar commands that
must be issued through the BWAPI interface. The raw actions that
the units must perform are recorded (e.g. move[x,y], attack[unitId])
and forwarded to the BWAPI.

Although games states are identified in the RL only by the number
and type of units present, actual game state is defined with consid-
erably more information on unit positions, current unit states, what
projectiles have been created, which units are damaged, and which
weapons have entered their cool down periods. All of this informa-
tion is captured from the BWAPI and sent through to the search com-
ponent (SC) in addition to the number and type of units present in the
scenario. The RPC buffers these changes in actual game state for the
SC, updating the information used by that component as a basis for
simulation only after 200 simulations have completed. This allows a
sufficient number of searches associated with a particular game state
to complete to be useful in subsequent games.

The execution of the RPC is constrained to take less than 5ms
per frame since it executes as a part of the main game loop. This
constraint is easily achieved since the simulator used to calculate the
BWAPI commands simulates only a single time step.

3.2 Search Component (SC)
The search component is represented in Figure 1 as the Concurrent
Search Simulators (CSS). It consists of a number of search threads
which repeatedly run simulations for the combat scenario utilizing
the current actual game state, a simulator engine, and a set of actions
assigned to each unit in the scenario.

At the beginning of a simulation, each search thread is given the
current identifying game state (unit numbers and types) as well as
information describing the actual game state (terrain, unit positions,
unit health, current unit action states, etc).

We randomly assign behaviours to each unit for each simulation
so we can evaluate the effect of utilising different tactics on the out-
come of a battle . If simulations complete quickly, many different
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Figure 1. Search and recall agent process

possible outcomes can be calculated and used to update the solution
available to the RPC before the time allotted to its execution within
the game loop (5ms) expires. However, if it takes longer to simulate
an outcome than the time Broodwar allows, then the result will not
be available to the RPC during the current game loop. This results in
the game agent taking longer to respond to a game state in real time,
although simulation results do become available to the RPC over the
next few game loop cycles as simulations complete.

When a simulation completes, the quality of the response is cal-
culated as the total health percentage of the remaining allied units at
the end of simulation. A quality of 0 is given for prediction in which
all allied units are killed. This formula favours victories with lower
casualties, and ranks all losses equally.

As in [6], the simulator is a mathematical model of the combat me-
chanics implemented in Broodwar, that allows simulations to be run
without any frame rate derived speed limitations. As such, it is not
an exact model of the combat mechanics implemented in Broodwar.

3.2.1 Simulators

Asynchronous execution of search allows the complexity and execu-
tion cost of the simulation engine used to be increased arbitrarily. In
this work we explore the effect of increasing the complexity of the
simulation engine used by evaluating the performance of two differ-
ent simulators. These are:

1) Basic Simulator: This simulator handles unit health, shields, heal-
ing, attacking, and movement without collision or path finding.
It can complete up to 2000 combat simulations per second per
thread.

2) Complex Simulator: This simulator handles unit health, shields,
healing, and attacking. However, the movement function detects
collisions and finds paths around obstacles such as terrain and
other units. Influence maps from [11] have also been integrated
to support a ’kiting’ behavior which has been added to the list of
available behaviours. This simulator can complete only up to 200
combat simulations per thread per second.
Kiting is a highly successful behaviour that fast moving ranged
units can use against slower units. Kiting is the act of attacking an
enemy unit and then moving away while reloading.

3.2.2 Response Divergence

A response grows stale the longer it is in effect. This is due to differ-
ences in mechanics between the Broodwar game and the simulator

that even a very sophisticated model will find challenging to elimi-
nate, in particular because there are random elements built into the
Broodwar game engine. We call the differences between the simu-
lated outcome and what actually happens in Broodwar as divergence.
Divergence represents the cumulative error between the game states
of the simulation and Broodwar as time passes.

Different game systems suffer differing amounts of divergence.
While systems like health regeneration and attack damage are
straight forward, other components such as attack cool downs are
randomisied slightly, introducing small changes in combat outcomes.
The precise mechanics of other systems such as path finding are un-
known and this also increases the divergence of simulations from
actual game encounters. Furthermore, an opponent model is not nec-
essarily a precise model of the Broodwar AI, and this also leads
to a large amount of divergence. Finally, the actual precise game
state used to drive the search simulation that generated the response
recorded in the database may differ from the precise current game
state. If differences in precise unit location and health affect the out-
come of the battle, divergence will occur.

3.2.3 Opponent Models

In order to combat the effects of divergence, solutions that generalise
well are sought. The simulation outcome is heavily dependent on the
strategy used by the opponent, so we attempt to find generalized so-
lutions by taking the minimum of the solution quality score over a
small set of opponent models. This favours the selection of robust
strategies that are successful against a variety of opponent models
for the response library (RL). In the current work this set of oppo-
nent models contains only 2 strategies; one using an ’Attack Weakest
strategy, and the other using an ’Attack Closest’ strategy.

3.2.4 Unit Behaviours and Grouping

A behaviour describes what action the unit should take in any given
circumstance. A behaviour consists of a series of actions which a
unit executes in sequence, moving on to the next action when the
previous action is complete or appropriate conditions are met. For
each behaviour we identify a primary action, and a secondary action
which is applied if multiple targets are identified for the primary ac-
tion. For example, if ’Attack Weakest’ is the primary action, and all
enemy units have the same health, then the secondary action ’Attack
Closest’, is applied. Behaviours are described in Table 1.

In order to allow the S&R agent some flexibility in terms of choos-
ing and targeting particular units or types of enemy units, we provide
the agent with the ability to separate the enemy into groups.
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When setting up a simulation, not only are a random set of be-
haviours assigned to the agent’s units, but the enemy is divided into 4
random groups. Actions are then made specific to groups. For exam-
ple, the generic ”Attack Closest” behaviour becomes ”Attack Closest
in Group 1”. Grouping allows the agent to create plans that can focus
fire individual or groups of units. This greatly increases the degree of
freedom with which the agent can respond to situations.

3.3 Response Library Component (RLC)

The S&R agent receives its recall ability from the use of the re-
sponse library. The response library is responsible for the storage
and communication of the best recorded responses from the search
simulations. The database is updated asynchronously by the SC, and
queried from within the game loop by the RPC. It acts as a constantly
growing and improving database of best seen responses to recorded
tactical situations.

3.3.1 Game State and Response Descriptors

Preliminary testing identified that actual game state needed to be
generalized for successful game state matching to occur. Further-
more, only a small number of game state attributes were required for
the agent to adapt competently. Hence, the attributes used to iden-
tify game state within the RLC include only the number and type
of each unit involved in the current scenario. Adding more detailed
game state descriptors such as those describing unit health or posi-
tion causes an explosion of possible states, this drastically shortens
the time that a game remains in a particular state, and makes it dif-
ficult to match the current game state with a state recorded in the
response library.

Describing game state by only the number and type of units in-
volved results in relatively stable states that recur sufficiently fre-
quently to make matching effective, and balances the frequency of
response adaption. This approach effectively forces the chosen re-
sponse to change only to when units are removed from or added to
the game.

In addition to the game state information that is used as a key in
the response library, each entry in the response database records the
behaviour assigned to each unit, and the groupings assigned to the
enemy units.

Response behaviours do not correspond with BWAPI commands:
they need to be mapped into BWAPI commands by the simulator
associated with the RPC.

4 Experimental Setup

The following experiments contain four tactical scenarios that an
agent cannot resolve with a singular response. These are illustrated
in Figure 2 and listed below:

A) 3 Zealots vs 3 Vultures (Attack Closest agent): This scenario pits
3 fast ranged units (Vultures) controlled by the agent against 3
slow close attack units (Zealots). This scenario favours the kiting
strategy as it is extremely difficult to solve without it.

B) 6 Fast Zerglings vs 2 Dragoons (Attack Closest agent): This sce-
nario pits 2 strong ranged units (Dragoons) controlled by the agent
against 6 fast close attack units (Fast Zerglings). Once again a kit-
ing solution is favoured, but far more precision is required to make
this work.

C) 3 Zealots and 3 Dragoons vs 3 Zealots and 3 Dragoons (Default
AI): This is a symmetrical scenario pitting ranged (Dragoons) and
close attack (Zealots) units against each other. Precise control over
unit attacks which enemy unit as well as unit placement is required
to be successful.

D) 8 Dragoons vs 8 Dragoons (Default AI): Once again this is a sym-
metrical scenario that pits equal numbers of ranged units against
each other. Control of attack strategy is important in this scenario,
but unit placement is less important than in Scenario C.

The experimental setup is based on work by [5] although the ex-
perimental setups for scenarios A and B differ from Churchill’s im-
plementation. Due to problems encountered with the BroodWar AI’s
default behaviour it was replaced with a scripted agent designed to
constantly attack the closest unit.

Each scenario is run against a particular configuration of the S&R
agent for a total of 200 games at an acceleration of 5ms per frame.
This is necessary since due to stochastic variation between games,
the outcome of an actual game is not completely deterministic. The
scores recorded in Table 2 are defined by the following function to
the nearest percentage.

Score = (wins + draws/2)/200

Our experiment compares several different configurations of the
SR agent. The performance of the basic and the complex simulator
engine are compared in two modes: in pure search mode (ie without
access to any stored responses), and in combined search and recall
mode (with access to stored responses). This tests whether there is
any advantage in retaining results from earlier simulations. For com-
parison purposes, the performance of two scripted agents was also
evaluated: one based on an ’Attack Closest’ strategy, and another
which favours Kiting. Each configuration or agent is tested on the
four scenarios listed above.

For the S&R agents, each configuration is initialised with a new
empty response library at the beginning of the evaluations for all
scenarios. All recorded responses are generated by simulations run
during the actual games.

All S&R experiments utilise 4 threads within the SC for running
simulations. Each search was limited to 2000 time steps although this
number of steps was never reached. The results of the experiments
are shown in Table 2.

5 Results and Discussion
The results of the experiments for the scripted agents show clearly
that to do well in all four scenarios requires adaptive agent behaviour.
The ’Attack Closest’ scripted agent performs poorly in scenarios A
and B, but is successful in scenarios C and D while the reverse is the
case for the ’Kiting’ scripted agent.

Results for the simple simulator, which does not have a kiting be-
haviour available are similar to the ’Attack Closest’ scripted agent.
This illustrates the importance of the simulator model containing a
set of behaviours sufficient to cover what is required in a scenario.

On the other hand, results in scenarios A and B for the complex
simulator show that agent clearly discovered and utilized the appro-
priate kiting behaviour. Results in Scenario A are stronger than in
Scenario B, likely because the large speed difference between Vul-
tures and Zerglings makes a wide range of successful kiting solutions
relatively easy to find. In Scenario B, if the Dragoons performed
a suboptimal action for even a small period they would lose to the
larger numbers of Zerglings.
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Table 1. Behaviour Descriptions

Behaviour Primary Function Secondary Function Condition
G1, G2, G3 and G4 Attack unit of least health in group X Attack closest unit in group X No units in group X
Attack Closest Attack closest unit Attack unit of least health N/A
Attack Wounded Attack unit of least health Attack closest unit N/A
Kite Attack unit of least health in range when ready to fire Move away from all enemies and terrain N/A

Table 2. Experiment 1 Results. S&R: Search and Recall. IM: Influence Map.

Setup Churchill Search Search S&R Search (IM) S&R (IM) Attack Closest Kiter
A 0.81 0 0 0.96 1.00 0 1.00
B 0.65 0 0 0.65 0.92 0 1.00
C 0.95 0.95 0.80 0.76 0.94 0.77 0.26
D 0.96 1.00 1.00 1.00 1.00 0.97 0.14

The results for the complex simulator with recall enabled are better
than for search alone, indicating that the recall capability provides a
considerable advantage. The advantage conferred by the recall ability
is much greater in Scenario B than in Scenario A. This suggests that
the advantage of accumulating knowledge in the response database
is greatest when solutions are relatively exact, and the exploration of
the solution space is relatively slow.

Results for the simple simulator are equivalent or better than the
complex simulator for scenarios C and D. This indicates that the
range of behaviours available to the simple simulator are sufficient
in these scenarios, and that the complexities introduced for the com-
plex simulator have little impact in these scenarios. This result is
not terribly surprising since the influence map affects only the kiting
behaviour which is not necessary in these scenarios, and the close
ranged combat and lack of terrain features in these scenarios reduces
the impact of the path finding capability of the complex simulator.
Given these considerations, it may be that the much greater number
of simulations that the simple simulator can perform (2000 vs 200
per second) allows it to find better solutions than the complex simu-
lator.

Results for scenario C yield are the most varied. The winning solu-
tions for this scenario required more complex behaviours than in the
other scenarios. Scenario C is similar in some respects to Scenario B
with its rigorous success requirements.

Results for the complex simulator in Scenario C show a large dif-
ference between search only and combined search and recall. Once
again it appears that that the recall capability becomes a significant
advantage when solutions are hard to find and the exploration of so-
lution space is slow.

Results degrade when recall is enabled for the simple simulator.
It is likely that this is an example of the effects of divergence. The
simulator has discovered an action set that is effective in simulation,
but that does not translate well into the actual game. This indicates
the importance of the simulator’s combat model being a close match
to the actual game’s.

Results for Scenario D are both extremely strong and uniform
across both the simple and complex simulators, both with and with-
out recall enabled. This is probably a result of the scenario being rel-
atively easy to solve, as indicated by the strong result also generated
by the ’Attack Closest’ scripted agent.

Over all scenarios, the strongest performance is shown by the com-
plex simulator with recall enabled. This configuration of the S&R
agent adapts strongly to all scenarios, even though its performance

without recall enabled is relatively weak. The result is important,
since it indicates that the build up of experience over many game cy-
cles becomes greatly beneficial when solutions are hard to find, and
simulation rates are slow. This is exactly the situation faced when
attempting to apply accurate simulation models to complex commer-
cial grade RTS AI problems.

Note that for all the search based configurations, results between
zero and one are in some ways a measure of divergence, since the
simulations return what they estimate as a winning solution or a loss.
Solutions that win sometimes reflect differences between what the
simulators calculate and what actually happens in Broodwar. This
tends to impact weaker solutions to a greater extent, resulting in
lower scores where search is less effective. Given this interpretation
of each scenario score, it is an important result that the scores for the
complex simulator with recall enabled are consistently high across all
scenarios. This reflects relatively little divergence between what the
complex simulator predicts and what happens in Broodwar, given a
sufficient accumulation of simulations, and the capacity to retain the
results.

Another important result is that the benefits of recall are delivered
to the agent relatively quickly. There is a marked improvement for
the complex simulator with recall enabled in the difficult scenarios
even though the scenario is evolving in real time. This indicates that
the advantage of receiving high quality solutions outweighs the dis-
advantage of them taking more than a game cycle to calculate.

In comparison with Churchill’s results, the complex simulator
with recall enabled dominates by a large margin in all but Scenario
C, where it is only marginally weaker. Given the divergence interpre-
tation of the evaluation scores, the results suggest that the complex
simulator is a much closer approximation of the Broodwar combat
mechanics, and that the predictions made by the complex simulator
are much more accurate. The ’complex simulator with recall’ ap-
proach is an approach worth pursuing.

6 Conclusions and Future Work
Overall the results of this preliminary study can be summed up as:
high quality responses are worth remembering, when solutions are
hard to find, the exploration rate of the solution space is low, and
when the fidelity of the simulations is high.

The results strongly indicate that retention of results from search
simulations is worthwhile, and that Search and Recall is a useful
approach. This eliminates the need for a huge and uneven quality
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Figure 2. Experimental Setup

database of pre-played games on which to base CBR, and allows the
situations a game AI can respond intelligently to grow over time. At
the same time it guarantees fast decision making within the game
loop.

An important implication of the proposed architecture is that be-
cause simulations are decoupled from the game loop, they become
amenable to parallel, distributed, or offline processing. The exact ac-
tual game states sent to the SC, could instead be sent out over the
network, or logged for later processing. Regardless of whether re-
sults arrive in time to advantage the S&R agent in the current game,
the fact that the results are generated improves the response database
over time, even when the game is not being played. Another impli-
cation is that simulation results from many separate instances of a
game can be shared between games, allowing games to cooperate in
improving the AI for all games.

A final implication is that simulations are not restricted to the CPU
capacity of an ordinary gaming PC. Simulations could be conducted
on server farms or supercomputers in the cloud, and the results used
to update a global database available to all instances of a game.

Because the constraints on execution times and hence simulations
complexity have been eased, future work could extend simulation
models to scenarios of greater complexity such as working with ter-
rain and larger unit encounters. It would also be interesting to explore
the feasibility and utility of more detailed game state descriptors, and
the associated much larger response databases required.

Once response databases become larger and more populated, game
progression paths through state space and discovering general pat-
terns of game progression could prove interesting. The sensitivity of
results to the range of available behaviours also indicates that further
work into more complex behaviour sets is also warranted.

S&R removes computational execution time restrictions on search
but retains the ability of search based agents to adapt to new situa-
tions. The S&R agent model allows simulators used in searches to
use much more complex models to deal with complex tactical situa-
tions. Simulators can include path finding, unit and terrain collision
avoidance, and specialized behaviours. These complex simulators
greatly improve the fidelity of the results produced, which reduces
the divergence between predicted outcomes and those produced by
the game. This makes the S&R method potentially useful in apply-
ing search techniques to commercial grade levels of combat scenario
complexity.
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Follow-up on Automatic Story Clustering for Interactive 

Narrative Authoring
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Abstract.  One of the challenges in designing storytelling 

systems is the evaluation of resulting narratives. As the story 

space is usually extremely large even for very short stories, it is 

often unfeasible to evaluate every story generated in the system 

by hand. To help the system designers to maintain control over 

the generated stories a general method for semi-automatic 

evaluation of narrative systems based on clustering of similar 

stories has been proposed. In this paper we report on further 

progress in this endeavor. We added new distance metrics and 

evaluated them on the same domain with additional data. We 

have also successfully applied the method to a very different 

domain. Further, we made first steps towards automatic story 

space exploration with a random user.
12

 

1 INTRODUCTION 

Developing interactive storytelling (IS) systems is a challenging 

task involving multi-disciplinary knowledge, yet a number of IS 

systems was developed in the past, such as Façade [1], ORIENT 

[2] or FearNot! [3]. Bída et al. [4] notes that the evaluation of 

complex IS systems is a demanding process often requiring 

extensive effort. To mitigate this, the authors propose a computer 

assisted method of story evaluation based on clustering the 

stories into clusters according to their similarity. The general 

idea is that by meaningful clustering of the stories into groups 

the human designer will not be required to evaluate all the 

stories, but only few from each cluster and thus save 

development time. Authors also reported on the performance of 

the method on two domains - SimDate3D (SD) Level One and 

SD Level Two [5]. The first results indicated that the main 

metric could scale better than the other metrics on the complex 

domain of SD Level Two. 

In this paper we report on further progress in a similar 

endeavor. Firstly, we have added two new features for the 

clustering algorithm in the SD domain - a) automatic extraction 

of sub-scenes from the recorded story and b) condensed tension 

difference curve based on the sub-scenes. We have managed to 

reproduce previous results on an extended domain of SD Level 

Two getting good performance using some of the new features. 

Secondly, we have implemented a random user that tries to 

explore the story space of SD Level Two by playing differently 

than an input set of previous stories hence exploring parts of 

story space not seen in the input set of stories. We show the 

performance of the metrics in distinguishing between stories 

generated by the random user and the original set of stories. 

                                                 
1 Faculty of Mathematics and Physics, Charles University in Prague, 

Czech Republic.  
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Thirdly, we have applied the method on stories generated by the 

MOSS system [6] in order to investigate the performance of the 

method on a different domain.  

Aside from the work mentioned, little has been done on story 

clustering. Weyhrauch [7] implemented several evaluation 

functions specific for his emergent narrative system. Ontañón 

and Zhu [8] proposed an analogy-based story generation system, 

where they evaluated the quality of resulting stories by 

measuring their similarity to “source” stories (input human-made 

stories). Compared to the approach in this paper, they were 

solving a problem of generation of the stories rather than the 

analysis of the stories.  

This paper is organized as follows: First, we will describe the 

story domains we used in the experiments, then we will discuss 

updates of the method for narrative analysis and afterwards we 

present results of the new experiments. We will conclude the 

paper with discussion and future work.  

 

 
Figure 1. SimDate3D Level Two screenshot showing Thomas 

and Nataly in the park with emoticons above their heads having 

a conversation about music.  

2 DOMAINS 

The experiments detailed in this paper have been conducted on 

IS system SD Level Two detailed in [5] and MOSS system [6].  

SD game (Figure 1) is a 3D dating game taking place in a 

virtual city, with three protagonists: Thomas, Barbara and 

Nataly. The characters communicate through comic-like bubbles 

with emoticons indicating the general topic of the conversation 
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(see Figure 1). The user partially controls one of the characters 

actions (typically Thomas). The users’ goal is to gain the highest 

score by achieving certain kind of things, e.g. Thomas kissing 

one of the girls. The game features four possible endings.  

The MOSS system [6] developed by M. Sarlej generates short 

stories with morals (e.g. greed, retribution, etc) in three domains 

(animals, family and fairytale). Each moral has its own 

emotional pattern that is used to generate stories with moral of a 

particular category. Internally the system uses Prolog abstraction 

to generate the stories, which is then translated to human 

readable text with Perl scripts. We worked directly with the 

internal prolog representation of the stories, which we parsed 

and analyzed with the system.  

3 METHOD 

Here, we will briefly overview the method we evaluated (which 

is given in detail in [4]). The main idea is to cluster the resulting 

narratives of a given IS system into groups of similar stories. 

The human designer then needs to see only several stories from 

each group to gain sufficient understanding of all the stories the 

cluster contains, saving development time. The clustering is 

done with the k-means algorithm. In the previous work, the 

clustering was based on two general features of stories: a) story 

action sequence and b) story tension (dramatic) curve.  

The story action sequence is created by taking the sequence of 

actions done by all the characters in the story. Each of the 

actions available in the domain is assigned a letter and the 

sequence of these letters forms the action string. This way, 

standard string distance metrics (Levenshtein, Jaro-Winkler and 

Jaccard distances) are applicable to measure similarity between 

action strings representing different stories. In previous work, 

Jaccard distance has been shown to be of little use for story 

clustering in SD domains and is therefore tested here only for 

MOSS stories. 

The tension curve is extracted from emotions experienced by 

the story protagonists. In SD this is straightforward as the 

characters are equipped with emotion model. The tension in SD 

is computed as follows: Every 250 ms we make a snapshot of all 

characters’ emotions. Then we take the sum of these emotions 

where every positive emotion is counted with a minus sign and 

every negative emotion is counted with a plus sign. The resulting 

number encodes the tension value at the moment. The tension 

curve is then simply the piecewise linear function defined by 

these values. 

In the MOSS system the emotions are also defined explicitly 

as a part of the generated stories. We again take the sum of 

positive and negative emotions at each time point of the story 

and the resulting value is the tension value at the specific time 

point of the story.  

We propose two new features for clustering the SD stories: 

sub-scene sequence string and condensed tension difference 

curve. A sub-scene is a time span in the story where a) the set of 

characters that are in the proximity of the main protagonist do 

not change and b) the location of the main protagonist does not 

change. Let us suppose that Thomas (the main protagonist) is 

with Barbara (character) at the restaurant (place) – this is one 

sub-scene. After 5 minutes, Nataly arrives and joins them. At 

this moment, the old sub-scene ends and a new one begins. The 

new sub-scene features Thomas, Barbara and Nataly at the 

restaurant. Sub-scenes are extracted automatically from the story 

logs. The time span of sub-scenes varies from 5 seconds 

(enforced lower limit) to the whole duration of the story.  

To measure distance between sub-scene sequences we assign 

strings to sub-scenes in the following way: one letter represents a 

location of the story (e.g. P for park) and the consecutive letters 

represent characters in the sub-scene (e.g. T for Thomas; one 

letter per each character present). For example, the “TBR” string 

represents a sub-scene where Thomas is with Barbara at the 

restaurant. The sub-scene sequence string is simply a 

concatenation of the individual strings. We then apply string 

distance algorithms as is the case with action strings.  

Condensed tension difference curve is extracted from sub-

scenes. We look at the tension value at the beginning and at the 

end of the sub-scene. The difference between these two values 

represents the tension difference for respective sub-scene. The 

condensed tension difference curve is defined as a sequence of 

all of these differences.  

We have not implemented sub-scenes for MOSS stories, 

because the MOSS stories are already relatively short and 

composed of at most two sub-scenes. To check whether the 

clustering really captures non-trivial properties of the stories, we 

also tested difference in story length as distance metric for the 

MOSS domain. 

All pairwise distances between stories have been computed, 

normalized and standardized prior to clustering.  

3.1 Story space exploration with a random user 

IS systems are often interactive, requiring a human user in the 

loop. Exploring the story space of such systems may be 

problematic as one needs many users and many story runs to get 

a reasonable coverage of the story space. For semi-automatic 

analysis the designer would benefit from an algorithm that would 

be able to explore parts of the story space automatically. For SD 

we have implemented a random user that is able to play the 

game alone. In addition, the random user tries to steer away from 

a given set of stories. Hence exploring parts of story space not 

covered in the given set of stories revealing previously unseen 

parts of the story space to the designer. This is achieved as 

follows: The random user (controlling Thomas) extracts the sub-

scene sequences from the given set of stories and then tries to 

achieve a different sub-scene sequence in the story he is playing 

in. E.g., if the random users detects that most of the given stories 

started with characters at the restaurant, he will try to change 

location in the story by inviting the characters for example to the 

cinema and so forth for the second and the n-th sub-scene in the 

sequence. The random user has simple domain-specific 

knowledge that limits the actions he considers only to those 

contextually appropriate (e.g. he does no try to become intimate 

with a girl at the restaurant). 

3.2 Evaluating clustering quality 

As there is no generally accepted method for evaluating the 

quality of a clustering independent of the application, we use ad 

hoc method suitable for our scenario. Intuitively, a clustering is 

good, if stories in the same cluster have many features in 

common. Let us have a feature function f: S →V, where S is the 

set of all possible stories and V is a finite set representing 

possible values of a feature the designer might be interested in. 
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For a cluster X ⊂	S we define precision with respect to f as the 

proportional size of its largest subset sharing the same value of 

the feature: 

X
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In other words, precision of 0.62 means 62% of stories in the 

cluster produce the same value for f. The precision of the whole 

clustering is simply the average of per-cluster precisions. 

A system that clusters stories can be considered useful, if it 

provides high precision across multiple domains and multiple 

features.  

In the experiments, we tested three features: the ending of 

the story (Experiment 1), the type of user (random vs. human) 

that generated the story (Experiment 2) and the MOSS moral of 

the story (Experiment 3). 

As k-means depends on random initialization we ran each 

analysis 100 times to get robust results. In further text, we 

always report the average precision of these 100 clustering runs. 

To provide a simple baseline to the measurements, we also tried 

assigning stories to clusters at random. Once again an average of 

100 random assignments is measured. 

To provide a more robust evaluation of the methodology, it 

would be best to measure precision with respect to similarity of 

stories as perceived by humans. This however poses multiple 

methodological issues. In our view, a biggest obstacle to human 

evaluation is finding a useful dataset. Since humans cannot 

effectively cluster more than a handful of stories, the dataset 

needs to be small, which is usually unsuitable for machine 

clustering as the algorithm can easily pickup artifacts in the data. 

We left this as a future work. 

4 EXPERIMENT 1 

In Experiment 1 we analyzed an extended dataset of 70 human 

play sessions of SD Level Two using additional features – sub-

scenes sequence string distance and condensed tension 

difference curve based on sub-scenes. Precision is measured with 

respect to the ending of the story. A graph of the results is 

presented in Figure 2. 

 
Figure 2. SD Level Two clustering results. Cluster precision 

weighted averages can be seen for three, four and five clusters 

(this is chosen arbitrarily based on that there are four possible 

endings). The results are averaged over 100 clustering runs with 

different initial cluster positions. The precision is calculated with 

respect to story ending.  

As in previous work [4] we see that the tension curve 

outperforms other approaches in mean precision (0.6 for three 

clusters to 0.63 for five clusters). The interesting observation is 

that the sub-scene string sequence (metrics marked as 

“Subscenes” on Figures 2, 3, 4) outperform action strings 

(metrics marked as “Actions” on Figures 2, 3, 4) on this dataset. 

This indicates that sub-scene sequence is a meaningful feature in 

SD domain, relevant to story ending. Also note that Jaro-Winkler 

distance on sub-scenes (average 0.58) slightly outperforms 

Levenshtein (average 0.56). This is somewhat unexpected as 

Jaro-Winkler distance is usually a sub-par choice for clustering 

as it does not satisfy the triangle inequality. However this 

distance gives more weight to differences between first four 

characters of the string. The good performance of Jaro-Winkler 

on sub-scene sequences may then be explained by a large impact 

of the beginning of the story on its ending. Assigning higher 

weight to story start and/or story end might be an interesting 

extension of the approach as it would reflect the way stories are 

perceived by humans.  

 The compressed tension difference curve (metrics marked as 

“subscenesFeelingDiffs” on Figures 2, 3) scored on par with 

action strings distance metrics (average 0.55), but did not match 

the uncompressed original tension curve.  

All metrics scored significantly better than the random cluster 

assignment. However compared to previous results [4] the 

addition of more stories resulted in lower precision for all 

previously measured metrics (tension curve and action strings). 

This might be partly caused by the larger size of the dataset, but 

it indicates that the metrics need to be made more robust. 

Examples of the stories from this dataset and their clustering 

can be found in the appendix. 

5 EXPERIMENT 2 

In Experiment 2 we analyze a dataset containing 41 original 

human play sessions (as analyzed in [4]) and 66 randomly 

selected play sessions gathered from the random user. Precision 

is measured with respect to the type of the user that generated 

the story. A graph of the results is presented in Figure 3. 

 

Figure 3. Experiment 2 clustering results. Figure shows the 

average precision of clustering with respect to the users that 

created the stories as a function of number of clusters.  
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The best metric for distinguishing between human and 

random user is Jaro-Winkler distance on sub-scenes (with 

precision 0.67 on two and 0.72 on four clusters). This can be 

explained again by the feature of the algorithm putting more 

weight on the first characters of the string. The random user tried 

to achieve different sub-scene sequence than the human users. 

Even though the story always begins the same (the first sub-

scene is always the same), the random user immediately tried to 

change the sub-scene, so the second one differed from the 

average done by human users. This was picked up by Jaro-

Winkler resulting in better performance of the algorithm.    

The tension curve performed worse on this task (average 

0.65). This is understandable as different sub-scene sequences in 

the story may produce similar tension curves. However this also 

indicates that the problem of similarity of the stories is multi-

layered and to grasp this properly a combination of features is 

likely to be required.  

6 EXPERIMENT 3 
In Experiment 3, we ran the method on stories generated by 

the MOSS system. We have analyzed 3000 stories from fairytale 

domain of MOSS with recklessness, retribution and reward 

morals (1000 from each). Half of the stories comprised of two 

dramatic actions, and the other half comprised of four dramatic 

actions. In both cases, the resulting stories contained about 30 

atomic actions. The precision was measured with respect to the 

moral of the story. A graph of the results is presented in 

Figure 4. 

We can see that the precision of clustering is very high for 

almost all clustering metrics. For MOSS stories of length four, 

tension curve achieved precision of 0.99 on three clusters. The 

sum of normalized story length and Levenshtein on action 

strings was the second best scoring 0.93 on three clusters. On 

MOSS stories with length two, these two metrics performed a bit 

worse. The best was Levenshtein on action strings which 

averaged on 0.94 and the tension curve with 0.88 precision on 

average. The story length metric was outperformed by almost all 

other metrics and it also did not bring significant improvements 

to the Levenshtein distance indicating that the MOSS generating 

process did not produce artifacts in story length. Similarly to 

previous results on the SD domain, Jaccard distance did not 

perform well. 

 This overall good performance is caused by the fact that 

stories in MOSS are generated through templates that use 

emotional patterns. Stories in one domain exhibit the same or 

very similar emotional patterns resulting in similar tension 

curves. This is picked by the tension curve metric really well. 

The comparable performance of string metrics on action strings 

is likely caused by the presence of emotional actions in the 

action strings. The overall slightly worse performance on stories 

with dramatic length two is probably caused by the fact that less 

dramatic actions in the story offer less space to distinguish the 

stories from each other (however the performance was still 

remarkably good). 

Examples of the stories from this dataset and their clustering 

can be found in the appendix. 

7  CONCLUSIONS AND FUTURE WORK 

We have presented new data for a methodology for semi-

automatic evaluation of interactive storytelling systems based on 

clustering of similar stories. We have reproduced and refined 

previous results in the area. 

New results showed that the method can be transferred 

successfully to other domain. However we need to take this with 

a grain of salt as the MOSS story generator abstraction was very 

favorable to the method as it uses emotional patterns to define 

categories of the stories.  

Next, we have added new feature of stories, sub-scene 

sequence, that was used in the implementation of random user 

designed to explore unvisited parts of the story space of 

SimDate3D domain and we have shown the performance of the 

method on distinguishing random user from the human users. 

Some of the metrics scored worse than expected indicating that 

to grasp story similarity properly a combination of features will 

be required. 

The semi-automatic exploration of the story space with a 

random user proved useful and will be further investigated in 

future work. 

We have also shown the performance of the method on an 

extended dataset from SimDate3D Level Two. Although we 

Figure 4. Experiment 3 MOSS domain clustering results. On the left there are precisions of clustering for three, four 

and five clusters when distinguishing between stories of the dramatic length two with particular moral. On the right 

there is the same for stories with the dramatic length four. All results were averaged over 100 clustering runs. 
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have reproduced the performance ordering of the metrics, the 

overall results were worse than in previous paper. The reason 

may be that the metrics do not accurately represent story 

similarity and pick a large amount of noise. A detailed analysis 

of stories in the same clusters could shed more light onto this 

and it is planned as future work, including comparison with story 

similarity as perceived by humans.  

In line with conclusions from previous work, the tension 

curve provided best overall results across domains and feature 

functions, but as it did not work very well in Experiment 2 it 

cannot be considered universal and better metrics are needed. A 

combination of tension curve and one of the string distances 

might prove useful. 

Other future work includes experiments with combination of 

distance metrics for the clustering algorithm and further 

enhancements and additional experiments with the random user. 

Finally, it would be beneficial to experimentally determine, how 

humans would cluster some of the stories. 
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APPENDIX – EXAMPLE STORIES 

Here, we present several examples of stories from  

SimDate3D and MOSS domains and show examples of the 

clustering of stories using the tension curve metric. In both cases 

we provide simple handcrafted natural language representations 

of the actions in the story.  

A. SimDate3D Domain 

Story 1: Thomas went with Barbara to the cinema. After the 

movie, he was rude to her. They have parted ways. Thomas went 

to Nataly's home to pick her up. They went out for a walk, but 

they did not speak much. Thomas insulted Nataly. They met 

Barbara. An argument started and both girls left Thomas. 

Story 2: After the movie, he was rude to her. They have 

parted ways. Thomas went to Nataly's home to pick her up. 

Thomas was rude to Nataly. They went out for a walk and 

Thomas was rude to Nataly. They met Barbara. An argument 

started and both girls left Thomas. 

Story 3: Thomas spent a long time with Barbara in the 

cinema, then he was very rude on her. Nataly was in the 

restaurant alone. Then Thomas and Barbara got very angry on 

each other, but continued talking. Nataly noticed them on their 

way from restaurant and she run towards them. An argument 

started and Thomas ended up with Nataly. 

 

Stories 1, 2 and 3 get clustered together in most cases. Stories 

1 and 2 are extremely similar and end the same, while story 3 is 

an example of a story that is relatively similar to the other two, 

but does not end the same.  

 

Story 4: Thomas and Barbara were on a way to cinema. 

Thomas asked Barbara to kiss him and to cuddle, she refused. 

Then they've run into Nataly, argument started and Thomas 

ended up with Barbara. 

Story 5: Thomas and Barbara were going to the cinema. 

Thomas was making jokes on the way. Before they've get to the 

cinema they've run into Nataly, argument started and Thomas 

ended up with Barbara. 

 

Stories 4 and 5 on the other hand are also very similar and 

end the same but were almost never clustered together. 

B. MOSS Domain 

Story 1: A wizard gets hungry. He picks up a rose. A troll 

kidnaps a princess. The troll also kidnaps a dwarf. A knight 

rescues the princess from the troll. (Generated as an example for 

recklessness) 

Story 2: A wizard gets hungry. He picks up a rose. A troll 

kidnaps a princess. The troll also kidnaps a dwarf. A dragon 

gives a treasure to the dwarf. (Generated as an example for 

recklessness) 

Story 3: A dwarf kills a princess. A troll kidnaps the dwarf. A 

dragon tries to kidnap a unicorn, but fails. Fairy gives magical 

dust to the dragon. Dragon gives the dust back to the fairy. 

(Generated as an example for retribution) 

 

All those stories are from the same cluster. While it is clearly 

visible, how stories 1 and 2 are extremely similar, story 3 seems 

very different. 

 

AISB Convention 2015: Symposium on AI and Games 41



aMUSE: Translating Text to Point and Click Games
Martin Černý 1 and Marie-Francine Moens 2

Abstract. In this demo we will show aMUSE — a system for au-
tomatically translating text, in particular children stories, to simple
2D point and click games. aMUSE consists of a pipeline of state-of-
the-art natural language processing tools to analyse syntax, extract
actions and their arguments and resolve pronouns and indirect men-
tions of entities in the story. Analysed text serves as data the game
mechanics operate on, while the story is represented graphically by
images the system downloads from the Internet. The system can also
merge multiple stories from a similar domain into a branching nar-
rative. Users will be able to both play games created by aMUSE and
create games from their own texts using the aMUSE editor.

1 INTRODUCTION
Video games are a powerful media for telling stories and for trans-
ferring experiences and feelings in a more general sense. Games are
different to most other art forms in that they require active collabo-
ration on the receiver’s part. Thus adapting a story to the video game
genre requires more than visualisation of the story events on screen:
The game mechanics must also be designed to support the story or
actively convey parts of the experience.

Recent research has shown that both game design and adaptation
of text to game can be, to some extent, performed automatically.
Most of the work so far either a) focuses on the game mechanics and
does not consider the story of the game, or b) uses a large amount of
domain-specific knowledge.

In this demo we will show aMUSE — a system that can auto-
matically translate stories given in natural language to simple games
without using any domain-specific knowledge. As our focus is on the
story, we have chosen to generate games in the 2D point and click
adventure genre. Games in this genre are inherently story-driven and
consist of the player clicking on various objects to trigger interac-
tions. If the correct interaction is found, the story progresses further.
We have chosen this genre as it allows for a very direct mapping
between the story and the game mechanics.

2 RELATED WORK
A system called Angelina can fully automatically design simple 2D
and even 3D games [3, 2]. Game-o-matic [9] uses common-sense
knowledge databases to generate 2D arcade games involving given
topics. Our work is orthogonal to these efforts as it translates a story
written in a natural language to a predefined game mechanic instead
of generating the mechanics.

In the context of adapting a text to an interactive experience, De
Mulder et al. [4] discuss transforming patient guidelines into edu-
cational 3D experiences. The authors use a large domain-specific

1 Charles University in Prague, Czech Republic, email: cerny.m@gmail.com
2 KU Leuven, Belgium, email: sien.moens@cs.kuleuven.be

knowledge base to provide common-sense grounding to the fragmen-
tary information present in the text.

Some progress has been made on generating 3D scenes from text
to be later used in a whole interactive experience [5]. However, the
system is not fully automatic, as it relies on crowdsourced domain-
specific knowledge to correctly position the entities in the scene and
does not produce playable experiences yet.

3 THE SYSTEM
The aMUSE system consists of four parts: editor, translator, server
and frontend. The editor is a graphical application that lets the user
enter stories, group stories to form projects and control the execution
of the translator. The translator is responsible for finding an interac-
tive representation of the story which is passed to the frontend. For
fast startup of the translator and due to some technical aspects of the
technologies used, some of the tasks performed by the translator are
carried on a dedicated server. The frontend is a simple game engine
written in Flash that visualises the game provided by the translator.

To translate a story, the translator first passes it to the server. The
most important part of server-side processing is semantic role la-
belling (SRL) using the Lund pipeline3. SRL builds upon syntactic
features of the sentence to discover semantic frames. A frame repre-
sents a concept in the sentence (the root) and annotated arguments of
the concept (the roles). We use frame definitions given in PropBank4.

For example the sentences “The city was taken by the Romans”
and “The Romans took the city” have different syntax, but both con-
tain the frame take.01(taker : Romans, thingTaken : city). The
numbered suffix to the frame root distinguish between various mean-
ings of the same word: e. g., “I cannot take it anymore” would re-
solve to take.02(tolerator : I, thingTolerated : it). The Lund
SRL was trained on news texts, so we used transfer learning [8] to
adapt it to handle stories better.

The last crucial part of server-side processing is coreference reso-
lution using Stanford CoreNLP [6]. Coreference resolution links all
mentions of the same entity (pronouns, in particular) throughout the
whole story. The annotated text is then returned to the translator.

The translator uses the semantic frames to find possible interac-
tions for each sentence of the story. In our case, interaction is an
agent-action-target triplet, where either agent or target may be omit-
ted (but not both). All frames with roots that are verbs are candidates
for interactions. Simple hard-coded heuristics are used to choose the
agent and the target among the frame’s roles.

Now, every story is represented as a linear multigraph with sen-
tences as nodes and possible interactions as edges from the previ-
ous sentence to the sentence that defined the interaction. Optionally,
the translator can merge multiple stories to form a non-linear story

3 http://nlp.cs.lth.se/
4 http://verbs.colorado.edu/propbank/
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graph. To achieve this we check all pairs of sentences A, B. If they
are from different stories, but have similar frames then for each in-
teraction (X, A) we add (X, B) to the graph and vice versa, i.e., at
these nodes the game can switch to a different story, depending on
the interaction chosen by the player. This approach was inspired by
the story generation process described in [7].

The translator then lists all the entities present in the story and
schedules at which point in the story they should appear. As corefer-
ence resolution is not flawless, we make the simplifying assumption
that two entities with the same name are the same and merge the re-
spective entity mentions. The translator then requests images for the
entities from the server which uses Spritely [1] for this task.

Figure 1. Screenshot of the aMUSE frontend.

The frontend then uses the story graph as the basic structure to
guide gameplay. It keeps the current node in the graph and when the
user performs an interaction corresponding to any of the outgoing
edges, the story progresses to the edge’s target, i.e., every action of
the user corresponds to progressing the story one sentence further.

Originally, we intended that the user will represent the protago-
nist of the story and perform only the interactions where he is the
agent. In this case, the other interactions would be performed by the
system automatically as a kind of a cutscene. This however led to
a large number of non-interactive nodes, so we decided to alter the
game design a little: the user is no longer a character in the story;
he represents a disembodied entity, whose single goal is to make the
story happen. To do this, the user can take control of any active entity
and act (click on objects) on its behalf. The resulting interactions are
very abstract and it is almost impossible to decipher the story from
the interactions themselves. To allow the player to follow the story,
the original text of the sentence is shown in a stylized book. The
screenshot of the frontend is given in Figure 1.

So far, we have not been able to finish our work on extracting
spatial relationships between the entities from text, so the entities
only float around the screen without any structure.

4 CONCLUSION

Our system is capable to automatically translate stories written in
natural language into a specific type of playable experiences. While
many of the interactions that the system produces make sense, it also

produces absurd options, mostly due to imperfections in natural lan-
guage processing (NLP). To some extent, this can be enjoyable from
the user perspective, but there is definitely room for improvement.

The system works reasonably well on short stories targeted at very
small children, as the vocabulary and syntactical structure is simple.
However, the main reason that short stories work better than longer
ones is that the gameplay is very limited and it is not fun to click
through a longer story. Although longer stories also degrade accu-
racy of coreference resolution. Semantic and syntactic complexity of
the text is currently the most limiting factor for our tool. We tested
the system on Aesop’s fables, where the resulting gameplay was still
more often relevant to the story than not. However, when run on fairy
tales collected by Andrew Lang, which have long and complex sen-
tences and archaic language style, only a minority of the resulting
interactions were reasonable. Further issues arise from incorrect as-
sociation of words with images.

Our system can serve as a demonstration of the power (and re-
maining deficiencies) of the contemporary NLP technology. We be-
lieve that NLP is at the level where it can improve games and gaming
experience. While we are aware of game-related research using syn-
tactic analysis of texts, we are not aware of usage of SRL in this
context, although there are high possible benefits.

Examples of games created by the system can be played online5

and the system itself is fully open-source.
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Data Collection with Screen Capture
Jason Traish, James Tulip and Wayne Moore1

Abstract. Game traces are an important aspect of analysing how
players interact with computer games and developing case based rea-
soning agents for such games. We present a computer vision based
approach using screen capture for extracting such game traces. The
system uses image templates of to identify and log changes in game
state. The advantage of the system is that it only captures events
which actually occur in a game and is robust in the face of multi-
ple redundant commands and command cancellation.

This paper demonstrates the use of such a vision based system to
gather build orders from Starcraft 2 and compares the results gener-
ated with those produced by a system based on analysing log files of
user actions. Our results show that the vision based system is capable
of not only automatically retrieving data via screen capture, but does
so more accurately and reliably than a system relying completely on
recorded user interactions.

Screen capture also allows access to data not otherwise available
from an application. We show how screen capture can be used to
retrieve data from the DotA 2 picking phase in real time. This data
can be used to support meta-game activity, and guide in-game player
behaviours.

1 Introduction

Game traces allow researchers to follow the evolution of game state
as a game is played. Retrieving game traces is necessary to further
understand decisions made by players in different game states, and
to support the development of AI agents.

Data for board games such as GO [4] and Chess [7] are obtained
from a sequential list of user interactions with the game. In GO and
chess the user interactions with the game are very limited and the
effect of any player action in the game is deterministic. For exam-
ple, in GO it is known that when a player places a stone such that an
opponent’s stones are surrounded, then the opponent’s stones will be
eliminated. However, in commercial RTS games such as Starcraft 2
[1], the set of user interactions for is often far larger than in a classic
board game, and the effect of player actions on game state is un-
certain. A user can move a camera, move units, construct buildings,
train units, buy upgrades and much more. Some of these commands
(eg camera movement) have no effect on game state, and for oth-
ers, (eg unit movement) the effect is indirect. Furthermore, the actual
internal game state is inaccessible.

In both GO and Starcraft 2 a game is recorded as a sequence of
user interactions. However, while in GO this sequence corresponds
directly to changes in game state, in Starcraft 2, multiple redundant
commands may be issued in a short space of time, many may never
have effect, or they may be cancelled before they are enacted. The

1 Charles Sturt University, Mining Lab, Australia, email: {jtraish & jtulip}
@csu.edu.au & wmoore@lisp.com.au

only way to tell what actually happens is to play the user interactions
back through the game environment.

The other problem that occurs, particularly in RTS games, is that
the rules determining how player actions affect the game environ-
ment can change due to developers tuning and rebalancing game
play. This makes it unfeasible to recreate game state based on user
interactions because their effects are constantly changing. In the case
of Starcraft 2, while we can access the list of raw commands given
by the user via game replay files, access to this list does not allow
recreation of game state unless it is used to replay the game using
the actual game environment. Once again, the solution is to directly
monitor game state changes rather than user inputs.

Lack of access to internal game state makes it difficult to develop
AI agents, and much game AI agent research is based on the use of
appropriately instrumented simulators. Unfortunately, many of these
are highly simplified versions of the original game. Samothrakis [8]
suggests that a screen capture approach would solve this problem.
Screen capture also offers a standardized way to provide AI agents
with input. This is necessary to meaningfully compare the perfor-
mance of AI agents. Screen capture also allows retrieval of game
state from closed source commercial games, and so enables testing
of agents using the original game rather than a simulator.

This paper demonstrates the use of a screen capture system to anal-
yse Starcraft 2 build orders. Build orders describe a player’s sequence
of creating units, buildings, and upgrades to reach a specific strategic
goal. The efficiency of a player’s build order can significantly impact
their chance of winning, and there is considerable research in build
order optimization [6]. We demonstrate the extraction of build orders
using screen capture and compare the results generated with those
produced by Sc2Gears [3]. Sc2Gears calculates build orders based
on a log of user interactions. We also demonstrate the real-time use
of screen capture to monitor hero selection in the online game De-
fense of the Ancients (DotA 2) [2]. DotA 2 is a multi player online
battle arena (MOBA) game where players select heroes with vari-
ous characteristics and do battle in teams. Hero selection and team
combinations have a large impact on team success, and there is much
interest in predicting game outcomes based on hero combinations
[9].

2 Screen Capture

The screen capture system models a human observer tracking and
recording changes in a game. It identifies areas of the screen which
display information relevant to game state and then monitors changes
in those areas, interpreting them in terms of game state.

Initially, the area of the game window that the relevant informa-
tion will appear is specified. Then all patterns showing the informa-
tion to be recognised in that area of interest are recorded as a set of
templates. All templates have the same dimensions to simplify and
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speed up matching. After all templates have been loaded into the
system, PCA [5] is used to compress each set of templates down to
30 descriptors per template. This enables a reduction in the number
of comparisons for each template and facilitates real-time analysis
of captured images. The application is then started with the replay
for game trace retrieval. The windows contents are captured via the
Windows API and stored in an OpenCV image as often as the refresh
rate allows. The image is then decomposed into the identified areas of
interest such as the game timer, player’s production icons, progress
bars, and resource supply. Game specific heuristics are then used to
extract information from the screen using template matching and to
monitor game state events. The processed game state information is
then stored as a game trace.

The screen capture system can be summarised as taking the fol-
lowing steps:

1. Load pre-labeled templates.
2. Decompose templates into basic descriptors.
3. Open the application’s associated replay file.
4. Capture the game window using the Windows API.
5. Store and decompose the windows contents into areas of interest.
6. Match templates against areas of interest using a multi-threaded

framework.
7. Process the results and store the resulting game trace.
8. Repeat from step 3 to analyse further games.

3 Starcraft 2 Build Orders
Figure 1 displays the replay interface in Starcraft 2 that was used
to retrieve game traces. Before starting the process, the system must
be aware of where to look for which templates. The templates are
stored in sets, one each for the production icons of each player se-
lectable race, and an extra one for other GUI elements. This reduces
the number of comparisons necessary as a player can only produce
items for their chosen race.

To retrieve the build order we now identify what is displayed us-
ing our library of PCA refined descriptors. The top left hand cor-
ner of Figure 1 shows seven units/buildings in production. Each item
of production shows an identifying image, a number showing how
many units are being produced simultaneously, and a green progress
bar reflecting the completion percentage of that item. Each different
production icon indicates that a build queue is active within that area
of interest. In this case we would say that 4 build queues are active
for player 1 and 3 are active for player 2. The icon positions are then
posted to different worker threads which compare the captured im-
age with an assigned template set. Figures 2 and 3 show the matching
templates used to identify production icons collected from the scene
shown in Figure 1. Each template is labelled with the name of the
production icon.

After identifying the production icon, the game trace heuristic then
finds the number on each template as shown in Figure 4.Numbers are
identified using a relatively naive yet accurate method. Because nu-
merals are imprinted against a production icon’s image they contain
a small amount of noise. The noise is reduced by only accounting for
pixels that are very similar to white. Then the filtered image is com-
pared against a set of number templates where the closest is selected
as the matching number. Following this process identifies the digit
shown Figure 4 as matching the template shown in Figure 5.

The completion percentage shown in the production icon is then
determined (Figure 6). For this we simply perform a threshold check
for predefined pixel values along the length of the progress bar, re-
turning when an empty pixel is found.

Figure 1. Sample screen capture

Figure 2. Player 1 - Matching production templates

Figure 3. Player 2 - Matching production templates

Figure 4. Digit with noise

Figure 5. Pre-labeled Digit (Matching Template)
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Figure 6. Progress bar

Since each template comparison is independent, all template com-
parisons can be run in separate threads. Once all threads have fin-
ished analysing each real-time acquired production icon image the
information is used to update each players build order along with the
game state, and the game time at which the image was retrieved.

As each player’s build order is updated, it is possible that a previ-
ously recorded production item is cancelled. If a production item is
not listed but was less than 97% complete when last identified then
that item is assumed to have been cancelled and is removed from the
recorded build order. Within a game of Starcraft 2, this can occur at
any point in time when a user selects a production item and cancels
it. A cancellation is also noted if the number of items listed within
the production icon drops while the current completion percentage is
under 97%. This leads to the flaw in the current game trace heuris-
tic that if a production item is almost complete then any number of
production items of the same type can be cancelled and they will be
falsely recorded as completed. In practice, this rarely occurs.

When a new production item type appears or the production count
increases then the game trace heuristic appends that item to the build
order. If the number of items in production recorded by a produc-
tion icon number remains the same for longer than the time to cre-
ate that item, then another production item of that type is appended
to the build order. This deals with the case of when a series of
probes/workers are queued. Since they are created one at a time,
a constant production count of 1 appears over an extended period.
Thus, keeping track of how long it is from when a production icon
first appears we can determine when an item repeats production. The
exception is when production is halted or paused which can be de-
tected when the progress bar is halted.

After a game has completed, each players build order is recorded
to file and the next game is opened and the process repeated. The re-
play interface is controlled by sending Windows API keyboard mes-
sages to Starcraft 2 to display the production icons and accelerate
the play back. The replay playback is accelerated to the maximum of
eight times the normal playback rate.

4 Comparison with User Interaction Logs

An experiment was conducted to evaluate how the screen capture
system performs in capturing a build order in comparison with the
established tool Sc2Gears [3]. Sc2Gears applies the user interaction
approach to analyse build orders. Both systems were tested using a
set of 100 public Starcraft single player versus single player ladder
games. Comparisons were made only on the first 10 minutes of game
play so that replays of diverse lengths would not affect the results
significantly. Each of the 100 games was also processed by a human
to generate a ground truth set of build orders. The accuracy for the
automated systems was calculated as the number of matching build
order steps compared with the human verified sequence.

Table 1 shows that the screen capture technique was able to signif-
icantly reduce the number of errors in calculated build orders com-
pared with an analysis based on raw user interactions. The screen
capture system still generated a small number of errors in cases
where actions were cancelled on the last frame (thus appearing to
have actually been completed). Table 2 shows an example of an open-

Table 1. Error Rates

Error Screen Capture Sc2Gears
Mean 0.39% 30.71%
StdDev 0.96% 27.75%

ing build order extracted using screen capture compared with one
using Sc2Gears from the same game. The extracted information is
significantly different. Sc2Gears incorrectly identifies the creation of
three probes and an additional pylon. In this case, the player requests
production of an additional Probe without the necessary resources,
a situation that can only be determined by running the game replay.
The extra pylon identified by Sc2Gears was the result of the player
ordering construction of a pylon and then moments later changing the
location of its construction. These errors highlight the issues encoun-
tered when using user interaction methods to extract game traces.

Table 2. Example Game Trace

Sc2Gears Screen Capture
1. Probe 1. Probe
2. Probe 2. Probe
3. Probe 3. Probe
4. Probe 4. Pylon
5. Probe
6. Probe
7. Probe
8. Probe

5 Hero Selection in Defence of the Ancients 2
The screen capture technique was also applied to Defence of the An-
cients 2 (DotA 2) to test its real-time capabilities of the screen cap-
ture framework, and its capacity to generalise beyond Starcraft 2.
This section re-enforces the application of the screen capture frame
work in retrieving data from a 2D display interface. The data from
the DotA 2 interface is retrieved without error and thus no compar-
ison against other methods is given, instead a potential use of the
retrieved data is given. The experiment with DotA 2 shows flexibil-
ity and versatility of the screen capture approach.

DotA 2 is a multi player online battle (MOBA) game that involves
2 teams of 5 players. Each player must pick a hero, and after a hero
is selected and locked in it can not be picked by any other player.
Players can select a hero they intend to pick before locking it in,
and this is referred to as shadow picking. A shadow pick will only
display to the allied team, and is important in influencing the heroes
other members of the team will select.

Heroes fall into general categories based on their abilities and how
they interact with other heroes within the game. The picking process
leads to a diverse set of combinations that can be formed between the
2 teams. However, some of these combinations are weaker than oth-
ers due to the interaction of hero’s strengths and weaknesses. Each
hero has synergies with certain allied heroes and/or are able to ex-
ploit weaknesses in particular enemy heroes. Thus, it is an interest-
ing problem to see how players adapt their choice of hero during the
1 minute picking phase. It is also interesting to see how these picks
can be used to predict the winning team and what rate of success they
might have.

In DotA 2, there is much interest in real-time capture of game ac-
tions since such a capability offers the potential to support real-time
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guidance on hero selection. It also provides information useful to cal-
culating the likelihood of final outcomes. Screen capture potentially
can achieve this while user interaction logs are available only after a
game has ended.

Figure 7 shows a standard DotA 2 ’all pick’ mode selection screen.
It can be seen that all players have locked in their hero choices ex-
cept for the player shown on the upper left . This player’s portrait is
rendered in grey scale to show that it the depicted hero has only been
shadow picked. During the picking phase we use the screen capture

Figure 7. DotA 2 Hero Selection Screen

framework to identify which heroes have been locked in or shadow
picked. This data is then analysed using a statistical algorithm based
on hundreds of thousands of games of DotA 2.

The current program then displays the win rate for any point in
time during the game as shown in Figure 8. This graph can be used
loosely to identify when one team is stronger than another and can be
used as an indicator for players to become more aggressive within the
favoured time zones. It can also be used by lower skilled players to
help better identify hero picks that complement their team, and to see
what effect their pick would have on the progress of the game. Figure
8 shows that the enemy team has a small advantage that decreases
over time until around the 60 minute mark, at which point My Team
increases substantially in strength.

Figure 8. DotA 2 Predicted Game Balance

6 Discussion and Further Work

The Starcraft 2 experiment shows that the screen capture approach
can help generate more accurate build orders than conventional sys-
tems based on logs of player actions. Its application to analysing hero
selection in DotA 2 shows that the principles can be applied gener-
ally to any game, and for any analytical purpose, using different sets
of image templates and different analytical heuristics. The technique

can be applied to almost any application where a streaming 2D dis-
play record is available. Furthermore, no access to game code or pro-
prietary APIs is required. This opens up data collection and analysis
for previously inaccessible games and other applications. The high
performance provided by the simplified PCA based image descrip-
tors and parallel template matching allows the development of real-
time in-game decision support systems, once again without access
to game code or proprietary APIs. The screen capture system takes
advantage of using the game display to retrieve actual game events
while user interaction logging methods can result in noisy data that
can detrimentally affect further analysis.

However, currently screen capture has only been applied to appli-
cations where the state is represented with scale and rotation invariant
2D images. There would be considerable challenges in applying the
technique to applications that display their state in 3D.

The technique could also be extended to live game data retrieval,
such as a Starcraft 2 commentator agent. An agent could be set up
to watch two players play a competitive game, giving viewers pre-
dictions and feedback in a similar way to how real commentators
perform.

The screen capture system could also be used to track in game
auction house item prices. The retrieval of the changing value of
game items could allow systems to graph, analyse and predict market
trends in online worlds.

It could also be used for non game applications such as watching
a user’s screen and determining the time spent interacting with dif-
ferent windows. This could help system analysts trace work flow and
productivity in given applications without access to the source code.

While analytic techniques relying on replays to retrieve game data
have to wait until a game has been played and recorded before anal-
ysis can be applied, a screen capture system can be used to analyse
live games, allowing interested parties to use the data in prediction
systems or other applications.

7 Conclusion
Screen capture data retrieval offers great advantages to researchers
and applications looking to gather data from complex environments
with 2D displays. The system is flexible and more accurate than user
interaction logs for such applications.
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Cognitive Navigation in PRESTO
Paolo Calanca and Paolo Busetta1

Abstract. The PRESTO project has developed an AI infrastruc-
ture and an agent framework called DICE for the creation of game-
independent, modular NPC behaviours based on a BDI (Belief-
Desire-Intention) approach enriched with cognitive extensions for
human simulation. Behavioural models can be combined via end-
user development tools to form the behavioural profiles of NPCs in a
game. Furthermore, PRESTO is producing a set of behavioural mod-
els targeted at its pilot project’s needs or expected to be of common
use. This paper focuses on a fundamental building block: naviga-
tion of (human and non-human) characters, implemented as the in-
terplay between a set of behavioural models encapsulating higher-
level decision making concerning e.g. speed control, activation of
gates, replanning when faced with the impossibility to going forward
and lower-level modules for path planning, steering and obstacle
avoidance that focus on performance and simpler perception-driven
choices. These lower-level modules are embedded into the PRESTO
infrastructure and contain a few novel algorithms. The higher level
navigation behavioural models in DICE can encapsulate very differ-
ent physical and emotional profiles; they deal with short-term mem-
ory and background knowledge concerning spatial knowledge and
impose constraints on path planning based on physical as well as
cognitive considerations (e.g. risks or threats). DICE provides the co-
ordination between body-controlling behavioural models (for navi-
gation as well as posture, facial expressions, actioning) and decision-
making models representing e.g. the standard operating procedures
of professional roles, the cognitive appraisal of events and percep-
tions, the modality of reaction to unplanned events occurring during
a game.

1 INTRODUCTION
PRESTO (Plausible Representation of Emergency Scenarios for
Training Operations) [2] aims at adding semantics to a virtual en-
vironment and modularising the artificial intelligence controlling the
behaviours of NPCs. Its main goal is to support a productive end-user
development environment directed to trainers building scenarios for
serious games (in particular to simulate emergency situations such as
road and industrial accidents, fires and so on) and in general to game
masters wanting to customize and enrich the human player’s experi-
ence. The framework for behavioural modeling in PRESTO, called
DICE, was inspired by a BDI (Belief-Desire-Intention) [1, 9] multi-
agent system with cognitive extensions, CoJACK [10, 6]. PRESTO
offers powerful end-user development tools for defining the parts
played by virtual actors (as end user-written behaviours) and the
overall session script of a game. PRESTO supports a specific vir-
tual reality, XVR from E-Semble, a well known tool in use for Emer-
gency Management and Training (EMT) in a number of schools and
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organisations around the world, as well as Unity 3d and, at least in
principle, is agnostic with respect to the game engine in use.

The rest of this introduction briefly explains the motivations be-
hind PRESTO with an example and gives an overview of the system.
The following sections are dedicated to its navigation subsystem, first
discussing lower-level facilities for path planning and steering and
then introducing a higher-level layer that takes into account cognitive
aspects including memory and appraisal of the perceptions according
to the semantics of the environment and the NPC’s own psychologi-
cal profile.

Directing NPCs as virtual actors in a virtual stage. Serious
games have the potential to dramatically improve the quality of train-
ing in a number of fields where the trainee has to face complex and
potentially life-threatening situations. In particular, open-world 3D
simulations (also called ‘’sandbox” or ‘’free-roaming” games) have
been used for quite a long time by the military, with a few products
reaching a significant market success, and are becoming common in
civilian emergency training because they allow the rapid construction
of scenarios for the rehearsal of safety procedures. The main limita-
tion of current technology concerns NPCs, whose behaviour may be
quite sophisticated when performing predefined tasks but is often un-
affected by context; further, a professional programmer is required
for the implementation of any procedure that cannot be described
with the simple selection of a few waypoints and the choice of a few
actions, let alone introducing variants due to psychological factors.
These issues lead to repetitive and hardly credible scenarios and to
the slow and costly development of new ones when many NPCs are
involved.

As an example, consider a fire breaking in a hospital ward during
daytime with patients with different impairments, visitors of various
ages and professionals with different roles, experiences and training.
In this scenario, which is taken from the pilot project of PRESTO,
most characters are NPCs while the human players, i.e. the trainees,
are either health professionals that could be in charge for a ward at the
time of an accident or emergency staff called to help. A training ses-
sion would require two apparently conflicting abilities from NPCs.
From the one hand, they should act autonomously according to a va-
riety of parameters concerning e.g. their physical and psychological
state, their current position, their capabilities; e.g. visitors may act
rationally and follow well-marked escape routes or flee panicking to
the closest exits, nurses at the start of their shift are fully responsive
and careful while at the end of the shift fatigue may lead to errors,
and so on. On the other hand, in order to make training effective
and engaging, the trainer supervising a simulation session should be
able to temporarily suspend it (e.g. to give feedback to the trainees),
change the course of events or affect the way certain characters be-
have (e.g. to introduce more drama or rehearse different procedures),
as well as introducing or removing characters in following runs of
the same scenario. Hardcoding all possibilities, assuming that this is
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supported by the game in use, is a laborious task to say the least.
The objective of PRESTO is to allow NPCs to act as “virtual ac-

tors” because they are able to “interpret” a part written at a higher
level of abstraction than with common scripting languages, with
additional modalities (that may correspond to, e.g., levels of skills
or psychological profiles) that can be selected at the beginning but
changed during a game as a result of the application of rules or by ex-
plicit user choice. The game’s master (i.e. the trainer) is empowered
to become a “director” able to “brief” virtual actors, that is, to define
the parts the artificial characters have to play by means of a language
aimed to non-programmers that composes more fundamental even if
potentially very complex behaviours into game-specific sequences.
Key enablers are end-user development tools [7] and the ability to
mix and match behavioural components taken off-the-shelf from a
market place (similar in principle to asset stores in popular gaming
platforms such as Unity).

Semantics and NPC programming in PRESTO. PRESTO pro-
vides facilities for the semantization of the game environment in
order to support decision-making based on game- and scenario-
independent properties. Most importantly, ontologies are used for the
classification of objects and locations and for annotating them with
properties and states (called “qualities”) that allow abstract reason-
ing, while navigation areas can be annotated with various proper-
ties [5]; some of these aspects are discussed in Sec. 3.

DICE (Fig. 1) supports multi-goal modeling of NPC behaviours,
where navigation, body postures and facial expressions, manipula-
tion of objects and decision-making concerning tactical and long-
term objectives are controlled by concurrent threads (implemented,
in BDI speak, as intention trees achieving independent hierarchies of
goals and subgoals). Furthermore, decision-making in DICE happens
at two levels, controlled by independent “planned” and “reaction” in-
tention trees. A decision-making behaviour started in reaction to an
event pre-empts and blocks the execution of a planned behaviour un-
til it is fully completed, at which point the planned behaviour is re-
sumed. This allows, for instance, to have short-term reactions to per-
ceptions (such as hearing a noise) that partially change the NPC state
(e.g. by pointing the head towards the source of the noise) while not
affecting navigation or longer-term procedures if not required. All
behaviours in the body-controlling intention trees and in decision-
making can be overriden by new behaviours at any time, e.g. as new
perceptions are processed, as part of a decision-making routine, as
a user choice from a GUI, as a command from a PRESTO session-
controlling script; at any time, no more than one behaviour for each
intention tree is active.

Changes in behaviours due to emotions, fatigue or other non-
rational factors can be dealt within DICE in various ways, of which
the most novel (and dramatic) is by defining behavioral rules that
select alternative models according to the current cognitive state of
the NPC. These rules can be defined directly by the end user, who
is enabled to change the behavioural profiles of her characters ac-
cording to the evolution of the game or even in real-time by explicit
choice and from the session-level script. As in CoJACK [10], cogni-
tive states are represented in DICE by moderators (i.e. numeric val-
ues modeling specific factors such as fear and fatigue levels) and a set
of cognitive parameters computed from those moderators (modeling
e.g. reactivity and accuracy), even if greatly simplified with respect
to the original. Any behavioural model, including navigation, can use
moderators and cognitive parameters to tune its own internal parame-
ters, e.g. to decide the speed of execution of action or memory fading.
Changes to moderators are normally performed by behavioural mod-
els for cognition according to appraisal rules (concerning e.g. the

Figure 1. Simplified DICE architecture with navigation highlighted (BM:
Behavioural Model)

perception of threatening things) and time; however, it is possible
to force the value of moderators at any time from any behavioural
model (e.g. because of the realization of a dangerous situation) or
from the session-controlling script, thus allowing the trainer to fully
control the overall behaviour of an NPC during a game.

One of the implications of the DICE approach on navigation is
that, at any time, the travel direction (decided by a behaviour) can
be changed and may be resumed later (e.g. when a reaction is com-
pleted). The APIs make programming this concurrent machinery a
straightforward business, while the end-user development tool for
behaviour modeling (called the DICE Parts Editor) provides an ex-
tremely powerful yet intuitive way to write scripts that affect one or
more intention trees at each step [8].

As mentioned earlier, PRESTO has a facility to edit and control
session-level scripts inspired by interactive books. A session script
is composed by a set of scenes connected as a graph. At each scene,
goals can be given to NPCs, their internal state changed (including
emotions) and objects manipulated. The trainer starts a script at the
beginning of a training session and advances it by manually navi-
gating the graph of scenes or letting PRESTO choose the next one
e.g. when certain events happen or when a timer expires. This al-
lows a large, potentially unlimited number of different sessions to
unfold from a single script with no need to reprogram the NPCs once
equipped with all required behavioural models. In the hospital ward
example presented earlier, the initial scene would command visitors,
patiens and nurses to accomplish their routine goals; the script may
continue with alternative scenes such as “fire breaking in a patient
room” or “fire breaking in a surgical facility”, each with different
people involved, and then with sequences that may lead e.g. to smoke
filling the area and visitors fleeing or an orderly managed situation
with the intervention of fire fighters, chosen according to the deci-
sions of the trainer and the events occurring during a session.
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Figure 2. Navigation subsystem architecture

2 NAVIGATION ARCHITECTURE
The overall architecture of navigation within a DICE agent, shown
in Fig. 2, closely resembles a standard model [3], with a path plan-
ning module, a steering module looking after actual body movements
and simple obstacle avoidance, and the navigation behavioural model
calling the path planner and the steering modules according to the
goals provided by decision-making (e.g., of reaching a destination,
of following another character, and so on).

The path planner uses a navigation graph which is instantiated for
each agent and modified by the navigation behavioral model to re-
flect memory, navigation decisions and specific capabilities. From
this graph, the path planner can compute one ore more paths to the
desired destination and the behaviour can choose which one to fol-
low based on any attached information. Once a path is chosen, the
steering module is invoked by the behaviour to move along it. State
information on the steering activity for a specific path, including an
explanation in case of unsuccessful conclusion (e.g., facing a gate,
impassable obstacles, aborted by another steering request typically
generated by a reaction), is used by the behaviour to track progress
and possibly perform actions to resume navigation. Analogously, the
state of a goal given to the navigation behaviour is reported on a
tracking object that allows higher-level decision-making behaviours
to know when the goal has been satisfied or the reason for failure,
including abort caused e.g. by a reaction submitting a different navi-
gation goal.

The flow of perceptions goes to steering as well as to all be-
havioural models to update their own internal state. As a conse-
quence, the navigation goal being currently pursued may be changed
because e.g. of a reaction or the decision to take a different course of
actions.

3 MESHES, AREAS AND SEMANTICS OF THE
ENVIRONMENT

Configuration information affecting navigation is distributed in three
main data structures, two of which concern meshes and are directly
used by the navigation modules while the third is related to semantics
for the decision-making layer.

Navigation meshes and navigation areas. PRESTO uses navi-
gation meshes (that is, sets of adjacent convex polygons that share
edges and cover a walkable / drivable / otherwise navigable sur-
face) [11] to compute safe and efficient paths through the environ-
ment, avoiding walls, obstacles and precipices. Navigation meshes

can be automatically built from the environment geometry and from
parameters including the navigating object’s radius, height and max
acceptable steepness, so it is possible to generate meshes specialized
per character type (including non-humans, e.g. vehicles).

Semantics data on the navigation meshes, such as the terrain type
and traffic constraints (permitted directions, reserved paths, ...), can
be added with a tool that allows the creation and annotation of nav-
igation areas by selecting polygons of a mesh. Furthermore, as dis-
cussed below, behavioural models manipulate areas rather than poly-
gons of a mesh.

Locations of Interest and navigation-affecting entities.
PRESTO allows the end-user to classify and annotate locations
of interests and objects within the environment with semantic
information taken from an ontology. This is composed of a domain-
independent core and one or more domain-specific extensions [5]
and determines which behavioural models can be used in a specific
game; for instance, the current PRESTO pilot project contains a
hospital ontology that is used by models of nurses and doctors while
a generic safety ontology is used by fire fighters. A small part of
the semantic annotations is directly managed by the navigation
subsystem as discussed later, most importantly the property of
being a “gate”, i.e. anything that has a state of openness that can
be manipulated by a character. Being a gate is not automatically
related to the classification of the object (e.g., a door is not a gate
if it is permanently closed) and may even change dynamically.
Anything else that may affect what the character does during its
movements is handled by other behavioural models and especially
by decision-making models. This separation of concerns relies on
the possibility offered by DICE to stop and change navigation goals
at any time, possibly as reactions that simply delay rather than abort
the procedure being executed by a character.

4 LOWER-LEVEL NAVIGATION FACILITIES
Higher-level behavioural models and lower-level facilities share a
navigation graph, manipulated by behaviours and used by the path
planner, and status information on the current steering activity. A set
of APIs allow behaviours to affect the navigation graph, invoke the
path planner and trigger steering.

Navigation graph and path planning. The Path Planning module
uses a navigation mesh to build a polygon adjacency graph, which in
turn is used as navigation graph shared with the behavioural mod-
els. While navigation meshes are generated off-line and shared by
all agents, a navigation graph is specific for each agent since it is
based on the background knowledge of the agent, its capabilities,
its memory and its decisions. For instance, the configuration of the
background knowledge of an agent specifies which mesh to use and
how much of it is known at the beginning of a game; furthermore,
behavioural models can add or remove navigation areas (converted
in polygons by the Path Planning API).

Edges in the navigation graph carry a weight, by default represent-
ing the euclidean distance between the centroids of the two polygons
correspondent to two graph nodes. These weights can be manipulated
by behavioural models to convey preferences to the path planner; this
is done by specifying the weight for an entire area, which is like al-
tering the area’s distance from the remaining navigable areas.

The path planner computes the shortest path from a source point to
a destination point by using the weigths and applying the well known
A� algorithm.

Steering and obstacle avoidance. The steering module moves the
NPC controlled by the agent along a path computed by the path plan-

AISB Convention 2015: Symposium on AI and Games 50



Figure 3. Steering FSM

ner. To this end, it computes and updates a trajectory that avoids ob-
stacles and moves the NPC along the points of the trajectory. While
the path is computed from the start point to the destination point, the
trajectory is computed locally, that is, from the current NPC position
up to a maximum distance. The trajectory is frequently updated so
that it continuously adapts to changing conditions. The trajectory is
computed inside a “global path”, i.e. the sequence of polygons com-
puted by the path planner forming a tunnel in the selected navigation
mesh. Only obstacles inside this tunnel, perceived by the agent and
close to the current position of the NPC are considered by steering,
which considers also their semantic properties; most importantly, ob-
jects classified as gates and in a “closed” state are not avoided. When
the agent perceives that an obstacle has moved then the trajectory is
immediately re-calculated.

Steering is a Finite State Machine, illustred in Fig. 3. The agent
(that is, its navigation behavioural model) can query its state and send
inputs that will cause state transitions; in particular, the behaviour
can start steering on a selected path, stop it and later resume it on the
current path or re-start it on a different one.

While Running, steering moves the NPC by calling PRESTO’s
“MOVE” action, which in turns controls the body’s animation con-
cerning legs or other moving parts (e.g. wheels), translate the NPC in
space at the desired speed and adjust the NPC position on the ground.
MOVE modifies the speed according to its initial value, providing
any required acceleration; a complementary STOP action decelerates
the NPC.

The Blocked state is entered when steering fails in computing a
trajectory because the path is obstructed by too many obstacles. As
discussed below, it is left to the behaviour to take a decision, e.g.
waiting and later resuming or temporary removing the obstructed
polygon from the agent’s navigation graph and recomputing the path.

The Waiting state is entered when the NPC cannot go further be-
cause it is in front of a closed gate. Steering moves the NPC to an
appropriate distance before entering Waiting. At this stage, the be-
haviour has to take an action depending on the gate’s type, for exam-
ple a door must be opened or an elevator must be called. Once the
action has been performed, steering can be resumed. Note that the
behaviour may decide to abort steering and change path because, for
instance, the opening action fails for some reason not under naviga-
tion’s control (e.g., the goal of opening a door cannot be achieved
because a key is required and not owned by the NPC).

Steering trajectory computation. The trajectory is first com-
puted ignoring ostacles, using the Funnel algorithm [4]. This algo-
rithm is also known as “string-pulling” because the trajectory being
generated is like a string pulled from the two extremes (Fig. 4).

The generated trajectory is modified to avoid obstacles, repre-
sented with simple geometries, like circles and rectangles, enlarged
by the agent radius; an example of the algorithm is in Fig. 5. As first

Figure 4. Trajectory generated by the Funnel algorithm

Figure 5. Obstacle avoidance algorithm, A: the output of the Funnel
algorithm. B: the trajectory point is inside the orange obstacle, the right side

is rejected. C: the new segment intersects the violet obstacle. D: the
trajectory is recomputed to attach the two sides, but the first segment

intersects the green obstacle cluster. E: the left side is rejected because a
point is out of the path. F: the two final trajectories.

step, obstacles that intersect each other are clustered; each isolated
obstacle forms a cluster by itself. Then each cluster is checked for
intersections with the trajectory segments. If a segment intersects the
cluster, the segment is discarded and two poly-lines are computed
from its starting point to its ending point, passing to the right side
and to the left side of the cluster. If no poly-lyne is within the path,
the steering state is set to Blocked and the algorithm is stopped, even-
tually invoking the higher-level behavioural model. If exactly one of
the computed poly-lines is inside the path, then the intersecting seg-
ment is substituted with that one. If both the poly-lines are inside
the path, then the trajectory is duplicated. At this stage the checking
process is repeated recursively on the resulting trajectories to handle
further intersections with other clusters. The final output of the algo-
rithm, if successful (i.e. if the Blocked state is never reached), is one
or more trajectories; one is eventually chosen at random, to prevent
the oscillations that typically arise when NPCs facing each other use
the same deterministic steering algorithm.
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5 HIGHER-LEVEL NAVIGATION
BEHAVIOURAL MODELS

Navigation control in DICE is split in two types of behavioural mod-
els. One type, identified as “navigation BM” in Fig. 1 and 2, satis-
fies the navigation goals submitted by decision-making behaviours
(e.g., of reaching a destination); slightly different navigation mod-
els are provided that depend on the main physical features of the
NPC, e.g. of being a human rather than a vehicle, and consequently
on the NPC’s ability to move and affect the environment. As men-
tioned above, the navigation BM runs in its own intention tree (thread
of execution) concurrently with decision-making and other body-
controlling behaviours. The navigation BM calls path planning and
controls steering, acting according to the latter’s indication in par-
ticular when entering the Blocked or Waiting states. A number of
different decisions can be taken according to the model and to the
semantics of gates or obstructing objects, which may in turn cause
goals to be submitted to other body-parts behaviours (e.g. opening a
door, calling a lift, and so on).

A second type of behavioural model, referred to as “navigation ca-
pabilities” and included as a decision-making module in DICE, looks
after some of the cognitive aspects of navigation. In particular, the
navigation capability of an NPC decides which mesh to use on cre-
ation, then changes the default speed, default animations and so on
according to the current sub-rational state of the agent (i.e. its moder-
ators and cognitive parameters). Thus, PRESTO can provide capa-
bilities specialized e.g. for quiet or excited people, for permanent or
temporary physical impairments, for different types of vehicles, and
so on. Navigation capabilities may access the cognitive state to tune
their parameters (e.g. speed or animations); furthermore, behavioural
rules may be defined to switch navigation capabilities entirely dur-
ing a game depending on the NPC’s moderators. For instance, a high
level of fear may select a model whose default speed is running and
movement animations jerky, while a high level of fatigue may select
a model doing exactly the opposite. Furthermore, the navigation ca-
pabilities satisfy goals concerning path selection, such as “stay out
of sight of entity E” or “don’t go thru location L” (which may have
been classified as dangerous by a decision-making model according
to the appraisal rules of the agent), by taking note of what to avoid
and manipulating the navigation graph accordingly, based on current
knowledge and the flow of perceptions.

Behavioural models in DICE have their own configuration pa-
rameters, called “background knowledge”. As mentioned above, the
background knowledge of the navigation capability of an agent de-
termines how much the agent knows a priori about the environment
– it can be everything or being limited to a few areas; the naviga-
tion graph is created accordingly. The flow of perceptions arriving
from the PRESTO infrastructure includes also the visible naviga-
tion polygons of the various meshes; this data is used by the naviga-
tion capability to update the navigation graph. The cognitive model
of DICE, not discussed here, looks after short-term memory man-
agement, which includes calling the navigation capability to purge
the navigation graph; that is, the agent literally forgets about where
to navigate according to timing and frequency of perceptions from
the environment. Out of scope of the navigation subsystem, and not
discussed here, is a “search” behaviour, which is a set of decision-
making procedures that can be started when a navigation goal fails
with an “unknown path” error.

In the hospital fire scenario presented in the introduction, the nav-
igation capability of a patient on a wheel chair would use a different
mesh than the one selected for a visitor with normal walking capabil-

ities, e.g. to avoid steps and stairs. The patient’s background knowl-
edge would include the navigation areas of the entire ward (since
she has been there for a while) while the visitor’s knowledge would
be initially empty and populated while she moves in the ward; a
decision-making procedure of the visitor that invokes a goal such
as “go to patient room nr. 3” would initially fail because, indeed,
no path can be computed and a search behaviour would need to be
invoked allowing the progressive discovery of the navigation areas
of the selected mesh. If, at any time during the game, a fire alarm
starts ringing, its perception on both visitor and patient would trig-
ger a (decision-making) reaction that is handled different according
to the currently active behavioural models, which in turn may de-
pend on cognitive states such as fear. The perception of smoke and
fire would submit goals such as “don’t go thru that area” handled by
the navigation capability as mentioned above. A rationally-behaving
NPC that knows the position of a location ontologically classified as
“fire exit” would navigate to the latter, with a speed and a modality
that depend on the currently active navigation capability (excited /
not excited, walking / pushing the wheel chair); an NPC that doesn’t
know about fire exits or that it’s too fearful to act rationally would
run to the closest exit.

Queuing and other coordinated behaviour. Steering looks after
obstacle avoidance and thus somehow takes care of certain crowding
behaviours. However, proper coordination is a matter for decision
making at least partially outside of the scope of navigation. Work is
in progress on game-theoretical descriptions of queuing and access
to shared resources that allow the definition of policies at a very ab-
stract (meta-) level. This exploits the support in DICE for introspec-
tion, semantic tagging of goals and plans, dynamic assignment and
aborting of goals and intentions as well as the ability to dynamically
manipulate semantic tags of any entities (including NPCs) offered
by PRESTO. The specification of policies is expected to substan-
tially reduce the coding required by models and allows the reuse of
the same coordination patterns in many different situations, e.g. for
queuing to pass through a gate (which will be part of the navigation
BMs) as well as for queuing at the entrance of an office or at the
cashier in a supermarket (which are decision-making behaviours not
related to navigation goals).

6 CONCLUSIONS AND FUTURE WORKS

At the time of writing, testing and performance evaluation are still
in progress. Initial results show that the navigation meshes are sur-
prisingly small even in very large and complex indoor and outdoor
environments; in turn, this makes the maintenance of per-agent nav-
igation graphs and path planning computationally well affordable.
Other work in progress concerns coordinated behaviour, as discussed
above.

While the navigation algorithms described in this paper contain
a few novelties, we believe that the most interesting part of the
PRESTO approach is the coordination among navigation behaviour,
other concurrent body-controlling intentions and the two-level deci-
sion making, all affected by cognitive elements such as short term
memory management and emotions. When combined with its se-
mantic facilities and end-user development tools for the creation of
NPC behavioural profiles, PRESTO represents an interesting im-
provement to the state-of-the-art of game platforms, especially for
serious game development.

AISB Convention 2015: Symposium on AI and Games 52



ACKNOWLEDGEMENTS
We thanks all other members of Delta Informatica’s technical team
(Matteo Pedrotti, Mauro Fruet and Michele Lunelli). PRESTO has
been funded by the Autonomous Province of Trento (PAT), Italy.

REFERENCES
[1] Michael E. Bratman, Intention, Plans, and Practical Reason, Harvard

University Press, November 1987.
[2] Paolo Busetta, Chiara Ghidini, Matteo Pedrotti, Antonella De Angeli,

and Zeno Menestrina, ‘Briefing virtual actors: a first report on the presto
project’, in Proceedings of the AI and Games Symposium at AISB 2014,
ed., Daniela Romano, (April 2014).

[3] Alex J. Champandard, An Overview of Navigation Systems, volume 2 of
AI Game Wisdom, 131–139, Charles River Media, Massachusset, 2004.

[4] Xiao Cui and Hao Shi, ‘An overview of pathfinding in navigation
mesh’, IJCSNS International Journal of Computer Science and Net-
work Security, 12, 48–51, (December 2012).

[5] Mauro Dragoni, Chiara Ghidini, Paolo Busetta, Mauro Fruet, and Mat-
teo Pedrotti, ‘Using ontologies for modeling virtual reality scenarios’,
in to appear in Proceedings of ESWC 2015.

[6] Rick Evertsz, Matteo Pedrotti, Paolo Busetta, Hasan Acar, and Frank
Ritter, ‘Populating VBS2 with Realistic Virtual Actors’, in Conference
on Behavior Representation in Modeling & Simulation (BRIMS), Sun-
dance Resort, Utah, (March 30 – April 2 2009).

[7] Henry Lieberman, Fabio Paternò, Markus Klann, and Volker Wulf,
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