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Introduction to the Convention 
The AISB Convention 2015—the latest in a series of events that have been happening since 
1964—was held at the University of Kent, Canterbury, UK in April 2015. Over 120 delegates 
attended and enjoyed three days of interesting talks and discussions covering a wide range of 
topics across artificial intelligence and the simulation of behaviour. This proceedings volume 
contains the papers from the Symposium on New Frontiers in Human-Robot Interaction, one 
of eight symposia held as part of the conference. Many thanks to the convention organisers, 
the AISB committee, convention delegates, and the many Kent staff and students whose hard 
work went into making this event a success. 

—Colin Johnson, Convention Chair 
 

Copyright in the individual papers remains with the authors. 
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Introduction to the Symposium 
The Symposium on “New Frontiers in Human-Robot Interaction (HRI)” is the fourth of a series 
of symposia held in conjunction with the AISB convention. Its topics cover cutting-edge 
interdisciplinary research on understanding, designing, and evaluating robotic systems for 
and with humans. Its main difference to other HRI-related conferences and workshops is its 
inclusiveness for exploratory research and the amount of time for open discussion. This 
year’s symposium consists of six sessions covering topics such as verbal and non-verbal 
interaction, people’s perception of robots, and ethical issues. Moreover, it includes keynote 
talks by Mark Coeckelbergh and Angelika Peer and a panel on the topic “Robot Perception 
and Acceptance”.  

Introduction 

Human-Robot Interaction (HRI) is a quickly growing and very inter- disciplinary research field. 
Its application areas will have an impact not only economically, but also on the way we live 
and the kinds of relationships we may develop with machines. Due to its interdisciplinary 
nature of the research different views and approaches towards HRI need to be nurtured.  

In order to help the field to develop, the Symposium on New Frontiers in Human-Robot 
Interaction encourages submissions in a variety of categories, thus giving this event a unique 
character. The symposium consists of paper presentations, panels and, importantly, much 
time for open discussions which distinguishes this event from regular conferences and 
workshops in the field of HRI.  

History  

The first symposium on “New Frontiers in Human-Robot Interaction” was held as part of AISB 
2009 in Edinburgh, Scotland; the second symposium was run in conjunction with AISB 2010 
in Leicester, England; the third symposium took place during AISB 2014 at Goldsmiths, 
University of London, England. These three previously organised symposia were 
characterised by excellent presentations as well as extensive and constructive discussions of 
the research among the participants. Inspired by the great success of the preceding events 
and the rapidly evolving field of HRI, the continuation of the symposium series aims to provide 
a platform to present and discuss collaboratively recent findings and challenges in HRI.  

Submission Categories  

In order to enable a diverse program, the symposium offers a variety of submission 
categories, which go beyond typical conference formats. The fourth symposium offered the 
following categories in the call for papers:  

*N* Novel research findings resulting from completed empirical studies. In this category we 
encourage submissions where a substantial body of findings has been accumulated based on 
precise research questions or hypotheses. Such studies are expected to fit within a particular 
experimental framework (e.g. using qualitative or quantitative evaluation techniques) and the 
reviewing of such papers apply relevant (statistical and other) criteria accordingly. Findings of 
such studies should provide novel insights into human-robot interaction studies.  

*E* Exploratory studies. Exploratory studies are often necessary to pilot and fine-tune the 
methodological approach, procedures and measures. In a young research field such as HRI 
with novel applications and various robotic platforms, exploratory studies are also often 
required to derive a set of concrete research questions or hypotheses, in partic- ular 
concerning issues where there is little related theoretical and experimental work. Although 
care must be taken in the interpretation of findings from such studies, they highlight issues of 
great interest and relevance to peers.  
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*S* Case studies. Due to the nature of many HRI studies, a large-scale quantitative approach 
is sometimes neither feasible nor desirable. However, case study evaluation provides 
meaningful findings if presented appropriately. Thus, case studies with only one participant, or 
a small group of participants, are encouraged if they are carried out and analysed in sufficient 
depth.  

*P* Position papers. While categories N, E and S required reporting on HRI studies or 
experiments, position papers can be conceptual or theoretical, providing new interpretations 
of known results. Also, in this category we consider papers that present new ideas without 
having a complete study to report on. Papers in this category are judged on the soundness of 
the argument presented, the significance of the ideas and the interest to the HRI community.  

*R* Replication of HRI studies. To develop as a field, HRI findings obtained by one research 
group need to be replicated by other groups. Without any additional novel insights, such work 
is often not publishable. Within this category, authors have the opportunity to report on 
studies that confirm or disconfirm findings from experiments that have already been reported 
in the literature. This category includes studies that report on negative findings.  

*D* Live HRI Demonstrations. Contributors have the opportunity to provide live 
demonstrations (live or via Skype), pending the outcome of negotiations with the local 
organisation team. The demo should highlight interesting features and insights into HRI. 
Purely entertaining demonstrations without significant research content are discouraged.  

*Y* System Development. Research in this category included the design and development of 
new sensors, robot designs and algorithms for socially interactive robots. Extensive user 
studies are not necessarily required in this category.  

Natural Interaction with Social Robotics  

The Fourth Symposium on “New Frontiers in Human-Robot Interaction” was organised in 
conjunction with the Topic Group on Natural Interaction with Social Robotics. This Topic 
Group was launched within the EU Horizon 2020 funding framework 
(http://ec.europa.eu/programmes/horizon2020/), with the strategic goal to keep the topic of 
interaction prominent in the future calls for European projects. An overview on the list of 
topics and interests of the Topic Group can be found on the website: 
http://homepages.stca.herts.ac.uk/~comqkd/TG-NaturalInteractionWithSocialRobots.html.  

As the symposium offers an ideal opportunity to discuss related research topics that are 
relevant for the Topic Group, we introduced one new submission category:  

*TG* Topic Group Submissions on “Natural Interaction with Social Robots”. Submissions in 
this category will be discussed in a session dedicated to the euRobotics Topic Group “Natural 
Interaction with Social Robots”. Topics specifically relevant to the TG are e.g. benchmarking 
of levels of social abilities, multimodal interaction, and human-robot interaction and 
communication.  

Programme Overview  

This year’s symposium consists of 17 talks, based on submissions in the following categories:  

• *N* Novel research findings resulting from completed empirical studies: 5 
submissions   

• *E* Exploratory studies: 5 submissions 
• *  P* Position papers : 4 submissions  
• *Y* System Development: 2 submissions   
• *TG* Topic Group Submissions on “Natural Interaction with Social Robots”: 1 

submission  
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The talks are structured in six sessions:  

1. Ethical issues in HRI   
2. Robots’ impact on human performance  
3. Verbal interaction  
4. Facial expressions & emotions 
5. Non-verbal cues & behaviours 
6. Robot perception & acceptance 

 The final session is followed by a panel discussion on the same topic. Two invited keynote 
talks complete the program:   

1. Mark Coeckelbergh: “Human-like Robots and Automated Humans: Socializing and 
Contextualizing HRI”   

2. Angelika Peer: “Towards Remote Medical Diagnosticians”  

Conclusion 

In summary, the symposium mainly focuses on novel empirical findings on human-robot 
interaction and their impact on our everyday life. Moreover, also theoretical aspects and 
ethical issues are dis- cussed. We hope these articles show some future research directions 
for fellow HRI researchers and stimulate ideas for future European projects on natural 
interaction with social robots.  
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General Republics’ Opinions on Robot Ethics:
Comparison between Japan, the USA, Germany,

and France
Tatsuya Nomura 1

Abstract. Ethical issues on robots need to be investigated
based on international comparison because general publics’
conceptualizations of and feelings toward robots di↵er due
to di↵erent situations with respect to mass media and his-
torical influences of technologies. As a preliminary stage of
this international comparison, a questionnaire survey based
on openended questions was conducted in Japan, the USA,
Germany and France (N = 100 from each countries). As a
result, it was found that (1) people in Japan tended to re-
act to ethical issues of robotics more seriously than those in
the other countries, although those in Germany tended not
to connect robotics to ethics, (2) people in France tended to
specify unemployment as an ethical issue of robotics in com-
parison with the other countries, (3) people in Japan tended
to argue the restriction of using and developing robots as a
solution for the ethical problems, although those in France
had the opposite trend.

1 Introduction

The recent development of robotics has begun to introduce
robots into our daily lives in our homes, schools, and hospi-
tals. In this situation, some philosophers and scientists have
been discussing robot ethics [8, 15, 12, 4, 2]. Asaro [1] argued
that robot ethics should discuss the following three things: the
ethical systems to be built into robots, the ethics of people
who design and use robots, and ethical relationships between
humans and robots. Lin [6] proposed the following three broad
(and interrelated) areas of ethical and social concerns about
robotics:

Safety and errors: including mistakes of recognition by
battle robots and security against hacking.

Law and ethics: including codes of ethics to be programed
into robots, companionships between humans and robots,
responsibility of robot behaviors.

Social impact: including economical and psychological
change of the society.

Recently, several researchers have been investigating solu-
tions for these ethical problems. However, the opinions of the
general public of di↵erent countries have not su�ciently been
investigated from the perspective of robot ethics. Some ex-
isting studies found the general public’s preferences of robot

1 Department of Media Informatics, Ryukoku University, Japan,
email: nomura@rins.ryukoku.ac.jp

types in the context of domestic use [14], expectation of task
types in domestic household robots [11], attitudes regarding
robots’ suitability for a variety of jobs [17], safety perception
of humanoid robots [5], and fear and anxiety [9]. However,
these survey studies did not focus on the ethical issues of
robots.

Moreover, the ethical issues of robots need to be inves-
tigated based on international comparison because general
publics’ conceptualizations of and feelings toward robots dif-
fer due to di↵erent situations with respect to mass media and
historical influences of technologies. In fact, recent studies
[16, 19, 13, 18] show di↵erences of opinions of robots between
countries, including attitudes toward robots [3, 20], images of
robots [10], and implicit attitudes [7]. In addition, interpre-
tations of the word “ethics” di↵er between countries because
of di↵erent social norms. Thus, we should compare the opin-
ions of the general publics of several countries when they face
the words “robots” and “ethics” at the same time. This com-
parison will contribute to preparation of discussion on the
international consensus of robotics applications.

As a preliminary stage of the international comparison on
robot ethics issues, a questionnaire survey based on open–
ended questions was conducted in Japan, the USA, and Eu-
rope. To take into account the historical influences of wars
into the ethical perspectives of military robotics, the survey
in Europe was conducted in Germany and France, which were
a defeated country and a victorious country in World War II,
respectively. This paper reports the results of the survey and
then discusses the implications.

2 Method

2.1 Participants and Data Collection
Procedure

The survey was conducted from January to February, 2013.
Respondents were recruited by a survey company (Rakuten
Research). When the survey was conducted, the numbers of
possible respondents registered to the company was about
2,300,000 in Japan, 2,780,000 in the USA, 310,000 in Ger-
many, and 450,000 in France. Among the people randomly
selected from these large pools of samples based on gender
and age, a total of 100 people of ages ranging from 20’s to
60’s participated in the survey in each of the four countries.
Table 1 shows the sample numbers based on country, gender,
and age categories.
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The questionnaire consisting of open–ended items was con-
ducted via Internet homepages in all the countries.

Table 1. Sample Numbers Based on Countries, Gender, and
Age Categories

20’s 30’s 40’s 50–60’s Total
Japan Male 13 12 13 12 50

Female 12 13 12 13 50
Total 25 25 25 25 100

USA Male 11 13 12 14 50
Female 11 14 18 7 50
Total 22 27 30 21 100

Germany Male 12 11 16 11 50
Female 10 12 15 13 50
Total 22 23 31 24 100

France Male 10 15 12 13 50
Female 20 8 10 12 50
Total 30 23 22 25 100

Total 99 98 108 95 400

2.2 Measures

As mentioned in the introduction section, the survey aimed at
investigating interpretations of the general publics when they
face the words robots and ethics at the same time. To measure
and compare their primitive conceptualization between the
countries, we did not instruct the definitions of “robots” or
“ethics”.

The questionnaire solicited information about (1) age, (2)
gender, (3) occupation (subject of study if respondents were
students), and (4) three questions about ethics and robotics.
The questionnaire items about ethics and robotics were open–
ended, and designed to elicit a wide variety of responses:

Q1: What would you image when hearing “robots” and
“ethics” at the same time?

Q2: What sort of ethical problems would happen when
robots widespread in society?

Q3: How should we solve the problems mentioned in item 2?

The questionnaire was conducted in Japanese, English, Ger-
man, and French languages in Japan, the USA, Germany, and
France, respectively. The response sentences in Germany and
France were translated into English.

3 Results

3.1 Coding of Open–Ended Responses

For quantitative analyses, the open–ended responses were
manually classified into categories based on the contents of
the responses. This classification coding was determined by
two coders. The first coder dealt with both Japanese and En-
glish sentences. The second coder consisted of two people,
one for the Japanese sentences and another for the English
sentences.

First, coding rules were created for each item. Then, two
coders independently conducted the coding of 40% of the re-
sponses (N = 40 from all the responses of each country), and
calculated the –coe�cients showing the degrees of agreement
between the two coded results in order to validate the relia-
bility of the coding rules. The coe�cients showed su�cient

reliability of the coding rules. Table 2 shows coding rule num-
bers, examples of sentences in the coding, and –coe�cients.
Furthermore, the two coders interactively discussed the con-
tents of the responses and coding results until they reached a
consensus about each coding.

3.2 Q1: Images When Hearing “Robots”
and “Ethics” at the Same Time

In Q1, each participant’s response was classified into one of
the three categories shown in Table 2. Responses assigned L0
showed no concrete image. In the German and French sam-
ples, several wrote sentences meaning that the words “robots”
and “ethics” clashed with each other. Responses assigned L1
stated images from science fiction contents. Responses as-
signed L2 included realistic concerns of robotics in society and
ambiguous apprehension toward the development of robots.

Table 3 shows the distributions of answer categories based
on the countries and the results of a �

2-test and a residual
analysis with ↵ = .05. Approximately 60% of the respondents
mentioned some apprehension toward robotics. The �

2–test
showed di↵erences between the countries in the category dis-
tribution. The residual analysis revealed that in the Japan
sample, the frequency of L0 was lower than average and that
of L1 was higher than average at statistically significant levels.
Moreover, in the German samples, the frequency of L0 was
higher than average and that of L2 was lower than average.
Furthermore, in the French samples, the frequency of L1 was
lower than average and that of L2 was higher than average at
statistically significant levels.

To visualize the relationships between countries and images
of robots and ethics, a correspondence analysis was performed
for the cross-table shown in Table 3. The correspondence anal-
ysis allows us to visualize the relationship between categories
appearing in a cross–table in two-dimensional space. In this
visualization, categories similar to each other are placed at
proximate positions. Our analysis using this method aims
to clarify the relationship between the countries and respon-
dents’ images when hearing “robots” and “ethics” at the same
time. We should note that the dimensional axes extracted
from the data in the cross–table are specific to the table data
and are used to visualize relative distances between categories;
that is, they do not correspond to any absolute measure, and
so it is di�cult to assign realistic meanings to these axes.

Figure 1 shows the results of the analysis. The USA is po-
sitioned at the middle point between the three answer cate-
gories, and Germany is located at L0. Japan is positioned at
the middle point between L1 and L2, and France is near L2.
These results can be summarized as follows:

• Compared with the other countries, less German respon-
dents specified images in which robots and ethics appeared
at the same time.

• More French respondents specified apprehension toward
robotics than did the respondents in the other countries.

• More Japanese respondents specified images from virtual
contents in comparison with the respondents in the other
countries.
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Table 2. Coding Rules of Open–Ended Responses and Reliability

Item Rule Label 

Q1: R1: L0: Responses that did not image any concrete problems .747
(e.g., “nothing”, “don’t think ...”)

L1: Responses that mentioned virtual contents including movies, animations, and comics
(e.g., “Robocop”, “Blade Runner”)

L2: Ones except for the above L0 and L1
(e.g., “What are the ethical rules to apply when using robots?”

Q2: R21: L1: Responses that mentioned unemployment problems .922
(e.g., “Job losses”, “Replacing people with robots so unemployment”)

L0: Others
R22: L1: Responses that mentioned crimes or wars .717

(e.g., “People use them to spy”, “With battle robots, that will make killing easier and easier”)
L0: Others

R23: L1: Responses that mentioned some problems except unemployment, crimes and wars .711
(e.g., “Accidents by robots”, “There will be no di↵erence between humans/robots”)

L0: Others
Q3: R3: L0: Responses that did not mention any concrete problems in Q2 .647

L1: Responses that mentioned restriction of robots’ functions, methods of using robots, and
areas of robot applications, and legal preparation for the restriction
(e.g., “Only use robots in certain situations”, “Don’t give robots the ability of “think””)

L2: Ones except for the above L0 and L1
(e.g., “I have no idea”, “Improvement of human morals”, “Keep our manual skills”)
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-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6

Figure 1. Result of Correspondence Analysis for Table 3

Table 3. Distribution of Answer Categories for Q1 and Results
of �2–Test and Residual Analysis (↵ = .05)

Answer Category of R1
L0 L1 L2 Total

Japan 18# 21" 61 100
USA 30 15 55 100
Germany 41" 10 49# 100
France 21 5# 74" 100
Total 110 51 239 400

(27.5%) (12.75%) (59.75%) (100%)

�

2(6) = 28.448, p < .001
": higher than the expected frequency
#: lower than the expected frequency
L0: Responses that did not image any concrete problems
L1: Responses that mentioned virtual contents

including movies, animations, and comics
L2: Ones except for the above L0 and L1

3.3 Q2: Ethical Problems in Society

In Q2, one response included several di↵erent problems. Thus,
each participant’s response was assigned multiple labels based
on the following rules: (R21) whether it mentioned unemploy-
ment problems due to robots, (R22) whether it mentioned
the use of robots in crimes and wars, and (R23) whether it
mentioned some problems besides unemployment, crimes, and
wars. Responses assigned as L1 in R23 included apprehension
toward the physical and economical risks of robots, their in-
fluences on humans’ psychological states, and ambiguous dif-
ferences between robots and humans.

Table 4 shows the distributions of answer categories based
on the countries and the results of the �2–test and the residual
analysis with ↵ = .05. The results can be summarized as
follows:

• In the Japan sample, fewer respondents mentioned unem-
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Table 4. Distribution of Answer Categories for Q2 and Results of �2–Test adn Residual Analysis (↵ = .05)

R21: Unemployment R22: Crimes and Wars R23: Other Problems
Not mentioned Mentioned Not mentioned Mentioned Not mentioned Mentioned

Japan 87" 13# 85# 15" 34# 66"

USA 77 23 84# 16" 65" 35#

Germany 82 18 97" 3# 47 53
France 64# 36" 97" 3# 60" 40#

Total 310 90 363 37 206 194
(77.5%) (22.5%) (90.75%) (9.25%) (51.5%) (48.5%)

�

2(3) = 16.803, p < .01 �

2(3) = 18.673, p < .001 �

2(3) = 23.261, p < .001
": higher than the expected frequency, #: lower than the expected frequency

ployment problems at a statistically significant level in com-
parison with the other countries.

– More respondents in the French sample mentioned un-
employment.

• The respondents mentioning crimes and wars as ethical
problems of robotics in society were in the minority (less
than 10%).

– Nevertheless, more respondents mentioned these prob-
lems in the Japan and USA samples than in the German
and French samples at statistically significant levels.

• More respondents mentioned problems besides unemploy-
ment, crimes, and wars in the Japan samples than in the
samples of the other countries.

– On the other hand, fewer respondents in the USA and
French samples mentioned these problems than in the
Japan and German samples.

3.4 Q3: Solutions for Ethical Problems of
Robotics

In Q3, each participant’s response was classified into one of
the three categories shown in Table 2. Responses assigned
label L0 corresponded to the ones that did not specify any-
thing on the ethical problems of robotics in society in Q2 (that
is, participants assigned L0 for R21, R22, and R23). In Q3,
responses assigned label L1 mentioned restriction of robots
functions, methods of using robots, and areas of robot applica-
tions. Some responses classified into this category mentioned
the need of legal preparation for the restriction. Responses
assigned label L2 included the ones that did not provide any
concrete solution or the ones that did show some solutions
except restriction of robots.

Table 5 shows the distributions of the answer categories
based on the countries and the results of the �

2–test and
the residual analysis with ↵ = .05. The �

2–test showed dif-
ferences between the countries in the category distribution.
The residual analysis revealed that in the Japan sample, the
frequency of L0 was lower than average and that of L1 was
higher than average at statistically significant levels. About
half of them mentioned restriction of robotics usage as a so-
lution to their ethical problems. Moreover, it was found that
in the German samples, the frequency of L0 was higher than
average. Furthermore, in the French samples, the frequency
of L1 was lower than average and that of L2 was higher than
average at statistically significant levels.

In the same way as Q1, the correspondence analysis for Q3
in Table 5 was conducted to visualize relationships between
countries and solution categories for the ethical problems of
robots. Figure 2 shows the result. Japan was positioned far
from L0 and L2, near L1. France was positioned far from L0
and L1, near L2. The USA and Germany were positioned at
the middle of L0 and L1, far from L2. These results can be
summarized by the following comparisons between the coun-
tries:

• More respondents in Japan specified ethical problems of
robots in society and mentioned restriction of robots in
terms of functions and methods of usage as a solution to
the problems.

• Fewer French respondents mentioned restriction of robots
as the problem solution.

• In the USA and particularly in Germany, many respondents
did not specify any problem or solution for the ethical issues
of robots in society.

Table 5. Distribution of Answer Categories for Q3 and Results
of �2–Test adn Residual Analysis (↵ = .05)

Answer Category of R3
L0 L1 L2 Total

Japan 6# 52" 42 100
USA 26 43 31 100
Germany 27" 43 30 100
France 21 30# 49" 100
Total 80 168 152 400

(20%) (42%) (38%) (100%)

�

2(6) = 26.536, p < .001
": higher than the expected frequency
#: lower than the expected frequency
L0: Responses that did not mention any concrete problems

in Q2
L1: Responses that mentioned restriction of robots’

functions, methods of using robots, and areas of robot
applications, and legal preparation for the restriction

L2: Ones except for the above L0 and L1

4 Discussion

4.1 Findings

The survey results suggest some characteristics of Japan, the
USA, Germany, and France when the general public of each
country faces the issues regarding robot ethics.
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Figure 2. Result of Correspondence Analysis for Table 5

People in Japan tended to react to ethical issues of robotics
more seriously than those in the USA, Germany, and France,
while they were more influenced by virtual contents such as
science fiction movies. In contrast, people in Germany were
least likely to connect robotics to ethics. People in France, de-
spite also being in the EU, had a di↵erent trend from those in
Germany in the sense that they expressed more apprehension
toward robotics.

Unemployment as an ethical issue of robotics showed dif-
ferent reactions between these four countries. In particular,
Japan and France had opposite trends with respect to this
problem. Relationships of robotics with crimes and wars also
showed di↵erent reactions between the countries. Although a
minority of people mentioned this issue as overall, more peo-
ple tended to specify the issue in Japan and in the USA than
in the two European countries.

Consideration of the solutions for the ethical problems of
robotics showed opposite trends in Japan and France. Unlike
the people in France, the people in Japan tended to argue for
restricting the use and development of robots as a solution to
ethical problems.

4.2 Implications

The above findings in the survey imply some problems when
discussing issues regarding robot ethics at the international
level.

First, di↵erences are possible between countries on their
general publics awareness of issues regarding robot ethics.
Some people may not assume the existence of ethical prob-
lems related to robotics. It is implied that the rate of par-
ticipants in the discussion about robot ethics in society may
change depending on the country. Second, it is possible that
individual problems have impact on the general public in dif-
ferent ways in di↵erent countries. People in one country may
participate in discussing an ethical issue and those in another

country may not. Such di↵erences in attitudinal biases toward
the discussion of robot ethics between countries would make
it hard to share problems and solutions internationally. If an
ethical problem regarding robots is serious in a country and
potentially poses a risk in another country, leaders of the dis-
cussion should take into account the di↵erences of awareness
of the problem between the countries to establish common
assumptions and ways of discussion.

4.3 Limitations

The survey adopted three simple questions and open–ended
responses. Thus, the di↵erences of opinions between coun-
tries are superficial, and deep factors causing the di↵erences
were not explored. It is estimated that these factors include
religious beliefs and historical backgrounds in countries, par-
ticularly with regard to unemployment and wars. Moreover,
the concept of robots may di↵er between countries [10].

The total number of samples in the survey was not enough
to generalize the findings. To clarify more strictly di↵erences
in the general publics opinions regarding robot ethics be-
tween countries and investigate causes of the di↵erences, we
should conduct future surveys using detailed questionnaire
items having su�cient validity with a wider area of samples.
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Differences on Social Acceptance of Humanoid Robots 
between Japan and the UK

Tatsuya Nomura1, Dag Sverre Syrdal2, and Kerstin Dautenhahn2 

Abstract.  To validate a questionnaire for measuring people’s 
acceptance of humanoid robots in cross-cultural research (the 
Frankenstein Syndrome Questionnaire: FSQ), an online survey 
was conducted in both the UK and Japan including items on 
perceptions of the relation to the family and commitment to 
religions, and negative attitudes toward robots (the NARS). The 
results suggested that 1) the correlations between the FSQ 
subscale scores and NARS were sufficient, 2) the UK people felt 
more negative toward humanoid robots than did the Japanese 
people, 3) young UK people had more expectation for humanoid 
robots, 4) relationships between social acceptance of humanoid 
robots and negative attitudes toward robots in general were 
different between the nations and generations, and 5) there were 
no correlations between the FSQ subscale scores, and perception 
of the relation to the family and commitment to religions.12 

1 INTRODUCTION 
In recent years, several studies have revealed the influences of 

human cultures into feelings and behaviors toward robots [1, 2, 3, 
4, 5, 6], and some of them focused on social acceptance of robots. 
Evers, et al. [1] revealed differences between the US and 
Chinese people on their attitudes toward and the extent to which 
they accepted choices made by a robot. Li, et al. [2] found an 
interaction effect between human cultures  (Chinese, Korean and 
German) and robots’ tasks (teaching, guide, entertainment and 
security guard) on their engagement with the robots. Yueh and 
Lin [5] showed differences on preferences of home service 
robots between Taiwanese and Japanese people. 

The research group also have been developing a questionnaire 
to measure and compare humans’ acceptance of humanoid 
robots between nations, and explore factors influencing social 
acceptance of humanoids including cultural ones [7, 8]. The 
questionnaire, called “Frankenstein Syndrome Questionnaire” 
(FSQ), aims at clarification of differences on social acceptance 
of humanoid robots between the Westerners and Japanese based 
on Kaplan’s idea [9] reflecting the concept of “Frankenstein 
Syndrome” originated from genetic engineering [10]. The 
surveys using this questionnaire suggested age differences on 
acceptance of humanoid robots in Japan [11], and some 
differences between the UK and Japan [8].  

However, the previous studies had some problems on 
sampling in the sense that data from an online survey and that 
based on a normal paper-and-pencil method were mixed in one 
nation sample. As a result, the factor structure extracted from the 
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sample was not stable [12]. Moreover, the previous survey did 
not take into account verification of criterion-related validity of 
the questionnaire. 

To overcome the above problems, an online survey was 
conducted in both the UK and Japan under more strict control of 
sampling. The survey included another psychological scale of 
which validity had already been supported, the Negative 
Attitudes toward Robots Scale [13]. The scale was used to verify 
correlations between social acceptance of humanoid robots and 
attitudes toward robots in general, to investigate the criterion-
related validity of the Frankenstein Syndrome Questionnaire.  

As well as cultures, the survey aimed at exploring other 
factors related to social acceptance of humanoid robots. As 
factors to be explored, the survey firstly focused on age. In the 
survey conducted in Japan about ten years ago, our research 
group found that persons in their 40s had positive opinions of 
robots in comparison with other generations [14]. Thus, the 
survey aimed at comparing one group of persons in their 50s 
with another in their 20s to clarify age differences. Moreover, a 
survey conducted in Japan and Sweden adopted perceptions of 
the relation to the family and commitment to religions as indices 
reflecting differences between these different nations [15]. Thus, 
the survey also included these two factors “the relation to the 
family” and “commitment to religions”. 

The paper reports the results of the survey, and discusses the 
implications from the perspective of development of humanoid 
robots. 

2 Method 
2.1 Date and Participants: 

The survey was conducted from January to February 2014. 
100 Japanese and 100 UK respondents were recruited by a 
survey company at which about one million and six hundred 
thousand Japanese and one million and one hundred thousand 
UK persons have registered. Respondents in each nation were 
limited to people who were born and had been living only in the 
corresponding nation. The respondents consisted of fifty persons 
in their 20s (male: 25, female: 25) and fifty persons in their 50s 
(male: 25, female: 25) in each of the nations. 

The homepage of the online survey had been open for these 
participants during the above period. The questionnaire of the 
online survey was conducted with the native language for the 
respondents in each of the nations. 

 
2.2 Survey Design: 

The questionnaire did not give the explicit definition of robots, 
or include any photo and image of robots, except for the 
instruction on humanoid robots just before conducting the 
Frankenstein Syndrome Questionnaire. The scale on attitudes 

AISB Convention 2015: Symposium on New Frontiers in Human-Robot Interaction 7



toward robots in general was firstly conducted, and then the 
Frankenstein Syndrome Questionnaire was conducted since the 
reverse order had a possibility that envisions of humanoids 
evoked by the conduction of the FSQ affected the measurement 
of attitudes toward robots in general. The concrete items and 
scales in the survey were as follows: 

 
Perception of the Relation to the Family and Commitment to 
Religions: 

The following two items, which were used in the comparison 
survey between Japan and the Northern Europe by Otsuka et al. 
[15], were presented on the face sheet measure participants’ 
degrees of perception of the relation to the family and 
commitment to religions: 

 Do you think you relate to your family members? 
 (five-graded answer from “1. I completely agree” to “5. 
I completely disagree”) 

 Does such notion as “I have nothing to do with religion 
or faith” apply to you? 
(five-graded answer from “1. It strongly applies to me” 
to “5. It does not apply to me at all.”) 

 
Negative Attitudes toward Robots Scale (NARS): 

To measure participants’ attitudes toward robots in general, 
the NARS [13] was adopted in the survey. The scale consists of 
14 items classified into three subscales. The first subscale (S1, 
six items) measures negative attitude toward interaction with 
robots (e.g., “I would feel paranoid talking with a robot.”). The 
second subscale (S2, 5 items) measures negative attitude toward 
the social influence of robots (e.g., “Something bad might 
happen if robots developed into living beings.”). The third 
subscale (S3, 3 items) measures negative attitude toward 
emotional interaction with robots (e.g., “I feel comforted being 
with robots that have emotions.”).  

Each item is scored on a five-point scale: 1) strongly disagree; 
2) disagree; 3) undecided; 4) agree; 5) strongly agree, and an 
individual’s score on each subscale is calculated by adding the 
scores of all items included in the subscale, with some items 
reverse coded. 

 
Frankenstein Syndrome Questionnaire (FSQ): 

The questionnaire was developed to measure acceptance of 
humanoid robots including expectations and anxieties toward 
this technology in the general public [8,11]. It consists of 30 
items shown in Table 1. Each questionnaire item was assigned 
with a seven-choice answer (1: “Strongly disagree”, 2: 
“Disagree”, 3: “Disagree a little”, 4: “Not decidable”, 5: “Agree 
a little”, 6: “Agree”, 7: “Strongly agree”.). 

 
Just before conducting the FSQ, the definition of “humanoids 

robots” was instructed only with texts as follows: 
�Humanoid robots are robots that roughly look like humans, 

that have two arms, legs, a head, etc. These robots may be very 
human-like in appearance (including details such as hair, 
artificial skin etc.), but can also have machine-like features (such 
as wheels, a metal skin etc).” 

3 RESULTS 
3.1 Subscales of the FSQ and Reliability: 

Although previous studies had explored the factor structures 
in the FSQ [8,13], they were sufficiently not stable to be 
replicated across studies [12]. To extract the subscales of the 
FSQ again, a factor analysis with maximum likelihood method 
and Promax rotation was conducted for the 30 items. Although 
the analysis found five factors having eigen values more than 1, 
the scree plot showed that the difference on the eigen values 
between the fourth and fifth factors was small. Thus, the factor 
analysis was conducted based on four-factor structure. The 
cumulative contribution of these four factors was 52.8%. 

After removing items having factor loadings more than .3 on 
more than one item, item analysis using Cronbach’s α-
coefficients and I-T correlations was performed for each factor 
in turn to select items in the corresponding subscale. Table 1 
shows the results of these analyses. 

The subscale corresponding to the first factor consisted of 9 
items representing negative feelings toward social impacts of 
humanoid robots such as “Humanoid robots may make us even 
lazier.” Thus, the subscale was interpreted as “negative feelings 
toward humanoid robots.” The subscale corresponding to the 
second factor consisted of 8 items representing positive 
expectation of humanoid robots in the society such as 
“Humanoid robots can be very useful for teaching young kids.” 
Thus, the subscale was interpreted as “expectation for humanoid 
robots”. The subscale corresponding to the third factor consisted 
of 3 items representing negative feelings toward humanoid 
robots at religious and philosophical levels such as “The 
development of humanoid robots is blasphemous.” Thus, the 
subscale was interpreted as “root anxiety toward humanoid 
robots”. The fourth factor was removed in the analysis since it 
consisted of only two items. 

Cronbach’s reliability coefficients α, showing the internal 
consistencies of the subscales, were .899 for “negative feelings 
toward humanoid robots,” .861 for “expectation for humanoid 
robots,” and .859 for “root anxiety toward humanoid robots.” 
These values showed sufficient internal consistencies for all 
three subscales. The score of each subscale was calculated as the  
sum of the scores of all items included in the subscale (“negative 
feelings toward humanoid robots”: max 63, min 9, “expectation 
for humanoid robots”: max 56, min 8, and “root anxiety toward 
humanoid robots”: max 21, min 3). 

 
3.2 Comparison between Nations and Generations: 
FSQ Subscale Scores: 

Three-way ANOVAs with gender by nation (Japan vs. UK) 
by generation (20’s vs. 50’s) were conducted for the subscale 
scores of the FSQ. Table 2 shows the results. For “negative 
feelings toward humanoid robots,” the main effects of gender 
and nations were at statistically significant levels although the 
effect size on gender was small. For “expectation for humanoid 
robots,” only the first order interaction effect between nations 
and generations was at a statistically significant level.  

Figure 1 shows the means and standard deviations of the 
subscale scores of “negative feelings toward humanoid robots” 
and “expectation for humanoid robots”. Bonfferoni Post Hoc 
tests revealed that the UK respondents in their 20s had higher 
expectation for humanoid robots than the UK respondents in 

AISB Convention 2015: Symposium on New Frontiers in Human-Robot Interaction 8



  Factor 
Item No. Item Sentences I II III IV 

30 Widespread use of humanoid robots would take away jobs from people. .929 .076 -.098 -.212 
4 Humanoid robots may make us even lazier. .766 .037 -.057 -.077 

12 If humanoid robots cause accidents or trouble, persons and organizations related to 
development of them should give sufficient compensation to the victims. 

.705 .113 -.285 .132 

8 I am afraid that humanoid robots will encourage less interaction between humans. .697 .026 .167 -.015 
20 I feel that if we become over-dependent on humanoid robots,  something bad might happen. .681 -.071 -.011 .245 
17 I would hate the idea of robots or artificial intelligences making judgments about things. .655 -.132 .279 -.045 
11 I would feel uneasy if humanoid robots really had emotions or independent thoughts. .548 -.055 -.004 .178 
27 Something bad might happen if humanoid robots developed into human beings. .512 -.048 .191 .193 
23 Humanoid robots should perform dangerous tasks, for example in disaster areas, deep sea, 

and space. 
.493 .346 -.242 .055 

16 I am concerned that humanoid robots would be a bad influence on children. .491 -.171 .245 .148 
24 Many humanoid robots in society will make it less warm. .452 .009 .396 .144 
13 I can trust persons and organizations related to development of humanoid robots. -.147 .777 .256 -.018 
15 Humanoid robots can be very useful for teaching young kids. -.225 .737 .262 .077 
10 I don't know why, but I like the idea of humanoid robots. -.259 .733 .044 .295 
25 I trust persons and organizations related to the development of humanoid robots to disclose 

sufficient information to the public, including negative information. 
-.015 .720 .314 -.210 

19 Humanoid robots can make our lives easier. .204 .672 -.282 .118 
3 Persons and organizations related to development of humanoid robots are well-meaning. .103 .672 -.018 -.054 

18 Humanoid robots are a natural product of our civilization. -.072 .660 .083 -.111 
28 Persons and organizations related to development of humanoid robots will consider the 

needs, thoughts and feelings of their users. 
.303 .547 -.119 .022 

5 Humanoid robots can be very useful for caring the elderly and disabled. .054 .544 -.184 .144 
6 Humanoid robots should perform repetitive and boring routine tasks instead of leaving them 

to people. 
.123 .524 -.053 .200 

29 The development of humanoid robots is blasphemous. -.032 .013 .892 .001 
9 The development of humanoid robots is a blasphemy against nature. -.038 .000 .863 .077 

26 Technologies needed for the development of humanoid robots belong to scientific fields that 
humans should not study. 

-.072 .203 .663 .058 

21 I don't know why, but humanoid robots scare me. .297 -.205 .567 .006 
22 I feel that in the future, society will be dominated by humanoid robots. .314 .331 .403 -.186 
1 I am afraid that humanoid robots will make us forget what it is like to be human. .234 -.097 .379 .323 
7 People interacting with humanoid robots could sometimes lead to problems in relationships 

between people. 
.240 .049 .292 .547 

2 Humanoid robots can create new forms of interactions both between humans and between 
humans and machines. 

.010 .433 -.112 .474 

14 Widespread use of humanoid robots would mean that it would be costly for us to maintain 
them. 

.248 .099 .037 .452 

(Items shown with Italic: reduced based on the criterion of factor loadings more than .3 on more than one item and item analysis) 
 

Table 1. Items of the Frankenstein Syndrome Questionnaire and Results of Factor Analysis 

their 50s (p < .0.13) and the Japan participants in their 20’s (p 
< .0.55). There were neither main effects nor any interactions for 
“root anxiety toward humanoid robots” (mean = 9.9, SD = 4.1). 

 
Correlations with the NARS, Perception of the Relation to the 
Family, and Commitment to Religions: 

The Cronbach’s α-coefficients for the NARS subscales 
were .854, .779, and .842 for S1, S2, and S3, respectively. These 

values showed that these subscales had sufficient internal 
consistency. 

Table 3 shows Pearson’s correlation coefficients between the 
FSQ subscale scores, the NARS subscale scores, and item scores 
of relation to family and religious commitment based on the 
nations and generations. Tests of equality on correlation 
coefficients found statistically significant differences between 
the four respondents groups, suggesting the following trends: 
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  Main Effect First Order Interaction Second 
Order 

Interaction 
  Gender Nation Generation Gender X 

Nation 
Gender X 

Generation 
Nation and 
Generation 

I. Negative Feelings 
toward Humanoid 

Robots 

F 6.121 24.630 .406 .027 .444 2.420 .985 
p .014 < .001 .525 .871 .506 .121 .322 
η2 .027 .108 .002 .000 .002 .011 .004 

II. Expectation for 
Humanoid Robots 

F 2.281 .376 2.013 .185 3.186 4.548 .855 
p .133 .540 .158 .668 .076 .034 .356 
η2 .011 .002 .010 .001 .016 .022 .004 

III. Root Anxiety 
toward Humanoid 

Robots 

F 1.877 .676 2.702 1.606 1.437 .264 .019 
p .172 .412 .102 .207 .232 .608 .891 
η2 .009 .003 .013 .008 .007 .001 .000 

Table 2. Results of ANOVAs for the FSQ Subscale Scores 
 

   
Negative Feelings    Expectation 

 
Figure 1. Means and Standard Deviations of Scores of Negative Feelings toward and Expectation for Humanoid Robots 

 Between “negative feelings toward humanoid robots” and 
“expectation for humanoid robots” (χ2(3) = 19.677, p 
< .001): positive correlation in the Japan respondents in 
their  20s, and negative correlation in the UK respondents 
in their 50s, 

 Between “negative feelings toward humanoid robots” and 
“negative attitude toward social influences of robots” 
(χ2(3) = 11.091, p < .05): moderate levels of correlations in 
the respondents in their 20s, and strong correlations in the 
respondents in their 50s, 

 Between “negative feelings toward humanoid robots” and 
“negative attitude toward emotional interaction with 
robots” (χ2(3) = 14.468, p < .01): moderate levels of 
positive correlations only in the respondents in their 50s, 

 Between “expectation for humanoid robots” and “root 
anxiety toward humanoid robots” (χ2(3) = 12.840, p < .01): 
a moderate level of negative correlation only in the UK 
respondents in their 50s, 

 Between “expectation for humanoid robots” and “negative 
attitude toward social influences of robots” (χ2(3) = 13.715, 
p < .01): moderate levels of negative correlations only in 
the respondents in their 50s, 

 Between “root anxiety toward humanoid robots” and 
“expectation for humanoid robots” (χ2(3) = 11.770, p 
< .01): strong correlation in the Japan respondents in their 
20’s, and moderate levels of correlations in the other 
respondents, 

 Between “root anxiety toward humanoid robots” and 
“negative attitude toward emotional interaction with 
robots” (χ2(3) = 8.279, p < .05): a moderate level of 
positive correlation only in the UK respondents in their 50s. 

 
On the other hand, there were moderate levels of positive 

correlations between “negative feelings toward humanoid 
robots” and “root anxiety toward humanoid robots”, between 
“negative feelings toward humanoid robots” and “negative 
attitude toward interaction with robots”, and between “root 
anxiety toward humanoid robots” and “negative attitude toward 
interaction with robots”. Moreover, there was a moderate level 
of negative correlation between “expectation for humanoid 
robots” and “negative attitude toward social influences of 
robots”.  

There were no correlations between the FSQ subscale scores, 
and perception of the relation to the family and commitment to 
religions, although only the UK participants in 50’s showed 
statistically significant correlations between these scores and 
perception of the relation to the family. 

4. DISCUSSION 
4.1 Findings: 

The survey results suggest sufficient correlations between the 
FSQ subscale scores and NARS. It supports the criterion-related 
validity of the FSQ. Negative attitude toward interaction with 
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  FSQII FSQIII NARSS1 NARSS2 NARSS3 Religion Family 
FSQI Whole -.059 .472** .426** .664** .139 .012 -.081 

 Jp 20s .381** .534** .316* .605** -.117 .001 -.179 
 Jp 50s -.234 .617** .431** .744** .411** .143 .196 
 UK 20s .149 .474** .446** .478** -.049 -.133 -.147 
 UK 50s -.402** .431** .516** .820** .461** .121 .223 

FSQII Whole  -.208** -.076 -.169* -.554** -.095 -.182** 
 Jp 20s  .125 .008 .186 -.383** .047 -.155 
 Jp 50s  -.182 -.159 -.307* -.473** -.022 -.157 
 UK 20s  -.195 -.037 -.064 -.698** -.247 -.007 
 UK 50s  -.544** -.261 -.487** -.584** -.079 -.317* 

FSQIII Whole   .620** .526** .089 .034 .054 
 Jp 20s   .734** .757** -.113 -.113 -.101 
 Jp 50s   .604** .391** .191 .034 .233 
 UK 20s   .588** .345* .020 .124 -.070 
 UK 50s   .562** .593** .420** .138 .308* 

FSQI: Negative Feelings toward Humanoid Robots, FSQII: Expectation for Humanoid Robots,  
FSQIII: Root Anxiety toward Humanoid Robots, 

NARSS1: Negative Attitude toward Interaction with Robots, NARSS2: Negative Attitude toward Social Influences of Robots, 
NARSS3: Negative Attitude toward Emotional Interaction with Robots, 

Religion: Religious  Commitment, Family:Relation to Family 
 

Table 3. Pearson’s Correlation Coefficients between FSQ and NARS Subscale Scores, and Item Scores of Relation to Family and 
Religious Commitment 

robots in general was related to negative feelings and root 
anxiety toward humanoid robots in both the UK and Japan. 

The survey results also suggest some differences on social 
acceptance of humanoid robots between the two countries. The 
UK participants felt more negative towards humanoid robots 
than their Japanese counterparts. In addition, the UK participants 
in their 20s had more positive expectations for humanoid robots 
than any other group.. 

These results suggest some differences dependent on 
generation, on relationships between social acceptance of 
humanoid robots and negative attitudes toward robots in general. 
The correlation between negative attitudes toward emotional 
interaction with robots and negative feelings toward humanoids 
was at a moderate level only in 50s people. The correlation 
between negative attitude toward social influences of robots and 
expectation for humanoids also had the similar trend. The 
correlation between negative attitude toward emotional 
interaction with robots and root anxiety toward humanoids was 
at a moderate level only in UK participants in their 50s. 

 
4.2 Implications: 

The results in the survey imply that people in the UK have 
more negative feelings toward humanoid robots than those in 
Japan. This however, depends on the generation of the 
participants. Likewise, relationships between feelings toward 
humanoid robots and attitudes toward robots in general also 
depend on the generation of respondent. This suggests that 
changing attitudes toward some particular types of robots may 
not lead to acceptance of other types of robots, nor robots in 
general.  

In order to further social acceptance of humanoid robots 
across cultures, designers of robots need to consider individual, 
generational, and cultural factors in their potential users.  
 

4.3 Limitations and Future Works: 
The survey did not take into account concrete attitudes toward 

the relation to family and religious commitment. It may lead to 
non-correlation between these factors and social acceptance of 
robots. On the other hand, previous research has found 
correlations between these factors and negative attitudes toward 
robots [16]. It suggests that religious and family factors may 
indirectly influence social acceptance of humanoid robots. 
Future surveys need to include this indirect influence in the 
survey design. 

Moreover, the survey did not adopt any image stimulus of 
robots in order to avoid influences of images of specific types of 
robots. Future surveys should include more sophisticated items 
while exploring dominant images of robots in the corresponding 
nations. 

In addition, the survey did not consider possible differences 
between human attitudes toward humanoid robots measured in 
questionnaires and live interactions with them, such as dealt with 
by Wang, et al. [17]. We need to conduct experiments to 
investigate how psychological constructs measured by the FSQ 
affect human behaviors toward humanoid robots in real 
situations. 
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Abstract. Emotions, and emotional expression, have a broad 
influence on the interactions we have with others and are thus a 
key factor to consider in developing social robots. As part of a 
collaborative EU project, this study examined the impact of life-
like affective facial expressions, in the humanoid robot Zeno, on 
children’s behavior and attitudes towards the robot. Results 
indicate that robot expressions have mixed effects depending on 
the gender of the participant. Male participants showed a positive 
affective response, and indicated greater liking towards the robot, 
when it made positive and negative affective facial expressions 
during an interactive game, when compared to the same robot 
with a neutral expression. Female participants showed no marked 
difference across two conditions.  This is the first study to 
demonstrate an effect of life-like emotional expression on 
children’s behavior in the field. We discuss the broader 
implications of these findings in terms of gender differences in 
HRI, noting the importance of the gender appearance of the robot 
(in this case, male) and in relation to the overall strategy of the 
project to advance the understanding of how interactions with 
expressive robots could lead to task-appropriate symbiotic 
relationships.  

1 INTRODUCTION 
A key challenge in human robot interaction (HRI) is the 
development of robots that can successfully engage with people. 
Effective social engagement requires robots to present engaging 
personalities [1] and to dynamically respond to and shape their 
interactions to meet human user needs [2]. 

The current project seeks to develop a biologically grounded 
[3] robotic system capable of meeting these requirements in the 
form of a socially-engaging Synthetic Tutoring Assistant (STA). 
In developing the STA, we aim to further the understanding of 
human-robot symbiotic interaction where symbiosis is defined as 
the capacity of the robot, and the person, to mutually influence 
each other in a positive way. Symbiosis, in a social context, 
requires that the robot can interpret, and be responsive to, the 
behavior and state of the person, and adapt its own actions 
appropriately. By applying methods from social psychology we 
aim to uncover key factors in robot personality, behavior, and 
appearance that can promote symbiosis. We hope that this work 
will also contribute to a broader theory of human-robot bonding 
that we are developing drawing on comparisons with our 

psychological understanding of human-human, human-animal and 
human-object bonds [4].  

A key factor in social interaction is the experience of emotions 
[5]. Emotions provide important information and context to social 
events and dynamically influence how interactions unfold over 
time [6]. Emotions can promote cooperative and collaborative 
behavior and can exist as shared experiences, bringing individuals 
closer together [7]. Communication of emotion can be thought of 
as a request for others to acknowledge and respond to our 
concerns and to shape their behaviors to align with our motives 
[8]. Thus emotional expression can be important to dyadic 
interactions, such as that between a teacher and student, where 
there is a need to align goals. 

Research with a range of robot platforms has demonstrated the 
willingness of humans to interpret robot expressive behavior – 
gesture [9], posture [10], and facial expression [1] – as affective 
communication. The extent to which robot expression will 
promote symbiosis will depend, however, on how well the use of 
expression is tuned to the ongoing interaction. Inappropriate use 
of affective expression could disrupt communication and be 
detrimental to symbiosis. Good timing and sending clear signals is 
obviously important. 

Facial expression is a fundamental component of human 
emotional communication [11]. Emotion expressed through the 
face is also considered to be especially important as a means for 
communicating evaluations and appraisals [12]. Given the 
importance of facial expressions to the communication of human 
affect, they should also have significant potential as a 
communication means for robots [13]. This intuition has lead to 
the development of many robot platforms with the capacity to 
produce human-like facial expression, ranging from the more 
iconic/cartoon-like [e.g., 14, 15] to the more natural/realistic [e.g., 
16, 17, 18].  

Given the need to communicate clearly it has been argued that, 
for facial expression, iconic/cartoon-like expressive robots may be 
more appropriate for some HRI applications, for instance, where 
the goal is to communicate/engage with children [16, 15]. 
Nevertheless, as the technology for constructing robot faces has 
become more sophisticated, robots are emerging with richly-
expressive life-like faces [16, 17, 18], with potential for use in a 
range of real-world applications including use with children. The 
current study arose out of a desire to evaluate one side of this 
symbiotic interaction – exploring the value of life-like facial 
expression in synthetic tutoring assistants for children. Whilst it is 
clear that people can distinguish robot expressions almost as well 
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as human ones [16, 18], there is little direct evidence to show a 
positive benefit of life-like expression on social interaction or 
bonding. Although children playing with an expressive robot are 
more expressive than those playing alone [19], this finding could 
be a result of the robot’s social presence [20] and not simply due 
to its use of expression. A useful step toward improving our 
understanding would be the controlled use of emotional 
expression in a setting in which other factors, such as the presence 
of the robot and its physical and behavioral design, are strictly 
controlled. 

In the current study the primary manipulation was to turn on or 
off the presence of appropriate positive and negative facial 
expressions during a game-playing interaction, with other features 
such as the nature and duration of the game, and the robot’s 
bodily and verbal expression held constant. As our platform we 
employed a Hanson Robokind Zeno R50 [21] which has a 
realistic silicon rubber (“flubber”) face, that can be reconfigured, 
by multiple concealed motors, to display a range of reasonably 
life-like facial expressions in real-time (Figure 1). 
 

 
Figure 1. The Hanson Robokind Zeno R50 Robot with example 

facial expressions 
By recording participants (with parental consent), and through 

questionnaires, we obtained measures of proximity, human 
emotional facial expression, and reported affect. We hypothesized 
that children would respond to the presence of facial expression 
by (a) reducing their distance from the robot, b) showing greater 
positive facial expression themselves during the interaction, and 
c) reporting greater enjoyment of the interaction compared to 
peers who interacted with the same robot but in the absence of 
facial expression. Previous studies have shown some influence of 
demographics such as age and gender on HRI [22, 23, 24]. In our 
study, a gender difference could also arise due to the visual 
appearance of the Zeno robot as similar to a male child, which 
could prompt different responses in male and female children. We 
therefore considered these other factors as potential moderators of 
children’s responses to the presence or absence of robot emotional 
expression. 

2 METHOD 

2.1 Design 
Due to the potential of repeated robot exposure prejudicing 
participants’ affective responses, we employed a between-subjects 
design, such that participants were allocated to either the 
experimental condition – interaction with a facially expressive 

robot, or to the control condition of a non-facially-expressive 
robot. Allocation to condition was not random, but determined by 
logistics due to the real-world setting of the research. The study 
took place as part of a two-day special exhibit demonstrating 
modern robotics at a museum in the UK. Robot expressiveness 
was manipulated between the two consecutive days, such that 
visitors who participated in the study on the first day were 
allocated to the expressive condition, and visitors who 
participated in the study on the second day were allocated to the 
non-expressive condition.  

2.2 Participants 
Children visiting the exhibit were invited to participate in the 
study by playing a game with Zeno. Sixty children took part in the 
study in total (37 male and 23 female; M age = 7.57, SD = 2.80). 
Data were trimmed by age to ensure sufficient cognitive capacity 
(those aged < 5 were excluded4) and interest in the game (those 
aged >11 were excluded) leaving 46 children (28 male and 18 
Female; M age = 8.04, SD = 1.93). 

2.3 Measures 
Our primary dependent variables were interpersonal responses to 
Zeno measured through two objective measures: affective 
expressions and interpersonal distance. Additional measures 
comprised of a self-report questionnaire, completed by 
participating children, with help from their parent/carer if 
required, and an observer’s questionnaire, completed by 
parents/carers. 

2.3.1 Objective Measures 
Interpersonal distance between the child and the robot over the 
duration of the game was recorded, using a Microsoft Kinect 
sensor, and mean interpersonal distance during the game 
calculated. Participant expressions were recorded throughout the 
game and automatically coded for discrete facial expressions: 
Neutral, Happy, Sad, Angry, Surprised, Scared, and Disgusted, 
using Noldus FaceReader version 5. Mean intensity of the seven 
facial expressions across the duration of the game were calculated. 
Participants’ game performances (final scores) were also recorded. 
FaceReader offers automated coding of expressions at an accuracy 
comparable to trained raters of expression [25]. 

2.3.2 Questionnaires 
Participants completed a brief questionnaire on their enjoyment of 
the game and their beliefs about the extent to which they thought 
that the robot liked them.  Enjoyment of playing Simon Says with 
Zeno was recorded using a single-item, four-point measure, 
ranging from ‘I definitely did not enjoy it’ to ‘I really enjoyed it’. 
Participants’ perceptions of the extent to which Zeno liked them 
single-item on a thermometer scale, ranging from ‘I do not think 
he liked me very much’ to ‘I think he liked me a lot’. They were 
also asked if they would like to play the game again. Parents and 

                                                                 
4 Additional reasons for excluding children below the age of 5 were 

questionable levels of understanding when completing the self-report 
questionnaires, and low reliability in FaceReader’s detection of 
expressions in young children. 
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carers completed a brief questionnaire on their perceptions of 
their child’s enjoyment and engagement with the game on single-
item thermometer scales, ranging from ‘Did not enjoy the game at 
all’ to ‘Enjoyed the game very much and ‘Not at all engaged’ to 
‘Completely engaged’.  

2.4 Procedure 
The experiment took place in a publicly accessible lab and 
prospective participants could view games already underway. 
Brief information concerning the experiment was provided to 
parents or carers and informed consent was obtained from parents 
or carers prior to participation.  

During the game, children were free to position themselves 
relative to Zeno within a ‘play zone’ boundary marked on the 
floor by a mat (to delineate the area in which the system would 
correctly detect movements) and could leave the game at their 
choosing. The designated play zone was marked by three foam 
.62msq mats. The closest edge of the play zone was 1.80m from 
the robot and the play zone extended to 3.66m away. These limits 
approximate the ‘social distance’ classification [26]. This range 
was chosen for 2 reasons i) Participants would likely expect the 
game used to occur within social rather than public- or personal-
distance ii) This enabled reliable recordings of movement by the 
Kinect sensor. The mean overall distance for the participants from 
the robot fell well within social-distance boundaries (2.48m). 

At the end of the game, participants completed the self-report 
questionnaire, while parents completed the observer’s 
questionnaire. Participant-experimenter interaction consistency 
was maintained over the two days by using the same experimenter 
on all occasions for all tasks. 

Interaction with the robot took the form of the widely known 
Simon Says game (Figure 2). This game was chosen for several 
reasons: children’s familiarity with the game, its uncluttered 
structure allows autonomous instruction and feedback delivery by 
Zeno, and its record of successful use in a prior field study [27]. 

The experiment began with autonomous instructions delivered 
by Zeno as soon as children stepped into the designated play zone 
in front of the Kinect sensor. Zeno introduced the game by saying, 
“Hello. Are you ready to play with me? Let's play Simon Says. If I 
say Simon Says you must do the action. Otherwise you must keep 
still.” The robot would then play ten rounds of the game or play 
until the child chose to leave the designated play zone. In each 
round, Zeno gave one of three simple action instructions: ‘Wave 
your hands’, ‘Put your hands up’ or ‘Jump up and down’. Each 
instruction was given either with the prefix of 'Simon says’ or no 
prefix.  

 

 
Figure 2. A child playing Simon Says with Zeno 

 
The OpenNI/Kinect skeleton tracking system was used to 

determine if the child had performed the correct action in three 
seconds following instruction. For the ‘Wave your hands’ action, 
our system monitored the speed of the hands moving. If sufficient 
movement for the arms were detected following instruction then 
the movement was marked as a wave. For the ‘Jump up and 
down’ action the vertical velocity of the head was monitored, 
again with a threshold to determine if a jump had taken place. 
Finally for the ‘Put your hands up’ action, our system monitored 
the positions of the hands relative to the waist. If the hands were 
found to be above the waist for more than half of the three 
seconds following the instruction then the action was judged to 
have been executed. The thresholds for the action detection were 
determined by previous trial and error during pilot testing in a 
university laboratory. The resulting methods of action detection 
were found to be over 98% accurate in our study. In the rare cases 
where the child did the correct action and the system judged 
incorrectly then the experimenters would step in and say “Sorry, 
the robot made a mistake there, you got it right”. 

If children followed the action instruction after hearing ‘Simon 
says’ the robot would say, “Well done, you got that right”. If the 
child remained still when the prefix was not given, Zeno would 
congratulate them on their correct action with “Well done, I did 
not say Simon Says and you kept still”. Conversely, if the child 
did not complete the requested movement when the prefix was 
given Zeno would say, “Oh dear, I said Simon Says, you should 
have waved your hands”. If they completed the requested 
movement in the absence of the prefix, Zeno would inform them 
of their mistake with, “Oh dear, I did not say Simon Says, you 
should have kept still”. Zeno gave children feedback of a running 
total of their score at the end of each round (the number of correct 
turns completed). 

If the child left the play zone before ten rounds were played, 
the robot would say, “Are you going? You can play up to ten 
rounds. Stay on the mat to keep playing”. The system would then 
wait three seconds before announcing, “Goodbye. Your final 
score was (score)”. This short buffer was to prevent the game 
ending abruptly if the child accidentally left the play zone for a 
few seconds. 

At the end of the ten rounds, the robot would say, “All right, 
we had ten goes. I had fun playing with you, but it is time for me 
to play with someone else now. Goodbye.” 

The sole experimental manipulation coincided with Zeno’s 
spoken feedback to the children after each turn. In the expressive 
robot condition, Zeno responded with appropriate ‘happiness’ or 
‘sadness’ expressions, following children’s correct or incorrect 
responses. These expressions were prebuilt animations, provided 
with the Zeno robot, named ‘victory’ and ‘disappointment’ 
respectively. These animations were edited to remove gestures so 
only facial expression were present. In contrast, in the non-
expressive robot condition, Zeno’s expressions remained in a 
neutral state regardless of child performance. Previous work 
indicates that children can recognize these facial expression 
representations by the Zeno robot with a good degree of accuracy 
[28]. 

3 RESULTS 
A preliminary check was run to ensure even distribution of 
participants to expressive and non-expressive conditions. There 
were 9 female and 16 male participants in the expressive 
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condition and 9 female and 12 male participants in the non-
expressive condition. A chi square test was run before analysis to 
check for even gender distribution across conditions indicates no 
significant difference (X2 (1,48) = 2.25, p = .635). 

3.1 Objective Measures 
Overall, we did not observe any significant main effects of Zeno’s 
expressiveness on objective measures of interpersonal distance or 
facial expressions between conditions. However, there were 
significant interaction effects, when gender was included as a 
variable.  

There was a significant interaction of experimental condition 
and child’s gender on average child’s expressions of happiness 
F(1,39) = 4.75, p = .038. While male participants showed greater 
average happiness in the expressive robot condition in comparison 
to those in the non-expressive condition (19.1%, SE 3.3% versus 
5.3%, SE 4.1%), female participants did not differ between 
conditions (7.4%, SE 4.3% versus 12.6%, SE 4.6%). Simple 
effects tests (with Bonferroni correction) indicated that the 
observed differences between conditions for male participants was 
significant (p = .012). 

A contrasting interaction was found for average expressions of 
surprise F(1,39) = 5.16, p = .029. Male participants in the 
expressive robot condition showed less surprise than those in the 
non-expressive condition (6.1%, SE 3.2% versus 19.6%, SE 
4.0%), whereas female participant expressions for surprise did not 
differ between conditions (11.9%, SE 4.2% versus 7.1%, SE 
4.5%). There were no further significant interactions for any of 
the remaining expressions. 

There was a near significant interaction for experimental 
condition and child’s gender for interpersonal distance F(1,41) = 
2.81, p = .10 (Figure 3). Male participants interacting with the 
expressive robot tended to stand closer (M = 2.28m, SE .10m) 
than did those interacting with the non-expressive robot (M = 
2.57m, SE .13m), whereas female participants interacting with the 
expressive robot tended to stand further away (M = 2.59m, SE 
.14m) than those interacting with the non-expressive robot (M = 
2.45m, SE .14m).  A follow-up simple effect test indicates that the 
difference between conditions for male participants was also near 
significant (p = .086). 

 
Figure 3. Mean interpersonal distance during game 

Controlling for participant age or success/failure in the game 
made no material difference to any of the objective measures 
findings. 

3.2 Questionnaires 
No significant main effects of condition were seen for self-
reported measures or observer reported measures. However, there 
were significant gender effects, and significant gender X 
condition effects. Gender had a main effect on children’s beliefs 
about the extent to which the robot liked them F(1,38) = 5.53, p = 
0.03. Female participants reported significantly lower ratings (M 
= 3.08, SE .34) than did male participants (M = 4.17, SE .31). 

We observed a significant interaction of gender and 
experimental condition for participants’ enjoyment in interacting 
with Zeno F(1,38) = 4.64, p = .04. Male participants interacting 
with the expressive Zeno reported greater enjoyment of the 
interaction than those who interacted with the non-expressive 
Zeno (M = 3.40, SE .18 versus M = 3.00, SE .23), whereas female 
participants interacting with the expressive Zeno reported less 
enjoyment than those interacting with the non-expressive Zeno 
(M = 3.22, SE .23 versus M = 3.78, SE .23). Simple effects tests 
did not indicate that the difference found between conditions were 
significant for either male participants (p > .10) or female 
participants (p > .10). 

Results from the observer reports generated by the participants’ 
parents or carers showed the same trends as those from the self-
report results but did not show significant main or interaction 
effects. Controlling for participant age or success/failure in the 
game made no material difference to any of the questionnaire data 
findings. 

4 DISCUSSION 
The results provide new evidence that life-like facial expressions 
in humanoid robots can impact on children’s experience and 
enjoyment of HRI. Moreover, our results are consistent across 
multiple modalities of measurement. The presence of expressions 
could be seen to cause differences in approach behaviors, positive 
expression, and self-reports of enjoyment. However, the findings 
are not universal as boys showed more favorable behaviors and 
views towards the expressive robot compared to the non-
expressive robot, whereas girls tended to show the opposite. 

Sex differences towards facially expressive robots during HRI 
could have profound impact on the design and development of 
future robots; it is important to replicate these experimental 
conditions and explore these results in more depth in order to 
identify why these results arise. At this stage, the mechanisms 
underpinning these differences still remain to be determined. We 
outline two potential processes that could explain our results.  

The current results could be due to children’s same-sex 
preferences for friends and playmates typically exhibited at the 
ages range tested (ages five to ten) [29]. Zeno is nominally a ‘boy’ 
robot and expressions may be emphasizing cues seen on the face 
to encourage user perceptions of it as a boy. As a result, children 
may be acting in accordance with existing preferences for play 
partners [30]. If this is the case, it would be anticipated that 
replication of the current study with a ‘girl’ robot counterpart 
would produce results contrasting with the current findings. 

Alternatively, results could be due to the robot’s expressions 
emphasizing the existing social situation experienced by the 
children. The current study took place in a publically accessible 
space, with participants in the company of museum visitors, other 
volunteers, and the children’s parents or carer. Results from the 
current study could represent children’s behavior towards the 
robot based on existing gender driven behavioral attitudes. Girls 
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may have felt more uncomfortable than boys when in front of 
their parents whilst engaging in explorative play [20] with a 
strange person (in the form of their perceived proximity to the 
experimenter) and an unfamiliar object (the robot). Social cues 
from an expressive robot, absent in a neutral robot, may reinforce 
these differences through heightening the social nature of the 
experiment. 

Behavioral gender differences in children engaging in public or 
explorative play are well established, and the link between these 
gender differences and the influence of direct parents/carers 
differential socialization of their children dependent upon the sex 
[31,32], is a further established link of developmental study. To 
better explore the gender difference observed in our study we 
must take into consideration existing observed behavioral patterns 
in children engaging in explorative play around their parents. 
Replication in a familiar environment away from an audience 
including children’s parents may then impact on apparent sex 
differences observed in the current HRI study. 

The current study is a small-sample field experiment. As with 
the nature of field studies, maintaining an exacting control over 
experimental conditions is prohibitively difficult. Along with 
possible confounds from the public testing space, the primary 
experimenter knew the condition each child was assigned to; 
despite best efforts in maintaining impartiality, the current study 
design cannot rule out potential unconscious experimenter 
influence on children’s behaviors. In studies concerning emotion 
and expression, potential contagion effects of expression and 
emotion [33] could impact on participant’s expressions and 
reported emotions. The current results therefore offer a strong 
indication of the areas to be further explored under stricter 
experimental conditions. 

We aim to repeat the current study in a more controlled 
experimental environment. Children will complete the same 
Simon-says game in the familiar environment of their school, this 
time without an audience. Rather than allocation by day to 
condition, the study protocol will be modified to randomly 
allocate children to conditions, and the study will be conducted by 
an experimenter naïve to conditions. Testing at local schools 
offers better controls over participant sample demographics as 
children can be recruited based on age and having similar 
educational and social backgrounds. The environment of this 
study also removes any direct influence by the presence of 
parents/carers. Thus, a repeat of the current study under stricter 
conditions also offers opportunity to further test the proposed 
hypotheses for the observed sex differences in enjoyment in 
interacting with a facially expressive robot. 

We have previously proposed that human-robot bonds could be 
analyzed in terms of their similarities to different types of existing 
bond with other human, animals, and objects [4]. Our 
relationships with robots that are lacking in human-like faces may 
have interesting similarities to human-animal bonds which can be 
simpler than those with other people—expectations are clearer, 
demands are lower, and loyalty is less prone to change. Robots 
with more human-like faces and behavior, on the other hand, may 
prompt responses from users that include more of the social 
complexities of human-human interaction. Thus, aspects of 
appearance that indicate gender can become more important, 
subtleties of facial and vocal expression may be subjected to 
greater scrutiny and interpretation. Overall, as we progress 
towards more realistic human-like robots we should bear in mind 
that whilst the potential is there for a richer expressive 
vocabulary, the bar may also be higher for getting the 
communication right. 

5 CONCLUSION 
This paper offers further steps towards developing a theoretical 
understanding of symbiotic interactions between humans and 
robots. The production of emulated emotional communication 
through facial expression by robots is identified as a central factor 
in shaping human attitudes and behaviors during HRI. Results 
from both self-repot and objective measures of behavior point 
towards possible sex differences in responses to facially 
expressive robots; follow-up work to examine these is identified. 
These findings highlight important considerations to be made in 
the future development of a socially engaging robot. 
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The Paro robot seal as a social mediator for healthy users
Natalie Wood1 and Amanda Sharkey2 and Gail Mountain3and Abigail Millings4

Abstract. Robots are being designed to provide companionship,
but there is some concern that they could lead to a reduction in hu-
man contact for vulnerable populations. However, some field data
suggests that robots may have a social mediation effect in human-
human interactions. This study examined social mediation effects in
a controlled laboratory setting. In this study 114 unacquainted female
volunteers were put in pairs and randomised to interact together with
an active Paro, an inactive Paro, or a dinosaur toy robot. Each pair
was invited to evaluate and interact with the robot together during
a ten minute session. Post-interaction questionnaires measured the
quality of dyadic interaction between participants during the session.
Our results indicate that the strongest social mediation effect was
from the active Paro.

1 INTRODUCTION

Over the last decade robots have been developed as an alternative to
companion animals for older-aged adults and people with dementia
in care homes. These companion robots are designed to improve the
physical and psychological health of users by calming them, provid-
ing companionship, and have the potential to help reduce loneliness
and improve the well-being of their users [11, 2].

Despite the benefits these assistive robots bring, there are objec-
tions to their use with vulnerable populations. Sparrow and Sparrow
[15] raise one main concern as the loss of human contact had by these
populations as their human carers are replaced with robotic counter-
parts. They argue that robotic technology is not currently capable of
meeting the social and emotional needs of their users. As the amount
of human-human contact between patients and their carers decreases,
this could lead to a reduction in the number and quality of their social
relationships, and therefore their quality of life.

This concern is supported by Sharkey and Sharkey [13], who con-
sider the negative effects of reduced social contact on the physical
and psychological well-being of the elderly. They propose that ac-
cess to human social contact must be considered before robotic tech-
nology is brought into elder-care.

However, a recent developing area of research has shown that
robotics can have a role in improving human-human relationships.
This small but growing body of field data suggests that a companion
robot, the Paro robot seal, can be used to encourage social interaction

1 Sheffield Robotics, University of Sheffield, S1 3JD, UK. Email: na-
talie.wood@shef.ac.uk.

2 Department of Computer Science, University of Sheffield, S1 4DP, UK.
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4 Centre for Assistive Technology & Connected Healthcare, and De-
partment of Psychology, University of Sheffield, S10 2TP, UK. Email:
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between individuals, in addition to providing human-robot compan-
ionship.

The majority of these studies examined the social mediation effect
of Paro using samples of people with cognitive impairment in care
home settings.

This paper aims to contribute to this research by investigating
whether the social mediation effect is present in healthy populations
and under controlled conditions. Animals have been found to act as
a social catalyst for healthy individuals as well as for people with
dementia and older adults [5][9]. We propose that the same could
be true of animal-like robots. Our study looks at the ability of Paro
to mediate social interaction between strangers by providing an ice
breaker effect in a controlled laboratory setting.

Section 1.1 of this paper introduces the existing work on social
mediation with Paro. Section 2 details our hypotheses. This is fol-
lowed by the methodology used for the study in section 3. Our ana-
lytic strategy and results are discussed in section 4. We discuss our
findings and limitations of the work in section 5. Finally section 6
concludes the paper.

1.1 Background

Previous studies conducted in care homes have reported the ability of
Paro as a social mediator. A randomised controlled trial by Robinson,
Macdonald, Kerse, and Broadbent [12] showed a significant decrease
in the loneliness reported by 17 residents of a retirement home after
12 weeks of regular activity with Paro. They also found an increase
in social interaction between residents when they engaged in activity
with Paro compared to during normal activities with and without the
resident dog.

Wada and Shibata [19] found that the social network of 12 elderly
residents in a care home increased after Paro was available in an open
public space for two months.

In an ethnographic case study, Giusti and Marti [4] found that not
only did the amount of social interaction increase, but the social dy-
namic between three residents of a nursing home changed from pri-
marily one-to-one social interactions to group interaction involving
all three during interactions with Paro.

Kidd, Taggart and Turkle [7] investigated the effect that a small
number of interactions with Paro had on social activity in the nursing
home setting. They found that the 23 residents reported more social
interaction with others when they were with active Paro than when
it was turned off. They also found that presence of more people, in-
cluding caregivers and experimenters, improved the amount of social
engagement.

These findings were supported in another nursing home where
Šabanović et al. [18] observed that the social interactions increased
between seven residents, including those who were not directly in-
teracting with Paro, during robot-assisted therapy sessions.
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Although the results of these studies show support for Paro as a so-
cial mediator in the nursing home setting, they are limited by small
sample sizes. In addition, the majority of these studies lack control
conditions, such that the social meditation effect cannot be attributed
specifically to the Paro. It is unclear whether any novel, robotic stim-
uli would produce the effects observed. In the current study, we ex-
amine the social mediation effect of an active Paro which is turned on
and interactive, compared to that of an inactive Paro which is turned
off and resembling a cuddly toy, and another interactive robotic toy,
Pleo the dinosaur.

2 HYPOTHESES
This study aims to answer the following questions: Can the social
mediation effect of Paro apply to a healthy population? Can the effect
be measured under a controlled laboratory setting?

To investigate the social mediation effect of Paro we invited pairs
of strangers to interact for the first time together, along with an active
Paro, an inactive Paro, or a Pleo.

We anticipate that the social mediation effect of Paro when active
will lead to participants enjoying interacting with the other partici-
pant more and having a better experience when interacting together,
than with an inactive Paro and the Pleo. We also anticipate that inter-
acting together with an active Paro will lead to a more positive opin-
ion of the other participant compared to the other two conditions.

Secondary to this we also expect the Pleo to be a more effective
social mediator than an inactive Paro. This leads to our hypotheses:
Primary hypotheses:

• H1: Compared to the Pleo and inactive Paro conditions, the par-
ticipants in the active Paro condition will report a:

– (a): higher quality of interaction.

– (b): higher opinion of the other participant.

Secondary hypotheses:

• H2: Compared to the inactive Paro condition, the participants in
the Pleo condition will report a:

– (a): higher quality of interaction.

– (b): higher opinion of the other participant.

3 METHODOLOGY
3.1 Participants
Participants were recruited using a number of methods. Firstly, un-
dergraduate psychology students were invited to participate through
the University’s research participation scheme in exchange for course
credit. Secondly, an email was sent using volunteer mailing lists for
University of Sheffield staff and students, inviting volunteers to par-
ticipate in exchange for entry into a prize draw for one of two £30
Amazon vouchers. Female participants were chosen due to the avail-
ability of volunteers at the university which were predominantly fe-
male at the time.

In total 114 participants were recruited, aged from 15 to 59 (M =
23.94, SD = 8.38), and were paired according to availability. Pairs
of participants were randomly allocated into conditions with 21 par-
ticipant pairs in the active Paro condition, 19 participant pairs in the
inactive Paro condition, and 17 participants pairs in the Pleo condi-
tion.

3.2 Materials
3.2.1 Paro

The Paro was developed in Japan by Shibata [21] as a therapeutic
tool for use with people with dementia. It is a pet-like robot based on
a harp seal pup and its body is covered in soft, white, and antibac-
terial fur. It uses a number of sensors for touch and sound to detect
interaction. The robot responds to the stimulation of interaction by
making noises and moving.

3.2.2 Pleo dinosaur robot

The Pleo [1] is a commercially available pet dinosaur toy which was
designed to have a lifelike appearance and adaptive behaviours. The
2008 model used in the experiment has a number of touch sensors on
its head, chin, shoulders, back and feet, and audio and light sensors
in its head. A range of actuators means it can respond to different
types of interaction in different ways. The Pleo is covered with plastic
which feels rubbery to touch.

3.2.3 Measures

All measures except the pen-and-paper evaluation form were admin-
istered via an online questionnaire on a tablet.

Quality of interaction with the other This was measured using
items about how the participant felt during the interaction with the
other person, and how the participant perceived the interaction itself:

Participants reported feelings experienced during the interaction
by rating eight items from Leary, Kowalski, & Bergen [8] on a 7-
point Likert scale from 1 (not at all) to 7 (very much). Factor analy-
sis 5 reduced these items to two composite measures: ‘relaxed’, ‘awk-
ward’, ‘nervous’, and ‘confident’ loaded highly onto a factor of ‘Con-
fidence’ during the interaction (↵ = .81). ‘Accepted’, ‘respected’,
‘disrespected’, and ‘rejected’ loaded onto a factor of ‘ Feeling Ac-
ceptance’ during the interaction (↵ = .76).

How the interaction was perceived was measured using 16 items
adapted from Berry and Hansen[3], rated on a 7-point Likert scale
from 1 (not at all) to 7 (very much). Factor analysis reduced these
16 items to four composite measures. First ‘relaxed’, ‘smooth’, and
‘natural’ loaded onto how ‘Comfortable’ the interaction felt (↵ =
.84). Secondly ‘enjoyable’, ‘fun’, ‘pleasant’, satisfying’, ‘intimate’,
and ‘boring’ loaded onto a factor of the interaction ‘Feeling Positive’
(↵ = .86). The third factor had loadings of ‘upsetting’, ‘unpleasant’,
and ‘annoying’ on a factor of the interaction ‘Feeling Negative’ (↵ =
.65). Finally ‘forced’, ‘awkward’, ‘reserved’, and ‘strained’ loaded
onto a factor of ‘Difficulty’ of the interaction (↵ = .86).

Opinion of the other participant Participants answered the fol-
lowing questions adapted from Sprecher, Treger, Wondra, Hilaire,
and Wallpe[16] about the interaction with the other participant and
about the other participant on a 7-point Likert scale from 1 (not at
all) to 7 (very much).

Liking of the other was measured with three items: ‘How much
did you like the other participant?’, ‘How much would you like to
interact with the other participant again?’, and ‘How likeable did
you find the other participant?’ (↵ = .86)

Closeness to the other was measured with a single item: ‘How
close do you feel toward the other participant?’

5 Factor analysis for the purpose of dimension reduction was conducted us-
ing principal component analysis using oblimin rotation with each scale to
create composite measures.
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Perceived similarity was measured with two items: ‘How much
do you think you have in common with the other participant?’, and
‘How similar do you think you and the other participant are likely to
be?’(↵ = .86)

Enjoyment of the interaction: This was measured with a single
item:‘How much did you enjoy the interaction with the other partic-
ipant?’

Evaluation form The evaluation form consisted of a 10-item
questionnaire about the robot which participants completed as a
dyad. Five of the items were from Shibata, Wada, Ikeda, and
Šabanović[14] and asked participants to indicate on a 7-point Lik-
ert scale how much they felt the words ‘friendly’, ‘lively’, ‘expres-
sive’, ‘natural’, and ‘relaxing’ applied to the robot. The other five
items were adapted from Wada, Shibata, Musha, and Kimura [20]
and asked participants to answer on 7-point Likert scales the ques-
tions ‘How cute/ugly do you find the robot?’, ‘How much do you like
the robot?’, ‘How fun/boring is interacting with the robot?’, ‘How
much more would you want to interact with the robot?’ and ‘How
much do you want to touch the robot?’.

3.3 Recording and coding behaviour
The interaction between the participants and the robot was covertly
recorded in the experiment room with two Replay digital action cam-
eras. Observed behavioural data will not be reported in this paper but
will be detailed elsewhere.

3.4 Procedure
All participants were told that the study aimed to investigate peo-
ple’s opinions of different types of interactive robots, and that they
would be asked to interact with and evaluate a robot. Participants
were tested in dyads by a female experimenter. On arrival each par-
ticipant was taken to a separate location to read the information sheet
and provide consent to participate. Participants were told that they
would meet another participant with whom they would evaluate a
robot.

Both participants were first asked to complete a questionnaire
(data not included in the current study). At this point the dyad was
randomly assigned into either the active Paro, inactive Paro or Pleo
conditions. Once both participants had completed the questionnaire,
they were introduced to each other (as‘the other participant you’ll be
evaluating the robot with’) and together given an explanation of the
robot evaluation task they were to undertake.

Participants were told that there would be a robot on the table in
the room and were asked to interact with the robot together, in any
way they wanted to, but to keep the robot off the floor. In the inactive
Paro condition, participants were told that the robot would remain off
for the duration of the task and that they would have the opportunity
to see it turned on at the end of the session during individual de-
briefings. All participants were then told that there was an evaluation
form on the table and were asked to complete the form together. The
participants were told that they would be left and given 10 minutes
to complete the task, after which the experimenter would knock on
the door to the room and enter to take them to finish the experiment.
The experimenter then took them into the room and before leaving,
told them they could take a seat at the table.

Participants were given 10 minutes, which would provide suffi-
cient time to complete the task and enable them to interact together
beyond the scope of the evaluation. After the 10 minutes the experi-
menter entered the room and told the participants that the evaluation

task was over. The participants were then taken to separate locations
to complete a questionnaire to measure the quality of the interaction
with the other and their opinion of the other participant. Subsequently
the participants were individually thanked, debriefed, and informed
of the covert recording which took place before providing their con-
sent for use of the video data. In the inactive Paro condition partici-
pants were finally offered the opportunity to have a short interaction
with the active Paro.

4 RESULTS
In this paper we report the quantitative data from the post-interaction
questionnaire.

Table 1. Multilevel model of robot condition on quality of initial
interactions and liking of other. (⇤) indicates significance (p < 0.05), (+)

indicates a trend (p < 0.1)

b SE

b

p 95% CI
Feelings during interaction

Confidence
Active Paro vs Inactive Paro 0.26 0.26 0.335 -0.28,0.80
Active Paro vs Pleo 0.33 0.28 0.237 -0.22,0.89
Pleo vs Inactive Paro -0.07 0.28 0.807 -0.64,0.50

Accepted
Active Paro vs Inactive Paro 0.17 0.15 0.248 -0.12,0.47
Active Paro vs Pleo 0.18 0.15 0.247 -0.13,0.48
Pleo vs Inactive Paro -0.01 0.15 0.970 -0.31,0.30

Perception of interaction
Comfortable

Active Paro vs Inactive Paro 0.16 0.29 0.585 -0.43,0.75
Active Paro vs Pleo 0.28 0.30 0.358 -0.33,0.89
Pleo vs Inactive Paro -0.12 0.31 0.700 -0.74,0.50

Positive
Active Paro vs Inactive Paro 0.46 0.23 0.049 (⇤) 0.00,0.92
Active Paro vs Pleo 0.42 0.24 0.083 (+) -0.06,0.89
Pleo vs Inactive Paro 0.04 0.24 0.855 -0.44,0.53

Negative
Active Paro vs Inactive Paro -0.01 0.16 0.965 -0.33,0.31
Active Paro vs Pleo -0.05 0.16 0.768 -0.38,0.28
Pleo vs Inactive Paro 0.04 0.17 0.804 -0.29,0.38

Difficult
Active Paro vs Inactive Paro -0.43 0.31 0.175 -1.05,0.20
Active Paro vs Pleo -0.35 0.32 0.281 -0.99,0.29
Pleo vs Inactive Paro -0.08 0.33 0.809 -0.73,0.58

Opinion of other
Liking

Active Paro vs Inactive Paro 0.33 0.22 0.135 -0.11,0.77
Active Paro vs Pleo 0.32 0.22 0.165 -0.13,0.76
Pleo vs Inactive Paro 0.01 0.23 0.948 -0.44,0.47

Closeness
Active Paro vs Inactive Paro -0.15 0.33 0.658 -0.81,0.52
Active Paro vs Pleo 0.36 0.34 0.297 -0.32,1.04
Pleo vs Inactive Paro -0.51 0.35 0.150 -1.20,0.19

Similarity
Active Paro vs Inactive Paro 0.00 0.31 0.992 -0.63,0.63
Active Paro vs Pleo 0.67 0.32 0.044 (⇤) 0.02,1.31
Pleo vs Inactive Paro -0.66 0.33 0.049 (⇤) -1.32,-0.00

Enjoyment of interacting
Active Paro vs Inactive Paro 0.34 0.26 0.203 -0.19,0.86
Active Paro vs Pleo 0.60 0.67 0.031 (⇤) 0.61, 0.14
Pleo vs Inactive Paro -0.26 0.27 0.350 -0.81,0.29

Dyadic analysis was required to account for the non-independence
inherent in dyadic data [6]. This is due to the hierarchical structure
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of the data, with individuals nested into dyads. We used multilevel
modelling in SPSS with the three robotic interaction conditions as
predictors of the quality of interaction and liking of the other. The
results are reported in table 1.

Figure 1. Feelings experienced by participants during the interaction for
each robot condition

For the two factors measuring how participants felt during the in-
teraction, no statistically significant differences between conditions
were found, as seen in figure 1.

We found a significant difference between the active Paro and in-
active Paro conditions for one quality of interaction factor, how pos-
itive the interaction felt. Participants in the active Paro condition had
a significantly higher rating for positivity than those in the inactive
Paro condition, (b = 0.46, t(57.09) = 2.01, p = 0.049). In addition
there was a positive trend toward significance for how positive the in-
teraction felt for participants in the active Paro condition compared
to those in the Pleo condition, (b = 0.42, t(57.05) = 1.76, p =
0.083). There were no significant differences for how comfortable
the interaction felt, how negative the interaction felt, and the diffi-
culty of interaction. Figure 2 illustrates these results.

From the factors measuring participants’ opinions of the other in
Figure 3, perceived similarity to the other participant was signifi-
cantly higher in the active Paro condition than in the Pleo condi-
tion (b = 0.67, t(56.78) = 2.06, p = 0.044) but was significantly
lower than the inactive Paro condition (b = �0.66, t(56.16) =
�2.01, p = 0.049). Participants in the active Paro condition had a
significantly higher rating of enjoying interacting with the other than
those in the Pleo condition, (b = 0.60, t(56.89) = 2.21, p = 0.031)

5 DISCUSSION
The results from this study suggest that participants found the inter-
action with their partner more positive and had a higher opinion of
their partner when interacting together with the active Paro, than with
the inactive Paro or with the Pleo. This supports the hypotheses H1a
and H1b.

However no results were found to support the hypotheses H2a
or H2b, that participants who interact with the Pleo would have a
stronger social mediation effect than the inactive Paro.

Figure 2. How the interaction was perceived for each robot condition

Figure 3. Participants’ opinion of the other participant for each robot
condition
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Of the hypotheses in H1, we found a significant result to partially
support hypothesis 1a which concerns the quality of the interaction.
The results show that participants who interacted with the active Paro
had a greater generally positive feeling about the interaction with
their partner than those who interacted with the inactive Paro. The
trend between the active Paro and the Pleo, while still positive, was
only near significant. A possible explanation for this is that when the
Paro is active and interactive it is much more stimulating for both
participants than when it was inactive, and provides a stronger focus
for their interaction. The interactive Pleo may have been less effec-
tive due to the different appearance and texture, which is less cuddly
and tactile and therefore less engaging.

Of the four factors to measure participants’ opinions of the other
two factors, similarity and enjoyment of interacting with the other
person, show a significant effect. The significant effect was found
between the active Paro condition and the inactive Paro and Pleo
conditions which supports hypothesis 1b.

It is known that perceived similarity predicts interpersonal attrac-
tion [10], and has been found to predict long term attraction and
the development of relationships in newly acquainted dyads[17]. Be-
cause interacting with the Paro, when active or inactive, has a larger
impact on perceived similarity within pairs in this study, they may
be judged as more likely to go on to form relationships than those
with the Pleo. We suggest that this is because the Pleo has a more
polarising effect than Paro, in which some people dislike it whereas
others find it appealing, and is more likely to divide opinions during
the interaction.

The higher ratings for the enjoyment of interacting with their part-
ner for participants in the active Paro condition show that the experi-
ence of interacting together was improved by the presence of active
Paro compared to the Pleo and inactive Paro.

In accordance with our primary hypothesis, these results show that
the Paro, when active, is more effective as a social mediator and an
ice-breaker for first-time interactions that the Pleo or inactive Paro.
The lack of significant differences between the Pleo and inactive Paro
conditions show that the second hypothesis is unsupported, and there
is no difference between them as social mediators. This research sug-
gests that the interactivity and the tactile texture are important factors
of Paro which make it an and engaging and appealing object for in-
dividuals to interact over for the first time.

5.1 Limitations
A number of limitations need to be acknowledged in this study: the
sample size did not provide the power to verify the findings with
confidence. A number of results displayed the trend we hypothesised,
and it is possible that larger numbers of participants would affect the
significance values of these results.

The current study has only examined the social mediation effect of
Paro with female participants and these results cannot be extended to
male-male or female-male dyads. The response of males participants
must be investigated as due to gender role norms, it is possible that
males may respond more positively towards a robot which resembles
a dinosaur to one resembling a seal.

One of the questions we posed was‘Can the social mediation effect
of the Paro be measured under laboratory conditions?’ and these re-
sults show that some effect is measurable. However, while conduct-
ing the study under laboratory conditions allows a more controlled
examination of the social mediation effect, the findings cannot be
generalised to all social situations, and must be replicated in differ-
ent situations to understand the possible applications of this effect.

Further work could include measures of personality and attach-
ment in order to statistically control for individual differences in
forming relationships. It would also be interesting to compare this
study which used unacquainted dyads to one which uses people who
already know each other.

6 CONCLUSIONS AND FURTHER WORK

The present study was designed to investigate the social mediation
effect of Paro under controlled conditions. This research adds to the
limited evidence which shows that robotic technologies can support
social interaction between people. Our results suggest that when peo-
ple interact together with Paro it helps provide a context in which to
form a good first impression of their partner, and have a positive ex-
perience with them.

The findings of this study demonstrate that robotic technologies
can support human-human interactions by encouraging social inter-
action and assist in the formation of relationships. More research is
needed to fully understand this potential role for the further develop-
ment of robot companions.

As the quantitative data in this study comes from self-report mea-
sures in the questionnaire, we expect the observed behavioural data
from the covert video recording might highlight differences between
interactions in robot conditions more clearly. The next stage of this
study will be to examine the content of the interactions with the video
data. Further research is needed to examine the social mediation ef-
fect of the Paro with its target users; older-aged adults, including
those who are healthy and those with dementia. One application of
the social mediation effect of Paro which has not been evaluated to
date is its use in visits to care homes from family and friends. It
would be valuable to investigate the role of Paro during these visits,
and whether it leads to an increase in quality of the visitation time.
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Can Less be More? The Impact of Robot Social
Behaviour on Human Learning
James Kennedy1 and Paul Baxter1 and Tony Belpaeme1

Abstract. In a large number of human-robot interaction (HRI) stud-
ies, the aim is often to improve the social behaviour of a robot in order
to provide a better interaction experience. Increasingly, companion
robots are not being used merely as interaction partners, but to also
help achieve a goal. One such goal is education, which encompasses
many other factors such as behaviour change and motivation. In this
paper we question whether robot social behaviour helps or hinders in
this context, and challenge an often underlying assumption that robot
social behaviour and task outcomes are only positively related. Draw-
ing on both human-human interaction and human-robot interaction
studies we hypothesise a curvilinear relationship between social robot
behaviour and human task performance in the short-term, highlighting
a possible trade-off between social cues and learning. However, we
posit that this relationship is likely to change over time, with longer
interaction periods favouring more social robots.

1 INTRODUCTION
Social human-robot interaction (HRI) commonly focuses on the expe-
rience and perception of human users when interacting with robots,
for example [2]. The aim is often to improve the quality of the social
interaction which takes place between humans and robots. Companion
robots increasingly aim not just to merely interact with humans, but to
also achieve some goal. These goals can include, for example, impart-
ing knowledge [11], eliciting behaviour change [17] or collaborating
on a task [3, 13]. Studies with these goal-oriented aims often still
apply the same principles for social behaviour as those without goals -
that of maximising human interaction and positive perception towards
the robot. The implicit assumption is often that if the interaction is
improved, or the human perception of the robot is improved, then the
chance of goal attainment will be increased as well.

In this paper, we focus on learning. In this context, we take learning
to be the acquisition and retention of novel information, and its reuse
in a new situation. This definition covers 3 areas from each of the
‘Cognitive Process’ (remember, understand, apply) and ‘Knowledge’
(factual, conceptual, procedural) dimensions of learning according to
the revised version of Bloom’s taxonomy [14]. Learning outcomes can
depend on many different elements of behaviour, such as motivation
[20] and engagement [4], which will also be considered here.

The remainder of this paper is structured as follows. First, studies
in which social robots assist humans in learning will be reviewed,
with the intention of showing the complex variety of results obtained
when relating learning to the social behaviour of the robot (Section
2). Human-human interactions are then considered and are used as

1 Centre for Robotics and Neural Systems, Cognition Institute, Plymouth
University, United Kingdom
email: {james.kennedy, paul.baxter, tony.belpaeme}@plymouth.ac.uk

a basis to create a hypothesis about the relationship of robot social
behaviour and human performance in tasks over both the long and
short-term (Section 3). This leads to a discussion of the implications
for HRI design in such contexts (Section 4).

2 MIXED LEARNING RESULTS IN HRI

One area of great potential in HRI is in using robots for education.
However, mixed results are often found when using social robots to
teach or tutor humans. Despite regular reports of liking robots more
than virtual avatars, or preferring more socially contingent robots over
those with less social capability, the human performance in learning
tasks doesn’t always reflect these positive perceptions [11, 12, 17,
22]. Conversely, significant cognitive gains have been found when
comparing robots to virtual avatars, with varied amounts of contingent
behaviour [15, 16]. Similar effects have been seen in compliance when
comparing agents of differing embodiments [1]. Whilst the varied
context and content to be learned between these studies could account
for many of the differences in results, we suggest that the relationship
between social behaviour and learning performance may be more
complex than typically assumed.

Commonly, when behavioural manipulations are carried out on one
or two cues, such as in a study by Szafir et al. varying the gestures and
vocal volume that a robot uses, there are clear benefits to the human in
terms of performance in learning tasks [26]. However, these positive
benefits may be lost, or even reversed when larger manipulations to
the social behaviour of the robot are applied, as in [12]. While it may
be reasonably assumed that the effect of multiple individual cues is
additive, this does not seem to be in accordance with the empirical
evidence. Indeed, the proposition that social cues are perceived by
humans as a single percept [29] considers individual social cues
as providing the context for the interpretation of other social cues
(recursively), leading to non-trivial interactions and consequences
when multiple social cues are applied. There is thus the possibility that
making large manipulations in social behaviour by varying multiple
social cues simultaneously does not elicit the benefits that varying
each of these cues individually would, as suggested by the data.

Human expectations of sociality will play a large role in an interac-
tion with a robot. It has been suggested that a discrepancy between
categorical expectations and perceptual stimuli could account for neg-
ative cognitive reactions [19]. We posit that humans don’t necessarily
expect to interact with a robot exhibiting social behaviours and that
the discrepancy between their expectation and the reality of the in-
teraction could create a cognitive reaction which impedes learning.
This might explain some results showing a lack of improvement when
social presence of an agent is increased (such as when going from
a virtual avatar to a robot, as in [10, 17]), or when social behaviour
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Figure 1: Hypothesised relationship between social behaviour (characterised
by immediacy for example) as exhibited by a robot and its impact on the
learning of a human in both the short and long-term. The position of the

short-term curve is dependent on the humans’ prior expectations of social
behaviour (e.g. ↵ is the expectation of fewer social cues from the robot than
expectation �). Over time, these expectations normalise with reality, with

increased use of social cues tending to lead to improved learning performance
for the human interactant.

becomes more contingent, as in [12]. Expectation discrepancy would
consequently lead to changes in the cognitive reaction over time as
expectations change, and vary based on individuals, contexts, and so
on; this is reflected in Figure 1 and will be expanded upon in Section
3.

Although there are many questions regarding learning in the context
of HRI that remain unexplored, it would be useful to try and first
create a testable hypothesis to attempt to explain why the results
gathered so far are so varied. Whether this lies in social presence
differences between virtual and physical robots, or in social behaviour
manipulation between robot conditions, the main variable in all of
the studies considered in this section is sociality. As such, we now
consider how social behaviour might influence learning.

3 SOCIAL BEHAVIOUR AND LEARNING

In order to understand more about the nature of the relationship
between social behaviour and learning, literature from human-human
interaction (HHI) studies will now be introduced. Learning in the
context of HHI has been under study for far longer than HRI, so
longer-term research programmes have been carried out, and more
data is consequently available.

When exploring the connection between learning and social be-
haviour in HHI literature, one behavioural measure repeatedly found
to correlate with learning is ‘immediacy’. Particularly applied to edu-
cational contexts, this concept has been long-established and validated
across many cultures [18, 24] and age ranges [21]. Immediacy pro-
vides a single value definition of the social behaviour of a human in
an interaction by characterising conduct in a range of verbal and non-
verbal behavioural dimensions [23]. Immediacy could therefore prove
a useful means of characterising robot social behaviour in HRI (as
in [26]). Further, it has been shown that more immediate behaviours
on the part of a human tutor increases cognitive learning gains [28].
However, the exact nature of the relationship between immediacy and
cognitive learning gain is debated [5, 28].

Many HRI studies seem to implicitly assume a linear relationship
between an increase in the number of social cues used or in social be-
haviour contingency and learning gains (or gains in related measures

such as engagement, compliance, etc). Upon reviewing the literature
concerning immediacy between humans, this has sometimes found to
be the case [5], but more recent work has shown that this relationship
may in fact be curvilinear [6]. A curvilinear relationship could go
some way to explaining the mixed results found so far in HRI studies
considering task performance with respect to robot social behaviour;
it is possible that some studies make the behaviour too social and fall
into an area of negative returns.

It is hypothesised that the curvilinear nature of immediacy may
have been the effect observed in the study by Kennedy et al. in which
a ‘social’ robot led to less learning than a robot which was actively
breaking social expectations [12]. Over the short term, the novelty
of social behaviour displayed by a robot may cause this kind of
curvilinear relationship as has been observed in relation to immediacy
[6]. As alluded to in Section 2, humans have a set of expectations
for the sociality of the robot in an interaction. We would suggest
that the greater the discrepancy between these expectations and the
actual robot behaviour, the more detrimental the effect on learning.
Individuals will have varied expectations, which is manifested in
different short-term curves (Figure 1): the short-term curve shifts such
that its apex (translating to the greatest possible amount of learning in
the time-frame) is at the point where the expected and actual level of
social cues is most closely matched. Prior interactions and the range
of expectations created could also change the shape of the short-term
curve, making the apex flatter or more pronounced depending on the
variety of previous experiences.

However, when considering the interaction over the longer-term,
such novelty effects wear off as the human adapts to the robot and their
expectations change [7, 8, 25]. In this case we suggest that substantial
learning gains could be made as the robot behaviour approaches a
‘human’ level of social cues; having attained a reasonable matching
of expectation to reality, the robot can leverage the advantages that
social behaviour confers in interactions, as previously suggested [9,
26]. Beyond this level, improvement would still be found by adding
more cues, but the rate of increase is much smaller as the cues will
require more conscious effort to learn and interpret. These concepts
are visualised in the long-term curve seen in Figure 1.

4 PERSPECTIVES
So far, we have challenged the assumption that social behaviour has
a simple linear relationship with learning by providing conflicting
examples from HRI literature and also by tying concepts of social
behaviour to the measure of immediacy from HHI literature. Given
the regular use of HHI behaviour in generating HRI hypotheses, the
non-linear relationship between immediacy and learning is used to
hypothesise a non-linear relationship for HRI, particularly in the
short-term (Figure 1).

A series of controlled studies would be needed to verify whether
these hypothesised curves are correct. One particular challenge with
this is the measuring of social behaviour. It is unclear what it is to
be ‘more’ or ‘less’ social, and how this should be measured. This
is where we propose that immediacy could be used as a reasonable
approximation. All factors in immediacy are judgements of different
aspects of social behaviour, which are combined to provide a single
number representing the overall ‘immediacy’ (i.e. sociality of social
behaviour) of the interactant. This makes the testing of such a hypoth-
esis possible as the social behaviour then becomes a single dimension
for consideration.

Of course, there are many other issues (such as robotic platform
and age of human) which would need to be explored in this context,
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but with a single measure approximating sociality this would at least
be possible. Providing an immediacy measure for robot behaviour
makes it much easier to compare results between studies, allowing
improved analysis of the impact of things such as task content and
context, which are currently very difficult to disentangle when com-
paring results between studies. Literature from the field of Intelligent
Tutoring Systems may be a useful starting point for future work to
investigate specific aspects of learning activities due to their proven
effectiveness across many contexts [27].

It should be noted that the aim of this paper is to highlight the
potential directionality of the relationships involved between social
cues and learning. There is not enough data available to represent the
shape of the curves presented in Figure 1 with any great accuracy.
The curves have been devised based on the few data points available
from the literature, and following from concepts of immediacy and
discrepancies of expectation, as explored in Sections 2 and 3.

5 CONCLUSION
We suggest that immediacy could be taken from the HHI literature
to be validated and applied to HRI more extensively as it presents
itself as an ideal means to facilitate comparison of highly varied social
behaviour between studies. The large volume of immediacy literature
in relation to learning and other contexts could also provide a firm
theoretical basis for the generation and testing of hypotheses for HRI.

In this position paper we have shown through examples from HHI
and HRI literature that the relationship between social behaviour and
task outcome, specifically learning in the present work, for humans
cannot be assumed to be linear. We hypothesise a model in which
social behaviour not only has a non-linear relationship with learning,
but also a relationship which changes over interaction time. Following
the hypothesised model, we suggest that although in the short-term
there may be some disadvantages for a robot to be maximally socially
contingent, the benefits conferred by social behaviour as proposed by
prior work will be seen in the long-term.
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Robots Guiding Small Groups: The Effect of Appearance
Change on the User Experience

Michiel Joosse, Robin Knuppe, Geert Pingen, Rutger Varkevisser, Josip Vukoja, Manja Lohse and Vanessa Evers 1

Abstract. In this paper we present an exploratory user study in
which a robot guided small groups of two to three people. We ma-
nipulated the appearance of the robot in terms of the position of a
tablet providing information (facing the group that was guided or
the walking direction) and the type of information displayed (eyes
or route information). Our results indicate that users preferred eyes
on a display that faced the walking direction and route information
on a display that faced them. The study gave us strong indication to
believe that people are not in favor of eyes looking at them during
the guiding.

1 Introduction
Social robots are designed to interact with humans in human environ-
ments in a socially meaningful way [3]. As a logical consequence,
the design of robots often includes human-like features, e.g., heads
or arms in order to generate social responses. It has been found that
by using such anthropomorphic cues, people automatically have ex-
pectations of the robot’s behavior [4].

However, the capabilities of robots differ from those of humans
which allows them to use the anthropomorphic cues in different
ways. For example, robot eyes can face the user while walking be-
cause the robot has other means (e.g., laser range finders) to detect
the way to go. Thus, robots can walk backward. As eye contact has
been shown to impact our image of others, and whether positive or
negative, this being a sign of potential social interaction [6], robots
facing users while guiding might actually be beneficial. On the other
hand, literature indicates that people use a combination of head and
eye movement to non-verbally indicate their direction [1] and users
might expect robots to do the same.

Robots can also use non-anthropomorphic cues in different ways
than humans, e.g. in the guiding context they can display route in-
formation rather than eyes. Related work found that visitors in his-
toric places prefer a guide, as they would not have to worry about
the route, or carry a map [2]. Therefore this could be beneficial for
robots as well.

In the FP7-project SPENCER2 we aim at developing a guide robot
for a public place (airport) which will have a head and a screen. In
this context, the questions arise which direction the head and screen
should face when guiding a small group and what content should be
displayed on the screen.

In related work, Shiomi et al. [5] conducted an experiment with
the Robovie robot that drove either forward or backward while guid-

1 Human Media Interaction group, University of Twente, the
Netherlands, email: {r.a.knuppe, g.l.j.pingen, r.a.varkevisser,
j.vukoja}@student.utwente.nl, {m.p.joosse, m.lohse, v.evers}@utwente.nl

2 http://www.spencer.eu

ing participants in a mall (over a short distance). The overall finding
in this experiment was that more bystanders joined when the robot
moved backwards compared with frontwards, and that more people
were inclined to follow the robot the entire time when moving back-
wards. In our work we are not so much interested in attracting people,
but more in guiding people over a longer distance. Thus the question
we pose here is how these design decisions impact the user experi-
ence in the process of guiding.

In this paper we present an exploratory study, in which we asked
participants to follow a guide robot through a public lab space. This
robot was equipped with a tablet (facing forwards, or facing the user)
providing information to the participants. We were specifically inter-
ested in finding out which combination of tablet direction and type
of information provided (eyes or route information) would yield the
most positive user experience.

2 Method
In order to answer our research question, we designed an exploratory
user study in which small groups of two to three participants were
given a short guided tour by a robot.

2.1 Robot platform
For this study we attached a shell on top of a remote-controlled
Robotino robot platform3. The height of the robot was 170cm and
it drove at a speed of approximately 0.7 m/s. For purposes of this ex-
ploratory study, it was not deemed necessary to have the robot drive
the path autonomously. Furthermore, the location of obstacles in the
DesignLab changed from time to time (e.g. couches, chairs). As we
were primarily interested in user experience ratings, the robot was
remotely operated by an experimenter. Participants were not made
aware of this before participating in the experiment.

2.2 Manipulations
We manipulated the direction of the tablet mounted on top of the
robot and the information displayed on the tablet (Figure 1 and Table
1). In conditions A (Figure 1a) and B (Figure 1c) a set of blink-
ing eyes was displayed on the tablet either facing the participants or
the walking direction. In condition C we programmed the tablet to
display route information, i.e., the remaining distance to the target
(Figure 1e). A condition having the tablet mounted on the front of
the robot, while displaying route information was deemed unneces-
sary as this would neither provide information for the participants
following the robot, nor for other people present in the laboratory.
3 http://www.festo-didactic.com/int-en/learning-systems/education-and-

research-robots-robotino/
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(a) Condition A front (b) Condition A back (c) Condition B front (d) Condition B back (e) Condition C front (f) Condition C back

Figure 1: The appearance of the robot in the three conditions, showing the front and back side of the robot

Table 1: Overview of study conditions and number of participants

Condition A B C
Tablet direction Front Back Back
Tablet display Eyes Eyes Time to destination
N 9 8 8
Group distribution 3x 3-person 1x 2-person 1x 2-person

2x 3-person 2x 3-person

2.3 Measures
In the post-experiment questionnaire user experience was assessed
using a variety of measures.

All questions (except demographic- and open questions) were for-
mulated as 5-point Likert-scaled items. General experience was as-
sessed with eleven questions measuring among others if participants
trusted that the robot knew where it was going, if it was clear where
the robot was going and whether or not the robot was helpful in guid-
ing someone. In this set of questions also the speed of the robot and
volume of the audio messages were evaluated.

Five questions related to the physical appearance assessed the de-
sign, and specifically the height of the robot. Usability questions in-
cluded questions related to users’ expectancies of system capabilities
and whether or not they were satisfied with the overall performance
of the robot. Depending on the condition, this section included 5
(condition A), 6 (condition B), or 7 (condition C) questions.

Eight questions were included related to demographic information
(age, gender, educational background) and familiarity with robots,
social robots, and the premises where the test was conducted. A con-
trol question about the position of the tablet was included, and finally,
we were interested in knowing whether or not the instructions pro-
vided were clear. Overall, this resulted in 30-32 questions

2.4 Procedure
Small groups of participants were recruited to participate in a guided
tour of the DesignLab, a recently-opened lab of the University of
Twente. Participants were given a briefing, after which they were
given a tour of about five minutes through the lab. Participants were
requested to follow the robot. No specific instructions were provided
regarding the distance they should keep to the robot (Figure 4). The
tour went past two points of interest (Figure 2, point B and C) where
the robot provided a brief statement about the purpose using a text-
to-speech engine. For example, when arriving at waypoint A, partic-
ipants would see a tray with kinetic sand, and the robot would state

that ”The kinetic sand is made up of 98 percent sand, and 2 percent
polyminethyl siloxane which gives it its elastic properties.”

Afterwards the robot returned to the starting position where par-
ticipants were requested to fill out the post-experiment questionnaire
(Figure 2 point A). Following debriefing, participants were provided
some candy as reward for their participation.

2.5 Participants
A total of 25 participants (14 males, 11 females) participated in the
user study, with ages ranging from 17 to 40 (M=23.76, sd=5.93). All
participants were students and staff from the University of Twente,
primarily of Dutch (68%), German (8%) and Greek (8%) nationality.
Participants had average experience with robots in general (M=2.84,
sd=.90) and little experience with social robots (M=2.12, sd=1.09).

2.6 Data analysis
We calalculated means for all items. To compare between conditions,
the data were first tested for normality. In case of normally distributed
data, we report ANOVA’s and T-tests in the results section, otherwise
Kruskal-Wallis and post-hoc Mann-Whitney tests are reported.

3 Results
Overall, participants indicated they were quite satisfied with the
robot: they believed the robot was helpful (M=4.47, sd=0.78), it

Figure 2: Layout of the laboratory showing start/end position (A) and
two points of interest (B and C)
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Figure 3: User experience ratings in the conditions; * indicates sig-
nificance at the 0.05 level, ** at the 0.01 level

moved at a comfortable speed (M=3.12, sd=1.37), and participants
trusted that the robot knew where it was going to (M=4.47, sd=0.78).
These ratings did not differ significantly between conditions. Partic-
ipants were moderately positive about the usability of the system:
they felt comfortable using it (M=3.67, sd=1.05) and were satisfied
by its performance (M=3.56, sd=0.77). No main effects or correla-
tions were found including gender, age, robot experience and/or ed-
ucational background.

Between conditions, Kruskal-Wallis tests indicated there were sig-
nificant differences which were mostly due to the location of the
tablet, thus between conditions A and C, versus condition B where
the tablet was mounted on the front of the robot.

Post-hoc Mann-Whitney’s indicated participants felt the direction
of the screen was more appropriate in condition A (M=3.89, sd=.928)
compared with B (M=2.25, sd=1.28), U=11.5; Z=-2.459, p<0.05.
A similar effect was found between conditions B and C (M=4.0,
sd=1.20), U=10.0, Z=-2.36, p<0.05 Furthermore, the design in con-
dition B was more intimidating (M=3.00, sd=.97) compared with
condition A (M=1.78, sd=.68), U=11.5, Z=-2.51, p<0.05 and con-
dition C (M=1.50, sd=.54), U=6.00, Z=-2.885, p<0.01. Participants
in condition C enjoyed the guiding more (M=4.13, sd=.35) com-
pared with those in condition B (M=3.25, sd=.71), U=10.5, Z=-2.62,
p<0.05.

With respect to the robot’s appearance, participants felt that the
body design matches the robot’s function (M=2.71, sd=0.94). One of
the interesting findings was that participants indicated the height was
appropriate (M=4.21, sd=0.82). Informal sessions with participants
indicated the robot would be too tall for a guiding robot, but in the
end this was not the case. One of the reasons for this could be that
participants’ own average height was 177cm (sd=8.5cm), thus, most
of them being taller than the robot.

4 Discussion & Conclusion
In this paper we presented an exploratory study into the effect of a
robot’s physical appearance on usability and user experience. Small
groups of people were provided a short tour by a guide robot. Our
results indicate that the location of the screen can be either forward

Figure 4: A small group of participants being guided by the robot

or backward, depending on the information displayed. In the case of
eyes facing participants, our results showed that this was considered
to be very unnatural and intimidating. On the other hand, when the
tablet faced participants and route information was provided this was
again evaluated as more useful. This might seem to be in contrast
with the results of Shiomi et al. [5] who found that eyes facing par-
ticipants are more effective to attract bystanders. However, we think
this could be explained because in our setup the participants had al-
ready been introduced to the robot and asked to follow it.

Neither gender, age or experience with robots influenced the eval-
uation of the robots significantly, which could be due to small sample
size.

Our future work will include a more interactive setup (e.g. provide
participants some choices) during the tour. A second area of interest
would be robot speed, and to investigate whether or not the speed
of a guiding robot could be slower when guiding small groups com-
pared with individual people. To conclude: the appearance of a guide
robot can greatly influence user experience, something subtle as two
eyes facing participants significantly decreases a robot’s evaluation.
Hence, more research is needed to even better understand how to
design acceptable guide robots.
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How can a tour guide robot’s orientation influence 
visitors’ orientation and formations?

Daphne E. Karreman1, Geke D.S. Ludden2, Elisabeth M.A.G. van Dijk1, Vanessa Evers1 

 
Abstract.  In this paper, we describe a field study with a tour 
guide robot that guided visitors through a historical site. Our 
focus was to determine how a robot’s orientation behaviour 
influenced visitors’ orientation and the formations groups of 
visitors formed around the robot. During the study a remote-
controlled robot gave short guided tours and explained some 
points of interest in the hall of Festivities in the Royal Alcázar in 
Seville (Spain). To get insight into visitors’ reactions to the 
robot’s non-verbal orientation behaviour, two orientations of the 
robot were tested; either the robot was oriented with its front 
towards the visitors, or the robot was oriented with its front 
towards the point of interest. From the study we learned that 
people reacted strongly to the orientation of the robot. We found 
that visitors tended to follow the robot tour guide from a greater 
distance (more than 3 meters away from the robot) more 
frequently when the robot was oriented towards the visitors than 
when it was oriented towards the point of interest. Further, when 
the robot was oriented towards the point of interest, people knew 
where to look and walked towards the robot more often. On the 
other hand, people also lost interest in the robot more often when 
it was oriented towards the point of interest. The analysis of 
visitors’ orientation and formations led to design guidelines for 
effective robot guide behaviour.  

1 INTRODUCTION 
Several robots have been developed to give guided tours in a 
museum-like setting (some examples are described in [1]–[4]). 
These previously developed robotic tour guides did good jobs in 
their navigation and localization tasks, such as avoiding 
collisions with visitors or objects, and showing they were aware 
of the visitors’ presence. While giving the tours, these robots 
captured the attention of visitors, had interactions with visitors 
and guided the visitors through smaller or larger parts of 
exhibitions. Studies reported some information about the 
visitors’ reactions to the robot’s actions which has led to 
knowledge on specific reactions of people to the modalities of 
these robots and behaviour shown by these robot designs. 1 

Within the EU FP7 FROG project we were, among other 
innovations and application areas, interested in effective tour 
guide behaviour and personality for a robot guide. To find 
effective behaviours we started to examine the effect of single 
modalities on robot behaviour and visitor reactions to those 
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217, 7500 AE Enschede, The Netherlands. Email: {d.e.karreman, 
e.m.a.g.vandijk, v.evers}@utwente.nl  
2  Product Design, Faculty of Industrial Design Engineering, University 
of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands. Email: 
g.d.s.ludden@utwente.nl 

behaviours. The question we wanted to answer with this study is: 
how does the robot orientation behaviour influence the 
orientations of the visitors, as well as the type of formations that 
(groups of) visitors form around the robot? The findings of the 
study we present in this paper led to guidelines to design 
behaviours (for FROG and other robots) that will influence 
visitors’ reactions, such as orientation and group formations. 

One way of creating robot behaviour is to copy human 
behaviour to a robot. A limitation of copying human tour guide 
behaviour to robots is that robots in general, and the FROG robot 
specifically, do not have the same modalities to perform actions 
that human tour guides perform. On the other hand, robots might 
have modalities to perform actions that human tour guides 
cannot perform. Therefore, we need to carefully study how and 
which robot modalities can effectively be used in interaction.  

In previous studies, the reactions of the visitors were assumed 
to be similar to visitor reactions to human tour guides, but it 
turned out that these were different. For example, people often 
crowded around the robots [1], [2], [4], [5] or started to search 
for its boundaries by blocking the path [1] or pushing the 
emergency button [2], [6]. On the other hand, people often used 
their known human-human interaction rules to interact with the 
robots [2], even if the robots were not humanoid and people 
were informed that not all cues could be understood by the robot. 
Similar to robots that have been used in other studies, our FROG 
robot is not humanoid. We know that human tour guides 
influence visitor reactions of a group of visitors by using gaze 
behaviour and orientation [7]. Therefore, we are interested in 
visitors’ reactions to a basic tour guide robot with limited 
interaction modalities. Also, we wanted to find out whether  
these reactions are similar to or different from visitor reactions to 
a human tour guide.  

In this paper we will focus on the formation and orientation of 
visitors as a reaction to the robot orientation behaviour. We use 
the term formation to indicate the group structure, distance and 
orientation of the visitors who showed interest in the robot 
and/or the point of interest the robot described. In human guided 
tours, people generally stand in a common-focus gathering, a 
formation in which people give each other space to focus on the 
same point of interest, often a semi-circle [8]. For robot guided 
tours, we expected to find similar formations. However, from 
previous research we learned that single persons or pairs of 
visitors also joined the tour [9], [2]. Therefore, we considered the 
combination of distance and orientation of these individuals or 
pairs as formations as well. We assumed that people would be 
engaged with the robot or the explanation, when they were 
oriented towards the robot or the point of interest for a longer 
period of time. Hence, we also use the terms formation, 
orientation and engagement separately from each other in order 
to be specific in the description of the results. 
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In this paper, we first will discuss the related work on effects 
of robot body orientation, gaze behaviour and the use of several 
modalities in tour guide robots. Then we will present a field 
study where we aimed to find how robot orientation behaviour 
influences the group formations and orientations of the visitors. 
Next, we present will the results and discuss them. Finally, we 
will present design guidelines for non-verbal robot behaviour. 
The paper will end with a conclusion, in which we give 
directions for future research. 

2 RELATED WORK 
A tour guide robot for instance engages visitors and directs their 
attention to points of interest. This is similar to what human tour 
guides do intuitively. Human tour guides use their (body) 
orientation and give gaze cues to direct visitors’ attention. 
However, most important are their subtle reactions to visitors’ 
actions [7]. Kuzuoka et al. showed that a robot could effectively 
reshape the orientation of a visitor by changing its own 
orientation with a full body movement [10]. Also, human-like 
gaze cues can be successfully copied to robots, as shown by 
Yamazaki et al. They found that visitors showed higher 
engagement to a robot tour guide that used human-like gaze cues 
and its story than when the robot was not using these human-like 
gaze cues [11]. Sidner et al. found that head movements (and 
thus gaze cues) of the robot helped to keep people engaged 
during interaction [12]. Subtle gaze cues of robots can also be 
understood by people, as was shown by Mutlu et al. who let a 
robot describe an object among several other objects that were 
placed on a table. When the robot was “gazing” at the object it 
described, people found it easier to select the corresponding item 
[13].  

The previously described body of work has focussed on 
copying two important types of cues that human guides use. 
However, robots are often able to apply a more diverse set of 
cues than body orientation and gaze cues alone. Different types 
of robots can use alternative modalities to give cues about their 
intentions. For example, if a robot uses a screen to convey 
information, visitors will stand close and orient themselves so 
that they can see the screen. However, when a robot uses arms to 
point and has no screen, visitors will probably orient themselves 
so they can easily see the robot and the exhibit the robot is 
pointing at.  

Researchers have tried different modalities for museum 
robots to communicate intentions to their users. In the next 
paragraphs some examples of behaviour will be given to 
illustrate the effects of specific behaviours. The robot Rhino as 
developed by Burgard et al. blew a horn to ask visitors to get out 
of the way, which often had the opposite effect and made visitors 
stand in front of the robot until the horn sounded again [1]. 
Thrun et al. developed Minerva, the successor of Rhino. This 
robot did not have the problem that people clustered around 
when it wanted to pass, because it used several emotions and 
moods using its face and tone of voice. First, the robot asked in a 
happy and friendly state to get out of the way and if people did 
not react, the robot became angry after a while. With this 
behaviour Minerva was able to indicate its intentions and 
internal states successfully to the visitors [2]. However, the 
design of emotions and moods should be done carefully, as 
Nourbakhsh et al. found in the development of their robots. The 
robots Chips and Sweetlips showed moods based on their 

experiences that day. Visitors who only had a short interaction 
timeframe with the robots did not always understand these 
moods [4]. Touch screens and buttons have also been used for 
interaction purposes. These were found to make people stand 
closer to the robot, inviting them to interact with the buttons. 
This was for example found for the eleven Robox at the Expo.02 
that were developed by Siegwart et al. [3]. However, buttons 
also can ruin the intended interaction. For example, Nourbakhsh 
et al. found that for the robot Sage [14] and Graf et al. for their 
robots in the museum of Kommunikation in Berlin (Germany) 
[6], people liked to push the emergency stop button and 
unintentionally stopped the robot from functioning.  

All robots mentioned so far, had some interactive and social 
behaviour. However, specific guide behaviours - to engage 
multiple visitors and give information about exhibits - have still 
received little attention. To make a guided tour given by a robot 
a success, a smooth interaction between the robot guide and the 
visitors is essential, and therefore, interaction cues should be 
designed carefully.  

Another challenge for museum robots is that they often have 
to interact with groups of people rather than with just one 
person. Research on group dynamics and behaviour of visitors 
gathering around a (dynamic) object in a museum setting or 
following a tour guide has revealed that visitors often stand in a 
specific formation (so-called F-formation) and react to each 
other and the (dynamic) exhibit (e.g. [7], [8], [15], [16]). For 
example, when a small group gathers around one person giving 
them information, they usually form a sort of (semi-) circle. In 
that way all group members can listen to the person who has the 
word [15]. Of course, the type of formation depends on the size 
of the group. However, the previously described formation is 
also recognizable when a human tour guide is guiding a (small) 
group of visitors and when people gather around a point of 
interest to all have the chance to see it [7]. When gathering 
around a museum object there are differences between gathering 
around interactive objects and static objects. When gathering 
around static objects, a lot of visitors get a chance to see the 
object at the same time. However, when gathering around 
interactive objects (often including a screen), fewer people can 
see the object at the same time [16], because people tend to stand 
closer to see the details shown on the screen or to directly 
interact with the (touch) screen. Museum exhibit designers tend 
to make the exhibits more interactive in order to keep the 
attention of the visitors, which also is effective for tour guide 
robots to attract visitors [4]. While these exhibits introduce more 
interactivity to the exhibition, it decreases the social interactions 
and collaborations between visitors [16]. Therefore, interactivity 
of robots should be designed for a larger group and other 
modalities than a screen/buttons should be used to shape the 
visitors’ orientations and formations.  

Our question is, can we design robots that have robot specific 
and intuitively understandable behaviour? To answer this 
question, robot designers have often resorted to directly copying 
human behaviour. In the design of other product categories, 
designers have often used anthropomorphism, (copying human 
forms and/or behaviour) in an abstract way rather than by 
directly copying. Subtly copying human forms or behaviour 
might likewise give cues about a product’s intention and help 
people to understand the function of a product intuitively [17]. 
For robots, this implies that a robot does not have to directly 
resemble a human being, while it can still be capable of clearly 
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communicating its intentions. Creating a robot with some 
anthropomorphic features does not necessarily mean that the 
robot needs to be human-like. However, to smooth the 
interaction human-like cues or features can be used in the design 
of robots [18]. Another question is, what should be designed 
first; the behaviour or the appearance of the robot. In most 
research on robots and their behaviour, the visual design for the 
robot was made first, and afterwards accompanying behaviour 
was designed. We decided to start from the other end. In this 
study, we used a very basic robot that showed some 
anthropomorphic behaviour in its body orientation. We were 
interested to find if and how people react to this behaviour while 
the appearance of the robot is far from human-like. In this way 
we expected to find some general guidelines for robot behaviour 
to influence people’s reactions to the robot, while the options for 
the design of the robot are still multiple. 

3 STUDY DESIGN 
The goal of this study was to determine how orientation 
behaviour of a very basic robot influenced visitors’ orientation 
and the formations groups of visitors formed around the robot. 
The orientation behaviour of the robot was manipulated, while 
other interaction features were limited. To evaluate how visitors 
reacted to the robot, we performed a study in the Royal Alcázar 
in Seville (Spain). The robot gave short tours with four stops in 
the Hall of Festivities of in the Royal Alcázar. 
 
Participants 
Participants of the study were visitors of the Royal Alcázar. At 
both entrances of the room, all visitors were informed with signs 
that a study was going on. By entering the room, visitors gave 
consent to participate in the study. It was up to them if they 
wanted to join the short tour given by the robot or not. 
Approximately 500 people (alone or in groups ranging from 2 to 
7 visitors) interacted with the robot during the study.  
 
Robot 
The robot used for the field study was a four-wheeled data 
collection platform (see Figure 1). The body of the robot was 
covered with black fabric to hide the computers inside. A 
bumblebee stereo camera was visible at the top of the robot, as 
well as a Kinect below the bumblebee camera. The robot was 
remotely operated. The operator was present in the room, but he 
was not in the area where the robot gave tours. The robot was 
operated using a laptop. The laptop screen was used to check the 
status of the robot, while the keyboard was used to actually steer 
the robot. The interaction modalities of the robot were limited; 
the robot was able to drive through the hall, change its 
orientation and play pre-recorded utterances. The instruction 
“follow me” was visible on the front of the robot, and signs 
informing people about the research (in English and Spanish) 
were fixed to the sides of the robot.  

The robot used for this study was very basic. We chose this 
particular robot to be able to determine the effects of body 
orientation on visitors’ reactions without being influenced by 
other factors in robot design and behaviour (such as aesthetics of 
the robot, pointing mechanisms, visualisations on a (touch-) 
screen or active face modifications).  

During the study we used a user-centred iterative design 
approach [19] for the behaviour of the robot. When the robot 

charged in between sessions, we discussed robot behaviours that 
had the intended effect and behaviours that did not work well. 
During the study we modified the explanation of the robot after 
session one, because it became clear that visitors did not 
understand where to look. A total of three iterations were 
performed. In all iterations only changes to the explanation of 
the robot were made, however the content about the points of 
interest remained the same. 
 
Procedure 
The tour given by the robot took about 3 minutes and 10 
seconds. The points of interest chosen were all visible on the 
walls of the room (no exhibits were placed anywhere in the 
room), however the position of the points of interest on the walls 
differed in height. During a tour the distance to drive in between 
the points of interest also differed, from approximately two 
meters up to approximately five meters. This was done so we 
could see if there were different visitor behaviours when 
following the robot. However in this paper we will not focus on 
the results on following the robot.  

When visitors entered in the Hall of Festivities, the robot 
stood at the starting place (1) (see Figure 2) and began the tour 
by welcoming the visitors and giving some general information 
about the room. When the robot finished this explanation, it 
drove to the next stop (about 3.5 meters away), asking the 
visitors to follow. At the next stop (2) the robot told the visitors 
about the design of the figures on the wall that were all made 
with tiles, after which it drove the short distance (about 2 meters) 
to the next exhibit. At the third stop (3) the robot told the visitors 
about the banner that hung high above an open door. At the end 
of this story the robot asked the visitors to follow after which it 
drove the long distance to the last stop (about 5 meters). Here (at 
point 4) it gave information about the faces visible on the tiles on 
the wall. Before ending the tour the robot drove back to the 
starting point (about 3.5 meters), informed the visitors the tour 
had finished and wished them a nice day.  

After a while, when new visitors had entered the room, the 
robot started the tour again. During the study the robot tried to 
persuade visitors to follow it with the sentences “please follow 
me” and “don’t be afraid”, when visitors were hesitant. In all 
cases it was up to the visitors to decide whether they followed 
the robot or not. Visitors were never instructed to follow the 
robot by researchers present in the room. 

As the study was performed in a real life setting, with 
uninformed naïve visitors, we sometimes had to deviate a bit 
from the procedure. The robot had defined places for stops. 
However, sometimes the robot had to stop close to the defined 
place, because people walked or stood in front of the robot.   

 

 
Figure 1. Impression of the robot and visitors in the site 
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Figure 2. Layout of the tour 

 
Another reason to deviate was when the robot lost the 

attention of all people who were following the tour. Then, it 
drove back to the starting place and started over again. If some 
visitors lost interest and left, but other visitors remained listening 
to the robot, it continued the tour. 

When all visitors left the hall, or did not show any attention 
towards the robot, the trail was aborted, and restarted when new 
visitors entered the hall. Therefore the number of times the robot 
was presenting at each of the four exhibits was decreasing. The 
robot started the tour 87 times at the first exhibit, continued 70 
times at the second exhibit. At the third exhibit the robot started 
its presentation 63 times and it finished the story only 58 times at 
the fourth exhibit. A total of 278 complete explanations at points 
of interest were performed (see table 1 for a specification of the 
actions per point of interest).  

 
Manipulations 
During the study, we manipulated the robot’s orientation 
behaviour. Either the robot was orientated towards the point of 
interest or the robot was orientated towards the visitors. When it 
was orientated towards the point of interest, the front of the robot 
was in the direction of the point of interest. The points of interest 
were all located a few meters apart from each other. When the 
robot was oriented towards the visitors, its front was directed 
towards a single visitor or towards the middle of the group of 
visitors. See table 1 for a specification of the orientation of the 
robot per iteration and per point of interest.  
In between the three iterations, some changes were made to the 
explanation by the robot. The explanations for the robot were 
developed in such a way that they could be used for both 
orientations of the robot. During the first iteration we observed 
that these explanation worked fine when the robot was oriented 
towards the points of interest. However, we found that it seemed 
unclear where to look when the robot was oriented towards the 
visitors. Therefore, for the second iteration, the explanations of 
the robot when oriented towards the visitors at points of interest 
two, three and four were modified. Information about where 
visitors had to look exactly to find the point of interest the robot 
explained about was added. As a result, the robot explained more 
clearly to the visitors “to look behind it” when it was orientated 
to the visitors and “to look here” when it was oriented towards 
the point of interest. Also, the sentences “please follow me” and 
“don’t be afraid” were added to try to convince people to follow 
the robot to the next point. 

  

Table 1: Specification of manipulations 
 Robot 

actions 
Point 
1 

Point 
2 

Point 
3 

Point 
4 

Iteration 1 
To exhibit 
To people 
Excluded 

109 
66 
27 
16 

38 
4 
27 
7 

26 
23 
0 
3 

23 
20 
0 
3 

22 
19 
0 
3 

Iteration 2 
To exhibit 
To people 
Excluded 

90 
42 
35 
13 

25 
0 
20 
5 

24 
10 
11 
3 

22 
17 
0 
5 

19 
15 
4 
0 

Iteration 3 
To exhibit 
To people 
Excluded 

79 
1 
65 
13 

24 
0 
16 
8 

20 
0 
18 
2 

18 
1 
16 
1 

17 
0 
15 
2 

Total 
To exhibit 
To people 
Excluded 

278 
109 
127 
42 

87 
4 
63 
20 

70 
33 
29 
8 

63 
38 
16 
9 

58 
34 
19 
5 

 
In the third iteration another modification was made to the 

explanation of the robot when it was oriented towards the 
visitors. The sentences were ordered in such a way that the robot 
would capture the attention of the visitors with something trivial, 
so people would not miss important parts of the explanations. All 
iterative sessions took about 1 hour and 40 minutes.  
 
Data collection 
During the study, the visitors were recorded with two cameras: a 
fixed camera that recorded the whole tour and a handheld 
camera that was used to record the facial expressions of the 
visitors close to the robot. Also, several visitors who followed (a 
part of) the tour were interviewed about their experiences. The 
interviews were sound recorded.  

For this study only the data collected with the fixed camera 
was used, because the data from this camera gave a good 
overview of the room and the actions, orientation and formations 
of the visitors. We decided to not to use recordings from the 
cameras that were fixed on the robot, because their angle of view 
was limited to only the front of the robot. Using these recordings 
would not give us opportunities to study the behaviour of visitors 
who were next to or behind the robot (for example when the 
robot was oriented towards the exhibit), which in this study 
would lead to the loss of a lot of information on visitor 
orientation and formations. The proximity of the visitors was 
measured based on the number of tiles they stood away from the 
robot. Data collected through the short interviews was also not 
used in this analysis, because in this case we were only 
interested in how robot orientation influenced the actual 
orientation of visitors and their formations and less in their 
experience with the robot.  
 
Data analysis 
For the analysis, 236 robot actions of a total of 278 robot actions 
were used. Forty-two cases were excluded from analysis because 
no visitors were in the room or no robot was visible, because it 
was out of the angle of view of the camera, or the view was 
blocked by large numbers of visitors (for example a group with a 
human tour guide that did not show any interest in the robot). 
This resulted in 236 robot actions (278-42=236) in 3 iterations 
that were left for the analysis. The robot was oriented towards 
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the exhibit while it explained 127 times, and the robot was 
oriented towards the visitors while it presented 109 times.  

We were interested in the reactions of the visitors that might 
be influenced by the robot orientation during each if these 278 
complete explanations at the points of interest. However, exact 
visitor behaviour to search for was not defined before the study. 
We performed a content analysis of the recordings from the 
fixed camera. We isolated robot actions -the moments that the 
robot stood close to a point of interest and presented about it- in 
the data for coding purposes. Coding of the data was done by 
using a Grounded Theory Method [20] and use of an affinity 
diagram [21] for the open coding stage. No exact codes were 
defined before the start of the analysis. We defined the codes 
based on the actions of the visitors found in the video recordings. 
Some examples of found codes are: “standing very close to the 
robot and oriented towards each other,” “visitors standing in a 
semi-circle and robot oriented towards the exhibit,” “visitors 
losing interest during the robot story and robot oriented towards 
the visitors,” “visitors walking towards the robot and robot 
oriented towards exhibit.” We used a count method to compare 
the reactions of the visitors during the robot actions between the 
different robot orientations and the different points of interest. 

10 % of the data was double coded and we found an overall 
inter-rater reliability of  a=0.662 (Cohen’s Kappa), which 
indicates a substantial agreement between the coders. Hence, one 
coder finished the coding of the dataset that was used for 
analysis. 

4 RESULTS 
We found that visitors stood far away more often when the robot 
was oriented towards the visitors  (31 times, 24.4% of all cases 
in this condition) than when the robot was oriented towards the 
point of interest (17 times, 15.6% of all cases in this condition). 
Further, no differences were found in formations of the visitors 
between both conditions. However, when the robot was oriented 
towards the visitors, just 18 times (14.2% of all cases in this 
condition) visitors walked towards the robot, while when the 
robot was oriented towards the point of interest visitors walked 
towards the robot 25 times (22.9 % of all cases in this condition). 
In both conditions and at all stops, a lot of people (78% of all 
cases) were just walking by, showing no attention for the robot 
at all. However, most of the time one or a few visitors had 
already joined the robot by then. A few times we observed that 
visitors waited until the robot was free again and then followed 
the tour. Also, when some of the visitors left the robot, others 
stayed to hear the rest of the explanation about the point of 
interest. 

We found more differences between visitor formations when 
we focussed our analysis on the interactions in stops two, three 
and four, while excluding stop one. We decided to exclude stop 
one from our analysis, because at that stop the robot was always 
oriented towards the visitors and it was not explaining about a 
specific point in the room. We found that when the robot 
provided information about points of interest two, three and four, 
more people lost interest when the robot was oriented towards 
the point of interest (22 times, 21% of all cases in this condition) 
than when the robot was oriented towards the visitors (8 times, 
12.5 % of all cases in this condition). Also, 6 times (9.4 % of all 
cases in this condition) visitors did not have a clue where to look 
when oriented towards the visitors. This was never the case ( 0% 

of all cases in this condition) when the robot was oriented 
towards the point of interest. 

The number of visitors standing close to the robot was 
comparable between both conditions (5 times, 3.9% of all cases 
with orientation towards the visitors and 6 times, 5.5% of all 
cases with orientation towards the exhibit). However a difference 
was found between the exhibits. Only at stops one and two, did 
visitors stand really close to the robot when the robot was 
oriented towards the visitors. However, in the condition where 
the robot was oriented towards the point of interest people stood 
close to the robot at all stops. From reviewing the video, we 
observed that when people stood very close to the robot and the 
robot was oriented towards them, visitors only seemed to focus 
on the robot, while visitors focussed on the point of interest 
when the robot was oriented towards the point of interest. 

Also we found some differences in visitor reactions between 
the different stops. Fewest visitors walked towards the robot at 
stop three (5 times; 9.3% of the cases in this condition), most did 
at stop four (16 times, 30.2% of the cases in this condition).  
Visitors lost interest in the story and the robot most often at stop 
three (14 times; 25.9% of all cases in this condition) and least 
often in stop four (6 times; 11.3% of all cases in this condition). 

Looking only at the differences between the stops over both 
conditions, we found that many more single visitors and pairs 
joined the robot for at least one stop (86 times, 36.4% of all 
cases) than that people gathered around the robot in any group 
formation (38 times, 16.1% of all cases). We found that during 
11 robot actions (4.7% of all cases) visitors stood less than 30 
cm away from the robot. During 48 robot actions (20.3% of all 
cases) people stood more than 3 meters away from the robot. In 
131 robot actions (55.5% of all cases) visitors stood between the 
30 cm and 3 meters from the robot. Note that these cases can 
overlap, because there could be more than one visitor at the same 
time. In the rest of the cases no visitors or no robot were in the 
field of view or the visitors did not join the robot tour.  

5 DISCUSSION 
Influences of robot orientation 
We found that visitors stood far away from the robot more often 
when the robot was oriented towards the visitors than when it 
was oriented towards the point of interest. Furthermore, we 
found that visitors tended to walk towards the robot more often 
when the robot was oriented towards the point of interest than 
when the robot was oriented towards the visitors. One possible 
explanation for this visitor reaction might be that visitors could 
not hear the robot well enough. However, we do not consider 
this a valid explanation in all cases, since people generally in 
both conditions followed the robot from a distance and they were 
able to hear the explanations of the robot. Therefore, we argue 
that it might be that the visitors felt that a distance was created 
by this specific orientation of the robot. This may have caused 
that people felt safer to approach the robot when it was oriented 
towards the point of interest. Perhaps, the robot kept people at a 
distance with its “eyes” when it was oriented towards the 
visitors.  This finding is in line with findings from other studies 
that people walked closer to a robot that was not following them 
with gaze than when the robot was following them with gaze, as 
shown by Mumm and Mutlu [22]. Remarkable was that more 
people lost interest when the robot was oriented towards the 
point of interest than when the robot was oriented towards the 
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visitors. As we argued before, the orientation of the robot 
towards the point of interest might have felt safer for people, at 
the same time, it might also have given them the feeling of being 
excluded, which made them leave the robot. 

In stops one and two, several people were walking towards 
the robot, because the robot captured their attention and they 
were curious to see what it was for. Fewest visitors walked 
towards the robot at stop three, most did at stop four. Visitors 
probably did not have to walk to the robot in stop three, because 
it was really close to stop two. From stop three to stop four was 
the longest walk. Visitors who walked towards the robot in stop 
four were probably a bit reserved following the robot and 
therefore just walked to the robot when it had already started the 
next explanation. Apart from that, stop three was close to an 
open door, the entrance to the next room, therefore people who 
lost interest could easily walk away from the robot into the next 
room. When visitors followed to stop four, the last stop of the 
tour, they were likely to follow the robot the whole tour. We 
assume these visitors liked to hear the explanations of the robot 
and stayed with the robot until the final explanation, therefore 
fewer of them left the robot in stop four.  

Visitor actions that were coded with “losing interest” showed 
that most of the time not all visitors lost their interest at the same 
moment. When one visitor of a pair or group walked away, the 
other(s) either followed the leaving person directly, stayed until 
the end of the explanation at that point or stayed until the end of 
the tour. This indicates that visitors of pairs or groups gave each 
other the time to do what they liked and that they did not have to 
leave together at the same moment. An advantage was that for 
most people it was clear that the robot just gave a short tour, so 
the people who left did not have to wait for a long time if the 
others stayed. In some cases we observed visitors discussing if 
they would follow the robot and in the end they decided that one 
would follow the tour, and that the other would wait outside the 
research area. It was important for the robot that when one 
visitor lost interest, most of the time the robot had other visitors 
(either close or far) who were still interested in the robot and the 
story, so it went on with the story.  

We found a difference in the distance people kept from the 
robot and the orientation of the robot. Only at stops one and two, 
did visitors stand really close to the robot when the robot was 
oriented towards the visitors. However, when the robot was 
oriented towards the point of interest, visitors stood very close in 
all four stops. It seemed that when visitors stood very close to 
the robot and the robot was oriented towards them, visitors only 
had interest in the robot as an object and they tried to make 
contact with the robot (by waving at the robot or bringing their 
eyes on the same height as the lenses of the camera of the robot). 
We think this visitor behaviour mainly occurred at points one 
and two, because at these moments the robot captured people’s 
attention. In stop three and four only visitors who were already 
following the tour seemed to be present and people who were 
only interested in the robot as an object did not disturb the robot 
guide and its visitors in these points. When visitors stood close 
and the robot was oriented towards the point of interest, the 
visitors probably could not hear the voice of the robot well 
enough to follow the story in the crowded area, while they were 
interested in the point of interest the robot presented about and 
wanted to hear the explanation.  

Visitors who were interacting with the robot oriented towards 
them, sometimes appeared to have no clue where to look. This 

indicates that visitors were sensitive for the orientation of the 
robot. More verbal cues were added to the explanation of the 
robot in iterations 2 and 3. However, during these iterations, we 
still observed that when the robot was oriented towards them 
visitors got the clue where to look later than they expected. So, 
even though we changed the explanation of the robot to make 
more clear where to look and started with something trivial, just 
as human tour guides do [23], visitors did not readily understand 
where to look. This might be due to the length of the 
explanations of the robot. These were much shorter than 
explanations given by a human tour guide at a point of interest 
usually are. So, in general visitors had less time to focus again 
before they would miss something. The robot orientation 
towards the point of interest avoided this problem.  

 
Visitor reactions to the “eyes” of the robot 
Our observations showed that visitors were aware of the lenses 
of the camera on the robot and responded to them as if they were 
the eyes of the robot. This can for example be seen from the 
observation that some visitors waved at the camera when they 
arrived or when they left the robot. People also stood in front of 
the camera when they wanted to make contact with the robot. 
The observation that people are sensitive to the camera of a robot 
and orient in front of it was also made by Walters et al. [24]. 
These examples make clear that visitors react to the orientation 
of the robot and probably see the lenses of the camera as the eyes 
of the robot. Another observation that strengthens these 
conclusions is that visitors most often lost their interest in stop 
three. In this stop the explanation was difficult to understand 
because the story was about a banner that hung high in the room, 
above an open door. When the robot was oriented towards the 
exhibit, it seemed as if it was “looking” at a point in the other 
room because it was not able to tilt its orientation upwards. This 
confused the visitors, even when the robot was clear in its 
explanation about where to look. 
 
Differences between robot guide and human tour guide 
We found that visitors reacted differently to the robot tour guide 
than we would expect from observed reactions to a human tour 
guide. First of all fewer groups and more individual visitors or 
pairs of visitors joined the robot tour guide. Also, visitors 
seemed not prone to join strangers, but rather waited till the tour 
was finished and they could join a new tour.  

Most visitors stood between 30 cm and 3 meters from the 
robot. When there were visitors standing very close or far away 
from the robot, there also could be visitors who stood at average 
distance (between 30 cm and 3 m) from the robot. While most 
visitors stood at an average distance, standing really close or 
staying at a distance differs from visitor behaviour shown when 
they follow a human tour guide. Most of the time visitors of a 
group of a human tour guide does not show that large difference 
in proxemics to a guide and often stand in a semi-circle to give 
everyone a chance to see the guide [7]. Also, Walters et al. [25] 
and Joosse et al. [26] showed in controlled experiments that 
people allowed different approach distances and appropriate 
proxemics for a robot than they allow for confederates. This 
leads to the conclusion that we cannot assume that people react 
the same to robot tour guides as to human tour guides.  
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Implications of study set-up 
The study was performed in the wild which influenced the 
execution of the study and the manner of analysis. One 
disadvantage was that the situations of guiding could not be 
controlled. Also, less information of the visitors could be 
obtained. For example, we could not have extended 
questionnaires because people did not want to spend their time to 
filling these in.  
We performed the study in several iterations in which we 
modified the explanation of the robot. Without these 
modifications to the explanations, we would not have been able 
to perform the manipulation of the orientation of the robot, 
because with the original explanation visitors did not seem to 
know where to find the point of interest when the robot was 
oriented towards them. This led to the following differences 
between the iterations. In iteration one the robot was mainly 
oriented towards the point of interest. In iteration two the 
modification of the explanation seemed insufficient, so the robot 
was mainly oriented towards the points of interest. In iteration 
three the robot was mainly oriented towards the visitors. 

An advantage of the in-the-wild set-up of this study was that 
we observed the reactions of the visitors the way they would 
probably be if an autonomous tour guide robot were to be 
installed in the Royal Alcázar. The findings of this research were 
an important step for the development of FROG, because with 
in-the-lab studies with small groups of users, it would be 
difficult to create a similar environment including people who 
are acquaintances and strangers. Probably, we would also not 
have found how people react when the robot is already occupied 
by strangers, while in this set-up we did find interesting reactions 
of visitors in the real-world context.  

Also, we used a very basic robot with limited interaction 
modalities. Nevertheless, the influence of body orientation and 
was largely observable in the visitor reactions. We expect that 
these factors will keep influencing visitor reactions when more 
robot modalities (such as arms to point, or a screen to show 
information) are added to the robot. 

6 DESIGN IMPLICATIONS FOR ROBOT 
BEHAVIOUR 
Findings described in the previous section led to the following 
set of design guidelines for the design of the non-verbal 
behaviour of a tour guide robot, that can be used irrespective of 
the visual design of the robot.  

1) Check for visitors standing far away when people 
close-by leave the robot during the explanation. 

The robot did not only catch the attention of people who were 
standing close such as we would expect with human tour guides.  
Visitors who chose to stay at a distance also followed the robot 
tour. Although these visitors were interested in the story and the 
robot, they did not want to be close. The tour guide robot should  
therefore not only focus on visitors nearby, but scan the 
surrounding once in a while and go on with the story or tour if it 
detects visitors who are not standing close, but show an 
orientation towards the robot and stay there during explanation. 
This behaviour of scanning the environment is even more 
important when visitors who are standing close all leave. Also, 
the robot should not rely solely on its detection of visitors by 
gaze (cameras directed to the front-side of the robot) to 
determine whether it should go on or stop the explanations, 

because in some situations the visitors tend to stand next to or 
behind the robot, while they are still interested in its story. The 
robot should be aware of these visitors and continue the 
explanation at the exhibit. 

2) Define behaviour of people standing close-by to decide 
whether to stop or to continue the story. 

For visitors who are standing close, the robot should make a 
distinction between people standing very close that are following 
the tour and people standing very close that show interest in the 
robot only. When people are still following the story, the robot 
should go on giving information. However, when people only 
show interest in the robot, the robot can decide to play with them 
a bit and show it is aware of the visitors being there. Possibly the 
robot can catch their attention for the story and change the 
playful or disturbing interaction to a guide-visitors interaction. 

3) Ask people to join the tour when they are hesitant to 
join strangers.  

The robot mainly attracted individuals and pairs who did not 
join other people who had started following the tour before them. 
People preferred to wait until others had left before they decided 
to join the tour. In other cases they just followed the tour from a 
distance, when other people were already close. This fits the 
purpose of the robot, however it would be nice if the small 
groups joined in order to all have an even better experience of 
the robot, because the robot cannot focus on all visitors close-by 
and far away. To do so, the robot can at certain moments in the 
story decide to scan for visitors and invite them to join. 

4) When camera lenses are clearly visible in the design of 
the robot, use them as eyes  

In our field study, a stereo bumblebee camera and a Kinect 
were clearly visible on the robot. Our experience in this study 
taught us that visitors see the stereo camera on top of the robot as 
the eyes of the robot. Therefore, when the camera cannot be 
hidden, the camera should be designed as eyes, including the 
design of gaze cues and gaze direction. Using these cues, 
especially when people expect them already, will probably 
smoothen the human-robot interaction. In our case, the FROG 
robot is not a humanoid robot, while the camera is visible. 
Therefore, we argue that a visible camera should be used as eyes 
of a robot, because this will support the mental model users will 
create of the robot.  

7 CONCLUSION AND FUTURE WORK 
To conclude, the orientation of the robot is important to shape 
the visitors’ reactions. When it was clear to the visitors what to 
look at (mostly when the robot was oriented towards the exhibit), 
they became engaged more easily in the robot guided tour. 
However more people became interested in the robot when it 
was oriented towards the exhibit. Also, more people lost interest 
in the robot and the story when it was oriented towards the 
exhibit than when it was oriented towards the visitors. Therefore, 
keeping the attention should be done in a different way than 
capturing the attention of the visitors.  

With this research we focused on visitors’ orientation and 
group formations that visitors formed around the tour guide 
robot. However, in order to design robot behaviours for giving 
an effective tour, visitors’ reactions when the robot is guiding 
them from one point of interest to the next should also be 
analysed, and guidelines about how to shape these should be 
developed. We will further use the recording from this study to 
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analyse the visitor reactions to the robot guiding behaviour (e.g. 
following the robot from a distance or really close to the robot, 
hesitating to follow the robot) as well as visitor reaction at stops 
at points of interest while following the robot.  

The present study has given us insight into how robot 
orientation and behaviour can influence people’s formations and 
reactions. A future research question, is to find how the 
combined effects of robot behaviour and visual design of a robot 
will influence the number of people who stop to see the robot 
and eventually join the robot guided tour. In the future we will 
perform more elaborate evaluations including more robot 
modalities and behaviours.  
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Performing Facial Expression Synthesis on Robot
Faces: A Real-time Software System

Maryam Moosaei1, Cory J. Hayes, and Laurel D. Riek

Abstract. The number of social robots used in the research
community is increasing considerably. Despite the large body of
literature on synthesizing facial expressions for synthetic faces,
there is no general solution that is platform-independent. Subse-
quently, one cannot readily apply custom software created for a
specific robot to other platforms. In this paper, we propose a gen-
eral, automatic, real-time approach for facial expression synthe-
sis, which will work across a wide range of synthetic faces. We
implemented our work in ROS, and evaluated it on both a vir-
tual face and 16-DOF physical robot. Our results suggest that our
method can accurately map facial expressions from a performer
to both simulated and robotic faces, and, once completed, will
be readily implementable on the variety of robotic platforms that
HRI researchers use.

1 Introduction
Robotics research is expanding into many different areas, par-
ticularly in the realm of human-robot collaboration (HRC). Ide-
ally, we would like robots to be capable partners, able to perform
tasks independently and effectively communicate their intentions
toward us. A number of researchers have successfully designed
robots in this space, including museum-based robots that can pro-
vide tours [10], nurse robots that can automatically record a pa-
tient’s bio-signals and report the results [22], wait staff robots
which can take orders and serve food [17], and toy robots which
entertain and play games with children [30].

To facilitate HRC, it is vital that robots have the ability to
convey their intention during interactions with people. In or-
der for robots to appear more approachable and trustworthy, re-
searchers must create robot behaviors that are easily decipherable
by humans. These behaviors will help express a robot’s intention,
which will facilitate understanding of current robot actions or the
prediction of actions a robot will perform in the immediate fu-
ture. Additionally, allowing a person to understand and predict
robot behavior will lead to more efficient interactions [18, 20].

Many HRI researchers have explored the domain of expressing
robot intention by synthesizing robot behaviors that are human-
like and therefore more readily understandable [29, 13, 21, 5].
For example, Takayama et al. [35] created a virtual PR2 robot
and applied classic animation techniques that made character be-
havior more humanlike and readable. The virtual robot exhibited
four types of behaviors: forethought and reaction, engagement,
confidence, and timing. These behaviors were achieved solely by
modifying the robot’s body movement. Results from this study

1 The authors are with the Computer Science and Engineering depart-
ment, University of Notre Dame,{mmoosaei,chayes3,lriek}@nd.edu

suggest that these changes in body movement can lead to more
positive perceptions of the robot, such as it possessing greater
intelligence, being more approachable, and being more trustwor-
thy.

While robots like the PR2 are highly dexterous and can ex-
press intention through a wide range of body movements, one
noticeable limitation is that there are some subtle cues they can
not easily express without at least some facial features, such as
confusion, frustration, boredom, and attention [16]. Indeed, the
human face is a rich spontaneous channel for the communica-
tion of social and emotional displays, and serves an important
role in human communication. Facial expressions can be used to
enhance conversation, show empathy, and acknowledge the ac-
tions of others [7, 15]. They can be used to convey not only ba-
sic emotions such as happiness and fear, but also complex cog-
nitive states, such as confusion, disorientation, and delirium, all
of which are important to detect. Thus, robot behavior that in-
cludes at least some rudimentary, human-like facial expressions
can enrich the interaction between humans and robots, and add to
a robot’s ability to convey intention.

HRI researchers have used a range of facially expressive
robots in their work, such as the ones shown in Figure 1. These
robots offer a great range in their expressivity , facial degrees-
of-freedom (DOF), and aesthetic appearance. Because different
robots have different hardware, it is challenging to develop trans-
ferable software for facial expression synthesis. Currently, one
cannot reuse the code used to synthesize expressions on one
robot’s face on another [6]. Instead, researchers are developing
their own software systems which are customized to their spe-
cific robot platforms, reinventing the wheel.

Another challenge in the community is many researchers need
to hire animators to generate precise, naturalistic facial expres-
sions for their robots. This is very expensive in terms of cost
and time, and is rather inflexible for future research. A few re-
searchers use commercial off-the-shelf systems for synthesizing
expressions on their robots, but these are typically closed source
and expensive as well.

Thus, there is a need in the community for an open-source soft-
ware system that enables low-cost, naturalistic facial expression
synthesis. Regardless of the number of a robot’s facial DOFs,
from EDDIE [34] to Geminoid F [9], the ability to easily and
robustly synthesize facial expressions would be a boon to the re-
search community. Researchers would be able to more easily im-
plement facial expressions on a wide range of robot platforms,
and focus more on exploring the nuances of expressive robots
and their impact on interactions with humans and less on labo-
rious animation practices or the use of expensive closed-source
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Figure 1. Examples of robots with facial expressivity used in HRI
research with varying degrees of freedom. A: EDDIE, B:Sparky, C:

Kismet, D: Nao , E: M3-Synchy, F: Bandit, G: BERT2, H: KOBIAN, F:
Flobi, K: Diego, M: ROMAN, N: Eva, O: Jules, P: Geminoid F, Q:

Albert HUBO , R: Repliee Q2

software.
In this paper, we describe a generalized software framework

for facial expression synthesis. To aid the community, we have
implemented our framework as a module in the Robot Operating
System (ROS), and plan to release it as open source. Our syn-
thesis method is based on performance-driven animation, which
directly maps motions from video of a performers face onto a
robotic (or virtual) face. However, in addition to enabling live
puppeteering or “play-back”, our system also provides a basis for
more advanced synthesis methods, like shared gaussian process
latent variable models [14] or interpolation techniques [23].

We describe our approach and its implementation in Section 2,
and its validation in both simulation and on a multi-DOF robot
in Section 3. Our results show that our framework is robust to be
applied to multiple types of faces, and we discuss these findings
for the community in Section 5.

2 Proposed method
Our model is described in detail in the following sections, but
briefly our process was as follows: We designed an ROS mod-
ule with five main nodes to perform performance driven fa-
cial expression synthesis for any physical or simulated robotic
face.These nodes include:

S, a sensor, capable of sensing the performer’s face (e.g., a cam-
era)

P, a point streamer, which extracts some facial points from the
sensed face

F, a feature processor, which extracts some features from the
facial points coming from the point streamer

T, a translator which translates the extracted features from F to
either the servo motor commands of physical platforms or the
control points of a simulated head

C : C1 . . . Cn

, a control interface which can be either an inter-
face to control the animation of a virtual face or motors on a
robot.

These five nodes are the main nodes for our synthesis module.
However, if desired, a new node can be added to generate any
new functionality.

Figure 2 gives an overview of our proposed method. Assume
one has some kind of sensor, (S), which senses some information
from a person’s (pr) face. This information might consist of video
frames, facial depth, or output of a marker/markerless tracker. pr
can be either a live or recorded performer. In our general method,
we are not concerned about identifying the expressions on the
pr’s face. We are concerned about how to use the expressions
to perform animation/synthesis on the given simulated/physical
face. S senses pr and we aim to map the sensed facial expressions
onto the robot’s face.

Basically, we use a point streamer P, to publish informa-
tion from a provided face. Any other ROS node can subscribe
to the point streamer to synthesize expressions for an simu-
lated/physical face. A feature processor F, subscribes to the infor-
mation published by the point streamer and processes this infor-
mation. F extracts useful features out of all of the facial informa-
tion published by the point streamer. Then, a translator, T, trans-
lates extracted features to control points of a physical/simulated
face. Finally, a control interface C : C1 . . . Cn

moves the physi-
cal/simulated face to a position which matches pr’s face.

2.1 ROS implementation
Figure 2 depicts the required parts for our proposed method. The
software in our module is responsible for three tasks: (1) Ob-
taining input, (2) Processing input, (3) Actuating motors/control
points accordingly

These responsibilities are distributed over a range of hardware
components; in this case, a webcam, an Arduino board, a servo
shield, and servo motors.

A local computer performs all processing tasks and collects
user input. The data is then passed to the control interface, C :
C1 . . . Cn

which can either move actuators on an physical robot
or control points on a virtual face. While Figure 2 shows the most
basic version of our system architecture, other functionality or
services can be added as nodes. Below, we describe each of these
nodes in detail as well as the ROS flow of our method.

S, the sensor node, is responsible for collecting and publishing
the sensor’s information. This node organizes the incoming in-
formation from the sensor and publishes its message to the topic
/input over time. The datatype of the message that this node
publishes depends on the sensor. For example, if the sensor is a
camera, this node publishes all incoming camera images. Exam-
ples of possible sensors include a camera, a Kinect, or a motion
capture system. This node can also publish information from pre-
recorded data, such as all frames of a pre-recorded video.

P, the point streamer node, subscribes to the topic /input
and extracts some facial points from the messages it receives.
This node extracts some facial points and publishes them to the
topic /points.

F, the feature processor node, subscribes to the topic
/points. Node F processes all the facial points published
by P. F extracts useful features from these points that can be
used to map the facial expressions of a person to the physi-
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Figure 2. Overview of our proposed method.

cal/simulated face. This node publishes feature vectors to the
topic /features.

T, the translator node, subscribes to the topic /features.
and translates the features to DOFs available on the robot’s face.
Basically, this node processes the message received from the
topic /features and produces corresponding movements for
each of the control points on a robotic or virtual character face.
This node publishes its output to the topic /servo commands.

C : C1 . . . Cn

: The control interface node subscribes to the
topic /servo commands and actuates the motors of a phys-
ical robot or control points of a simulated face. We show C :
C1 . . . Cn

because a control interface might consist of differ-
ent parts. For example, in case of a physical robotic head, the
control interface might include a microcontroller, a servo shield,
etc. We show the combination of all of these pieces as a sin-
gle node because they cooperate together to actuate the mo-
tors. C : C1 . . . Cn

subscribes to the topic /servo commands
which contains information about the exact movement for each
of the control points of the robotic/simulated face. This node then
makes a readable file for the robot containing the movement in-
formation and sends it to the robot.

2.2 An example of our method

There are various ways to implement our ROS module. In our im-
plementation in ROS, we used a webcam as S. We chose the CLM
face tracker as P. In F, we measured the movement of each of the
facial points coming from the point streamer over the time. In
T, we converted the features to servo commands for the physical
robot and slider movements of the simulated head. In C, we used
an Arduino Uno and a Renbotic Servo Shield Rev2 for sending
commands to the physical head. For the simulated faces, C gener-
ates source files that the Source SDK was capable of processing.

We intended to use this implementation in two different sce-
narios: a physical robotic face as well as a simulated face. For a
physical robot, we used our bespoke robotic head with 16 servo
motors. For a simulated face, we used ”Alyx”, an avatar from
video game Half-Life 2 from the Steam Source SDK. We de-
scribe each subsystem in detail in the following subsections.

2.2.1 Point streamer P

We employed a Constrained Local Model (CLM)-based face
tracker as the point streamer in our example implementation.
CLMs are person-independent techniques for facial feature track-
ing similar to Active Appearance Models (AAMs), with the ex-
ception that CLMs do not require manual labeling [12]. In our
work, we used an open source implementation of CLM devel-
oped by Saragih et al. [1, 33, 11].

We ported the code to run within ROS. In our implementation,
ros clm (the point streamer) is an ROS implementation of the
CLM algorithm for face detection. The point streamer ros clm
publishes one custom message to the topic /points. This mes-
sage to the topic includes 2D coordinates of 68 facial points. This
message is used to stream the CLM output data to anyone who
subscribes to it.

As shown in the Figure 2, when the S node (webcam) receives
a new image, it publishes a message containing the image data to
the /input topic. The master node then takes the message and
distributes it to the P node (ros clm) because it is the only node
that subscribes to the /input topic.

This initiates a callback in the P ros clm node, causing it
to begin processing the data which is basically tracking a mesh
with 68 facial points over time. The ros clm node sends its own
message on the /points topic with the 2D coordinates of the
68 facial feature points.

2.2.2 Feature processor F

The F node subscribes to the topic /points. The F node re-
ceives these facial points. Using the position of two eye corners,
F removes the effects of rotation, translation, and scaling. Next,
in each frame, F measures the distance of each facial point to
the tip of the nose as a reference point and saves 68 distances in
a vector. The tip of the nose stays static in transition from one
facial expression to the other. If the face has any in-plane transla-
tion or rotation, the distances of facial points from the tip of the
nose will not be affected.

Therefore, any change in the distance of a facial point relative
to the tip of the nose point over time would mean a facial expres-
sion is occurring. F publishes its calculated features to the topic
/features.
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Figure 3. Left: the 68 facial feature points of CLM face tracker, Right:
an example robotic eyebrow with one degree of freedom and an example

robotic eyeball with two degrees of freedom

2.2.3 Translator T

The T node subscribes to the topic /features and produces
appropriate commands for servos of a physical robot or control
points of a simulated face. F keeps track of any changes in the
distances of each facial point to the tip of the nose and publishes
them to the /features topic. The T node has the responsibil-
ity of mapping these features to corresponding servo motors and
servo ranges of a physical face, or to the control points of a sim-
ulated head. T performs this task in three steps. The general idea
of these steps is similar to the steps Moussa et al. [28] used to
map the MPEG-4 Facial Action Parameters of a virtual avatar to
a physical robot.

In the first step, for each of the servo motors, we found a group
of one or multiple CLM facial points whose movement signifi-
cantly affected the motor in question. For example, as Figure 3
shows, the CLM tracker tracks five feature points on left eye-
brow (22,23,24,25,26). However, the robot face shown in Figure
3 has only one motor for its left eyebrow. Therefore, the cor-
responding feature group for the robots left eyebrow, would be
22,23,24,25,26.

T converts the movement of each group of the CLM feature
points to a command for the corresponding servo motor of a phys-
ical robot or control point of a simulated face. We used two ex-
amples in this paper, one with a simulated face and one with our
bespoke robot. As an example, Table 1 shows the correspond-
ing group of CLM points for each of the 16 servo motors of our
bespoke robot

We averaged the movements of all of the points within a given
group to compute only one number as the command for each
motor/control point. To demonstrate this principle, our bespoke
robot has a single motor for the right eyebrow. However, as Fig-
ure 3 shows, the CLM face tracker tracks five feature points on
right eyebrow. If a performer raises their right eyebrow, the dis-
tance of these five points to the tip of the nose increases. We av-
erage the movements of these five points and use that value to
determine the servo command for the the robot’s right eyebrow.

Servo motors have a different range of values than that of fea-
ture points. Therefore, in the second step, we created a conver-
sion between these values. The servos in our robot accept values
between 1000 and 2000.

To find the minimum and maximum movement of each group

of points associated with each servo, we asked a performer to
make a wide range of extreme facial movements while seated in
front of a webcam connected to a computer running CLM. For
example, we asked the performer to raise their eyebrows to their
extremities, or open their mouth to its maximum. Then, we man-
ually modified the robot’s face to match the extreme expressions
on the subject’s face and recorded the value of each motor. This
way, we found the minimum and maximum movement for each
group of facial feature points as well as for each servo motor.

In the last step, we mapped the minimum, maximum, and de-
fault values of the CLM facial points and the servo motors. Some
servo motors had a reversed orientation with the facial points. For
those servos, we flipped the minimum and maximum. In order to
find values for a neutral face, we measured the distance of feature
points to the tip of the nose while the subject had a neutral face.
We also manually adjusted the robot’s face to look neutral and
recorded servo values.

Using the recorded maximum and minimum values, we ap-
plied linear mapping and interpolation (c.f., Moussa et al.) to
find the criteria of mapping facial distances to servo values [28].
These criteria are used to translate facial points in each unseen in-
coming frame to the robot’s servo values. The T node publishes
a set of servo values to the topic /servo commands.

2.2.4 Control interface C : C1 . . . Cn

The C node subscribes to the topic /servo commands and
sends the commands to the robot. The servo motors of our robot
are controlled by an interface consisting of an Arduino UNO con-
nected to a Renbotic Servo Shield Rev2. ROS has an interface
that communicates with Arduino through the rosserial stack [2].
By using rosserial arduino, a subpackage of rosserial, one can
add libraries to the Arduino source code to integrate Arduino-
based hardware in ROS. This allows communication and data ex-
change between the Arduino and ROS.

Our system architecture uses rosserial to publish messages
containing servo motor commands to the Arduino in order to
move the robot’s motors. The control interface receives the de-
sired positions for the servo motors at 24 frames-per-second (fps).
For sending commands to the simulated face, C generates source
files that the simulated face is capable of processing.

Table 1. The facial parts on the robot, and corresponding servo motors
and CLM tracker points.

Facial Part Servo Motor # CLM Points
Right eyebrow 1 17,18,19,20
Left eyebrow 2 23,24,25,26

Middle eyebrow 3 21,22
Right eye 4 (x direction), 5 (y

direction)
37,38,40,41

Left eye (x and y direction) 6 (x direction), 7 (y
direction)

43,44,46,47

Right inner cheek 8 49,50
Left inner cheek 9 51,52

Right outer cheek 10 49,50,51
Left outer cheek 11 51,52,53

Jaw 12 56,57,58
Right lip corner 13 48
Left lip corner 14 54
Right lower lip 15 57,58
Left lower lip 16 55,56
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3 Validation
To ensure our system is robust, we performed two evaluations.
First, we validated our method using a simulated face (we used
“Alyx”, an avatar in the Steam Source SDK [3]). Then, we tested
our system on a bespoke robot with 16 DOFs in its face.

3.1 Simulation-based evaluation
We conducted a perceptual experiment in simulation to validate
our synthesis module This is a common method for evaluating
synthesized facial expressions [9, 25]. Typically, participants ob-
serve synthesized expressions and then either answer questions
about their quality or generate labels for them. By analyzing col-
lected answers, researchers evaluate different aspects of the ex-
pressions of their robot or virtual avatar.

3.1.1 Method

In our perceptual study, we extracted three source videos of
pain, anger, and disgust (total of nine videos) from the UNBC-
McMaster Pain Archive [24] and MMI database [31], and
mapped them to a virtual face. The UNBC-McMaster Pain
Archive is a naturalistic database of 200 videos from 25 partici-
pants suffering from shoulder pain. The MMI database [31] is a
database of images/videos of posed expressions from 19 partici-
pants who were instructed by a facial animation expert to express
six basic emotions (surprise, fear, happiness, sadness, anger, and
disgust). We selected pain, anger, and disgust as these three ex-
pressions are commonly conflated, and were replicating the ap-
proach taken by Riva et al. [32].

Using our synthesis module, we mapped these nine facial ex-
pressions to three virtual characters from the video game Half-
Life 2 from Steam Source SDK. We used three different virtual
avatars, and overall we created 27 stimuli videos 3 (Expression:
pain, anger, or disgust) ⇥ 3 (Gender: androgynous, male, and
female). Figure 4 shows example frames of the created stimuli
videos.

In order to validate people’s ability to identify expressions syn-
thesized using our performance-driven synthesis module, we con-
ducted an online study with 50 participants on Amazon MTurk.
Participant’s ages ranged from 20-57 (mean age = 38.6 years).
They were of mixed heritage, and had all lived in the United
States for at least 17 years. Participants watched the stimuli
videos in randomized order and were asked to label the avatar’s
expression in each of the 27 videos.

3.1.2 Results and discussion

We found that people were able to identify expressions when ex-
pressed by a simulated face using our performance-driven syn-
thesis module (overall accuracy: 67.33%, 64.89%, and 29.56%2

for pain, anger and disgust respectively) [19, 26]. Riva et al.
[32] manually synthesized painful facial expressions on a vir-
tual avatar with the help of facial animation experts, and found
60.4% as the overall pain labeling accuracy rate [32]. Although
we did not set out to conduct a specific test to compare our find-
ings to those of manual animation of the same expressions (c.f.

2 Low disgust accuracies are not surprising; it is known to be a poorly
distinguishable in the literature [8].

Figure 4. Sample frames from the stimuli videos and their
corresponding source videos, with CLM meshes.

Riva et al. [32]), we found our synthesis method achieved arith-
metically higher labeling accuracies for pain. These results are
encouraging, and suggest that our synthesis module is effective
in conveying naturalistic expressions. The next evaluation is to
see how well it does on a robot.

3.2 Physical robot evaluation
To test our synthesis method with a physical robot, we used a
16-facial-DOF bespoke robot. Evaluating facial expressions on a
physical robot is more challenging than on a simulated face be-
cause their physicality changes the physical generation of synthe-
sis. Moving motors in real-time on a robot is far more complex a
task due to the number of a robot’s motors, their speed, and their
range of motion.

We needed to understand if our robot’s motors were moving in
real time to their intended positions. Since the skin of our robot
is still under development, we did not run a complete perceptual
study similar to the one we ran in simulation. However, as we
were testing how the control points on the robot’s head moved in
a side-by-side comparison to a person’s face, we do not believe
this was especially problematic for this evaluation.

3.2.1 Method

We ran a basic perceptual study with 12 participants to test both
the real-time nature of the system, and the similarity between ex-
pressions of a performer and the robot. We recorded videos of
a human performer and a robot mimicking the performer’s face.
The human performer could not see the robot. However, facial
expressions made by the performer were transferred to the robot
in real time.

The performer sat in front of a webcam connected to a com-
puter. During the study, the performer was instructed to perform
10 face-section expressions, two times each (yielding a total of 20
videos). The computer instructed the performer to express each
of the face-section expressions step by step. Face-section expres-
sions were: neutral, raise eyebrows, frown, look right, look left,
look up, look down, raise cheeks, open mouth, smile.

We recorded videos of both the performer and the robot mim-
icking the performer’s face. Each video was between 3-5 seconds
in length. We ran a basic perceptual study by using side-by-side
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Table 2. Full results for each of the 10 face-section expressions.

Face-section expression Average similarity score s.d Average synchrony score s.d
Neutral 4.12 1.07 4.16 1

Raise eyebrows 4.33 0.86 4.25 1.13
Frown 4 1.02 4.08 1.24

Look right 4.54 0.5 4.66 0.74
Look left 4.5 0.77 4.37 1.08
Look up 2.83 1.29 3.7 1.31

Look down 3.54 1.41 4.45 0.77
Raise cheeks 3.79 1.4 4.25 0.85
Open mouth 4.12 1.16 4.62 0.56

Smile 2.79 1.14 4.41 0.91
Overall 3.85 1.28 4.3 1.01

comparison or “copy synthesis”, which we have described in our
previous work [27]. In a side-by-side comparison, one shows syn-
thesized expressions on a simulated/physical face side-by-side
with the performer’s face to participants, and asks them to an-
swer some questions [4, 36].

We showed side-by-side face-section videos of the performer
and the robot to participants. Participants viewed the videos in
a randomized order. We asked participants to rate the similar-
ity to and synchrony with the performer’s expressions and the
robot expressions through use of a 5-point Discrete Visual Ana-
logue Scale (DVAS). A five on the scale corresponded to ” simi-
lar/synchronous” and a one to ”not similar/synchronous” .

3.2.2 Results and discussion

Participants were all American and students at our university.
Their ages ranged from 20-28 years old (mean age = 22 years).
Eight female and four male students participated.

The overall average score for similarity between the robot and
the performer expressions was 3.85 (s.d. = 1.28). The overall av-
erage score for synchrony between the robot and performer ex-
pressions was 4.30 (s.d. = 1.01).

Table 2 reports the full results for each of the 10 face-section
expressions. The relatively high overall scores of similarity and
synchrony between the performer and the robot expressions sug-
gest that our method can accurately map facial expressions of
a performer onto a robot in real-time. However, as this figure
shows, we had a low average similarity score for lookup and
smile.

One reason might be that the CLM tracker that we used in
our experiment does not accurately track vertical movements of
the eyes. Therefore, we could not accurately map the performer’s
vertical eye movements to the robot. Also, since our robot still
does not have skin, its lips do not look very realistic. This might
be a reason why participants did not find the robot’s lip move-
ments to be similar to the performer’s lips movements.

4 General discussion
In this paper, we described a generalized solution for facial ex-
pression synthesis on robots, its implementation in ROS using
performance-driven synthesis, and its successful evaluation with
a perceptual study. Our method can be used both to map facial ex-
pressions from live performers to robots and virtual characters, as
well as serve as a basis for more advanced animation techniques.

Our work is robust, not limited by or requiring a specific num-
ber of degrees of freedom. Using ROS as an abstraction of the
code, other researchers may later upgrade the software and in-
crease functionality by adding new nodes to our ROS module.

Our work is also a benefit to the robotics, HRI, and affective
agents communities, as it does not require a FACS-trained expert
or animator to synthesize facial expressions. This will reduce re-
searchers’ costs and save them significant amounts of time. We
plan to release our ROS module to these communities within the
next few months.

One limitation of our work was that we could not conduct a
complete evaluation of our work on a physical robot, since its
skin is still under development. Once the robot’s skin is com-
pleted, we will run a full perceptual test. A second limitation was
that the eye-tracking capabilities in CLM are poor, which may
have caused the low similarity scores between the robot and per-
former. In the future as eye tracking technology advances (such
as with novel, wearable cameras), we look forward to conducting
our evaluation again.

Robots that can convey intentionality through facial expres-
sions are desirable in HRI since these displays can lead to in-
creased trust and more efficient interactions with users. Re-
searchers have explored this domain of research, though in a
somewhat fragmented way due to variations in robot platforms
that require custom synthesis software. In this paper, we intro-
duced a real-time platform-independent framework for synthe-
sizing facial expressions on both virtual and physical faces. The
best of our knowledge, this is the first attempt to develop an open-
source generalized performance-driven facial expression synthe-
sis system. We look forward to continuing work in this area.
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Gender, more so than Age, Modulates Positive
Perceptions of Language-Based Human-Robot

Interactions
Megan Strait and Priscilla Briggs and Matthias Scheutz1

Abstract. Prior work has shown that a robot which uses polite-
ness modifiers in its speech is perceived more favorably by human
interactants, as compared to a robot using more direct instructions.
However, the findings to-date have been based soley on data aquired
from the standard university pool, which may introduce biases into
the results. Moreover, the work does not take into account the po-
tential modulatory effects of a person’s age and gender, despite the
influence these factors exert on perceptions of both natural language
interactions and social robots. Via a set of two experimental studies,
the present work thus explores how prior findings translate, given a
more diverse subject population recruited via Amazon’s Mechani-
cal Turk. The results indicate that previous implications regarding a
robot’s politeness hold even with the broader sampling. Further, they
reveal several gender-based effects that warrant further attention.

1 INTRODUCTION
Natural language interactions with virtual and robotic agents are be-
coming increasingly pervasive, from virtual personal assistants (such
as Apple’s Siri agent), to socially assistive robots (e.g., elder care
robots such as [4]). As the functionality of these artificial agents
grows, so does the need to communicate with humans effectively to
best serve the human interlocutor [12]. Surprisingly, however, there
are very few attempts to date to carefully evaluate the different ways
in which artificial agents could talk with humans in the context of a
given task based on the agent’s physical embodiment. For example,
it is unclear whether an artifical agent, depending on its embodiment,
should use imperatives when instructing humans (e.g., “turn right at
the next intersection”) or whether a more polite way of expressing
an instruction is required (e.g., “we need to turn right at the next in-
tersection”). Intuitively, a non-embodied agent like a navigation sys-
tem might get away with syntactically simple, effecient imperatives,
while a humanlike embodied robotic agent might have to employ
more conventional forms of politeness.

Past work evaluating politeness in natural language interactions
with robotic agents supports this intuition. Torrey and colleagues, for
example, showed that the use of hedges (e.g., “I guess”, “probably”,
and “sort of ”) and discourse markers – two “negative” politeness
techniques – improves how people perceive a robot instructing a per-
son via natural language. Specifically, they found that polite robots
were viewed more positively than robots using more direct speech
[22]. Even though negative politeness may be less noticeable than
the pleases of positive politeness, hedging indicates to the listener
that the speaker is trying to mitigate the force of the request [7, 14].

1 Human-Robot Interaction Laboratory, Tufts University, Medford, MA USA

Figure 1: Scenario: the humanoid MDS robot (Xitome Designs; left)
instructs a confederate participant (right) on a brief drawing task.

Recent extensions of the above findings show that other negative
politeness techniques (e.g., phrasing requests indirectly [9]), as well
as positive (e.g., inclusive pronouns), suffice to improve perceptions
of human-robot interactions (e.g., [6, 19, 21]). However, this research
investigating human perceptions of robot politeness in human-robot
interactions ([21, 22]) is predominately based on data drawn from the
standard (and relatively homogeneous) university population.

Thus, whether and how these findings transfer to scenarios involv-
ing a population that is more diverse (e.g., economically, education-
ally), remains unknown. In particular, there are several factors (socio-
linguistic, cultural, and demographic) in addition to politeness that
have been found to modulate perceptions of natural language inter-
actions (e.g., [3, 13, 16, 17, 20]). For instance, contrary to popular
stereotypes, Japan is not as robot-positive as the US [2, 8].

Of particular relevance, is the growing amount of evidence that
men (relative to women) hold significantly more positive towards
robotic entities [5]. While both Torrey et al. ([22]) and Strait et al.
([21]) attempted to control for unintended effects due to gender, their
participant samples were nevertheless imbalanced and thereby con-
strained in their ability to represent the general population. Hence,
it is important to revisit these findings with explicit consideration of
socio-demographic factors to understand what are their specific in-
fluences and how the findings extend beyond the university.

The goal of the present work was thus two-fold: (1) to investigate
whether an extension of [21] with more diverse subject demographics
would replicate the previously-observed effects of robot politeness
(based on interaction observation), and further, (2) how the subject-
based factors of age and gender specifically interact with those of the
robot (e.g., the robot’s use of polite communicatory cues).
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To address these questions, we conducted a set of two online ex-
periments via Amazon’s Mechanical Turk with the aim of achieving
greater diversity in people’s age, and educational/geographical back-
grounds, as well as more balanced gender demographics. In both,
we presented videos depicting a robot instructing a person on a sim-
ple drawing task. We solicited people’s reactions to these videos to
determine the influence of a robot’s politeness relative to any modu-
latory effects of a person’s age and gender (Experiment I). Owing
to a limitation of the first study, we conducted a follow-up to Experi-
ment I to determine whether the findings hold given more naturalistic
interaction settings (Experiment II).

2 EXPERIMENT I
Based on the previous work outlined in the introduction ([21, 22]),
we hypothesized that by using politeness modifiers in its speech, a
robot would be perceived more favorably (as evidenced by higher
ratings of likeability and reduced ratings of aggression) than a robot
that uses more direct instructions. In addition, we generally explored
the modulatory effects of a person’s socio-demographic factors – in
particular, age and gender – and how they interact with characteris-
tics of a robot to influence perceptions of human-robot interactions.

To test our hypotheses and the age- and/or gender-based modu-
lations thereof, we conducted a fully between-subjects investigation
of the effects of a robot’s communication strategy on observations
of brief human-robot interactions – as influenced by a person’s age
and gender. In order to obtain a more diverse population than pre-
viously, we conducted our investigation online via Amazon’s Me-
chanical Turk. Using a modification of the materials and methods
developed in [21], we tasked participants with viewing a short video
depicting a robot as it advised a person on creating a simple drawing.
Following the video viewing, participants were prompted for their
perceptions of the interaction, as rated on several dimensions regard-
ing the likeability and aggression of the robot.

2.1 Materials & Methods
2.1.1 Participants & Procedure

839 participants were recruited via Amazon Mechanical Turk.2 Prior
to participating, subjects were informed the purpose of the study was
to investigate factors that influence perceptions of human-robot inter-
actions. Upon informed consent and subsequent completion of a de-
mographic survey, the subject was shown one of 32 videos depicting
a robot instructing a human confederate on a simple task. Following
the viewing, the subject completed a 12-item questionnaire regarding
his/her perceptions of the robot’s appearance and behavior. Lastly, to
assess attentiveness, participants completed a three-item check re-
garding salient details of the video clip.

Of these 839 participants, data from 329 were discarded due to
several exclusion criteria: a restriction to limit participation to na-
tive english speakers (51 participants), and failure to complete the
requested tasks (70) or failure on a three-item attention check (with
a success threshold of 100%) to ensure participants viewed the pre-
sented video (208). Thus, our final sample included data from 510
participants (62% male) from 47 of 50 US states. The average age
of this sample was 31.21 (SD=9.71), ranging from 18 to 76 years
old. The most common level of education obtained was a bachelor’s
degree (45%), with an additional 36% of participants having some

2 In anticipation of some loss in data due to exclusion criteria, we chose this
sample size to achieve � 15 useable observations in hypothesis testing.

Comforting Considerate Controlling
Aggressive �.15 �.11 .68
Annoying -.62 �.27 .21

Comforting .73 .30 �.13
Considerate .21 .63 �.15
Controlling �.11 �.16 .52

Eerie -.73 .16
Likable .60 .59

Warm .22 .77 �.24
Eigenvalues 3.63 1.16 .99

Variance Explained .24 .44 .56

Table 1: Factor loadings for the three-factor EFA solution.

amount of college-level education. A small percent of participants
reported having completed only high school (12%) and a smaller pro-
portion reported obtaining more advanced degrees (7%). Participants
also reported relatively high interest in robots (M=5.15, SD=1.32)
– though low familiarity with robots (M=3.75, SD=1.49) – based
on a 7-point Likert scale with 1=low and 7=high.

2.1.2 Independent Variables

We employed a 2⇥3⇥2 factorial design in which we systematically
manipulated a robot’s politeness in an advice-giving scenario, us-
ing the same conditions as those developed by Strait and colleagues
([21]). We also included participant age (three levels) and gender to
investigate how they affect perceptions of the human-robot interac-
tion. In total, we had the following three independent variables (IVs):

• Politeness of the robot’s instructions (direct vs. polite). The polite
condition entailed the robot giving instructions that contained one
or more of both positive and negative politeness strategies, such as
praise (e.g., “great job”) and hedges (e.g., “a kind of large circle”).
The direct speech condition employed the exact same instructions,
but with the politeness modifiers removed.

• Participant age (three levels). We established three age cate-
gories based on a 1/3 split of all the self-reported ages, resulting
in a corresponding to the age of the standard university sample
(M1=22.81 years, SD=1.87), as well as two older adult cate-
gories (M2=28.68, SD=1.99; M3=42.16, SD=8.86).

• Participant gender (female vs. male).

2.1.3 Covariates

In addition to the above, we planned to carefully control for potential
effects due to a person’s motivations for completing the tasks (i.e.,
due to his/her purported interest in robots), as well as any effects
due to characteristics of the stimulus set. To do so, we covaried three
factors pertaining to the robot’s physical embodiment:

• Appearance of the robot (two levels): the humanoid MDS (Xit-
ome Designs) versus the less humanlike PR2 (Willow Garage).

• Production modality (synthetic vs. human speech), and
• Gender (female vs. male) of the robot’s voice.

Thus, a total of four covariates – participants’ interest in robots, the
robot’s appearance and the gender and production modality of the
robot’s voice, – were used in the analyses reported below.
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2.1.4 Stimuli

A set of 32 videos (two conditions – polite versus direct speech –
with 16 instances per condition) were constructed based on system-
atic manipulation of the robot-based IVs and covariates. Each video
depicted a variant of a robot instructing a male human actor on a pen-
and-paper drawing of a koala (cf. [21]). To avoid potential effects of
affect, behavior, and/or movement (due to differences between the
two robots’ abilities), the robots were kept stationary. To avoid un-
intended effects due to a particular appearance, gender, voice, or the
way in which the voice was produced, 16 video instances co-varying
the robot’s humanoid appearance (MDS versus the PR2), voice pro-
duction modality (synthetic- versus human-produced speech) and
voice gender (four voices – two female, two male) were created
per condition. Four adult human actors comprised the set of human
voices, with instructions to perform with flat affect. Synthetic voice
production was performed using the native Mac OS X text-to-speech
(TTS) software with four voices: “Alex”,“Ava”, “Tom”, and “Vicki”.
Following a between-subjects design, participants viewed only one
video (selected randomly from the set of 32).

2.1.5 Dependent Variables

Of the set of 12 questionnaire items, three items – task difficulty, in-
teraction difficulty, and interest in interacting – were considered as
unique variables. On the remaining 9 items drawn from prior work
(cf. [21, 22]), exploratory factor analysis produced a three-factor so-
lution which showed a better fit (�2(7) = 13.36, p = .0638) than a
model where the variables correlate freely.

The criterion for retention of a questionnaire item was a factor
loading of � .50 (see Table 1). We thus interpreted the three latent
variables as the following: how comforting (four items – comfort-
ing, likable, -annoying, and -eerie; Cronbach’s ↵=.83), considerate
(three items – considerate, likable, and warm; ↵=.79), and control-
ling (two items – aggressive and controlling; ↵=.55) the robot was
perceived. Items that were negatively correlated are indicated by �,
and were automatically reversed in the computation of the latent con-
structs. Further, all dependent measures were normalized (to a scale
between 0 and 1) prior to analysis.

2.2 Results
To assess the effects of the three IVs, between-subjects ANCO-
VAs were conducted on each of the dependent variables (taking
into account the four covariates), with homogeneity of variance con-
firmed using Levene’s test. All significant effects are reported below
(with significance denoting ↵.05), and all post-hoc tests reflect a
Bonferroni-Holm correction for multiple comparisons.

2.2.1 Comforting, Considerate, & Controlling

As expected, the politeness manipulation showed marginal (p<.10)
to significant main effects on all three latent factors – comforting,
considerate, and controlling (see Table 2, top). Similarly, partici-
pants’ gender did as well (see Table 2, bottom); however, there were
no significant main or interaction effects due to the participants’ age.

Overall, both politeness and gender tended to increase ratings of
the robot as comforting and considerate, and conversely, decrease
those for controlling. However, these main effects were eclipsed by
a politeness ⇥ gender interaction on both of the two positive fac-
tors: comforting (F (1, 498)=4.57, p=.03, ⌘2=.01) and considerate
(F (1, 498)=6.97, p<.01, ⌘2=.01).

DIRECT POLITE
(n = 254) (n = 256) F (1, 498) p ⌘

2

Comforting .13 (.37) .19 (.38) 3.26 = .07 .01
Considerate .46 (.16) .54 (.17) 31.82 < .01 .06
Controlling .25 (.17) .20 (.16) 10.29 < .01 .02

FEMALE MALE
(n = 193) (n = 317) F (1, 498) p ⌘

2

Comforting .21 (.40) .11 (.36) 9.27 < .01 .02
Considerate .53 (.16) .48 (.16) 13.42 < .01 .03
Controlling .20 (.16) .26 (.17) 14.44 < .01 .03

Difficulty (t) .17 (.16) .21 (.18) 8.20 < .01 .02
Difficulty (i) .24 (.23) .28 (.21) 5.18 = .02 .01
Interest .48 (.23) .43 (.21) 4.74 = .01 .01

Table 2: Main effects of politeness (top) and gender (bottom), and
relevant descriptive and inferential statistics.

In particular, the interactions showed that – while polite speech
tended to improve participants’ ratings – it did so primarily for
women (see Figure 2, left and center). That is, a robot’s use of po-
lite speech significantly improved ratings of comfort when viewed by
female observers (M=.29, SD=.39, n=94) relative to those by fe-
male observers of direct speech (M=.14, SD=.40, n=99; p=.04)
and male observers of both direct (M=.11, SD=.34, n=155;
p=.01) and polite speech (M=.11, SD=.38, n=162; p=.01). Sim-
ilarly, though the polite robot significantly improved observers’ rat-
ings of considerateness for both female (M

polite

=.59, SD=.16;
M

direct

=.47, SD=.17; p<.01) and male observers (M
polite

=.50,
SD=.17; M

direct

=.45, SD=.15; p=.02), women’s ratings were
most improved relative to men’s (p<.01).

With regard to perceptions of the robot as controlling, politeness
was still broadly effective at decreasing ratings – regardless of the
observer’s gender, with polite robots receiving lower ratings relative
to those more direct in their instructions (see Table 2, top). But, just
being female helped as well: with women rating the robot as substan-
tially less controlling than did men (see Table 2, bottom).

2.2.2 Difficulty & Interest

Gender further exerted significant main effects on the dependent vari-
ables regarding the perceived difficulty of both the task and interac-
tion, as well as the observers’ own interest in interacting with the
depicted robot (see Table 2, bottom). In particular, female partici-
pants tended to rate both the task and interaction as less difficult than
did males (see Table 2–bottom, Difficulty). Furthermore, they tended
to show more interest in interacting with the robot agent than their
male counterparts (see Table 2–bottom, Interest). There were no sig-
nificant effects (main or interaction) due to politeness or age.

2.3 Discussion
Do people perceive a robot, which employs politeness modifiers in its
speech, more favorably than one that uses more direct speech? Based
on previous research by [21, 22], we expected that participants would
rate a polite robot more favorably than one that is more direct in its in-
structions, as evidenced by higher ratings of positive constructs (e.g.,
likability) and lower ratings of negative constructs (e.g., aggression).
Consistent with that work, the politeness manipulation here showed
lower ratings of the robot as controlling and higher ratings of the
robot as being considerate and comforting. In particular, our results
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Figure 2: Interaction between robot politeness and participant gender on the three latent factors – the degree to which the robot was perceived
as comforting, considerate, and controlling. Gray bars indicate the use of direct speech, versus blue, which indicates polite speech. Lighter
bars indicate female participants (versus male participants, darker bars). All significant contrasts are shown (indicated by asterisks).

replicate and confirm those of prior work, even with a substantially
more diverse subject population.

Does a person’s age and gender further modulate perceptions of
human-robot interactions? Based on previous suggestions that men
and women view and respond to robots in significantly different ways
[5], we evaluated the primary and modulatory effects of participants’
age and gender. Participants’ gender exerted a main effect on all de-
pendent measures: how comforting, considerate, and controlling the
robot was perceived as being, as well as how difficult both the task
and interaction seemed and participants’ interest in interacting with
the depicted robot. In particular, female participants (relative to their
male counterparts) showed more positive responding towards the
robots and their interactions with the human confederate, as reflected
by increased ratings of interest, comfort, and the robot’s considerate-
ness, as well as decreased ratings of the task/interaction difficulty
and the robot’s aggression. Further, interactions with the politeness
manipulation showed that a robot’s use of polite speech was effective
at increasing women’s positive attributions (the robot as being com-
forting and considerate), but not men’s. Participant age, however,
showed no main or interaction effects on any of the measures.

2.3.1 Implications

Prior work has suggested that a robot’s use of politeness modifiers
in its speech improves perceptions of human-robot interactions in
advice-giving situations [21, 22]. Our results further replicate these
findings (with respect to observation of human-robot interactions),
and moreover, show the influence of politeness holds given a more
general and representative population sample. In particular, our par-
ticipants came from a wide variety of educational backgrounds (rang-
ing from high school to advanced degrees) and geographical loca-
tions within the US (47 states).

In addition, we explicitely considered the effects of a person’s
age (ranging from the standard university age level to older adult)
and their gender, to determine their influence and nature relative to
the robot’s politeness. This consideration of such socio-demographic
factors revealed a methodological consideration for HRI studies –
namely, that a person’s gender should be taken into account when
assessing perceptions of language-based human-robot interactions,
as it is a modulating influence in addition to a robot’s politeness.

This was expected, as previous research (e.g., [15, 18, 20]) has
found that men exhibit more positivity towards robots than women.
But, contrary to prior observations, our results indicate that women
respond, in general, more positively towards the depicited robots.
This may be due to the difference in the presentation the interactions

as, here, video-recordings of human-robot interactions were evalu-
ated by post-hoc observation, whereas, previous work has used sce-
narios involving the participatory and co-located interaction between
the participant and robot of interest [16, 17, 20]. Alternatively (or
in addition), it may be due to the difference in interaction: here, the
robot interactants were depicted as instructing a human confederate;
whereas, the human interactants in prior work were tasked with in-
structing or working with (rather than subservient to) the robot agent.
Despite the conflicting differences in the nature of their effects, our
findings add to the growing body of evidence implicating gender as
an important methodological consideration in evaluating perceptions
of human-robot interactions.

2.3.2 Limitations & Future Directions

Our approach to the investigation of perceptions of polite robots con-
tributes a simple online task to assess the modulatory influences (or
lack thereof) of a person’s age and gender. In particular, the collection
of data with broad socio-demographics augments in-laboratory stud-
ies that are limited to small, and relatively homogeneous, participant
populations. This contribution here is significant because it replicates
the previously reported influences of politeness, and further, sheds
light on how such findings might transfer to the general population.
That said, our approach also has several limitations (which under-
score avenues for further research), three of which we discuss below.

Relevance. First, we note that the effect sizes for the given manipu-
lations are relatively small. The magnitude of the effect of politeness
on perceptions of the robot’s considerate approaches a medium quali-
fication ( ⌘=.10), but nevertheless, the implications of both robot po-
liteness and participant gender are of limited weight. This may also
suggest it is worth looking at the specific effects due to other fac-
tors such as a person’s educational or geographic background (two
socio-demographic items for which we did not control).

Mode of Evaluation. Another limitation of relevant considera-
tion is how peoples’ evaluations of the interactions were obtained.
Here, the interactions were evaluated post-hoc by a third-party ob-
server, who (by definition) was remotely located from the actual
robot/interaction. This is particularly important to note, as it has
been found that perceptions of human-robot interactions are further
modulated by the interaction distance (remote versus co-located)
and nature (observatory versus participatory) [21]. Thus, while the
video-based interactions and online evaluations allowed us to sam-
ple from a broader demographic than that which is available lo-
cally, whether and how our gender-based findings apply to actual,
co-located human-robot interactions warrants further investigation.
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Stimuli. Lastly, there are a number of important limitations to the
stimuli used and their presentation. Here the stimuli depicted brief ( 2
minute) interactions between an inanimate robot and a human con-
federate, which is an unrealistic interaction scenario in comparison
to the intended usage of social robots.

In particular, prior work has shown that movement (however sub-
tle) can impact the efficacy of interactions. For example, Andrist and
colleagues have found that averting a robot’s gaze (even for robot’s
without articulated eyes) can improve perceptions of the robot and
their interactions [1]. Thus, with regard to the present study – though
we limited movement to avoid unintended and/or differential influ-
ences (e.g., due to the robots’ different capacities for actuation), the
absence of movement itself might be affecting the current findings
in unknown ways. For instance, the absence of attention-indicating
gaze (e.g., looking at the participant when he/she is not performing
a drawing instruction) might reduce positive attributions (e.g., con-
siderateness) and/or increase negative attributions. This idea is sup-
ported by participants’ open responses, which generally showed neg-
ative attitudes regarding the robot’s lack of movement. Thus, there is
the distict possibility that the lack of movement influenced percep-
tions in some way that may attenuate (or worse, decimate) other in-
fluences (e.g., due to politeness). With such considerations in mind,
we moved to conduct a follow-up experiment to test the nature and
magnitude of effects due to politeness and gender, when the robot
was animated in a more naturalistic fashion.

3 EXPERIMENT II
Based on the considerations outlined in the previous section, we
composed an exploratory follow-up investigation to Experiment I.
We again conducted a between-subjects investigation of the effects
of a robot’s politeness (as influenced by a person’s gender) on per-
ceptions of human-robot interactions – but, with more naturalistic in-
teractions. Specifically, we constructed a second set of video stimuli
in which the robot was animated with attention-sharing and (human-
like) idling movements, based on the naturalistic movements exhib-
ited by a human instructing in such a context.

3.1 Materials & Methods
3.1.1 Participants & Procedure

437 additional participants were recruited via Amazon Mechanical
Turk.3 As in Experiment I, participants were told the purpose of the
study was to investigate factors that influence perceptions of human-
robot interactions. Upon informed consent and completion of a de-
mographic questionnaire, the subject was shown one of 16 videos
(similarly depicting a robot instructing a human confederate on a
simple task). Following the viewing, the subject completed the 12-
item questionnaire regarding his/her perceptions of the robot’s ap-
pearance and behavior and the three-item check to assess whether
the participant attended to the video.

Of these 437 participants, data from 176 participants were dis-
carded due to: failure to complete the requested tasks (54) or failure
on the attention check (122). Thus, our final sample included data
from 261 participants (60% male) from 48 of the 50 US states. The
average age of this sample was 32.45 (SD=10.45), ranging from
18 to 68 years old. The most common level of education obtained
was similarly a bachelor’s degree (44%), with an additional 37% of

3 In anticipation of data loss due to our exclusion criteria, we chose this sam-
ple size to again achieve � 15 useable observations in hypothesis testing.

participants having some amount of college-level education. As in
Experiment I, a small percent of participants reported having com-
pleted only high school (13%) and a smaller proportion reported ob-
taining more advanced degrees (6%). Participants again reported low
familiarity (M=3.79, SD=1.49) with, but relatively high interest
(M=5.33, SD=1.39) in robots.

3.1.2 Independent Variables

We again employed a fully factorial design, with the same indepen-
dent variables as previously:

• The robot’s politeness (direct vs. polite).
• Participant age (three levels): the standard university sample

(M1=22.85 years, SD=2.18), as well as two older adult cate-
gories (M2=29.70, SD=2.01; M3=43.98, SD=8.65).

• The participant’s gender (female vs. male).

3.1.3 Covariates

We again planned to control for effects due to a person’s interest in
robots, as well as any due to characteristics of the stimulus set. As
there was little variance explained by production modality, we ex-
cluded it from consideration to help reduce the overall number of
videos to remake, thus reducing the number of observations needed
to achieve similar sample sizes as Experiment I. As a result, we con-
sidered a total of three covariates in our analyses here: two factors
pertaining to the robot’s physical embodiment (the robot’s appear-
ance – MDS vs. PR2 – and gender of the robot’s voice) and one
factors pertaining to the participant (their interest in robots).

3.1.4 Stimuli

To increase the degree of observable presence/embodiment of the
depicited robots, we recreated the videos from Experiment I4 to an-
imate the robots with select movements during the interaction. The
movement modifications were intended to create a sense of “shared
attention” and “idle” behaviors, based on the behaviors observed of
a human instructor during pretesting of the drawing task with two
people. In particular, the attentive behaviors were implemented such
that the robot (MDS or PR2) moved its eyes (MDS) or head (PR2)
up/down to focus on the human actor when giving instructions or
on the actor’s drawing (when the actor was drawing). Each robot
also performed a set of idle behaviors (initiated based on random
timers) throughout the interaction, based on their relative capacities
for movement:

• Blinking (MDS only) – the MDS robot has two actuated eyelids
that were closed and reopened (500ms) mimic human blinking.

• Swaying (MDS only) – the MDS has three degrees of freedom
(DOF) on its center axis, allowing mimicry of slight head tilts
(left/right and up/down positioning determined randomly at initi-
ation of each tilt).

• Breathing (PR2 only) – the PR2, having fewer DOF with respect
to its head movement, was limited to regular up/down undulation
of its frontal laser. The rate of the laser movement approximated
the average person’s resting state heart rate ( 70bpm).

4 As production modality was dropped from consideration, we recreated only
a subset of the E1 videos – the 16 depicting a robot with a synthetic voice.
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DIRECT POLITE
(n = 130) (n = 131) F (1, 249) p ⌘

2

Comforting .59 (.20) .66 (.20) 6.72 = .01 .03
Considerate .59 (.18) .70 (.17) 26.27 < .01 .11
Controlling .24 (.19) .19 (.15) 6.31 = .01 .03

FEMALE MALE
(n = 104) (n = 157) F (1, 249) p ⌘

2

Comforting .68 (.20) .58 (.20) 15.03 < .01 .06
Considerate .68 (.18) .62 (.18) 8.67 < .01 .03
Controlling .20 (.16) .24 (.17) 4.22 = .04 .02

Difficulty (t) .24 (.23) .29 (.23) 3.55 = .06 .01
Difficulty (i) .26 (.28) .35 (.27) 6.40 = .01 .03
Interest .68 (.28) .61 (.27) 3.45 = .06 .01

Table 3: Main effects of politeness (top) and gender (bottom), and
relevant descriptive statistics, in Experiment II.

3.1.5 Dependent Variables

We used the same dependent measures as previously: task and inter-
action difficulty and interest in interacting, as well as how comfort-
ing, considerate, and controlling the robot was perceived as being.

3.2 Results
To assess the effects of robot politeness and participant age/gender
– in the context of more naturalistic interactions – between-subjects
ANCOVAs were conducted on each of the dependent variables (tak-
ing into account the four covariates), with homogeneity of variance
confirmed using Levene’s test. All significant effects are reported be-
low (with significance denoting ↵.05), and all post-hoc tests reflect
a Bonferroni-Holm correction for multiple comparisons.

3.2.1 Robot Politeness

As previously found, politeness exerted a significant effect on all
three of comforting, considerate, and controlling DVs. Specifically,
as expected based on Experiment I and previous literature, the robot’s
use of polite speech increased participants’ comfort and their percep-
tions of the robot’s considerateness. It also reduced perceptions of the
robot as controlling (see Table 3, top).

3.2.2 Participant Age & Gender

Similarly, as Experiment I showed, gender improved perceptions
along all dependent measures (see Table 3, bottom). Specifically, fe-
male participants continued here to (1) rate the robot as more consid-
erate and less controlling, (2) indicate greater comfort and interest in
interacting with the depicted robot, and (3) rate both the interaction
and task as less difficult, than did their male counterparts.

Unlike the previous experiment, however, here participant age
also showed a significant influence on comfort with the robot
(F (2, 249) = 3.19, p = .04, ⌘2 = .03) and perception of it as
controlling (F (2, 249) = 4.07, p = .01, ⌘2 = .03). Specifically,
participants of the standard university age (young adults) indicated
significantly less comfort with the robot (M = .59, SD = .22,
n = 87) than the oldest participants (M = .67, SD = .19, n = 92;
p < .01). Conversely, the younger participants also rated the robot
as significantly more controlling (M = .26, SD = .19, n = 87;
p = .01) than did either of the two older age groups – middle adults
(M = .19, SD = .16, n = 82) and older adults (M = .20,
SD = .16, n = 92).

Figure 3: Main effects of participant age. Asterisks indicate signifi-
cant contrasts.

3.2.3 Interactions

Furthermore at odds with Experiment I (where the gender ⇥
politeness eclipsed many of the main effects of politeness), there
were no significant or even marginally significant interaction effects
here. Specifically, in the context of the more naturalistic interactions,
the use of polite speech seemed to be effective for both female and
male participants. This suggests that, while female participants ap-
pear to be particularly sensitive to verbal communication (as evi-
denced by their ratings across both the more naturalistic Experiment
II and Experiment I), male participants may be more sensitive to
consistency in verbal and nonverbal communicatory cues.

3.3 Discussion
3.3.1 Summary of Present Findings & Implications

In this follow-up investigation, we explored whether our previous
findings in Experiment I – that a robot’s use of polite speech im-
proves perceptions (and, that women respond more positively to-
wards such robots) – hold given more naturalistic interaction scenar-
ios (i.e., human-robot interactions in which the robot is animated).

Here we observed that the results, for the most part, reflect those
of the previous experiment (despite E1’s lack of movement in the
shown video interactions). Specifically, the politeness manipulation
again resulted in lower ratings of the robot as controlling and higher
ratings of the robot as being considerate and comforting (see Fig-
ure 4, left). This lends further support of politeness as an effective
tool for facilitating more positive responding towards robots (at least
for natural language interactions in advice-giving scenarios).

Similarly, participants’ gender again exerted a main effect on all
dependent measures: how comforting, considerate, and controlling
the robot was perceived as being (see Figure 4, right), as well as
how difficult both the task and interaction seemed and participants’
interest in interacting with the depicted robot. In particular, women
rated the robots more positively than did male participants as was
observed in Experiment I. While this remains in contradition with
prior work showing that men respond more positively towards robots
than women (e.g., [15, 18, 20]), it nevertheless lends further support
towards the methodological implication that gender is a relevant con-
sideration for HRI studies.

Moreover, the results of the present investigation indicate that ob-
servatory perspectives of human-robot interactions are not substan-
tially influenced by the robot’s animacy. This suggests that simplistic
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Figure 4: Main effects of politeness (left) and participant gender (right) on perceptions of the robot as comforting, considerate, and controlling.
Dark bars emphasize factors yielding more positive outcomes (polite speech, female participants). All contrasts are significant.

depictions of human-robot interactions, such as in Experiment I, may
suffice to investigate perceptions of certain robot behaviors (e.g., a
robot’s politeness, as perceived by female observers).

However, key differences in findings between the two experiments
also underscore the necessity of considering perceptions in more re-
alistic interaction scenarios. Specifically, unlike in Experiment I, Ex-
periment II showed no interactions between any of the three IVs.
For example, in the context of the more naturalistic interactions, the
use of polite speech was effective at improving ratings regardless
of the participant’s gender. Whereas, in Experiment I, polite speech
was only effective at improving female participants’ ratings (while
male participants of Experiment I were not receptive – the use of
politeness modifiers, in the absence of the idling and attention shar-
ing movements, did not improve ratings). This suggests that, while
women appear to be particularly sensitive to verbal communication
(as evidenced by their ratings across both Experiment I and the more
naturalistic Experiment II), men may be more sensitive to consis-
tency in verbal and nonverbal communicatory cues. Thus, the find-
ings may imply a need for coherence between a robot’s verbal and
nonverbal communication (e.g., [10]).

In addition, the present experiment showed a slight influence of
age on perceptions of comfort with the robot and how controlling
it seemed (see Figure 3), whereas E1 showed no significant effects
owing to participants’ age. These effects are somewhat difficult to
interpret, however, as it is unclear what aspects of the more realis-
tic interaction would cause the standard university-aged participants
(relative to the older adults) to here indicate less comfort with the
robot and rate it as more controlling.

3.3.2 Limitations & Future Directions

Here we undertook further investigation of perceptions of robot po-
liteness and potential modulatory factors. Our approach tested a few
simple behaviors to assess the influence (or lack thereof) of a robot’s
movement. In particular, the presentation of human-robot interac-
tions that were more naturalistic (i.e., mimic attention-sharing and
idling behaviors exhibited in equivalent human-human interactions)
compliments our previous study, which lacked the same degree of so-
cial realism. This contribution here is significant because it replicates
the influences of politeness of both prior work and our own Experi-
ment I. Further, it sheds light on how subject-based factors (i.e., age
and gender) can yield more positive social evaluations. However, as
with the previous study, our approach still has its limitations.

In particular, we explored here only a small subset of human-
inspired movements. Thus, it is not possible to conclusively say that
movement (of any kind) is effective for improving interactions or
perceptions thereof. There are substantially more possibilities to try,
such as gaze aversion (e.g., [1]) or gesturing (e.g., [11]) to name a
few. To determine what extent certain types nonverbal communica-
tory mechanisms influence perceptions, future work might consider
independently manipulating several types of movements, rather than
the movement/no-movement meta comparison we made here.

4 GENERAL DISCUSSION

4.1 General Findings & Implications

As expected, Experiment I confirms prior indications that, at least
in 3rd-person observation of pre-recorded human-robot interactions
([21, 22]), a robot’s use of politeness modifiers in its speech is per-
ceived more favorably relative to a robot that uses more direct speech
(e.g., [14, 19, 21, 22]). This is reflected by participants ratings of
the polite robot instructors as more comforting and considerate, and
less controlling than the robots that were more direct. Moreover, the
implications of politeness hold, even for a population that is highly
diverse in terms of the socio-demographic factors of education, ge-
ographical location, age, and gender. Furthermore, we observed ad-
ditional validation of the effects owing to a robot’s politeness in Ex-
periment II. Thus, consistent with prior indications ([21, 22]), the
persistence of effects due to politeness – given the broader popula-
tion sampling – demonstrate the benefit to using politeness modifiers
when a robot communicates with natural language.

The results observed across the two studies further underscore an
important methodological consideration – namely, gender – for eval-
uation of human-robot interactions. Specifically, we found a gender-
based divide in the efficacy of the politeness manipulation in both
experiments showing that a robot’s use of politeness modifiers in its
speech is most (and in Experiment I, only) effective for female par-
ticipants. That is, here women rated polite robots significantly better
than those that are more direct, and moreover, their ratings of polite
robots are significantly higher than men’s ratings of the same robots.
Furthermore, the two studies suggest that men are sensitive to con-
sistency in communicatory cues, and more importantly, they are not
receptive to polite speech alone. These findings demonstrate the im-
portance of considering gender – either as a systematic manipulation
or as a covariate – in the analysis of human-robot interactions.
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4.2 General Limitations & Future Work
Our approach to understanding perceptions of polite robots con-
tributes a simple online task to assess the modulatory influences of
various situational factors. We emphasize the benefit that the online
forum serves for obtaining data with broad socio-demographics ver-
sus in-laboratory studies which are limited to smaller and more ho-
mogeneous participant populations. This lends the ability towards
replicating previously indicated influences of politeness and under-
standing how such findings might transfer to the general population.

However, we wish to also underscore the limitations of this type of
assessment. Despite the benefits to online studies, the results cannot
be immediately applied to actual human-robot interactions involving
co-located, direct participation, as the present work was conducted
from a remote and observatory position (relative to the depicted in-
teractions). Hence, whether (and if so, the extent to which) these
findings generalize and apply to in-person, direct interactions with
a co-located embodied agent motivates further investigation.

Further, we stress that these findings are preliminary and of limited
weight. In particular, we note the small effect sizes observed across
both studies. Between the two experiments, the effect sizes reached
at most a medium qualification with the influence of politeness on
perceptions of the robot as considerate (⌘2 = .11 in the more nat-
uralistic interaction scenario of Experiment II, and ⌘

2 = .06 in Ex-
periment I). Gender also showed an effect of close to a medium size
on ratings of comfort (⌘2 = .06). However, the size of other effects
observed (e.g., due to age) is small (⌘2  .03). Thus, relative to other
factors (e.g., the robot’s appearance), the robot’s politeness and the
person’s age/gender may be of little importance. While the present
work yields implications for both the design of robotic agents and
how to evaluate them, future work might consider how relevant gen-
der and politeness are in other contexts or in contrast to other factors.

5 CONCLUSIONS
The primary aim of this research was to investigate whether previous
results about human observers’ preferences for polite robot speech
over more direct speech in an robot instructor would hold for a wider
participant demographic, which we were able to confirm. A sec-
ondary aim was to explore the modulatory influences of a person’s
age and gender on perceptions of the robot. Here we obtained several
new and important gender effects that hint at a complex interplay of
the interaction observers’ gender with the observed robot’s behavior,
which warrants further investigation to elucidate the causal mecha-
nisms responsible for the gender-based differences. Further, owing
to a limitation of the design of our first experiment, we explored peo-
ples’ perceptions given a more realistic interaction scenario which
additionally confirmed the influence of both politeness and gender.
These findings are particularly important for the design of future au-
tonomous agents, robotic or virtual, because their success could sig-
nificantly depend on their ability to adapt, such as to gender-specific
expectations of their interactants.
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Perception of Artificial Agents and Utterance
Friendliness in Dialogue

Sascha Griffiths1 and Friederike Eyssel2 and Anja Philippsen
and Christian Pietsch and Sven Wachsmuth3

Abstract. The present contribution investigates the construction of
dialogue structure for the use in human-machine interaction espe-
cially for robotic systems and embodied conversational agents. We
are going to present a methodology and findings of a pilot study for
the design of task-specific dialogues. Specifically, we investigated
effects of dialogue complexity on two levels: First, we examined
the perception of the embodied conversational agent, and second, we
studied participants’ performance following HRI. To do so, we ma-
nipulated the agent’s friendliness during a brief conversation with the
user in a receptionist scenario.

The paper presents an overview of the dialogue system, the pro-
cess of dialogue construction, and initial evidence from an evaluation
study with naı̈ve users (N = 40). These users interacted with the sys-
tem in a task-based dialogue in which they had to ask for the way in
a building unknown to them. Afterwards participants filled in a ques-
tionnaire. Our findings show that the users prefer the friendly version
of the dialogue which scored higher values both in terms of data col-
lected via a questionnaire and in terms of observations in video data
collected during the run of the study.

Implications of the present research for follow-up studies are dis-
cussed, specifically focusing on the effects that dialogue features
have on agent perception and on the user’s evaluation and perfor-
mance.

1 Introduction
Research within the area of “language and emotion” has been identi-
fied as one key domain of innovation for the coming years [40, 20].
However, with regard to human-machine communication, we still
need better speech interfaces to facilitate human-robot interaction
(HRI) [30, 31]. Previous work on human-human communication has
already demonstrated that even small nuances in speech have a strong
impact on the perception of an interlocutor [1, 38].

In the present work, we have therefore focused on the role of dia-
logue features (i.e., agent verbosity) and investigated their effects on
the evaluation of an embodied conversational agent (ECA) and the
user performance. We designed a receptionist scenario involving a
newly developed demonstrator platform (see Section 3.2) that offers
great potential for natural and smooth human-agent dialogue. To ex-
plore how to model dialogues efficiently within actual human-robot
interaction we relied on a Wizard-of-Oz paradigm [16, 17].
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This HRI scenario involved an embodied conversational agent
which served as a receptionist in the lobby of a research center. A
similar set-up has been realized in previous studies [2, 24, 25]. More-
over, we draw from existing research on dialogue system design [33]
and the acceptance of artificial agents [13, 22].

The question that we seek to answer arises frequently during the
implementation of a robot scenario (such as this receptionist sce-
nario) [26], and can also be phrased as how the system should ver-
balize the information that it is supposed to convey to the user. Obvi-
ously, a script has to be provided that covers the necessary dialogue
content. The relevant issue is that each utterance can be phrased in a
number of ways. This brings up several follow-up questions such as:
Can the perceived friendliness of an agent be successfully manipu-
lated? Is the proposed script a natural way of expressing the intended
meaning? Are longer or shorter utterances favourable? How will the
user respond to a given wording? Will the script elicit the appropri-
ate responses from the user?

For the purpose of investigating these questions, we will first dis-
cuss related literature and relevant theoretical points. The following
section will describe the system. We then turn to the dialogue design
and first empirical evidence from a user study.

2 Dialogue Complexity and Perception of Artificial
Agents

Obviously, the issue of how to realize efficient dialogue in HRI has
been of interest to many researchers in the area of human-machine in-
teraction and principles of natural language generation are generally
well understood [39]. However, this is less so the case when taking
into account communication patterns between humans and embodied
conversational agents and robots.

2.1 Dialogue Complexity and Social Meaning
As Richard Hudson notes, “social meaning is spread right through
the language system” [23]. Thus, there is a clear difference between
interactions if one commences with the colloquial greeting “Hi!” ver-
sus one initiated with a more polite “Good Morning”. However, this
does not only concern peripheral elements of language such as greet-
ings, but also syntax. Hudson uses the following example to illustrate
this:

1. Don’t you come home late!
2. Don’t come home late!

Both sentences differ in terms of syntax and their social meaning.
The syntax varies as the first sentence explicitly refers to the subject,
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whereas the second sentence does not. The first sentence in the exam-
ple also appears more threatening in tone than the latter. These subtle
differences in the statements’ wording lead to a fundamentally dif-
ferent interpretation. Analogously, we assume that in human-agent
dialogue subtle manipulations of aspects of that dialogue can result
in changes in agent perception. Concretely, we will investigate the
role of this kind of linguistic complexity [11] within human-machine
interaction.

The impact of changing a dialogue with respect to the social mean-
ing communicated has already been tested in the REA (an acronym
for “Real Estate Agent”) system [9, 5]. In a study [4] of users’ per-
ception of different versions of REA’s behaviour, a “normal REA”
was tested against an “impolite REA” and a “chatty REA”. Results
indicated that in the condition in which REA was able to produce a
small amount of small talk REA was judged more likeable by par-
ticipants. In further studies with the system the authors concluded
that the interpersonal dimension of interaction with artificial agents
is important [8]. It has been shown that implementing a system which
achieves task goals and interpersonal goals as well as displaying its
domain knowledge can increase the trust a user will have in a sys-
tem [3]. Cassell [7] also argues that equipping artificial agents with
means of expressing social meaning not only improves the users’
trust in the domain knowledge that such systems display but also im-
proves interaction with such systems as the users can exploit more of
their experience from human-human dialogue.

2.2 Interaction Patterns

The dialogue flow used in the present study was implemented with
PaMini, a pattern-based dialogue system which was specifically de-
signed for HRI purposes [32] and has been successfully applied in
various human-robot interaction scenarios [35, 36, 37]. The dialogue
model underlying the present system (see Section 3.1) is therefore
based on generic interaction patterns [33]. Linguistically speaking
these are adjacency pairs [29, 10]. In these terms, a dialogue will con-
sist of several invariant elements which are sequentially presented as
pairs with one interlocutor uttering one half of the pair in his turn
and the other interaction partner responding with an appropriate re-
sponse.

The full list of generic interaction patterns which are distinguished
according to their function given by Peltason et al. [34] includes
the following utterance categories: Greeting, Introducing, Exchang-
ing pleasantries, Task transition, Attracting attention, Object demon-
stration, Object query, Listing learned objects, Checking, Praising,
Restart, Transitional phrases, Closing task, Parting.

For all these dialogue tasks one can see the interaction as pairs
of turns between interlocutors. Each partner has a certain response
which fits to the other interlocutor’s utterance. Examples of this kind
of interaction can be found in Table 1.

Table 1. Examples of adjacency pairs in human-robot interaction (adapted
from [34])

Purpose Example interaction

Greeting User: Hello, Vince.
Robot: Hi, hello.

Introducing User: My name is Dave.
Robot: Hello, Dave. Nice to meet you.

Object query Robot: What is that?
User: This is an apple.

Praising User: Well done, Vince.
Robot: Thank you.

The problem one faces is that while such dialogues are based on
generic speech acts, there is the remaining problem of how the in-
dividual items need to be worded. Winograd [46] distinguishes be-
tween the ideational function and interpersonal function of language.
The ideational function can loosely be understood as the proposi-
tional content of an utterance whereas the interpersonal function has
more to do with the context of an utterance and its purpose.

3 System Architecture
In the following, we present the system which was constructed both
as a demonstrator and as a research platform. We will present the
entire set-up which includes an ECA, Vince [42], and a mobile robot
platform, Biron [21]. Both of these use the same dialogue manager
but only the ECA has been used in this pilot study.

Figure 1 illustrates the architecture of the complete system in au-
tonomous mode. Communication between the components is mainly
implemented using the XML-based XCF framework and the Active
Memory structure [47]. Three memories are provided for different
kinds of information: The short term memory contains speech related
information which is inserted and retrieved by the speech recognizer,
the semantic processing unit and the dialogue manager. The visual
memory is filled by the visual perception components, it contains
information about where persons are currently detected in the scene.

The system is designed to provide the visitor verbally with infor-
mation, but also to guide them to the requested room if necessary4.
For this purpose, the agent Vince communicates information about
the current visitor and his or her needs to the mobile robot Biron via
a shared (common ground) memory.

Although Biron is omitted in the present study to reduce complex-
ity, we present the complete system, as Vince and Biron use the same
underlying dialogue system. Note that the study could have been con-
ducted also with Biron instead of Vince. Such a study is subject to
future work.

3.1 Dialogue Manager
The dialogue manager plays a central role in the overall system as it
receives the pre-processed input from the user and decides for ade-
quate responses of the system. A dialogue act may also be triggered
by the appearance of persons in the scene as reported by the visual
perception component.

Speech input from the user is recognized using the ISR speech
recognizer based on ESMERALDA [14]. The semantic meaning is
extracted via a parsing component which is possible due to the well
defined scenario. Additionally, this component retrieves missing in-
formation from an LDAP server that the human might be interested
in (e.g. office numbers). The dialogue manager PaMini [35, 36, 37]
is based on finite state machines which realize interaction patterns
for different dialogue situations as described in Section 2.2. Patterns
are triggered by the user or by the robot itself (mixed-initiative). The
dialogue component sends the selected response and possibly ges-
ture instructions to the Vince system which synchronizes the speech
output and the gesture control internally [28, 27]. Exploiting the in-
formation from the visual perception component, Vince attends to
the current visitor via gaze following [24].

Biron incorporates a separate dialogue which is coupled with the
Vince dialogue. The Biron dialogue at the moment receives input

4 A short video demonstration of the scenario is provided in this CITEC
video: http://www.youtube.com/watch?v=GOz_MsLel1Y#t=
4m32s. Accessed: March 2, 2015
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Figure 1. Overview of the architecture of the system in autonomous mode. The colors of the three memories indicate which information is stored in which
memory. See Section 3.1 for a thorough description of the information flow.

solely from the Vince dialogue component (not from the user) and
communicates the current state to the user. If the visitor wishes,
Vince calls Biron and orders him to guide the visitor to the requested
room. This feature is currently limited to offices on the ground floor,
if visitors are looking for a room on the first or second floor, Biron
guides them to the elevator and provides them with information about
how to find the room on their own.

3.2 Demonstrator Platform
The embodied conversational agent Vince is installed on a worksta-
tion. An Apple Mac Mini is used for this purpose. The system runs a
UNIX based operating system (Linux Ubuntu 10.04 32bit). The user
interface is controlled by a wireless bluetooth mouse and keyboard or
via remote access. The ECA is displayed on a holographic projection
screen (i.e. a HoloPro Terminal5) in order to achieve a high degree
of perceived embodiment. A microphone records speech input and
video data are recorded using two cameras. Two loudspeakers are
connected to the Mac Mini workstation to provide audio output.

4 Study Design and Realisation
We set up a simplified version of the CITEC Dialogue Demonstrator
for the purpose of the study. One difference is that we do not make
use of the mobile robot Biron here. Secondly, we rely on Wizard-of
Oz teleoperation [12, 45] to trigger interaction patterns by means of
a graphical user interface that was designed for our case study.

4.1 Preparation of Dialogues
The dialogues were prepared bottom-up. We tried to leave as little as
possible to design by the researchers or a single researcher.

To investigate human-machine dialogue in the context of a recep-
tionist scenario, we initially simulated such dialogues between two
human target persons who were given cards which described a par-
ticular situation (e.g. that a person would be inquiring about another
persons office location).

We recorded two versions of eight dialogues with the two partic-
ipants, who were asked to take the perspective of a receptionist or a

5 http://www.holopro.com/de/produkte/holoterminal.
html Accessed: March 2, 2015

visitor, respectively. The dialogues were then transliterated by a third
party who had not been involved in the staged dialogues.

To model the receptionist turns, we extracted all phrases which
were classified as greetings, introductions, descriptions of the way to
certain places and farewells. We then constructed a paper-and-pencil
pre-test in order to identify a set of dialogues that differed in friend-
liness. 20 participants from a convenience sample were asked to rate
the dialogues with regard to perceived friendliness using a 7-point
Likert scale.

These ratings were used as a basis to construct eight sample di-
alogues which differed both in friendliness and verbosity. In a sub-
sequent online pre-test, the sample dialogues were embedded in a
cover-story that resembled the set-up of our WoZ scenario.

We used an online questionnaire to test how people perceived these
dialogues. On the start screen participants were presented with a pic-
ture of the embodied conversational agent Vince and told that he
would serve as a receptionist for the CITEC building. On the fol-
lowing screens textual versions of the eight human-agent dialogues
were presented. Participants were asked to rate these dialogues with
regard to friendliness in order to identify dialogues that would be
perceived as either low or high in degree of perceived friendliness of
the interaction.

The dialogue with the highest rating for friendliness and the dia-
logue with the lowest rating for friendliness were then de-composed
into their respective parts and used in the main study. The two dia-
logue versions are presented in Table 2.

4.2 Study
In the main study, the participants directly interacted with the ECA
which was displayed on a screen (see Figure 1).

We recruited students and staff at the campus of Bielefeld Univer-
sity to participate in our study on “human-computer interaction”. 20
male and 20 female participants ranging in age from 19 to 29 years
(M = 23.8 years, SD = 2.36) took part in the study. Before beginning
their run of the study, each participant provided informed consent.
Each participant was then randomly assigned to one of two condi-
tions in which we manipulated dialogue friendliness.

The study involved two research assistants (unbeknownst to the
participants). Research assistant 1 took over the role of the “wizard”
and controlled the ECA’s utterances, while research assistant 2 inter-
acted directly with the participants.
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Table 2. Friendly and neutral dialogue version

Dialogue
Act

Neutral version Friendly version

Greeting Hallo
Hello

Guten Tag, kann ich Ihnen helfen?
Good afternoon, how can I help you?

Directions Der Fragebogen
befindet sich in
Q2-102.
The question-
naire is located
in Q2-102.

Der Fragebogen befindet sich in Raum
Q2 102. Das ist im zweiten Stock.
Wenn Sie jetzt zu Ihrer Rechten den
Gang hier runter gehen. Am Ende
des Gangs befinden sich die Treppen,
diese gehen Sie einfach ganz hoch und
gehen dann durch die Feuerschutztür
und dann ist der Raum einfach ger-
adeaus.
The questionnaire is located in room
Q2-102. That is on the second floor. If
you turn to your right and walk down
the hallway. At the end of the floor you
will find the stairs. Just walk up the
stairs to the top floor and go through
the fire door. The room is then straight
ahead.

Farewell Wiedersehen.
Goodbye.

Gerne.
You are welcome.

Following the Wizard-of-Oz paradigm, research assistant 1 was
hidden in the control room and controlled the ECA’s verbalisations
using a graphical user interface. A video and audio stream was trans-
mitted from the dialogue system to the control room. The “wizard”
had been trained prior to conducting the study to press buttons cor-
responding to the “Dialogue Acts” as shown in Table 2. Importantly,
research assistant 1 only knew the overall script (containing a greet-
ing, a description of the route to a room and a farewell), but was blind
to the authors’ research questions and assumptions.

To initiate the study, research assistant 1 executed “Greeting A” or
“Greeting B”, depending on whether the ”friendly” or ”neutral” con-
dition was to be presented, then proceeded to pressing “Directions
A” or “Directions B” and finally “Farewell A” and “Farewell B” once
the user had reacted to each utterance.

The users then had to follow the instruction given by the agent. Re-
search assistant 2 awaited them at the destination where they had to
fill in a questionnaire asking for their impressions of the interaction.

The questionnaire investigated whether differential degrees of di-
alogue complexity would alter the perception of the artificial agent
with respect to a) warmth and competence [15], b) mind attribution
[19], and c) usability (system usability scale SUS) [6]. We consider
these question blocks as standard measures in social psychology and
usability studies.

The questionnaire was comprised of three blocks of questions.
These do to some extent correspond to the four paradigms of arti-
ficial intelligence research listed in Russell & Norvig [41]: “think-
ing humanly”, “acting humanly”, “thinking rationally” and “acting
rationally”. As we were only looking at perception of the artificial
agent, we did not look into “thinking rationally”. However, warmth
and competence are used in research on anthropomorphism, which
one can regard as a form of “acting humanly”. Mind perception can
be related to “thinking humanly”. Usability (SUS) is a form of opera-
tionalising whether an artificial agent is acting goal driven and useful
which holds information on whether it is “acting rationally”.

The first block of the questionnaire included four critical items
on warmth, and three critical items on competence, as well as nine
filler items. The critical questions asked for attributes related to either

warmth, such as “good-natured”, or competence, such as “skillful”.
The second block consisted of 22 questions related to mind per-

ception. These questions asked the participants to rate whether they
believed that Vince can be attributed mental states. A typical item is
the question whether Vince was capable of remembering events or
whether he is able to feel pain.

Finally, the SUS questionnaire consisted of 10 items directly re-
lated to usability. Participants were asked question such as whether
they found the system easy to use.

Upon completion of the questionnaire, participants were de-
briefed, reimbursed and dismissed.

5 Results
In the following, two types of results are reported. In Section 5.1,
we present results from the questionnaire, in Section 5.2, we present
initial results from video data recorded during the study.

5.1 Questionnaire Responses
As aforementioned, 7-point Likert scales (for the warmth, compe-
tence and mind question blocks) and a 5-point Likert scale for the
SUS questions block) were used to measure participants responses
to the dependent measures. For each dependent variable, mean scores
were computed with higher values reflecting greater endorsement of
the focal construct. Values for the four blocks of questions were aver-
aged for further analysis. The results for the questionnaire are shown
in Figure 2.
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Figure 2. Mean response values for the questionnaire question sets. The
mean for the dependent variables warmth, competence, mind and SUS are
compared for the two categories neutral (blue) and friendly (red).

5.1.1 Warmth

The mean values for the warmth question set can be seen in Figure 2.
It can be notices that the values for the friendly condition are mostly
higher than for the neutral condition. The descriptive statistics con-
firm this. The friendly condition has a maximum value of 7 and a
minimum value of 3.25 whereas the neutral condition has a maxi-
mum value of 6.75 and a minimum value of 2.25. The mean of the
friendly condition is M = 5.11 (SD = 1.14) and the mean of the neu-
tral condition is M = 4.61 (SD = 1.14). The mean values suggest that
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within the population on which our system was tested the friendly
condition is perceived warmer than the neutral condition.

5.1.2 Competence

Similarly, the values for the friendly condition are mostly higher than
for the neutral condition. The descriptive statistics confirm this. The
friendly condition has a maximum value of 7 and a minimum value
of 2.75 whereas the neutral condition has a maximum value of 6.25
and a minimum value of 1.5. The mean of the friendly condition is
M = 4.68 (SD = 1.05) and the mean of the neutral condition is M =
4.02 (SD = 1.28). The standard deviation shows that there is more
variation in the values for the neutral condition. The mean values
overall suggest that within the population on which our system was
tested the friendly condition is perceived more competent than the
neutral condition.

5.1.3 Mind Perception

As Figure 2 shows, the ECA is perceived slightly higher on mind
perception in the neutral condition than in the the friendly condition.
The neutral condition has a maximum value of 4.9 and a minimum
value of 1.32 whereas the friendly condition has a maximum value of
4.93 and a minimum value of 1.09. However, the mean of the neutral
condition is M = 3.02 (SD = 1.01) whereas the mean of the friendly
condition is M = 2.74 (SD = 1.14). The standard deviation suggests
that there is more variation in the values for the neutral condition. The
mean values overall suggest that within the population on which our
system was tested in the friendly condition the participants attributed
less mind to the ECA than the neutral condition.

5.1.4 System Usability Scale (SUS)

The values on the system usability scale are slightly higher in the
friendly condition than in the neutral condition. The friendly con-
dition has a maximum value of 4.7 and a minimum value of 2.7
whereas the neutral condition has a maximum value of 4.9 and a
minimum value of 2.5. The mean of the friendly condition is M =
3.87 (SD = 0.61) and the mean of the neutral condition is M = 3.74
(SD = 0.71). The standard deviation suggests that there is more vari-
ation in the values for the neutral condition. The mean values overall
suggest that within the population on which our system was tested
the friendly condition was rated slightly more usable than the neutral
condition.

5.2 Further Observations

Further observations that could be made on the dialogue level re-
sulted from the analysis of the video data collected during the runs
of the study. The dialogues were transcribed and inspected by one
student assistant6 trained in conversation analysis [18]. The purpose
of this was to examine the dialogues to find out whether there were
any particular delays in the dialogues and whether participants con-
formed to the script or not.

6 Taking this line of research further, we would use two annotators and check
for agreement between them. However, this was beyond the scope of the
current contribution.

5.2.1 Alignment

We looked at the mean utterance length (MUL) of the participants
in interaction with the ECA. We take this as an indicator of how
participants align their verbalisations with the agent’s verbalisations.
The differences between the two conditions can be seen in in Figure
3, the values for the friendly condition are mostly higher than for the
neutral condition.
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Figure 3. The mean utterance length averaged over the two conditions. The
friendly condition has a slightly higher mean value than the neutral condition.

The descriptive statistics confirm this. The friendly condition has
a maximum value of 5.5 and a minimum value of 1 whereas the neu-
tral condition has a maximum value of 5.25 and a minimum value of
1. The mean of the friendly condition is M = 3.12 (SD = 1.31) and
the mean of the neutral condition is M = 2.76 (SD = 1.11). The stan-
dard deviation suggests that there is more variation in the values for
the friendly condition. The mean values overall suggest that within
the population on which our system was tested the friendly condi-
tion showed more alignment with the ECA’s MUL than the neutral
condition.

5.2.2 Irregularities

The video data were reviewed and four types of noticeable effects on
the dialogue were determined:

1. Participants returning because they did not understand or forget
the ECA’s instructions (22.5%, see Section 5.2.3),

2. deviations from the script, i.e. participants trying to do small talk
with the ECA (5%, see Section 5.2.4),

3. timing difficulties causing delays in the interaction (25%), and
4. other ways in which the script was altered in small ways (22.5%,

e.g. mismatches between the ECA’s utterances and the participants
utterances).

The overall number of irregularities accumulated across the two
categories is summarized in Table 3. In interactions with the neutral
condition irregularities can be observed in 75% of the cases, while in
the friendly condition only 50% of the interactions show irregulari-
ties.
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Table 3. Overview of occurred irregularities in the neutral and friendly con-
dition.

Neutral Friendly
No irregularities 5 10
Irregularities occur 15 10

5.2.3 Clarity of instructions

Out of the 40 interactions in 9 cases (22.5%) the participants returned
because they realized that they could not remember the room num-
ber correctly. Out of these the majority, namely 6, were in the neutral
condition. Three participants came back for a second short interac-
tion with Vince in the friendly condition.

5.2.4 Small talk

Only two participants (5%) deviated from the script of the dialogue
by attempting to do small talk with Vince. Both of these were in
the friendly condition. One participant asked the ECA for its name.
Another participants tried three deviating questions on Vince during
the interaction. The first question was “How are you?”, the second
“What can you tell me?”, and finally the ECA was asked whether
they were supposed to actually go to the room after the instructions
were given.

6 Discussion
In reporting our results we concentrated on the descriptive statistics
and no attempt will be made to generalize beyond this population.
Within this first pilot study with the current demonstrator we tried to
assess whether manipulating the degree of perceived friendliness has
an effect on the interaction.

We now return to the questions asked in the introduction, the
main question being how the manipulation affected the interaction
between the user and the artificial agent.

6.1 Can the perceived friendliness of an agent be
successfully manipulated?

We obtained slightly higher values regarding the perceived warmth
in the friendly condition as opposed to the neutral condition. The
differences are very small, though. The descriptive statistics point
towards a “friendly” version of the dialogue actually being perceived
as more friendly by the user. We propose that this will make users
more willing to use the services the system can provide. Thus, further
research into “friendly agents” seems a productive agenda.

The friendliness level also suggested higher ratings for compe-
tence, despite the fact that the friendly dialogue actually led to more
misunderstandings. This failure was not reflected in the users judge-
ments directly. Also, participants seem to prefer interacting with the
friendly agent.

6.2 Is the proposed script a natural way of
expressing the intended meaning?

The results which the video data analysis presented indicate that ac-
tually the majority of interactions conducted within this study were
smooth and there were no noticeable deviations from the overall
“script” in most dialogues. The operator was able to conduct most
of the dialogues with the use of just a few buttons. This suggests that
one can actually script dialogues of this simple nature quite easily.

However, the wording is crucial and the results suggest that the
friendly version of the dialogue is more amicable to clarity. Only
three participants did not fully understand or remember the instruc-
tions whereas twice as many had to ask for the room a second time
in the neutral condition.

6.3 Are longer or shorter utterances favourable?
In a task-based dialogue the artificial agent will ideally demonstrate
its knowledge and skill in a domain. However, the pilot-study did
not find a very high difference between the two conditions regarding
the competence question. The descriptive statistics, however, suggest
that the longer utterances in the friendly dialogue received higher
competence ratings.

Converse to the prediction, mind perception was slightly higher
for the neutral dialogue, though. Thus, the friendly agent is not nec-
essarily perceived as more intelligent by the user.

However, the longer utterances in the friendly version of the di-
alogue received higher ratings with respect to usability. Also, fewer
participants had to come back and ask for the way again in a second
interaction in the friendly condition. This suggests that the longer
version of the dialogue better conveyed the dialogue content than the
neutral version.

6.4 How does the user respond to a given wording?
In the friendly condition, users used longer utterances themselves
when speaking to the friendly version of the ECA with more verbose
verbalisations. This shows that the participants do align their speech
with that of the artificial agent.

One can also tell from the video analysis that only in the friendly
condition participants were motivated to further explore the possi-
bilities the system offers. Two participants decided to ask questions
which went beyond the script.

6.5 Will the script elicit the appropriate responses
from the user?

Participants found it easy to conform to the proposed script. There
was only a low percentage of participants who substantially devi-
ated from the script and stimuli presented by the ECA (5% tried to
do small talk with the agent). Most dialogues proceeded without the
participants reacting in unanticipated ways and only a small percent-
age of participants failed to extract the relevant information from the
verbalisations of the artificial agent.

7 Conclusion
We presented a pilot-study in which participants were confronted
with dialogue exhibiting different degrees of friendliness.

While maintaining the same ideational function (see Section 2.2
above) we changed the interpersonal function of the dialogue by us-
ing sentences which were obtained through a role-playing pre-study
and then rated by participants according to their friendliness.

The obtained dialogues (a friendly and a neutral version) were pre-
sented to participants in interaction with an ECA which was imple-
mented via generic interaction patterns. Participants filled in a ques-
tionnaire after the interaction which was analysed along with further
observational data collected during the study.

The results point towards higher perceived warmth, higher per-
ceived competence and a greater usability judgement for the ECA’s
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performance in the friendly condition. However, mind perception
does not increase in the more friendly dialogue version.

Further research should replicate our findings using a larger sam-
ple size. Also, in a similar study the variation of friendliness in inter-
action had less impact on the participants’ perception than the inter-
action context [43]. Thus, one would have to take a closer look at how
politeness and context interact in future studies. In addition, related
literature also suggests that anthropomorphic perceptions could be
increased by increased politeness [44]. Thus, friendliness can gen-
erally be expected to have an effect on the perception of artificial
agents.

The dialogue in the present study not only varied in terms of
friendliness but also in terms of verbosity. It could be argued that this
is not the same and a higher verbosity might have had an unwanted
effect, especially on the user’s task performance. Future studies could
consider whether they can be designed to investigate the effect of
friendliness without directly changing agent verbosity.

It would also be interesting to conduct a similar study to explore
dialogue usage in the robot Biron. As he is supposed to guide the vis-
itor to the requested room, he spends several minutes with the visitor
without exchanging necessary information, thus, is can be expected
that the usage of small talk affects the interaction in a positive way.
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Turn-yielding cues in robot-human conversation
Jef A. van Schendel and Raymond H. Cuijpers1

Abstract. If robots are to communicate with humans in a successful
manner, they will need to be able to take and give turns during con-
versations. Effective and appropriate turn-taking and turn-yielding
actions are crucial in doing so. The present study investigates the
objective and subjective performance of four different turn-yielding
cues performed by a NAO robot. The results show that an artificial
cue, flashing eye-LEDs, lead to significantly shorter response times
by the conversational partner than not giving any cue and was experi-
enced as an improvement to the conversation. However, stopping arm
movement or head turning cues showed, respectively, no significant
difference or even longer response times compared to the baseline
condition. Conclusions are that turn-yielding cues can lead to im-
proved conversations, though it depends on the type of cue, and that
copying human turn-yielding cues is not necessarily the best option
for robots.

1 INTRODUCTION

“Beep boop!” Will our future robot partners communicate with us
like Star Wars’ R2D2? A more desirable future would be one where
we can interact with robots in a fluent and pleasant manner, using the
same natural language we use to talk to other people.

As robots grow more advanced, they are able to help us out in
more areas of our lives. An area of interest is for instance elderly
care, since healthcare costs in European countries are on the rise [6],
and the 80+ population in Europe is expected to more than double
from 2013 to 2050 [23]. Robots could increase cost-efficiency and
have shown positive effects in this area [5].

But no matter what type of work, socially assistive robots as they
are called [22], should be not just able to successfully perform their
tasks, but deal with human beings in an appropriate, respectful and
productive manner. This requires a way to naturally communicate
with them, which involves taking and giving turns. This is also called
managing the conversational floor.

1.1 Turn-taking

To manage the conversational floor, humans make use of turn-taking
and turn-yielding cues [8]. One way to give such cues is through
speech itself: the intention to yield a turn can be made clear through
syntax (for instance, ending with a direct question) but also changes
in intonation or speaking rate [10, 13]. Using these cues requires un-
derstanding what is being said, which is difficult for robots. Another
way is through non-verbal cues, given through body movement or
gaze direction [16]. The major advantage of non-verbal cues is that
they do not require speech to be intelligible.

1 Human Technology Interaction group, Eindhoven University of Technol-
ogy, the Netherlands, email: r.h.cuijpers@tue.nl

Existing research has investigated ways for robots and other agents
to shape and guide a conversation. Positive results have been found
when robots have been used to implement conversational gaze be-
havior [2, 18, 21] and gestures [14, 17], likewise with agents who
make use of eye gaze [1, 7, 19], especially when it is appropriate in
context [9, 12]. Other researchers investigated both gestures and eye
gazing by robots and, in certain combinations, found positive effects
on message retention [24] and persuasion [11]. Others still moved
on from dyadic sessions to conversations where a robot speaks with
multiple people, so-called multiparty settings [3, 4, 15, 18, 25].

Since non-verbal cues have shown promising results in studies
such as these, and can be implemented relatively easily for robots,
they are of interest for the present study.

While turn-taking has been investigated in many studies, most of
them evaluate a combination of turn-yielding cues as a whole and do
not compare the effectiveness of isolated turn-yielding cues. Some
authors, such as [4], have built interaction models for agents that in-
clude turn-yielding. In their study, the assessment of turn-yielding
behavior is mixed with other types of interaction. Additionally, the
subjective assessment is based on a single condition and is not com-
pared to other models, which makes it difficult to understand the
relative contribution of different turn-yielding cues. Therefore, we
designed a study in which we can compare the effectiveness and
user evaluation of a number of non-verbal turn-yielding cues. The
response time of the conversation partner is used as an objective mea-
sure, because a shorter response time could mean better and more flu-
ent conversational flow. Shiwa and colleagues [20] already showed
that this does not necessarily signify a more pleasant interaction,
which is why a questionnaire is used to evaluate the participants’
opinion on the value of the different cues. This study will give us
further insights in how to employ non-verbal turn-yielding and turn-
taking cues during human-robot interaction.

1.2 Turn-yielding cues

Four different turn-yielding cues were selected, based on existing
literature.

The first two were based on common human cues and labelled
turn head and stop arms. The former means that the speaker directs
its gaze away from the conversational partner during speaking, then
returns to the partner when yielding the turn [16]. For the latter, the
speaker uses co-speech gestures while talking, but stops doing so
when finished. It is based on the idea that interlocutors make certain
continuous movements during speaking, but stop moving as a sign
that their turn is over [16].

For the third cue, an artificial action was chosen, namely flash eyes,
where the robot briefly increases the brightness of its eye-LEDs. This
condition was added to investigate whether cues have to be based on
existing human behavior or not. This cue is not natural in the sense
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that it is humanlike, but it is a very common way to communicate
non-verbally for robots (and many other technical devices).

The last cue was called stay silent and served as the baseline condi-
tion. Here, the robot simply stopped speaking with no further action.

These four cues were performed by a robot in dyadic sessions with
human conversational partners. In order to generate a large number of
turn-yielding events we developed a new task where the participant
and the robot took turns to verbally cite the letters of the alphabet. As
soon as the robot stopped citing, the participant continued citing let-
ters. After a few letters, the robot continued again. The turn-yielding
cues employed by the robot were manipulated.

2 METHOD
2.1 Participants
A total of 20 participants took part in the experiment. One was unable
to complete the task and therefore the data in question was not used in
the analysis. Roughly half of the participants were recruited from the
J.F. Schouten participant database, while the others were recruited
through word-of-mouth and invitations via social networks. The only
requirement set beforehand was that the participants were able of
hearing. Of the 19 participants, 13 were female. All participants were
offered monetary compensation or course credits for their time.

2.2 Design
The performed experiment had a within-subjects, repeated measures
design with four conditions.

The independent variable in this study was the turn-yielding cue
used by the robot. The four conditions, as described under 1.2, were
labelled stay silent, stop arms, turn head and flash eyes. These were
randomly selected by the robot during the experiment.

The dependent variable was the response time of the participant.
Specifically, this time was defined as the length in milliseconds be-
tween the start of the robot’s turn-yielding cue and the beginning of
the participant’s speech.

Additionally, the participants filled out a questionnaire after the
experiment. The questionnaire began by asking the participants
which of the four cues they remember noticing. Then, a number of
questions asked about their opinion on the four conditions, using a
five-point Likert scale. The order of the questions was randomized
for each participant in order to minimize ordering bias.

2.3 Setup
This study used a 58-centimeter tall humanoid robot called NAO,
developed by Aldebaran Robotics. It has 25 degrees of freedom for
movement and various sensors. Of particular interest for this study
was its microphone, however, due to unsatisfactory performance dur-
ing pre-tests, an external microphone was used for the experiment.
Both the NAO and the microphone were connected to a laptop, used
for controlling the experiment and saving the data.

The experiment took place in the GameXPLab, a laboratory mod-
elled after a living room at Eindhoven University of Technology. Par-
ticipants were seated in front of a small desk, with the NAO on top
of the desk and a small wireless microphone placed between them.

2.4 Procedure
During a short introduction, the participants were given their task:
together with the NAO, they were to repeatedly cite the letters of the

Figure 1. Experiment setup

alphabet. The NAO would start and after a randomly chosen amount
of letters it would stop speaking and perform one of the turn-yielding
cues. Then, the participant would continue until the NAO started
speaking again. The robot autonomously decided when to speak by
listening for 2, 3 or 4 utterances after which it waited for a silence
to start speaking. The number of utterances determines which letter
should be used next. Occasionally, the robot made a mistake (e.g.
when it mistook another sound for an letter) or interrupted a person,
but this was never a problem from the user’s point of view. A small
timing delay (0.5s) was added to make the flow as natural as possible.
This cycle continued for roughly 15 minutes with each participant.

This particular task was chosen for several reasons. First, the an-
swers by the participants would mostly be single-syllable words,
which would make them easier to accurately detect with the micro-
phone and enable the robot to count them, so it would know where
to continue the series. The second reason was the assumption that
the participants would be able to recall the letters of the alphabet
with minimal effort, thereby minimizing the influence of recollec-
tion time. Thirdly, the advantage of using a fixed sequence would
be to avoid the need for the participant to decide on what to say. In
other words, the aim was to control for possibly confounding vari-
ables such as recollection time or deliberation time.

Afterwards, the participants filled out a questionnaire (further de-
scribed under 2.2).

3 RESULTS
3.1 Experiment results
The experiment data was edited and analyzed using SPSS. A number
of false positives were recorded as notes during the experiment. After
these were removed, a total of 1310 valid data points were left, or
about 68.9 recorded measurements per participant.

The distribution of the response time data was found to be skewed
right (skewness = 1.520 ± 0.068) and peaked (kurtosis =
5.370 ± 0.135). To increase normality it was logarithmically trans-
formed. Histograms of the original (a) and log-transformed (b) data
can be found in Figure 3.1. As can be seen, the normality was
much improved: the distribution of the transformed data is approxi-
mately symmetric (skewness = �0.079 ± 0.068) and less peaked
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(kurtosis = 0.421± 0.135).
Table 1 shows the reaction times of the four conditions. Since the

distribution of reaction times is skewed we transformed the data us-
ing the natural logarithm (ln) before computing the means and stan-
dard errors (middle two columns). The last two columns show the
reaction times transformed back to the normal time domain.

A one-way ANOVA showed that there was a significant difference
between groups (F (3, 1306) = 15.407, p < 0.001). Levene’s test
indicated equal variances (p = 0.644).

A Tukey HSD post-hoc test revealed that the response time was
significantly lower for the flash eyes action (M = 854 ms, p =
0.006) yet significantly higher for the turn head action (M = 1033
ms, p = 0.003) when compared to the stay silent condition (M =
944 ms). There was no significant difference between the stay silent
condition and the stop arms action (M = 916 ms, p = .829).

Additionally, the mean response time for the turn head condi-
tion was significantly higher than both the stop arms (p < 0.001)
and flash eyes (p < 0.001) conditions. There was, however, no sig-
nificant difference between the flash eyes and stop arms conditions
(p = 0.071). Post-hoc results are shown in Table 2. A bar chart vi-
sualising the means of the four conditions can be found in Figure
4.

Response time (ms)
350030002500200015001000500

Fr
eq

ue
nc

y

200

150

100

50

0

Figure 2. Original data

Response time (ln(ms))
8.0007.5007.0006.5006.000

Fr
eq

ue
nc

y

120

100

80

60

40

20

0

Figure 3. Histograms showing the distribution of response times
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Figure 4. Means of the four conditions. Error bars represent 95% CI. Bars
denoted with * differ at significance level < 0.01, bars with ** at

significance level < 0.001.

Linear regression on the response times with trial number as the
independent variable showed that these times did not decrease after
sequential trials (stay silent p = 0.759; turn head p = 0.224; flash
eyes p = 0.368), except for the stop arms condition (p = 0.001).
For this last condition, response times decreased by 207 ms after 115
trials, as shown in Figure 5.
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Figure 5. Scatter plot and fitted line of all response times in the stop arms
condition.

3.2 Questionnaire results

The data gathered with the questionnaire (N = 19) was edited and
analyzed using SPSS, in several steps.

The first part of the questionnaire was used as a confirmation of
which cues were noticed by the participants. Cues that went unno-
ticed were excluded from the data.

Furthermore, the questionnaire included pairs of opposite ques-
tions, phrased positively and negatively, to avoid acquiescent bias.
An example of such a pair is “...improved the flow of the conver-
sation” and “...did not improve the conversation”. Before analysis,
negatively phrased questions had their answers mirrored.

Principle component analysis was used to identify the underly-
ing factors and group the variables. After applying varimax rotation,
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Table 1. Reaction times of the four conditions in the log-transformed and normal domain. SE is the standard error of sample mean. N is the number of turn
yields (1310 in total).

Condition N Mean (ln(ms)) SE (ln(ms)) Mean (ms) SE (ms)
Stay silent 331 6.85 .020 944 ±19
Turn head 337 6.94 .019 1033 20/-19
Stop arms 334 6.82 .018 916 17/-16
Flash eyes 308 6.75 .020 854 ±17

Table 2. Post-hoc test results of the response times

(I) condition (J) condition Mean difference (I-J, ln(ms)) SE (ln(ms)) Sig.
Stay silent Turn head -0.95 .027 .003

Stop arms .023 .027 .829
Flash eyes .091 .028 .006

Turn head Stay silent .095 .027 .003
Stop arms .118 .027 .000
Flash eyes .186 .028 .000

Stop arms Stay silent -.023 .027 .829
Turn head -.118 .027 .000
Flash eyes .068 .028 .071

Flash eyes Stay silent -.091 .028 .006
Turn head -.186 .028 .000
Stop arms -.068 .028 .071

three components were found with an Eigenvalue over 1, accounting
for 35.1, 28.2 and 13.2 percent, respectively, of the total variance.

The rotated component matrix, shown in Table 3, shows which
questions load on which components after rotation. Based on this
data, the three components were named Pleasant, Improvement and
Noticeable. Table 4 shows which questions make up which compo-
nents.

After identifying the components, a one-way ANOVA on the com-
bined questions showed that there was a significant difference be-
tween groups for the Improvement (F (3, 292) = 8.998, p < 0.001)
and Noticeable (F (3, 70) = 3.081, p = 0.033) components, but not
for the Pleasant component (F (3, 218) = 0.602, p = 0.614).

A Tukey HSD post-hoc test performed on the Improvement and
Noticeable components showed that there were several significant
differences between the means of the questionnaire responses. Flash
eyes scored significantly higher on Improvement than both stop arms
(p < 0.001) and stay silent (p = 0.001). Also, stop arms scored
higher than stay silent on Noticeable (p = 0.040).

The post-hoc test results for the Improvement and Noticeable com-
ponents can be found in Table 5 and 6, respectively. A graphical sum-
mary of all the components can be found in Figure 6.

4 DISCUSSION
The present study investigated different turn-yielding cues to be used
by a robot in robot-human conversation. An experiment and ques-
tionnaire measured the performance and rating of the different cues.
The results show that using a turn-yielding cue can lead to faster re-
sponse times by the conversational partner compared to the baseline
condition. One of the cues, namely flash eyes, produced the lowest re-
sponse times and was rated higher on Improvement than the baseline
condition and any other cue. The results, therefore, partially confirm
the hypothesis that turn-yielding cues by a robot can improve robot-
human conversation.

NoticeableImprovementPleasant

M
ea

n

5

4

3

2

1

0

Flash eyes
Stop arms
Turn head
Stay silent
Condition

Figure 6. Means of the four conditions for every component. Error bars
represent 95% CI.

4.1 Different types of cues

The flash eyes cue lead to faster response times and had the highest
Improvement rating by the participants. However, other cues showed
different results. The turn head cue showed significantly longer re-
sponse times compared to staying silent. Moreover, while the stop
arms condition was rated as more noticeable than staying silent, there
was no significant difference between the mean response times of
these two cues.

There was a difference of 179 ms between the means of the re-
sponse times for the flash eyes and turn head cues. A conclusion
could be that while turn-yielding cues have the potential to lead to
decreased response times, the type of cue matters a great deal.
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Table 3. Rotated component matrix. Questions marked with * were mirrored.

Question Component 1 Component 2 Component 3
...made it obvious it was my turn .913 .094 .035
...had no clear meaning* .868 .023 -.110
...did not improve the conversation* .723 .459 .067
...improved the flow of the conversation .703 .465 -.143
...was uncomfortable* .074 .871 -.101
...was friendly .142 .863 .155
...felt natural .415 .560 -.096
...was hard to notice* -.060 -.007 .986

Table 4. Components and related questions. Questions marked with * were mirrored.

Component 1, Pleasant Component 2, Improvement Component 3, Noticeable
...was uncomfortable* ...made it obvious it was my turn ...was hard to notice*
...was friendly ...had no clear meaning*
...felt natural ...did not improve the conversation*

...improved the flow of the conversation

4.2 Artificial cue
While a decrease in response time can be a hint that the cue improves
the conversation, this does not necessarily have to be the case. Results
from the questionnaire, however, were in line with the results from
the experiment when it came to the flash eyes cue. It was seen as an
improvement to the conversation and to have a clearer meaning when
compared to the stop arms and stay silent cues.

Some anecdotal evidence from the experiment pointed the same
way. Several participants remarked that they appreciated the flash
eyes cue, one of them explaining “It signals that he is done, and that
he won’t interrupt me”. Multiple participants also described the cue
as “natural”, which is interesting for an artificial cue that human con-
versational partners are unable to perform.

Thus, one of the interesting things here is that the cue with the low-
est response time was an artificial cue, as opposed to the turn head
and stop arms cues, which were based on literature from human-
human interaction. There appears to be a difference between a human
being using such cues and the NAO doing the same. This could have
several causes. One possible cause is that the NAO did not perform
the cue correctly, and therefore its meaning was unclear to the partic-
ipants. Results from the questionnaire are inconclusive on this point:
these cues were not rated significantly lower on this point, and their
means center around “Neither agree nor disagree”. Another reason
could be that the participants found the cues with movement to be
unexpected and therefore hesitated in their responses.

4.3 Movement cues
The cues that were based on movement, namely turn head and stop
arms, showed worse performance compared to flash eyes, which did
not involve movement. The movements made by the robot could be
a source of distraction or hesitation for the participants, which could
explain the longer response times.

Some anecdotal evidence from the experiment pointed this way.
Some of the participants talked about the turn head and stop arms
cues, explaining that they found many of the robot’s movements to
be distracting, and were sometimes confused as to the meaning of
these movements. The data from the questionnaire shows that the

stop arms cue was rated as significantly higher on the Noticeable
component. Could it have been too noticeable, thereby distracting
the participant?

Additionally, during the experiment it often seemed that when the
NAO started moving, the participant hesitated to continue, preferring
to wait to see where the robot was going with this. One of them re-
marked that he did not recognize the movement of turn head as a cue
to start speaking, so instead he “just waited until it was done”.

The movements could have simply been unexpected. Linear re-
gression showed that for at least the stop arms cue, the mean re-
sponse time decreased after subsequent trials, suggesting the partici-
pants were faster to respond and perhaps got used to the cue. Perhaps
after longer interaction with the robot, this cue could have lead to
response times similar to flash eyes.

Whether these findings are specific to the NAO robot is unclear,
but fact is that this particular robot makes distinct sounds during
movements and that it remains completely static outside of the per-
formed cues. This could make movement cues highly salient by de-
fault.

4.4 Improvements to the experiment

A critical component of the experiment was accurately measuring the
response time. The external microphone made it possible to relatively
accurately and precisely measure the points at which the participant
started speaking. However the beginning of the measurement, de-
fined as the point at which the NAO stopped speaking, was harder
to measure accurately. In the experiment, the timer started running
after the NAO signalled it was done. However further investigation
revealed that there is in fact a pause between the actual end of the
sound and this signal, of around 225 ms on average. Though this
issue could unfortunately not be avoided during this experiment, it
could have an impact on the results. In practice it means that the
turn-yielding cue could be performed sooner after speaking, possibly
leading to a larger decrease in response times and an even stronger
effect. Indeed, if we subtract 225ms form the reaction times for all
non-verbal cues except the stay silent cue in Figure 4, we obtain a
graph where all non-verbal cues lead to a reaction time improvement
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Table 5. Post-hoc test results for the Improvement component

(I) condition (J) condition Mean difference (I-J) SE Sig.
Flash eyes Turn head .449 .193 .096

Stop arms .921 .188 .000
Stay silent .724 .188 .001

Turn head Flash eyes -.449 .193 .096
Stop arms .472 .193 .072
Stay silent .275 .193 .488

Stop arms Flash eyes -.921 .188 .000
Turn head -.472 .193 .072
Stay silent -.197 .188 .720

Stay silent Flash eyes -.724 .188 .001
Turn head -.275 .193 .488
Stop arms .197 .188 .720

Table 6. Post-hoc test results for the Noticeable component

(I) condition (J) condition Mean difference (I-J) SE Sig.
Flash eyes Turn head -.393 .319 .608

Stop arms -.737 .310 .091
(p ¡ .001) Stay silent .105 .310 .986

Turn head Flash eyes .393 .319 .608
Stop arms -.344 .319 .704
Stay silent .498 .319 .406

Stop arms Flash eyes .737 .310 .091
Turn head .344 .319 .704
Stay silent .842 .310 .040

Stay silent Flash eyes -.105 .310 .986
Turn head -.498 .319 .406
Stop arms -.842 .310 .040

compared to the stay silent cue. However, the flash eyes cue would
still be most salient and the relative effectiveness of these cues re-
mains the same.

5 CONCLUSIONS

The present study explored the use of turn-yielding cues by a robot.
We found that such turn-yielding cues can improve both performance
and user experience during human-robot conversation. These results
on turn-yielding are in line with earlier findings that show that non-
verbal cues can influence turn taking in conversations [2, 18]. Our
study adds to earlier research by specifically focusing on the relative
effect of turn-yielding cues and it shows that the type of cue is of
importance for both performance and user experience.

An important question is how these conclusions are to be used
in the development of socially assistive robots. Should one, for in-
stance, always make use of an eye-flashing cue? It is clear that turn-
yielding cues have the potential to improve a conversation, but in our
study at most one cue was presented at a time (in addition to the stay
silent cue). While the eye-flashing cue showed the most promise dur-
ing this experiment, its meaning is, in general, ambiguous. Flashing
LEDs are used to signal all sorts of events. In that sense the turn
head and stop arms cues are much better, because they not only in-
form the observer about the timing of an event but also that the event

is a turn-yield. So we expect that these cues are more useful in com-
plex interactions. Finally, it would be interesting to see how these
cues interact. A head turn could disambiguate a LED flash, so that in
combination the turn-yield cues are effective and robust.
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Robot Learning from Verbal Interaction: A Brief Survey
Heriberto Cuayáhuitl1

Abstract. This survey paper highlights some advances and chal-
lenges in robots that learn to carry out tasks from verbal interaction
with humans, possibly combined with physical manipulation of their
environment. We first describe what robots have learnt from verbal
interaction, and how do they do it. We then enumerate a list of re-
search limitations to motivate future work in this challenging and ex-
citing multidisciplinary area. This brief survey points out the need of
bringing robots out of the lab, into uncontrolled conditions, in order
to investigate their usability and acceptance by end users.

1 INTRODUCTION

Intelligent conversational robots are an exciting and important area
of research because of their potential to provide a natural language
interface between robots and their end users. A learning conversa-
tional robot can be defined as an entity which improves its perfor-
mance over time through verbally interacting with humans and/or
other machines in order to carry out abstract or physical tasks in
its (real or virtual) world. The vision of such kinds of robots is be-
coming more realistic with technological advances in artificial in-
telligence and robotics. The increasing development of robot skills
presents boundless opportunities for them to perform useful tasks for
and with humans. Such development is well suited to robots with a
physical body because they can exploit their input and output modal-
ities to deal with the complexity of public spatial environments such
as homes, shops, airports, hospitals, etc. A robot learning from in-
teraction, rather than a robot that does not learn, is particularly rele-
vant because it is not feasible to pre-program robots for all possible
environments, users and tasks. Even though many robotic systems
can be scripted or programmed to behave just as expected, the rich
nature of interaction with the physical world, or with humans, de-
mands flexible, adaptive solutions to deal with dynamic, previously
unknown, or highly stochastic domains. Therefore, robots should be
able to refine their already learned skills over time and/or acquire
new skills by (verbally) interacting with its users and its spatial envi-
ronment. An emerging multidisciplinary community at the intersec-
tion of machine learning, human-robot interaction, natural language
processing, robot perception, robot manipulation and robot gesture
generation, among others, seeks to address challenges in realising
such robots capable of interactive learning.

This paper will provide a brief survey on robots that learn to ac-
quire or refine their verbal skills from example interactions using
machine learning. Conversational robots that draw on hand-coded
behaviours, or robots learning from non-verbal interaction [3, 14],
are therefore considered out of scope here.

1 Heriot-Watt University, United Kingdom, email: hc213@hw.ac.uk

2 ADVANCES
2.1 What have robots learnt from conversational

interaction?
The following list of representative conversational robots shows a
growing interest in this multidisciplinary field, see Figure 1.

• The mobile robot Florence is a nursing home assistant [20, 17].
The tasks of this robot include providing the time, providing infor-
mation about the patient’s medication schedule and TV channels,
and motion commands such as go to the kitchen/bedroom. The
learning task consists in inducing a dialogue strategy under uncer-
tainty, where the actions correspond to physical actions (motion
commands) and clarification or confirmation actions. The robot’s
goal is to choose as many correct actions as possible.

• �Iwahashi’s non-mobile robot with integrated arm+hand+head
learns to communicate from scratch by physically manipulating
objects on a table [11]. The tasks of this robot include (a) acqui-
sition of words, concepts and grammars for objects and motions;
(b) acquisition of the relationships between objects; and (c) the
ability to answer questions based on beliefs. The robot’s goal is to
understand utterances and to generate reasonable responses from
a relatively small number of interactions.

• The mobile robot SmartWheeler is a semi-autonomous wheelchair
for assisting people with severe mobility impairments [19]. The
task of the robot is to assist patients in their daily locomotion.
The learning task is similar as in the Florence robot, the induction
of a dialogue manager under uncertainty, but with a larger state
space (situations). The robot’s goal is to reduce the physical and
cognitive load required for its operation.

• A mobile robotic forklift is a prototype for moving heavy objects
from one location to another [25]. Example commands include
going to locations, motion commands, and picking up and putting
down objects. The learning task consists in understanding natural
language commands in the navigation and object manipulation do-
main. The robot’s goal is to ground natural language commands
(mapping commands to events, objects and places in the world
[18]) in order to output a plan of action.

• The humanoid robot Simon manipulates physical objects on a ta-
ble from human teachers [2]. The task of the robot includes pour-
ing cereal into bowls, adding salt to salads, and pouring drinks
into cups. The learning task is to ask questions to human demon-
strators from three different types: label queries (Can I do it like
this?), demonstration queries (Can you show me how to do it?) ,
and feature queries (Should I keep this orientation?). The robot’s
goal is to ask as good questions as possible in order to achieve fast
learning from physical demonstrations.

• A KUKA mobile platform with manipulator ensembles simple
furniture [24]. The task of the robot is to assemble IKEA furni-
ture such as tables based on STRIPS-like commands. The learning
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Figure 1. Example learning conversational robots: (a) Florence nursebot [20], (b) Iwahashi’s robot [11], (c) Kuka furniture assembler [24], (d) Nao giving
directions [1], (e) Nao playing quizzes [7], (f) Simon robot learning from demonstrations [2], (g) James bartender robot [12], (h) Forklift robot [25], (i)

SmartWheeler [19], (j) PR2 learning new words [15], (k) Gambit picking up objects [16], and (l) Cosero receiving verbal commands [21]. See text in Section 2.

tasks consists in learning to ground language and to train a natural
language generator in order to ask for help to humans (by gener-
ating words from symbolic requests) when the robot encounters a
failure situation. The robot’s goal is to ensemble furniture as inde-
pendently as possible and to ask for help when failures occurred.

• The torso robot James serves drinks to people in a pub [12]. The
task of the robot is to approach customers in natural language, to
ask for the drinks they want, and to serve the requested drinks. The
learning task consists in inducing a dialogue manager for multi-
party interaction. The robot’s goal is to serve as correct drinks as
possible based on socially acceptable behaviour due to the pres-
ence of multiple customers at once in the robot’s view.

• The humanoid robot NAO has been used to play interactive quiz
games [7, 6]. The robot’s tasks include engaging into interactions,
asking and answering questions from different fields, and showing
affective gestures aligned with verbal actions. The learning task
consists in inducing a dialogue strategy optimising confirmations
and flexible behaviour, where users are allowed to navigate flex-
ibly across subdialogues rather than using a rigid dialogue flow.
The robot’s goal is to answer correctly as much as possible and to
ask as many questions as possible from a database of questions.

• The humanoid robot NAO has been used to give indoor route in-
structions [1]. The task of the robot is to provide directions, ver-
bally and with gestures, to places within a building such as of-
fices, conference rooms, kitchen, cafeteria, bathroom, etc., based
on a predefined map. The learning task is to induce a model of

engagement to determine when to engage, maintain or disengage
an interaction with the person(s) in front of the robot. The robot’s
goal is to direct people to the locations they are looking for.

• The mobile robot PR2 has been used to acquire new knowledge
of objects and their properties [15]. The tasks of the robot include
to spot unknown objects, to ask how unknown objects look like,
and to confirm newly acquired knowledge. The learning task is
to extend its knowledge base of objects via descriptions of their
physical appearance provided by human teachers. The robot’s goal
is to answer questions of its partially known environment.

• The robot arm Gambit has been used to study how users users
refer to groups of objects with speech and gestures. The tasks of
the robot is to move indicated objects in a workspace, via verbal
descriptions of object properties and possibly including gestures.
The learning task is to understand user intentions without requir-
ing specialized user training. The robot’s goal is to select, as cor-
rectly as possible, the referred objects on the table.

• The mobile robot Cosero has been used in the RoboCup at home
competition, which has won several of them in recent years [21].
The tasks of the robot include to safely follow a person, to de-
tect an emergency from a person calling for help, to get to know
and recognise people and serve them drinks, and to bring objects
from one location to another. The learning task is to extend its
knowledge of locations, objects and people. The robot’s goal is to
carry out tasks autonomously—provided in spoken language—as
expected and in a reasonable amount of time.

AISB Convention 2015: Symposium on New Frontiers in Human-Robot Interaction 70



ID Dimension / Reference [20] [11] [19] [25] [2] [24] [12] [7] [1] [15] [16] [21] ALL
01 Learning To Interpret Commands 1 1 1 1 1 1 1 1 1 1 1 1 12
02 Dialogue Policy Learning 1 0 1 0 1 0 1 1 0 0 0 0 5
03 Learning To Generate Commands 0 1 0 0 0 1 0 0 0 0 0 0 2
04 Learning To Engage 0 0 0 0 0 0 1 1 1 0 0 0 3
05 Grammar Learning 0 1 0 0 0 0 0 0 0 0 0 0 1
06 Flexible Interaction 0 0 0 0 0 0 0 1 0 0 1 1 3
07 Speech-Based Perception 1 1 1 0 1 0 1 1 1 1 1 1 10
08 Language Grounding 0 1 0 0 0 1 0 0 0 0 1 0 3
09 Speech Production 1 1 1 0 1 0 1 1 1 1 0 1 9
10 Multimodal Fussion 0 1 1 0 1 0 1 0 1 1 1 1 8
11 Multimodal Fission 0 1 1 0 0 0 1 1 1 0 0 1 6
12 Multiparty Interaction 0 0 0 0 0 0 1 0 1 0 0 0 2
13 Route Instruction Giving 0 0 0 0 0 0 0 0 1 0 0 0 1
14 Navigation Commands 1 0 1 1 0 1 0 0 0 0 0 1 5
15 Object Recognition and Tracking 0 1 0 1 1 1 1 0 0 1 1 1 8
16 Human Activity Recognition 0 0 0 0 0 0 0 0 1 0 0 1 2
17 Localisation and Mapping 1 0 1 1 0 0 0 0 0 0 0 1 4
18 Gesture Generation 0 0 0 0 1 0 0 1 1 1 0 1 5
19 Object Manipulation 0 1 0 1 1 1 1 0 0 0 1 1 7
20 Supervised Learning 0 1 0 1 0 1 1 1 1 0 1 0 7
21 Unsupervised Learning 0 0 1 0 0 0 0 0 0 0 1 0 2
22 Reinforcement Learning 1 0 1 0 0 0 1 1 0 0 0 0 4
23 Active Learning 0 0 0 0 1 0 0 0 0 0 0 0 1
24 Learning From Demonstration 0 0 0 0 1 0 0 0 0 1 0 1 3
25 Evaluation w/Recruited Participants 1 0 0 0 1 1 1 1 1 0 1 1 8
26 Evaluation in Noisy/Crowded Spaces 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 1. Features of robots acquiring/using their verbal skills. While boolean values are rough indicators, real values are better indicators but harder to obtain.

2.2 How do conversational robots learn to interact?

Machine learning frameworks are typically used to equip robots with
learning skills, and they differ in the way they treat data and the way
they process feedback [13, 8]. Some machine learning frameworks
addressed by previous related works are briefly described as follows:

• Supervised learning can be used whenever it comes to the task of
classifying and predicting data, where the data consists of labelled
instances (pairs of features and class labels). The task here is to
induce a function that maps the unlabelled instances to labels. This
function is known as a classifier when the labels are discrete and as
a regressor when the labels are continuous. Conversational robots
make use of classifiers to predict spatial description clauses [25],
grounded language [11, 24], social states [12], dialogue acts [7],
gestures [16], and engagement actions [1], among others.

• Reinforcement Learning makes use of indirect feedback typically
based on numerical rewards given during the interaction, and the
goal is to maximise the rewards in the long run. The environment
of a reinforcement learning agent is represented with a Markov
Decision Process (MDP) or a generalisation of it. Its solution is a
policy that represents a weighted mapping from states (situations
that describe the world) to verbal and/or physical actions, and can
be found through a trial and error search in which the agent ex-
plores different action strategies in order to select the one with the
highest payoff. This framework can be seen as a very weak form of
supervised learning, where the impact of actions is rated according
to the overall goal (e.g. fetching and delivering an object or play-
ing a game). This form of learning has been applied to design the
dialogue strategies of interactive robots using MDPs [12], Semi-
MDP to scale up to larger domains [7], and Partially Observable
MDPs to address interaction under uncertainty [20, 19].

• Unsupervised learning addresses the challenge of learning from
unlabelled data. Since it does not receive any form of feedback,

it has to find patterns in the data solely based on its observable
features. The task of an unsupervised learning algorithm is thus to
uncover hidden structure in unlabelled data. This form of machine
learning has been used by [19] to cluster the observation space of
a POMDP-based dialogue manager, by [12] to cluster social states
for multiparty interaction, and by [16] to select features for gesture
recognition tasks.

• Active learning includes a human directly within the learning pro-
cedure assuming three data sets: a small set of labelled examples, a
large set of unlabelled examples, and chosen examples. The latter
are built in an interactive fashion by an active learning algorithm
who queries a human annotator for labels it is most uncertain of.
This form of learning has been applied to learning from demon-
stration scenarios by [2] and closely related by [15, 21].

Other forms of machine learning that can be applied to conversa-
tional robots include transfer and multi-task learning, lifelong learn-
ing, and multiagent learning, among others [8, 4]. Furthermore, while
a single form of learning can be incorporated into conversational
robots, combining multiple forms of machine learning can be used
to address perception, action and communication in a unified way.
The next section describes some challenges that require further re-
search for the advancement of intelligent conversational robots.

3 Challenges: What is missing?
Table 1 shows a list of binary features for the robots described above.
These features are grouped according to language, robotics, learn-
ing, and evaluation. The lowest numbers in the last column indicate
the dimensions that have received little attention. From this table, it
can observed that the main demand to be addressed is conversational
robots that interact with real people in uncontrolled environments
rather than recruited participants in the lab. The research directions
demanding further attention are briefly described as follows:
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• Noise and crowds: most (if not all) interactive robots have been
trained and tested in lab or controlled conditions, where no noise
or low levels of noise are exhibited–see Table 1. A future direction
concerning the whole multidisciplinary community lies in training
and evaluating interactive robots in environments including peo-
ple with real needs. This entails dealing with dynamic and varying
levels of noise (from low to high), crowded environments on the
move, distant speech recognition and understanding [26, 23] pos-
sibly combined with other modalities [5], and real users from the
general population rather than just recruited participants.

• Unknown words and meanings: most interactive robots have
been equipped with static vocabularies and lack grammar learn-
ing (see line 5 in Table 1), where the presence of unseen words
lead to misunderstandings. Equipping robots with mechanisms to
deal with the unknown could potentially make them more usable
in the real world. This not only involves language understanding
but also language generation applied to situated domains [9].

• Fluent and flexible interaction: when a robot is equipped with
verbal skills, it typically uses a rigid turn-taking strategy and a
predefined dialogue flow (see line 6 in Table 1). Equipping robots
with more flexible turn-taking and dialogue strategies, so that peo-
ple can say or do anything at any time, would contribute towards
more fluent and natural interactions with humans [7].

• Common sense spatial awareness: most conversational robots
have been equipped with little awareness of the dynamic entities
and their relationships in the physical world (see lines 13 and 16
in Table 1). When a robot is deployed in the wild, it should be
equipped with basic spatial skills to plan its verbal and non-verbal
behaviour. In this way, spatial representations and reasoning skills
may not only contribute to safe human-robot interactions but also
with opportunities to exhibit more socially-acceptable behaviour.
See [22, 10] for detailed surveys on social interactive robots.

• Effective and efficient learning from interaction: interactive
robots are typically trained in simulated or controlled conditions.
If a robot is to interact in the wild, it should be trained with such
kinds of data. Unfortunately, that is not enough because moving
beyond controlled conditions opens up multiple challenges in the
way we train interactive robots such as the following:

– robot learning from unlabelled or partially labelled multimodal
data (see lines 21 and 23 in Table 1) should produce safe and
reasonable behaviours;

– altering the robot’s behaviour, even slightly, should be straight-
forward rather than requiring a substantial amount of human
intervention (e.g. programming);

– inducing robot behaviours should exploit past experiences from
other domains rather than inducing them from scratch; and

– learning to be usable and/or accepted by people from the gen-
eral population is perhaps the biggest challenge.

4 Conclusion
Previous work has shown the increase in multidisciplinary work to
realise intelligent conversational robots. Although several challenges
remain to be addressed by specialised communities, addressing them
as a whole is the end-to-end challenge that sooner or later it has to be
faced. This challenge involves two crucial actions with little attention
so far (a) to bring robots out of the lab to public environments, and (b)
to demonstrate that they are usable and accepted by people from the
general public. We hope that the topics above will encourage further
multidisciplinary discussions and collaborations.
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Embodiment, emotion, and chess: A system description
Christian Becker-Asano and Nicolas Riesterer and Julien Hué and Bernhard Nebel1

Abstract. We present a hybrid agent that combines robotic parts
with 3D computer graphics to make playing chess against the com-
puter more enjoyable. We built this multimodal autonomous robotic
chess opponent under the assumption that the more life-like and
physically present an agent is the more personal and potentially more
effective the interaction will be. To maximize the life-likeness of the
agent, a photo-realistic animation of a virtual agent’s face is used to
let the agent provide verbal and emotional feedback. For the latter
an emotion simulation software module has been integrated to drive
the agent’s emotional facial expressions in parallel to its verbal utter-
ances.

1 Introduction

Chess has been called the “Drosophila of artificial intelligence” [1]
meaning that in the same way as the drosophila melanogaster has
become the model organism for biological research, chess served at
least for many years as a standard problem for artificial intelligence
research. When in 1997 Garry Kasparov, who was ranked first at
that time, lost against IBM’s supercomputer “Deep Blue” [10], this
problem was assumed to be solved and chess engines would nowa-
days outclass the best players. Altogether this triggered researchers
to shift their attention to other games, such as Go. Today, for a casual
chess player it can be rather frustrating to play against the computer,
because he or she will lose most of the times and the computer moves
its pieces with seemingly no hesitation.

Recently it was found, however, that different embodiments of the
computer opponent change a human chess player’s motivation to en-
gage in a game of computer chess. These attitude changes are rooted
in the humans’ tendency to treat machines as social actors and this
effect seems to be stronger the more human-like the machine is de-
signed to appear [16]. With our development of the hybrid chess-
playing agent MARCO, the Multimodal Autonomous Robotic Chess
Opponent, we aim to investigate this research question.

The remainder of the paper is structured as follows. After dis-
cussing related work in the next section, our general motivation is
explained and two research questions are introduced. Then the Elo
rating will be explained together with how the employed chess en-
gine evaluates board positions. Subsequently, MARCO’s hardware
components are detailed, before the interconnection of its software
components is laid out. Then, the complete system is explained. Fi-
nally, we present our ideas concerning experimental protocols for
evaluating MARCO. We conclude this paper with a general discus-
sion.

1 Artificial Intelligence Lab, University of Freiburg, 79110 Freiburg, Ger-
many, email: [basano,riestern,hue,nebel]@cs.uni-freiburg.de

2 Related work

This section describes research projects involving chess playing
robots [15, 18, 13]. They aim to answer different research questions
and, therefore, they employ systems of different size and complexity.

“Gambit” is a good example for an engineer’s solution to an au-
tonomous chess-playing robotic system [15]. With their “robot ma-
nipulator system” the authors created a “moderate in cost” (i.e. 18K
USD) manipulator that is able to play chess with arbitrary chess sets
on a variety of boards without the need to model the pieces. Although
their system does not have any anthropomorphic features, it includes
a “natural spoken language interface” to communicate with the hu-
man opponent. Most importantly, “Gambit” tracks both the board and
the human opponent in real time so that the board does not need to be
fixed in front of the robot. With its available six degrees of freedom
(DoF) and the USB camera mounted on top of its gripper the robot
arm reliably grasps a wide array of different chess pieces, even if they
are placed poorly. In result, it outperformed all robotic opponents at
the 2010 AAAI Small Scale Manipulation Challenge. Unfortunately,
no data on human players’ enjoyment is available.

In contrast to the remarkable technical achievements behind the
development of “Gambit”, the “iCat” from Philips was combined
with a DGT chess board to investigate the influence of embodiment
on player enjoyment in robotic chess [13]. The authors conducted a
small-scale empirical trial with the emotional iCat opponent either
presented in its virtual or robotic form. Using a modified version
of the GameFlow model [20], it was found that overall the virtual
version is less enjoyable than the robotic one. A subsequent long
term study [14] with the robotic iCat playing chess repeatedly against
five children showed, however, that these children lost interest in the
robot. Presumably, iCat’s complete lack of any manipulation capabil-
ity together with its cartoon-like appearance let the children ignore
the robot completely after the initial curiosity is satisfied.

Similar to our approach, Sajó et al. [18] present a “hybrid sys-
tem” called “Turk-2” that consists of a “mechanically simple” robot
arm to the right of the human player and a rather simple 2D talking
head presented on a computer display. “Turk-2” can analyze three
emotional facial expressions, namely sad, neutral, and happy, and
additional image processing enables the system to monitor the chess
board. Interestingly, the authors decided to artificially prolong the
system’s “thinking time”, details of which are unfortunately not re-
ported. The transitions between the talking head’s facial expressions
neutral, sad, happy, and bored are controlled by a state machine that
takes the human’s emotion (as derived from its facial expression) and
the game state into account. Similar to our approach, the talking head
will change into a bored expression after some time without input has
passed. An empirical study on the effect of the presence of the talk-
ing head revealed that without the talking head the players mostly
ignored the robotic arm to the right of them, even when it was mov-
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ing. With the talking head in front of them, however, the players not
only looked at the talking head but also started smiling and laughing.

Regarding the effects of a virtual agent’s facial expression of emo-
tions on human performance in a cognitive task, an empirical trial re-
sulted in no significant differences [8]. In addition, the study showed
that for such a serious task it made no difference, if the agent’s emo-
tions were generated based on a set of hard-coded rules or by making
use of a sophisticated and complex emotion simulation architecture.
The authors speculate that a less cognitively demanding and more
playful task might be better suited to search for such effects.

A prototype of the MARCO system has been demonstrated re-
cently at an international conference [17] and, although conference
attendees clearly enjoyed playing and loosing against the agent, sev-
eral opportunities to improve the system were mentioned. The most
noticeable deficiency seemed to be the use of a much too small dis-
play for presenting the agent’s virtual face. Accordingly, our system
now employs a much bigger display.

3 Motivation and research questions
These previous results in combination motivated us to include the fol-
lowing features in MARCO, our Multimodal, Autonomous, Robotic
Chess Opponent:

1. A low-cost robotic arm that enables MARCO to autonomously
move the chess pieces instead of having to rely on the human op-
ponent’s assistance (as in [13])

2. A custom built, robotic display presenting a highly anthropomor-
phic virtual agent’s head to realize a hybrid embodiment combin-
ing the best of both worlds, cp. [13, 18]

3. A flexible software architecture that relies on an established emo-
tion simulation architecture as one of its core modules (following
up on [8])

The resulting MARCO system will help answering research ques-
tions that are motivated by the previous work presented above:

1. Is it more enjoyable to play chess against the robotic arm with or
without the virtual agent?

2. Is it more enjoyable to play against the hybrid agent (i.e. the
robotic arm with the virtual agent) when the agent expresses emo-
tions as compared to when it remains equally active but emotion-
ally neutral?

3. Is the most human-like and emotional agent evaluated as more
social/mindful than the less complex/human-like versions of it?
Does this subjective evaluation depend on how experience the hu-
man chess player is?

The first question will provide a baseline for the hardware compo-
nents of our system and will be compared with those reported in [18]
with regard to “Turk-2”. It is not taken for granted that a more com-
plex system will always be preferable to a simpler system from the
perspective of a human player. The second question, however, is tar-
geting the role that artificial emotions might or might not play and
it is motivated by previous results [8]. Finally, MARCO allows us to
tackle systematically the general question of how and when “mind-
fullness” is ascribed to machines [16].

4 Background and Preliminaries
4.1 Elo rating
The skill of chess players is usually measured in terms of a single
integer value, the so-called Elo Rating [12]. It represents the relative

strength of a player, the higher the better, and it increases or decreases
with his or her chess match results. Currently, ELO rating in chess
goes from 1000 (complete beginner) to 2880 (Magnus Carlsen World
Champion).

Differences in the evaluations of our system might correlate with
or even depend on the ELO ratings of the human players. In addition,
our system might be used as a virtual coach for novice players to
improve their chess skills and the ELO rating provides a standard
means to compare player strength before and after training.

4.2 Chess Engine

Computer chess engines evaluate the board position using an alpha-
beta algorithm with a depth d given as parameter based on a number
of criteria like: pieces left on the board, activity of these pieces, se-
curity of the king, etc. The greater the depth the more precise is the
evaluation. The position evaluation function results in a real number
e ranging from [�1,+1] where 0 means that the position is equal,
�1 that black is winning and +1 that white is winning. A +1 val-
uation roughly represents the advantage equivalent to a pawn, +3 to
a knight or a bishop, and so on according to the standard valuation of
chess pieces.

We denote by e

t,d

the evaluation given by the chess engine at move
t with depth d. We write e when it is clear from the context. In prac-
tice, once |e| � 5 the game is more or less decided.

Our first prototype [17] was based on the TSCP chess engine [2]
for its simplicity and in order to make our results comparable to pre-
vious work on the iCat playing chess [13], for which the same engine
was used. The communication between the user and the TSCP chess
engine is handled by the XBoard Chess Engine Communication Pro-
tocol [3]. Originally implemented as a means to facilitate communi-
cation between the GNU XBoard Chess GUI and underlying chess
engines, this plain text protocol allows for easy information exchange
in a human readable form.

Our modular software architecture allows us, however, to plug in
other chess engines. The more advanced Stockfish chess engine [4],
for example, would allow us to adjust the strength of MARCO’s play
dynamically.

5 Hardware components

The complete setup is presented in Figure 1. The hardware used com-
prises a custom designed, 15.6 inch pan-tilt-roll display to present the
virtual agent’s face, a robotic arm to the right of the agent to move
the chess pieces, and a digital chess board (DGT USB Rosewood)
with a chess clock. Each of these components will be described next.

5.1 The pan-tilt-roll agent display

The pan-tilt-roll display component features a 15.6 inch upright TFT
LCD display with a physical resolution of 1920 ⇥ 1080 pixels and
18bit color depth, cp. Fig. 1. It is positioned opposite of the hu-
man player to give the impression of the virtual agent overlook-
ing the complete chess board. Three Dynamixel AX-12A servos
(cp. Fig. 2(a)) are connected to USB2Dynamixel interface to allow
for control over the display’s orientation during the game along all
three axes. Thereby, for example, the agent can follow its own arm’s
movements dynamically as presented in Fig. 2(b).
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Figure 3. A schematic of the robotic arm with annotations of link lengths and Dynamixel servos used for each joint position

Figure 1. The pan-tilt-roll agent display, the robotic arm, and the digital
chess board together with the digital chess clock

5.2 The robotic arm

The hybrid agent’s robotic arm is a modification of the “WidowX
Robotic Arm Kit Mark II” [5] available from Trossen Robotics.
Apart from the rotational base all other parts needed to be extended to
allow the agent to pick-and-place all pieces on any of the 64 squares
of the board. The upper arm was extended to measure 240mm, the

(a) Detail view (b) Front view

Figure 2. Pan-tilt-roll mount of the 15.6 inch display presenting the virtual
agent’s face

forearm to measure 215mm and the gripper needed to be prolonged
to 120mm (cp. Fig. 3). These extensions for the arm as well as the
extra parts to realize the display mount were printed with a MakerBot
3D printer. Five Dynamixel servos move the robot’s arm, cp. Fig. 3.
For the base and wrist two MX-28 servos are used. An MX-64 servo
moves the robot’s elbow and an MX-106 servo its shoulder. The mod-
ified gripper is opened and closed by an AX-12A servo, cp. Fig. 4.
It can reliably pick-and-place all Staunton chess pieces on the DGT
board regardless of their height or size.

5.3 The DGT digital chess board

The DGT chess board is a wooden board with standard Staunton
pieces and 55mm ⇥ 55mm squares. Each piece is equipped with
a unique RFID chip that makes it recognizable. The board is con-
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(a) Open state (b) Closed state

Figure 4. The two states of the robot’s custom designed gripper picking up
a white bishop
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Figure 5. An outline of the software modules and their connections

nected to the computer with a USB cable, and it transmits the posi-
tion in FEN format to the DGT board module every time a change is
performed.

6 Software components
Except for the external MARC framework (see Section 6.3), all com-
ponents are implemented in C++ using Qt5 [7] in combination with
the Robot Operating System (ROS; [6]) to achieve a modular design
and cross-platform functionality. The hardware components (i.e. the
DGT chess board and the Dynamixel servos) are encapsulated into
ROS nodes to establish a flexible communication infrastructure.

6.1 Overview of system components
The following five main software components can be distinguished,
which are connected by the ROS message protocol (cp. Fig. 5):

• A DGT board module to detect moving pieces on the physical
chess board

• A Chess engine model for position evaluation and chess move cal-
culation

• An Emotion module to simulate MARCO’s emotions
• A Behavior module to integrate the chess move with emotional

states into a behavior description

• A Behavior Markup Language (BML) Interpreter to prepare the
multimodal realization of the behavior

• Robotic components to move the chess pieces on the board and
control the virtual agent’s pan-tilt-roll unit

• The MARC framework to create the agent’s visual appearance on
the display

When the human player (cp. Fig. 5, right) performs her move, the
DGT board module recognizes the change on the board, derives
the move information by comparing the current board configuration
with the previous one, and sends this information to the chess en-
gine module. Here, the chess move is verified for correctness and
either (1) a failure state, or (2) the chess engine’s move is transmit-
ted as MARCO’s response to the behavior model. The board evalu-
ation function of the chess engine also provides the emotion module
with input. After the emotion module integrated the board evaluation
into the agent’s emotion dynamics (see Section 6.2), it concurrently
updates the behavior module with a vector of emotion intensities.
The behavior module integrates the emotional state information with
the move calculation into a behavior description in BML [21]. This
description is then interpreted by the BML interpreter to drive the
virtual agent’s visual and vocal behavior as well as the robotic com-
ponent’s actions. While the robotic arm starts to execute the agent’s
chess move, the pan-tilt-roll unit moves the display to realize affec-
tive feedback in combination with the virtual agent’s facial expres-
sions.

6.2 Deriving emotional states
The emotion module (cp. Fig. 5) comprises the WASABI Affect Sim-
ulation Architecture [9] to simulate the agent’s dynamically chang-
ing emotional states. As input WASABI needs valenced impulses
and expectation-based emotions (e.g., surprised and hope) need to
be triggered before they can gain positive intensity.

6.2.1 Emotion dynamics

WASABI is based on the idea that emotion and mood are tightly cou-
pled. The term “mood” refers to a relatively stable background state,
which is influenced by emotion arousing events, but changes much
more slowly as compared to any emotional state. An “emotion”, in
contrast, is a short-lived psychological phenomenon that more di-
rectly impacts behavior than a mood does.

Figure 6. The emotion dynamics of WASABI with (a) the influence of
emotional valence on mood, and (b) the effect of the two independent

mass-spring systems on the development of the agent’s emotional state over
time (indicated by the half-transparent circles)

Taking these differences and commonalities as cue, WASABI sim-
ulates the positive and negative effects that emotional valence has on

AISB Convention 2015: Symposium on New Frontiers in Human-Robot Interaction 76



mood, cf. Fig. 6a. In addition, mood and emotion are driven back
to zero by two forces independently exerted from two mass-spring
systems. Notably, the respective spring constants are set such that
the resultant force F

x

is always greater that the resultant force F

y

,
because emotions are longer lasting than mood, cp. Fig. 6b.

MARCO’s emotional state as represented in Fig. 6b by the circles
is updated with 50Hz letting it move through the space over time.
The x and y values are incessantly mapped into PAD space to allow
for categorization in terms of emotion labels (cp. Fig. 7; see also [9]).

This dynamic process is started by the arrival of a valenced im-
pulse from outside of WASABI that instantaneously changes the
emotion value (x) either in the positive or negative direction. How
these impulses are derived from the progression of the game is de-
scribed next.

6.2.2 Valenced impulses

The chess engine module continuously calculates board evaluations
e

t

(at times t during the game). These are converted into valenced
impulses val(e

t

) according to Equation 1.

val(e
t

) = k ⇥ tanh

⇣
e

t

r

⌘
(1)

Here, k is a scaling factor and by increasing the denominator r 2
[1,1] the skewness of the hyperbolic tangent is reduced until a
quasi-linear mapping (val(e

t

) = k⇥e

t

) is achieved. The hyperbolic
tangent is introduced to let us emphasize small values of e

t

relative
to bigger values of e

t

.
For example, choosing k = 50 and r = 2:

val(e
t

) = 50⇥ tanh

⇣
e

t

2

⌘
2 (2.5, 25],

8e
t

2 {x 2 R | 0.1  x < 1.1}
(2)

Thus, with these constants any value of e

t

between 0.1 and
1.1 results in a weak to medium valenced impulse. Observe that
|val(e

t

)| ⇠= 50, 8e
t

2 {x 2 R | |x| > 5}, meaning that a winning
(or loosing) board configuration results in the maximum impulse of
50 (or minimum impulse of �50, respectively).

Depending on who plays white, the sign of the scaling factor k is
adjusted as to map favorable board positions for MARCO to posi-
tively valenced impulses and vice versa. That is, if MARCO plays
white k is positive, otherwise it is negative. For the time being,
MARCO always plays white letting it perform the first half-move.

Inside the emotion module the valenced impulses drive the con-
current simulation of the agent’s emotion dynamics. In summary, a
positive (negative) impulse has the short term effect of increasing
(decreasing) the agent’s emotional valence, which in turn influences
the agent’s mood in the same direction as a long term effect. A simple
mathematical transformation into pleasure (P = x+y

2 ) and arousal
(A = |x|) values is performed and the emotion module then uses
the PAD space (cf. Fig.7) to categorize the agent’s emotional state in
terms discrete emotions and their intensities. The dominance value is
changed in accordance with whether it is MARCO’s turn (D = 1)
or not (D = 0). Finally, the resulting set of emotions with positive
intensities are transmitted to the behavior module.

6.2.3 Mapping onto discrete emotions

In its default configuration, WASABI simulates the primary emo-
tions annoyed, angry, bored, concentrated, depressed, fearful, happy,

Figure 7. The PAD-space of primary and secondary emotions in WASABI.
The primary emotions are distributed as to cover all areas of PAD space. For
each of them an activation threshold (outer ring) and a saturation threshold

(inner ring) is defined. The two shaded areas represent the distribution of the
secondary emotion hope in the dominant and submissive subspace, after it

was triggered. The grey half-sphere represents MARCO’s dynamically
changing emotional state. Thus, in this example MARCO would be mildly
happy, a bit concentrated, and quite hopeful. If surprise were triggered as

well in this moment, MARCO would also be surprised to a certain extend.

sad, and surprised as well as the secondary emotions relief, fears-
confirmed, and hope; cp. Fig. 7. Five of these 12 emotions (fear-
ful, surprised, relief, fears-confirmed, and hope) rely on an agent’s
ability to build expectations about future events, i.e., they are so-
called prospect-based emotions. For example, one is only surprised
about an event, if it is contrary to one’s previous expectations, or one
fears future events, only if one has reason to expect that bad event
is about to happen [9]. Accordingly, in WASABI each of these emo-
tions is configured with zero base intensity and needs to be triggered
(cp. “emotion trigger” in Fig. 5) to give them a chance to gain posi-
tive intensity.

With respect to chess, our system evaluates the available moves
for its opponent. MARCO is able to realize, whenever its last move
was less good than previously evaluated, because at time t the evalu-
ation reaches one level deeper into the search tree than at time t� 1.
Accordingly, MARCO might start to fear that the human opponent
realizes her opportunity as well. If the evaluation of the situation after
the opponent’s move is stable, then MARCO’s fears are confirmed:
the opponent made the right move. On the other hand, if the evalua-
tion comes back to what it was before, i.e., before MARCO made its
last move, then the opponent missed the opportunity and MARCO
is relieved. The evaluation can be in between these two values and
in that case, the agent is neither relieved nor sees its fears confirmed.
Nevertheless, the emotion module still receives the negative valenced
impulse derived from the drop. Formally, Table 1 provides details
on how the changing evaluations trigger prospect-based emotions in
WASABI.

Notably, the value e

t

represents the future directed evaluation of
the situation from the robot’s perspective. For example, the formula
e

t�1 � e

t

> ✏ lets the behavior trigger fear whenever a significant
drop in the evaluation function appeared from the previous move to
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trigger if..
fear e

t�1 � e
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> ✏

surprise |e
t�1 � e

t

| > ✏

fears-confirmed fear

t�1 ^ (e
t�1 � e

t

< ✏)
hope e

t,d

� e

t,d�2 > ✏

relief fear

t�1 ^ (e
t

� e

t�2 < ✏)

Table 1. The conditions under which the prospect-based emotions are
triggered in WASABI based on the changes of evaluations over time with ✏

and depth d as custom parameters

Figure 8. The virtual agent expressing anger, neutral, and joy (left to right)

the current one. That is, MARCO realizes at time t that the future
seems much worse than evaluated before (in time t � 1). If subse-
quently, after the next half-move in t+1, the value e

t�1 turns out to
have been correct in the light of the new value e

t

(or the situation got
even worse than expected), then fears-confirmed will be triggered.
On the contrary, if it turned out to be much better than expected,
relief will be triggered. Surprise is always triggered when the eval-
uation changes significantly from one half-move to the next. Finally,
hope is triggered whenever not taking the full depth of the search tree
into account would mean that the key move in the position is hard to
reach (requires a computation at depth at least d).2

6.2.4 The emotion vector as input for the behavior module

It is important to note that, in addition to an emotion being trig-
gered, the pleasure, arousal, and dominance (PAD) values driven by
the emotion dynamics must be close enough to that emotion for it
to become a member of the emotion vector with positive intensity,
cp. Fig. 7. Thus, although surprise will always be triggered together
with fear, they will not always both be present in the emotion vector,
because they occupy different regions in PAD space.

From the emotion vector the emotion with the highest intensity is
compiled into the BML description driving the MARC framework.
The agent comments on particular events like, for example, compli-
menting the player after it lost a game or stating that the position is
now simplified after exchanging the queen.

6.3 The virtual agent provided by the MARC
framework

The MARC framework [11] is used to animate the virtual agent,
which is presented on the 15.6 inch pan-tilt-roll display facing the

2 An evaluation function is usually set up to an even number, thus the last
level of the search tree equals the last two half-moves.

human player. The emotional facial expressions (see Fig. 8 for exam-
ples) that are provided as part of the BML description are combined
inside the MARC framework to create lip-sync animations of emo-
tional verbal utterances. Thanks to the integration of the open-source
text-to-speech synthesis OpenMARY [19] the agent’s emotion also
influences the agent’s auditory speech.

7 Conclusions and future work
This paper detailed the software and hardware components behind
MARCO, a chess playing hybrid agent equipped with a robotic arm
and a screen displaying a virtual agent capable of emotional facial
expressions. A first prototype of the system was demonstrated at an
international conference [17] and the experiences gained let to im-
provements both on concerning the hard- and software components.

Although a limited set of concrete agent behaviors has proven to
be fun for the conference participants, we still need to design many
more of them. For example, we need to decide which kind of com-
ments are to be given with which timing during the game and how
virtual gaze and robotic head movements are to be combined to give
the impression of a believable, hybrid agent.

In order to answer the initially stated two research questions, we
plan to conduct a series of empirical studies. At first, one group
of participants will play against MARCO with the pan-tilt display
turned off. Nevertheless, the invisible agent’s comments will remain
audible in this condition. In the second condition, another group of
participants will play against MARCO with an unemotional agent
presented on the robotic display. For the third condition, a group of
participants will play against the WASABI-driven agent. In all three
conditions, player enjoyment will be assessed using the GameFlow
[20] questionnaire and video recordings of the human players will be
analyzed inspired by [18]. We expect to find significant differences
between conditions with the most complete setup (condition three)
being most fun for the players.

Nass and Moon claim that imperfect technologies mimicking hu-
man characteristics might even increase “the saliency of the com-
puter’s ‘nonhumanness’.” [16, p. 97] In line with their ideas and in
addition to the approach outlined above, we plan to compare human-
human interaction with human-agent interaction when competing in
chess to measure and incessantly improve MARCO’s level of human-
likeness. This will help to understand how human behavior might be
split into computationally tractable components and then realized in
robotic agents to improve human-computer interaction.
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Towards a Child-Robot Symbiotic Co-Development: a 
Theoretical Approach 

Vicky Charisi1, Daniel Davison1, Frances Wijnen2, Jan van der Meij2, Dennis Reidsma1, Tony Prescott 3, 
Wouter van Joolingen4, Vanessa Evers1 

Abstract.12One of the main characteristics for an effective 
learning is the possibility for learners to choose their own ways 
and pace of learning, according to their personal previous 
experiences and needs. Social interaction during the learning 
process has a crucial role to the skills that learners may develop. 
In this paper, we present a theoretical approach, which considers 
relevant theories of child’s development in order to proceed 
from a child-child collaborative learning approach to a child-
robot symbiotic co-development. In this symbiotic interaction, 
the robot is able to interact with the learner and adapt its 
behaviours according to the child’s behaviour and development. 
This sets some theoretical foundations for an on-going research 
project that develops technologies for a social robot that 
facilitates learning through symbiotic interaction. 

1 INTRODUCTION 

This paper discusses the conceptualization and some initial 
investigation of children’s collaborative learning through 
symbiotic child-robot interaction in a specific educational 
setting. According to Douglas [1], biologist Heinrich Anton de 
Bary used the term “symbiosis” in 1879 to describe any 
association between different species. In this context, symbiotic 
learning describes the process, during which members of a team 
mutually influence each other resulting in an alteration of their 
behaviour. However, relationships among members may sustain 
imbalances. In order to support symbiotic interactions in 
learning, special considerations should be given to the 
orchestration of the relationships and the process between 
members of the team, from which they all benefit. The core 
motivating principle of symbiosis and the collaboration within it 
is reciprocity. Thus, learning emerges through a harmonized 
openness, responsiveness and adaptation. Elements of this kind 
                                                
1 Dept. of Electrical Engineering, Mathematics and Computer Science, 
HMI, University of Twente, Enschede, the Netherlands. 
Email:{v.charisi, d.p.davison, d.reidsma, v.evers}@utwente.nl 
 
2 Faculty of Behavioural Management and Social Sciences, ELAN, 
University of Twente, Enschede, the Netherlands, Email: {f.m.wijnen, 
j.vandermeij}@utwente.nl   
 
3

Sheffield Robotics, University of Sheffield, Mappin Street, Sheffield, 
UK. Email: t.j.prescott@sheffield.ac.uk 
 
4

 Freudenthal Institute for Science and Mathematics Education, Faculty 
of Science, Utrecht University, Utrecht, the Netherlands, Email: 
{w.r.vanjoolingen@uu.nl} 
 
 

of interaction may appear also in collaborative learning settings, 
which may not be especially designed for symbiotic interactions. 
Identifying elements of symbiotic interaction in children’s 
collaborative learning may provide us with features for a more 
effective interaction design and for the design of robot 
behaviours as the child’s co-learner. 

In the following sections, we describe some constructivist 
aspects of child learning focusing on the need for learners to 
take responsibility for the regulation of the form and pace of 
learning. We then describe how symbiotic interaction can 
provide a theoretical and practical framework for understanding 
child-robot inter-dependence. 

2 ASPECTS OF CHILDREN’S LEARNING 
PROCESSES  

According to Foston and Perry [2], learning is a constructive 
activity that occurs through the interaction of individuals with 
their surroundings. Stages of development are understood as 
constructions of the active re-organization of learner’s 
knowledge. This view builds on the constructivist framework of 
Piagetian developmental theory [3] according to which learning 
is a dynamic process comprising successive stages of adaption 
to reality, and during which learners actively construct 
knowledge by creating and testing their own theories and 
beliefs.  

Two aspects of Piaget’s theory underpin the pedagogical 
approach adopted here: First, an account of the four main stages 
of cognitive development through which children pass [4]. Since 
their birth, children go through (i) the sensori-motor stage (0-2 
years), (ii) the pre-operational (2-7 years), (iii) the concrete 
operational (7-12 years) and (iv) the formal operational stage 
(12 years and onwards). For this project, we consider children in 
the age group between 7 and 12 years. During this stage, 
children are able to imagine “what if” scenarios, which involve 
the transformation of mental representation of things they have 
experienced in the world. These operations are “concrete” 
because they are based on situations that children have observed 
in the environment. 

Second, an account of the mechanisms by which cognitive 
development takes place [5], which we consider in relation to 
environmental, social and emotional elements of child’s 
development. These mechanisms describe how children actively 
construct knowledge by applying their current understanding. 

2.1 Learning as a dynamic process 

According to Piaget’s classic constructivist view, learning 
occurs in a sequence of stages from one uniform way of thinking 
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to another. Cognitive conflict, arising from discrepancies 
between internal representations and perceived events, functions 
as the motivating force for changing from concrete modes of 
thinking to more abstract forms. Although these stages relate to 
the child’s genetic predispositions and biological development, 
environmental factors affect the transition from one stage to the 
next in complex ways. However, since Piaget first defined his 
framework it has been recognized that developmental transitions 
are not necessarily age specific events, but it occurs within an 
age range that can differ from child to child [6]. Additionally, 
the relationship between child development and the context in 
which this occurs, is bi-directional which results in a dynamical, 
iterative process; children affect and, simultaneously, they are 
affected by factors of their environment [7]. This can happen 
either in informal settings [8] which support tinkering and 
learning by doing or by following more formal and standardized 
processes, such as the inquiry cycle process [9], which will be 
described in 2.1.2 of this paper. 

2.1.1 Child and the natural need for learning through 
exploration 

In order for a child to be strongly engaged with a task it has to 
be meaningful for them. Since children have an inherent 
motivation to explore and understand their surroundings, the 
relevance of the task will stimulate their curiosity and 
willingness for exploration. Science education provides a formal 
learning setting that should share some of the characteristics of 
informal settings in order to help children acquire new concepts 
and develop transferable skills. Building on constructivist 
principles, children’s natural enthusiasm for play can be a key 
factor in learning. During play, children can explore the real 
world, logically organize their thoughts, and perform logical 
operations [10]. However, this occurs mainly in relation to 
concrete objects rather than abstract ideas [8]. Children are also 
able to reflect on their intentional actions which may result in a 
self-regulated process of change [11].  

2.1.2 Inquiry cycle: a systematic process of learning 

‘Inquiry is an approach to learning that involves a process of 
exploring the natural or material world, and leads to asking 
questions, making discoveries, and rigorously testing those 
discoveries in the search for new understanding. Inquiry should 
mirror as closely as possible the enterprise of doing real science’ 
[12] (p.2). The main claim of inquiry learning, in relation to 
science learning, is that it should engage learners in scientific 
processes to help them build a personal scientific knowledge 
base. They can then use this knowledge to predict and explain 
what they observe in the world around them [13]. Thus, having 
as a starting point child’s tendency for informal exploration, 
with developmental appropriate scaffolding, children develop 
their scientific thinking. This transferable skill can then facilitate 
child learning in different contexts. 

There are many models that represent the processes of 
inquiry, but all include the processes of (1) hypothesis 
generation in which learners formulate their ideas about the 
phenomena they are investigating, (2) experimentation in which 
children perform experiments to find evidence for rejection or 

confirmation of their hypotheses and (3) evidence evaluation in 
which learners try to find logical patterns in their collected data 
and to interpret this data to form a conclusion [14, 15]. 

Banchi and Bell [9] describe a four-level continuum to 
classify the levels of inquiry in an activity, focusing on the 
amount of information and guidance that is presented to the 
learner [9, 16]: 

 Confirmation inquiry: In this form of inquiry learners are 
provided with the research question, method of experimentation 
and the results that they should find. This is useful if, for 
example, the goal is to introduce learners to the experience of 
conducting investigations or to have learners practice a specific 
inquiry skill such as collecting data.  

Structured inquiry: Here, the question and procedure are still 
provided but the results are not. Learners have to generate an 
explanation supported by the evidence they have collected. In 
this case learners do know which relationship they are 
investigating.  

Guided inquiry: In this form learners are provided only with 
the research question. Learners need to design the procedure to 
test their question and to find resulting explanations.  

Open inquiry: This is the highest level of inquiry. Here, 
learners have the opportunities to act like scientists, deriving 
questions, designing and performing experiments, and 
communicating their results. This level requires the most 
scientific reasoning and is the most cognitive demanding. This 
low- to higher-level continuum of inquiry is important to help 
learners gradually develop their inquiry abilities [9]. The 
obtained inquiry skills are transferable to other contexts. 

2.2 The zone of proximal development (ZPD) 

The level of potential development is the level at which learning 
takes place. It comprises cognitive structures that are still in the 
process of maturing, but which can only mature under the 
guidance of or in collaboration with others. Vygotsky [17] 
distinguished between two developmental levels: the level of 
actual development and that of potential development. The 
actual development is the level, which the learner has already 
reached and she can solve problems independently. The level of 
potential development, which is also known as the Zone of 
Proximal Development (ZPD), describes the place where child’s 
spontaneous concepts meet the systematic reasoning under the 
guidance or in collaboration with others [18]. In that way, 
Vygotsky argues that the interpersonal comes before the 
intrapersonal. This is considered to be as one of the fundamental 
differences between Vygotsky’s conceptualization of child 
development and that of Piaget.  

Learning takes place within the ZPD and here a transition 
occurs in cognitive structures that are still in the process of 
maturing towards the understanding of scientific concepts. The 
level of potential development varies from child to child and is 
considered a fragile period for child’s social and environmental 
support through the educational praxis. In this context, 
Vygotsky introduced the notion of ‘scaffolding’, to describe the 
expansion of the child’s zone of proximal development that 
leads to the construction of higher mental processes [19]. 
However, only if we define what causes the expansion of ZPD, 
we will be able to provide appropriate scaffolding for learners. 
Siegler [20], for example, has highlighted the question of what 
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causes change in learning mechanism and he concluded that 
seemingly unrelated acquisition are products of the same 
mechanisms or mental process. Scaffolding is considered a core 
element for the support of child’s mental changes in the context 
of collaborative learning. 

2.3 Collaborative learning 

Rogoff’s [21] definition of collaboration includes mutual 
involvements and engagement and participation in shared 
endeavours, which may or may not serve to promote cognitive 
development. This broad definition allows for flexibility 
regarding its interpretation and it is adjustable into different 
contexts. For the present research, we use this definition as a 
basis for our theoretical approach for collaboration in the 
context of learning. 

Vygotsky [17] emphasized the importance of social 
interaction with more knowledgeable others in the zone of 
proximal development and the role of culturally developed sign 
systems that shape the psychological tools for thinking.  

In addition to the development of their cognitive skills, 
children’s social interactions with others during the learning 
process may trigger their meta-cognitive skills, as well. 
Providing explanations during collaboration in which children 
reflect on the process of their learning (meta-cognitive skills) 
leads to deeper understanding when learning new things [22, 
23]. There are two forms of explanation: (1) self- explanation, 
which refers to explanation of the subject of interest to oneself, 
and (2) interactive explanation, which refers to explanation to 
another person [24]. In both cases, the presence of a social 
partner facilitates children’s verbalization of their thinking. 
However depending on the type of the social partner, children 
may exhibit different behaviours, which relate to different kind 
and quality of learning. 

The following sections describe two different types of social 
partners as mediators for children’s learning to occur.  

2.3.1 Child – tutor 

With regard to adult-child interactions, Wood et al. [25] defined 
tutoring as ‘the means whereby an adult or ‘expert’ helps 
somebody who is less adult or less expert’ (p.89). Receiving 
instructions from a tutor is a key experience in childhood 
learning (ibid.). This definition of tutoring implies a certain 
mismatch in the knowledge level between the parties involved, 
in such a way that the tutor has superior knowledge or skill 
about a subject which is then passed on to a child via tutoring 
mechanisms. 

2.3.2 Child – child 

In combination with tutoring, peer learning has been defined by 
Topping [26] as ‘the acquisition of knowledge and skill through 
active helping and supporting among status equals or matched 
companions’ (p.1). Topping continues to describe that peer 
learning ‘involves people from similar social groupings who are 
not professional teachers helping each other to learn and 
learning themselves by so doing’ [26]. This learning method has 

proven to be very effective amongst children and adults and has 
been widely researched over the past decades. Peer learning 
assumes a matched level of initial knowledge of both parties. In 
ideal peer learning situations, both parties will increase their 
knowledge levels at a similar pace through collaborative 
learning mechanisms. 
 

2.4 Emotional engagement and social 
interaction (in learning) 

The importance of positive feelings during the learning process 
has been reported as crucial [27]. They promote the individual’s 
openness to new experiences and resilience against possible 
negative situations [28]. It has been reported that dynamic 
behaviours involve reciprocal influences between emotion and 
cognition [29]. For instance, emotions affect the ways in which 
individuals perceive the reality, pay attention and remember 
previous experiences as well as the skills that are required for an 
individual to make decisions.  

3 SYMBIOTIC INTERACTION 

The educational and developmental theories outlined in the 
previous sections describe various forms of collaborative 
learning. Social interaction between learners is emphasised as an 
important factor in successful collaborative learning, where both 
students co-develop at a complementary pace through shared 
experiences.  

Within the context of this co-development we define 
symbiotic interaction as the dynamic process of working 
towards a common goal by responding and adapting to a 
partner’s actions, while affording your partner to do the same.  

The fundamental requirements for team collaboration have 
been discussed in detail by Klein and Feltovich [30]. They argue 
that in order to perform well on joint activities, or collaborative 
tasks, there must be some level of common ground between 
teammates. These concepts have been introduced by Clark [31] 
to describe the intricate coordination and synchronization 
processes involved in everyday conversations between humans.  

Common ground between team participants is the shared 
mutual knowledge, beliefs and assumptions, which are 
established during the first meeting and continuously evolve 
during subsequent interactions. A strong common ground can 
result in more efficient communication and collaboration during 
joint activity, since a participant can assume with relative safety 
that other participants understand what she is talking about 
without much additional explanation [30]. 

Klein and Feltovich [30] argue that in order for a task to 
qualify for effective joint activity, there must firstly be an 
intention to cooperate towards a common goal and secondly the 
work must be interdependent on multiple participants. As long 
as these preconditions are satisfied, a joint activity requires 
observable, interpretable and predictable actions by all 
participants. Finally, participants must be open to adapt their 
behavior and actions to one another. The different processes of 
the joint activity are choreographed and guided by clear 
signaling of intentions between participants and by using several 
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coordination devices such as agreement, convention, precedent 
and salience. 

 

3.1 Intention to act towards a common goal 

An important precondition for symbiotic interaction is the 
awareness of a certain common goal, and a clear intention to 
work towards this goal. During the process of establishing and 
maintaining common ground, both parties will (implicitly or 
explicitly) become aware of the goals of the other. Maintaining 
common ground relies on being able to effectively signal your 
intent to a partner, while at the same time interpreting and 
reacting to the intent of his or her actions [30]. 

3.2 Observability of actions and intentions 

Equally important to being able to effectively signal intent is the 
ability of the partner to observe and interpret this intent. A sense 
of interpredictability can be achieved when such signals can be 
naturally and reliably generated, observed and interpreted by 
both partners. A healthy level of interpredictability between 
partners can contribute to an increased common ground and 
mutual trust between partners [30]. 

3.3 Interpredictability, adaptability and trust 

Within the context of an interaction, predictability means that 
one’s actions should be predictable enough for others to 
reasonably rely on them when considering their own actions. 
Over the course of an interaction, certain situations arise which 
allow a person to estimate the predictability of a partner’s 
actions, or in other words, the amount of trust you place in the 
predictability of your partner. Simpson [32] argues that in 
human-human interaction, trust levels are often established and 
calibrated during trust-diagnostic situations "in which partners 
make decisions that go against their own personal self-interest 
and support the best interests of the individual or the 
relationship" [32]. This willingness to act predictably and adapt 
one’s behavior to support a partner’s best interests is a key 
component of building mutual trust and supporting a symbiotic 
relationship [33]. 

In summary, an effective joint activity relies on signaling, 
observing and interpreting the intent of actions towards a 
common goal. By establishing a strong common ground, both 
partners achieve a level of interpredictability. An important 
factor in building trust is to expose a willingness to act 
predictively and adapt one’s behavior to match the common 
goals shared with a partner. 

4 CHILD-ROBOT INTERACTION 

The work reported in this paper is part of a project on social 
robots in learning scenarios. Social interaction with a robot 
affects the child’s independence during the learning process. 
Robots can take either end of the spectrum depending on its 
role, in other words, it can be either tutor-like or peer-like for 

child learning [34].  Depending on the amount of support needed 
for the child’s learning, the robot might adapt its role to fit this 
need, shifting either more towards the tutor or the peer role. This 
adaptive behavior fits the theories on symbiotic interactions 
outlined above. Together with clear signaling of intents, which 
contribute to an increased level of predictability, it is this 
adaptability that proves to be an important factor in building a 
long-term symbiotic relationship. 

Belpaeme et al. [35], for example, have reported the 
importance of adaptive behavior of the robot when it interacts 
with children with diabetes. In this study, researchers adapted 
robot behaviour according to children personality (extroverted / 
introverted) and to the difficulty level of the task. They 
concluded that adaptation to user characteristics is an effective 
aid to engagement. 

 In the context of the learning process, a robot may adapt its 
behavior to the child’s cognitive, social and emotional 
characteristics with a purpose to facilitate the expansion of 
children’s zone of proximal development. Thus, the robot can 
scaffold the process of change by adapting its behaviour 
according to the user. It shows its awareness and willingness to 
be influenced by others. The robot then will adapt to the child’s 
next level in order to contribute to the iterative process of 
development. In this way, we create a learning context based on 
symbiosis of the child and the robot. 

5 FUTURE AGENDA 

Inspired by the insights derived from the previously introduced 
theoretical framework for co-development in learning, we 
outline our future goals, which focus on the elaboration of 
aspects of this framework and explore its utility for designing 
robot-child interactions for inquiry learning. To conclude this 
paper we briefly describe a contextual analysis we are 
performing to validate the framework in the specific pedagogic 
setting of inquiry learning. Thereafter we briefly present some 
of our ideas for future experiments. 

5.1 Some first insights from a contextual 
analysis 

An initial contextual analysis is being performed based on 
observations of twenty-four children who are working in pairs 
on a balance beam task. The balance beam task is a specific 
implementation of a type of structured inquiry learning. Using 
the balance beam children investigate the weight of several 
provided objects, exploring both the influence of weight rations 
and the distance of the object to the pivot. 

The setting for this contextual analysis was as follows: a total 
of 11 pairs of two children (aged 6-9 years) received a structured 
assignment, which they could complete by using the balance 
beam that was presented. This assignment was designed 
according to the processes of structured inquiry (e.g. hypothesis 
generation, experimentation, evidence evaluation). The children 
could place pots that differed in weight on different places on 
the balance, make predictions about what would happen to the 
balance (tip left, tip right, or stay in equilibrium), perform 
experiments by removing wooden blocks that held the balance 
in equilibrium, observe what happened with the balance and 
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draw conclusions about the variables that influence the balance 
(weight, distance). These procedures were videotaped and than 
annotated. These annotations are not yet fully analysed, but a 
few first indications will be described here.  

1. It appeared that children who followed the steps of the 
assignment correctly were engaging in the different 
processes that are typical for inquiry learning, and were 
interacting with each other about the process and the 
outcome of the task. 

2. Most children were able to identify the influence of the two 
variables (weight and distance) on the balance eventually.  

3. Several children asked for additional guidance from the 
experimenter during the task. 

These first insights from the contextual analysis have been taken 
into account for our next steps for the design of child-robot 
interaction in the same context. We observed that children in 
this age may follow the inquiry process during the activity. 
However, in order for them to reflect on this process, verbalize 
their thoughts and explain the scientific phenomenon under 
investigation, they needed the support from a social partner. The 
teacher facilitated child’s process by different types of 
interaction, such as supporting children’s inquiry process by 
probing questions or asking for explanations and 
summarizations. In addition to the verbal interaction, we 
considered non-verbal cues of social interactions that appeared 
during this contextual analysis. The emerging types of social 
interactions have informed our design for future experiment on 
child-robot interaction. 

5.2 Planned experiments 

Our next steps include two experiments on child-robot 
interaction. In the first experiment we will focus on the 
influence of a social robot on explanatory behavior. Explanatory 
behavior includes the verbalization of scientific reasoning of the 
child.  

The experiment is comprised of two conditions. In the 
experimental condition the child will be working on an inquiry 
assignment with the robot. The background story of the robot is 
that he comes from another planet. He has an assignment from 
his teacher to study the effects of balance on earth. The robot 
wants to explore this phenomenon with like-minded people: 
children. The robot is presented as a peer learner but he does 
have well-developed inquiry skills. Therefore, the robot will 
provide instructions and ask questions to help learners explore 
the phenomenon of balance with the balance beam. The children 
will provide their answers by talking to the robot. The input of 
the state of the learning material for the robot will be controlled 
by a ‘Wizard of Oz’ technique.  

In the control condition learners will be working on the same 
assignment but without the robot. In this case the tablet provides 
instruction and will pose exactly the same questions to help 
learners explore the phenomenon of balance. In the control 
condition there is no background story, but children are asked to 
do the assignment as part of their educational program. The 
children will provide their answers verbally, and it will seem as 
if the tablet records the answers. In both conditions video 
recordings will be made of the children working on the task. It is 

hypothesized that when working on the task in an appropriate 
social context, in this case being accompanied by the robot, 
giving answers to the questions will result in more verbal 
explanatory behavior. Verbally explaining to another person can 
facilitate greater understanding of one’s own ideas and 
knowledge [23] and might therefore lead to better learning and 
transfer [36]. 

The second experiment will focus on the expected cognitive 
competence children believe the robot has. There will be three 
conditions. In all conditions the robot will make some incorrect 
suggestions. The difference between the conditions is that the 
children are primed to believe that the robot is (1) an expert, (2) 
a novice or (3) no priming. The goal is to find out how 
competent and trustworthy children believe the robot is before 
and after the experiment. 

In this paper, we have described some aspects of an initial 
theoretical framework that we use to design our experiments and 
user studies to investigate child-robot symbiotic interaction. We 
are going to give an emphasis to the process of learning in 
different contexts, focusing on collaborative learning and 
exploiting the robot as an adaptive co-learner. Thus the robot 
can scaffold the child to go through an effective learning 
process. For the future work we aim to investigate how a social 
robot can scaffold child’s inquiry process by facilitating the 
expansion of ZPD in an effective and enjoyable way focusing on 
the development of children’s meta-cognitive skills. 
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Does anyone want to talk to me? – Reflections on the use
of assistance and companion robots in care homes

Kerstin Dautenhahn1 and Anne Campbell2 and Dag Sverre Syrdal1

1 Introduction: Robotic Companions for Elderly
People

A growing number of research efforts worldwide aim at develop-
ing assistive robots to help elderly people in their own homes or
in care homes. The rationale for home assistance robotic technol-
ogy is based on demographic changes in many countries world-
wide, with an ageing population. For example, it is predicted that
in the European Union the number of people over 65 years will al-
most double (by 2060) and the number of people between 15-64
years will decrease by over 10%. Health care costs are also rising
[33]. Developments into home companions and solutions for Ambi-
ent Assisted Living (AAL) in elderly peoples homes or care homes
have grown significantly in the EU, see projects such as SRS[12]
, Hermes[5] , Florence [4] , KSERA[7] , MOBISERV [9] , Ru-
bicon [11], ACCOMPANY [1] or ROBOT-ERA[10] , to name a
few. Recent videos of results on smart home companion robots and
the type of assistance they can provide have been illustrated for
MOBISERV[29] and ACCOMPANY[15] . Products for robots used
in peoples homes are beginning to be marketed, cf. Toyota’s Hu-
man Support Robot (HSR)[13], Mitsubishi’s communication robot
Wakamaru[14] , Aldebaran’s Pepper robot [2], or Cynthia Breazeal’s
Jibo robot[6]. These robots come in different shapes and sizes, and
appearance and behaviour will influence which roles these robots are
being assigned to by their users and the human-robot relationships
that may emerge.

One of the authors has been involved in European projects on
home assistance robots since 2004, as part of the COGNIRON [3]
, LIREC [8] and ACCOMPANY [1] projects. COGNIRON was one
of the first projects in Europe on home companion robots. One les-
son learnt during the project was the need to move out of the labo-
ratory and into a realistic home setting, which led to the acquisition
and development of the University of Hertfordshire Robot House, a
smart home equipped with a sensor network and robots being able
to detect daily living activities and provide physical, social and cog-
nitive assistance. A second lesson was the need to move away from
Wizard-of-Oz (remote controlled) studies. In LIREC the emphasis
was on developing fully autonomous home assistant robots, with an
emphasis on social assistance. During ACCOMPANY, this direction
has been elaborated and extended through allowing the robot to be
taught and shown new behaviours and routines by the user, includ-
ing evaluations with elderly users and their formal and informal car-
ers in long-term studies in three European countries. The ACCOM-
PANY project has particularly advanced a direction where such au-
1 School of Computer Science, University of Hertfordshire, email:
{k.dautenhahn; d.s.syrdal} @herts.ac.uk

2 School of Health and Social Work, University of Hertfordshire, email
a.2.campbell@herts.ac.uk

tonomously operating companion robots, as part of a smart home
infrastructure, socially engage and assist the user, using personaliza-
tion and human-robot teaching and co-learning for reablement of the
user[36] . While these projects have focused primarily on the use
of robot within home settings, a separate strand of research within
the University of Hertfordshire’s work in ACCOMPANY actively
elicited the views of residents and staff at a local care home, through
the use of theatre prototyping[34] followed by interviews as previ-
ously reported in Walters et al.[45]. The current position paper draws
on these experiences and findings, as well as those from the other
projects, to consider the role that social robots may play in a care
home environment.

2 Roles of Robots

Different roles of robots in human society have been proposed[21] ,
including a machine operating without human contact; a tool in the
hands of a human operator; a peer as a member of a humaninhabited
environment; a robot as a persuasive machine influencing people’s
views and/or behaviour (e.g. in a therapeutic context); a robot as a
social mediator mediating interactions between people; a robot as a
model social actor. Opinions on viewing robots either as friends, as-
sistants or butlers have been investigated [23] . It has been suggested
the robot can act as a mentor for humans, or information consumer
whereby a human uses information provided by a robot[25] . Further
roles that have been introduced view robots as a team member in
collaborative tasks [19] or roles for robots as learners [39, 28]. Com-
panion robots have been defined as robots that not only can carry out
a range of useful tasks, but do so in a socially acceptable manner
[22] . This role typically involves both long-term and repeated inter-
action, as is the case for robots used in an elderly person’s home or in
a care home. Will people develop human-like relationships with such
companion robots? Some studies have tried to address these from a
user-centric point of view. Beer et al.[18] found that participants pri-
marily focused on the ability of the robot to streamline and reduce the
amount of effort required to maintain their household. However, a re-
cent study based on both recent literature research and focus groups
with 41 elderly people, 40 formal caregivers and 32 informal care-
givers in the Netherlands, UK and France, the most problematic chal-
lenges to independent living were identified mobility, self-care, and
interpersonal interaction and relationships [17].

Thus, there seem to be two domains where robots are envisaged
to assist in: the physical and/or cognitive domain, providing e.g spe-
cific assistance in remembering events and appointments, or to move
around, and the domain of social relationships.

This duality of roles do exist in how robots are being proposed
to be used in such settings, while surveys of envisaged use scenarios
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Figure 1. A companion robot at the University of Hertfordshire

indicate that medical and healthcare personnel see robots as tools that
can provide physical assistance with their tasks [40] , however, there
are also studies investigating the value of robots as companions in
these settings[38].

This approach is grounded in that, apart from physical needs, a key
problem in care homes is the resident’s loneliness. It impacts upon ’
quality of life and wellbeing, adversely affects health and increases
the use of health and social care services . A number of interven-
tions have been used, e.g. one-to-one approaches such as Befriend-
ing, Mentoring, group services such as lunch clubs, or community
engagement through public facilities (sports etc) [46]. Interestingly,
in a recent approach chickens have been introduced to a care home,
and proved popular with both staff and residents[35]. The impact of
robots and animals can be directly compared[16]. Could robots be-
come part of such services?

3 Ethical Issues

While this short position paper cannot comprehensively address the
ethical issues involved in the adoption of robots in elder care and the
associated literature, we note that elsewhere the danger to anthropo-
morphise and romanticise robots has been highlighted[20]. The roles
that are ascribed to robots and the human—robot relationships dis-
cussed in the research community are predominantly based on terms
that originally describe human-human interactions. So there is a ten-
dency to use terms robotic ‘assistant’ or robotic ‘carer’ and apply
the human equivalent literally which automatically implies a whole
range of different human-like qualities and abilities, that robots at
present cannot address, in terms of their physical and cognitive abili-
ties, as well as in terms of their emotional intelligence, as well as eth-
ical and moral judgements. A number of ethical considerations need
to be considered when fostering social relationships between robots
and elderly people. Sherry Turkle[41] has previously discussed the
danger of ‘relational artifacts’, i.e. robot designed specifically to en-
courage people to form a relationship with them. She argued that
such ‘non-authentic’ interaction may lead to people preferring the
(relatively easy and predictable and non-judgemental) interaction
with a robot compared to interactions with real people. Specifically
with regard to eldercare, Amanda and Noel Sharkey[37] pointed out

risks involved in using robots in elder care, including the potential
for the reduction in the amount of human contact as well as concerns
about deception and infantilisation. The theme of deception, infan-
tilisation and the possible reduction in human contact is also empha-
sized in other reflections on ethical norms of using robots in caring
role for elderly people[42, 24].

Interestingly, designing robots as interactive systems that people
can engage with, e.g. play games with, is technically feasible. Even
pet-like, non-humanoid robots such as Paro have been shown to be
successful companions[30]. On the other hand, providing physical
assistance involves many technical challenges e.g. in terms of object
manipulation, navigation, safety, etc. Thus, if it is ‘easier’ to build
robots as socially interactive companions, and to focus on its role to
engage people, shall one concentrate research efforts on this aspect?
Is it ethically justifiable, desirable and acceptable by elderly people
and their carers, given the above mentioned concerns of deception,
infantilisation, and providing non-authentic experiences? In order to
shed some initial light on these issues, one of the authors conducted
interviews in a care home for elderly people.

4 INTERVIEWS STUDY WITH RESIDENTS
AND CARER IN A CARE HOME

An interview study was conducted with carers and residents of a
care home in UK. In this study, residents and staff at the residential
care home were shown a play which focused on how the adoption of
personal home companion impacted the relationships in a domestic
household. The play and other aspects of the study is briefly sum-
marised here, details are provided elsewhere[45] . While the play
focused on the use of a robot in a different environment, it served
to raise awareness of how robots may assist in, and influence the
daily life of their users. We would also note that there was no verbal
interaction from the robot in the play. Three months after the play,
a follow-up study was conducted in which three residents, all with
learning disabilities and/or physical disabilities were interviewed,
followed by interviews of three experienced registered nurses. The
15-20 min interviews took place in the communal dining room of the
home that is familiar and comfortable to both residents and carers. A
semi-structured interview technique was used since it is considered a
reliable and flexible method and can cater for some of the residents’
disabilities[32]. The interviewer wrote down the interview data dur-
ing the interview, an approach considered less intrusive than audio-
taping the interviews. Based on these notes, the interviewer con-
ducted a content analysis of the interview data a number of themes
emerged that are described in detail in Walters et al. [45]. Relevant
for the present article are the following themes and comments from
residents and carers: Concerning acceptable boundaries for care by
humans and robots, one resident said that the most important care for
her from the robot was psychological care:

‘Make me feel lovely in myself and give me a boost...make
things different...I want to dance with it’.
‘I would like the robot to be chatty and to nod his head to show
he has heard me’.

Two other residents wanted the robot to ‘Tidy my room and maybe
feed me in the future’ and ‘comb my hair’. Regarding conversa-
tion and companionship, one of the interviewed residents wanted the
robot to be able to start a conversation and then acknowledge that he
had heard about her sore knee. Another wanted the robot to dance
with her. One theme arising from the interviews of the registered
nurses concerned how the robot could provide assistance to staff and
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residents, while they still preferred a human to a robot colleague.
All 3 nurses thought the robots would help with both physical and
psychological care:

‘They could provide company, socialise and boost morale’.
‘They could be friendly, shake hands and make friendly sounds;
talk to them and reduce loneliness’.
‘Help with feeding and walking beside them would be helpful’.

Concerning conversation and companionship all three nurses would
really value robot that can engage in conversations with residents and
provide stimulation:

‘Stimulation helps residents feel important’.
‘Helpful when staff are busy’.

5 Reflections
The interview study above highlighted a number of issues in favour
of robot providing social interaction and communication with resi-
dents in a care home in order to help with their loneliness. There are
also a number of practical issues, based on experience gained by the
second author in care homes, that would support robots in that role:

• The group of residents in care homes is often diverse, ranging
from people with dementia, people with learning disabilities, peo-
ple terminally ill e.g. with cancer, and others. This diversity can
impact on the willingness and enjoyment of residents to talk to
each other

• Residents in a care home do not know each other prior to joining
the care home, they are not a naturally formed unit of friends or
family. We cannot expect randomly created groups of people to
make friends easily, or even to be interested in talking to each
other, while having to live under the same roof under a daily basis.

• Care staff is often very focused on task and efficiency, often un-
der a lot of time-pressure to ‘get things done’. There is a large
spectrum in the quality of care, but in some care homes social in-
teraction with residents might not be high on the priority list of
care staff and their managers.

• From the point of view of care staff, interaction with residents
may not always be as enjoyable as one might envisage, e.g. due
to memory problems people with dementia may engage in very
repetitive conversations.

• In a social environment such as a care home, residents might feel
not ‘getting along with the others’, due to real or perceived con-
flicts with other residents.

• Some residents may have psychiatric conditions which make them
feel paranoid and sometimes aggressive.

• Care home staff and/or residents may not all have English as their
first language which affects their ability to communicate with each
other smoothly. There may also be differences in intercultural un-
derstanding of what is socially acceptable conversation.

Thus, while in an ideal world, care homes should be places where
carers and residents live together as ‘one happy family’, the reality
often differs. And it may be useful for robots to provide opportunities
for communication and interaction, even if interaction with robots is
mechanical, and lacks authenticity and depths of human contact as
we have argued elsewhere[41, 22] . For example, present robots can-
not replace the gentleness and meaningfulness of a person stroking
someone’s hair, or touching someone’s hands, or a comforting word.
This does not always mean that the robot will have to replace carer-
resident or resident-resident interactions. Rather, it may function as a

social facilitator, or mediator, and may be able to assist residents and
carers in overcoming some of the practical issues that often restrict
human-human interactions in care homes. Previous research has sug-
gested that the presence of a robot in a care may work to facilitate a
greater degree of interaction between the residents of the care home
[27, 43] , and this effect may be leveraged further by using features
like a memory visualisation system (which uses photos and text to
create narratives of previous interaction)[26] to aid further when try-
ing creating common ground between human interactants . In addi-
tion, there is also the possibility to adapt and apply research in using
robots to increase dyadic interactions in other user-groups [44, 31]
in order to further the ability of a robot companion as a social facil-
itator or mediator. While it can be argued that some of the issues, in
particular the staff’s focus on task and efficiency can be mediated by
the adoption of robots to provide physical support with some of the
tasks, this does not necessarily address the other points raised here.
We do not argue for robots to replace carers or human contact in gen-
eral, however, we argue that in situations where residents can expect,
and may suffer from, only very little human contact that in such cir-
cumstances robots could be beneficial to them and their carers, by
helping them to feel less lonely, not only through the direct interac-
tion between the resident and the robot, but also through the robot’s
ability to mediate interactions between residents and residents and
carers — and thus improving the health and well-being of the resi-
dents as well as the working conditions and atmosphere at work as
experienced by the staff.
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Robots Have Needs Too:
People Adapt Their Proxemic Preferences to Improve

Autonomous Robot Recognition of Human Social Signals
Ross Mead1 and Maja J Matarić2

Abstract. An objective of autonomous socially assistive robots is
to meet the needs and preferences of human users. However, this
can sometimes be at the expense of the robot’s own ability to un-
derstand social signals produced by the user. In particular, human
preferences of distance (proxemics) to the robot can have significant
impact on the performance rates of its automated speech and gesture
recognition systems. In this work, we investigated how user proxemic
preferences changed to improve the robot’s understanding human so-
cial signals. We performed an experiment in which a robot’s ability
to understand social signals was artificially varied, either uniformly
or attenuated across distance. Participants (N = 100) instructed a
robot using speech and pointing gestures, and provided their prox-
emic preferences before and after the interaction. We report two ma-
jor findings: 1) people predictably underestimate (based on a Power
Law) the distance to the location of robot peak performance; and 2)
people adjust their proxemic preferences to be near the perceived lo-
cation of robot peak performance. This work offers insights into the
dynamic nature of human-robot proxemics, and has significant impli-
cations for the design of social robots and robust autonomous robot
proxemic control systems.

1 Introduction
A social robot utilizes natural communication mechanisms, such as
speech and gesture, to autonomously interact with humans to accom-
plish some individual or joint task [2]. The growing field of socially
assistive robotics (SAR) is at the intersection of social robotics and
assistive robotics that focuses on non-contact human-robot interac-
tion (HRI) aimed at monitoring, coaching, teaching, training, and re-
habilitation domains [4]. Notable areas of SAR include robotics for
older adults, children with autism spectrum disorders, and people in
post-stroke rehabilitation, among others [25, 17].

Consequently, SAR constitutes an important subfield of robotics
with significant potential to improve health and quality of life. Be-
cause the majority of SAR contexts investigated to date involve one-
on-one face-to-face interaction between the robot and the user, how
the robot understands and responds to the user is crucial to successful
autonomous social robots [1], in SAR contexts and beyond.

One of the most fundamental social behaviors is proxemics, the
social use of space in face-to-face social encounters [5]. A mobile so-
cial robot must position itself appropriately when interacting with the
user. However, robot position has a significant impact on the robot’s
performance—in this work, performance is measured by automated

1 University of Southern California, USA, email: rossmead@usc.edu
2 University of Southern California, USA, email: mataric@usc.edu

speech and gesture recognition rates. Just like electrical signals, hu-
man social signals (e.g., speech and gesture) are attenuated (lose
signal strength) based on distance, which dramatically changes the
way in which automated recognition systems detect and identify the
signal; thus, a proxemic control system that often varies its location
and, thus, creates signal attenuation, can be a defining factor in the
success or failure of a social robot [16].

In our previous work [16] (described in detail in Section 2.2), we
modeled social robot performance attenuated by distance, which was
then used to implement an autonomous robot proxemic controller
that maximizes its performance during face-to-face HRI; however,
this work begged the question as to whether or not people would ac-
cept a social robot that positions itself in a way that differs from tradi-
tional user proxemic preferences. Would users naturally change their
proxemic preferences if they observed differences in robot perfor-
mance in different proxemic configurations, or would their proxemic
preferences persist, mandating that robot developers must improve
autonomous speech and gesture recognition systems before social
and socially assistive robot technology can be deployed in the real
world? This question is the focus of the investigation reported here.

2 Background
The anthropologist Edward T. Hall [5] coined the term “proxemics”,
and, in [6], proposed that proxemics lends itself well to being ana-
lyzed with performance (as measured through sensory experience) in
mind. Proxemics has been studied in a variety of ways in HRI; here,
we constrain our review of related work to that of autonomous HRI3.

2.1 Comfort-based Proxemics in HRI
The majority of proxemics work in HRI focuses on maximizing
user comfort during a face-to-face interaction. The results of many
human-robot proxemics studies have been consolidated and normal-
ized in [28], reporting mean distances of 0.49–0.71 meters using a va-
riety of robots and conditions. Comfort-based proxemic preferences
between humans and the PR2 robot4 were investigated in [24], re-
porting mean distances of 0.25–0.52 meters; in [16], we investigated
the same preferences using the PR2 in a conversational context, re-
porting a mean distance of 0.94 meters. Farther proxemic preferences
have been measured in [18] and [26], reporting mean distances of
1.0–1.1 meters and 1.7–1.8 meters, respectively.

3There is a myriad of related work reporting how humans adapt to various
technologies, but this is beyond the scope of this work. For a review, see [8].

4https://www.willowgarage.com/pages/pr2/overview
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However, results in our previous work [16] suggest that au-
tonomous speech and gesture recognition systems do not perform
well using comfort-based proxemic configurations. Speech recogni-
tion performed adequately at distances less than 2.5 meters, and face
and hand gesture recognition performed adequately at distances of
1.5–2.5 meters; thus, given current technologies, distances for mu-
tual recognition of these social signals is between 1.5 and 2.5 meters,
at and beyond the far end of comfort-based proxemic preferences.

2.2 Performance-based Proxemics in HRI
Our previous work utilized advancements in markerless motion cap-
ture (specifically, the Microsoft Kinect) to automatically extract
proxemic features based on metrics from the social sciences [11, 14].
These features were then used to recognize spatiotemporal interac-
tion behaviors, such as the initiation, acceptance, aversion, and termi-
nation of an interaction [12, 14]. These investigations offered insights
into the development of proxemic controllers for autonomous social
robots, and suggested an alternative approach to the representation of
proxemic behavior that goes beyond simple distance and orientation
[13]. A probabilistic framework for autonomous proxemic control
was proposed in [15, 10] that considers performance by maximizing
the sensory experience of each agent (human or robot) in a co-present
social encounter. The methodology established an elegant connection
between previous approaches and illuminated the functional aspects
of proxemic behavior in HRI [13], specifically, the impact of spac-
ing on speech and gesture behavior recognition and production. In
[16], we formally modeled (using a dynamic Bayesian network [9])
autonomous speech and gesture recognition systems as a function of
distance and orientation between a social robot and a human user,
and implemented the model as an autonomous proxemic controller,
which was shown to maximize robot performance in HRI.

However, while our approach to proxemic control objectively
maximized the performance of the robot, it also resulted in prox-
emic configurations that are atypical for human-robot interactions
(e.g., positioning itself farther or nearer to the user than preferred).
Thus, the question arose as to whether or not people would subjec-
tively adopt a technology that places performance over preference, as
it might place a burden on people to change their own behaviors to
make the technology function adequately.

2.3 Challenges in Human Spatial Adaptation
For humans to adapt their proxemic preferences to a robot, they must
be able to accurately identify regions in which the robot is perform-
ing well; however, errors in human distance estimation increase non-
linearly with increases in distance, time, and uncertainty [19]. Fortu-
nately, the relationship between human distance estimation and each
of these factors is very well represented by Steven’s Power Law, axb,
where x is distance [19, 23]. Unfortunately, these relationships are
reported for distances of 3–23 meters, which are farther away than in
those with which we are concerned for face-to-face HRI—thus, we
cannot use the reported model parameters and must derive our own.

In this work, we investigate how user proxemic preferences change
in the presence of a social robot that is recognizing and responding
to instructions provided by a human user. Robot performance (ability
to understand speech and gesture) is artificially attenuated to expose
participants to success and failure scenarios while interacting with
the robot. In Section 3, we describe the overall setup in which our
investigation took place. In Section 4, we outline the specific proce-
dures, conditions, hypotheses, and participants of our experiment.

3 Experimental Setup
3.1 Materials
The experimental robotic system used in this work was the Ban-
dit upper-body humanoid robot5 [Figure 1]. Bandit has 19 degrees
of freedom: 7 in each arm (shoulder forward-and-backward, shoul-
der in-and-out, elbow tilt, elbow twist, wrist twist, wrist tilt, grabber
open-and-close; left and right arms), 2 in the head (pan and tilt), 2
in the lips (upper and lower), and 1 in the eyebrows. These degrees
of freedom allow Bandit to be expressive using individual and com-
bined motions of the head, face, and arms. Mounted atop a Pioneer
3-AT mobile base6, the entire robot system is 1.3 meters tall.

A Bluetooth PlayStation 3 (PS3) controller served as a remote con-
trol interface with the robot. The controller was used by the experi-
menter (seated behind a one-way mirror [Figure 2]) to step the robot
through each part of the experimental procedure (described in Sec-
tion 4.1)—the decisions and actions taken by the robot during the ex-
periment were completely autonomous, but the timing of its actions
were controlled by the press of a “next” button. The controller was
also used to record distance measurements during the experiment,
and to provide ground-truth information to the robot as to what the
participant was communicating (however, the robot autonomously
determined how to respond based on the experimental conditions de-
scribed in Section 4.2).

Four small boxes were placed in the room, located at 0.75 meters
and 1.5 meters from the centerline on each side (left and right) of the
participant [Figure 2]. During the experiment (described in Section
4.1), the participant instructed the robot to look at these boxes. Each
box was labeled with a unique shape and color; in this experiment,
the shapes and colors matched the buttons on the PS3 controller: a
green triangle, a red circle, a blue cross, and a purple square. This
allowed the experimenter to easily indicate to the robot to which box
the user was attending (i.e., “ground-truth”).

A laser rangefinder on-board the robot was used to measure the
distance from the robot to the participant’s legs at all times.

Figure 1. The Bandit upper-body humanoid robot.

5http://robotics.usc.edu/interaction/?l=Laboratory:Robots#BanditII
6http://www.mobilerobots.com/ResearchRobots/P3AT.aspx
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Figure 2. The experimental setup.

3.2 Robot Behaviors
The robot autonomously executed three primary behaviors through-
out the experiment: 1) forward and backward base movement, 2)
maintaining eye contact with the participant, and 3) responding to
participant instructions with head movements and audio cues.

Robot base movement was along a straight-line path directly in
front of the participant, and was limited to distances of 0.25 meters
(referred to as the “near home” location) and 4.75 meters (referred to
as the “far home” location); it returned repeatedly to these “home” lo-
cations throughout the experiment. Robot velocity was proportional
to the distance to the goal location; the maximum robot speed was
0.3 m/s, which people find acceptable [22].

As the robot moved, it maintained eye contact with the partici-
pant. The robot has eyes, but they are not actuated, so the robot’s
head pitched up or down depending on the location of the partici-
pant’s head, which was determined by the distance to the participant
(from the on-board laser) and the participant’s self-reported height.
We note that prolonged eye contact from the robot often results in
user preferences of increased distance in HRI [24, 18].

The robot provided head movement and audio cues to indicate
whether or not it understood instructions provided by the participant
(described in Section 4.1.2). If the robot understood the instructions,
it provided an affirmative response (looking at a box); if the robot
did not understand the instructions, it provided a negative response
(shaking its head). With each head movement, one of two affective
sounds were also played to supplement the robot’s response; affective
sounds were used because robot speech influences proxemic prefer-
ences and would have introduced a confound in the experiment [29].

4 Experimental Design
With the described experimental setup, we performed an experiment
to investigate user perceptions of robot performance attenuated by
distance and its effect on proxemic preferences.

4.1 Experimental Procedure
Participants (described in Section 4.4) were greeted at the door enter-
ing the private experimental space, and were informed of and agreed
to the nature of the experiment and their rights as a participant, which
included a statement that the experiment could be halted at any time.

Participants were then instructed to stand with their toes touching
a line on the floor, and were asked to remain there for the duration of
the experiment [Figure 2]. The experimenter then provided instruc-
tions about the task the participant would be performing.

Participants were introduced to the robot, and were informed that
all of its actions were completely autonomous. Participants were told
that the robot would be moving along a straight line throughout the
duration of the experiment; a brief demonstration of robot motion
was provided, in which the robot autonomously moved back and
forth between distances of 3.0 meters and 4.5 meters from the partic-
ipant, allowing them to familiarize themselves with the robot motion.
Participants were told that they would be asked about some of their
preferences regarding the robot’s location throughout the experiment.

Participants were then informed that they would be instructing the
robot to look at any one of four boxes (of their choosing) located in
the room [Figure 2], and that they could use speech (in English) and
pointing gestures. A vocabulary for robot instructions was provided:
for speech, participants were told they could say the words ”look at”
followed by the name of the shape or color of each box (e.g., ”tri-
angle”, ”circle”, ”blue”, ”purple”, etc.); for pointing gestures, partic-
ipants were asked to use their left arm to point to boxes located on
their left, and their right arm to point to boxes on their right. This vo-
cabulary was provided to minimize any perceptions the person might
have that the robot simply did not understand the words or gestures
that they used; thus, the use of the vocabulary attempted to maximize
the perception that any failures of the robot were due to other factors.

Participants were told that they would repeat this instruction pro-
cedure to the robot many times, and that the robot would indicate
whether or not it understood their instructions each time using the
head movements and audio cues described in Section 3.2.

Participants had an opportunity to ask the experimenter any clar-
ifying questions. Once participant understanding was verified, we
proceeded with the experiment.

4.1.1 Pre-interaction Proxemic Measures (pre)7

The robot autonomously moved to the “far home” location [Figure
2]. Participants were told that the robot would be approaching them,
and to say out loud the word “stop” when the robot reached the ideal
location at which the participant would have a face-to-face conversa-
tion8 with the robot. This pre-interaction proxemic preference from
the “far home” location is denoted as pre

far

.
When the participant was ready, the experimenter pressed a PS3

button to start the robot moving. When the participant said “stop”,
the experimenter pressed another button to halt robot movement. The
experimenter pressed another button to record the distance between
the robot and the participant, as measured by the on-board laser.

Once the pre

far

distance was recorded, the experimenter pressed
another button, and the robot autonomously moved to the “near
home” location [Figure 2]; the participant was informed that the
robot would be approaching to this location and would stop on its
own. The process was repeated with the robot backing away from
the participant, and the participant saying “stop” when it reached the
ideal location for conversation. This pre-interaction proxemic prefer-
ence from the “near home” location is denoted as pre

near

.
7Measures are provided inline with the experimental procedure to provide

an order of events as they occurred in the experiment.
8Related work in human-robot proxemics asks the participant about lo-

cations at which they feel comfortable [24], yielding proxemic preferences
very near to the participant. Our general interest is in face-to-face human-
robot conversational interaction, with proxemic preference farther from the
participant [16, 26, 27], hence the choice of wording.
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From pre

far

and pre

near

, we calculated and recorded the average
pre-interaction proxemic preference, denoted as pre9.

4.1.2 Interaction Scenario

After determining pre-interaction proxemic preferences, the robot re-
turned to the “far home” location. The experimenter then repeated to
participants the instructions about the task they would be performing
with the robot. When participants verified that they understood the
task and indicated that they were ready, the experimenter pressed a
button to proceed with the task.

The robot autonomously visited ten pre-determined locations [Fig-
ure 2]. At each location, the robot responded to instructions from the
participant to look at one of four boxes located in the room [Figure
2]. Five instruction-response interactions were performed at each lo-
cation, after which the robot moved to the next location along its
path; thus, each participant experienced a total of 50 instruction-
responses interactions. Robot goal locations were in 0.5-meter inter-
vals inclusively between the “near home” location (0.25 meters) and
“far home” location (4.75 meters) along a straight-line path in front
of the participant [Figure 2]. Locations were visited in a sequential
order; for half of the participants, the robot approached from the “far
home” location (i.e., farthest-to-nearest order), and, for the other half
of participants, the robot backed away from “near home” location
(i.e., nearest-to-farthest order); this was done to reduce any ordering
effects [19].

To controllably simulate social signal attenuation at each location,
robot performance was artificially manipulated as a function of the
distance to the participant (described in Section 4.2). After each in-
struction provided by the participant, the experimenter provided to
the robot (via a remote control interface) the ground-truth of the in-
struction; the robot then determined whether or not it would have
understood the instruction based on a prediction from a performance
vs. distance curve (specified by the assigned experimental condition
described in Section 4.2), and provided either an affirmative response
or a negative response to the participant indicating its successful or
failed understanding of the instruction, respectively.

The entire interaction scenario lasted 10-15 minutes.

4.1.3 Post-interaction Proxemic Measures (post)

After the robot visited each of the ten locations, it autonomously re-
turned to the “far home” location. The experimenter then repeated the
procedure for determining proxemic preferences described in Sec-
tion 4.1.1. This process generated post-performance proxemic pref-
erences from the “far home” and “near home” locations, as well as
their average, denoted post

far

, post
near

, and post

10, respectively.

4.1.4 Perceived Peak Location Measures (perc)

Finally, after collecting post-interaction proxemic preferences, the
experimenter repeated the procedure described in Section 4.1.1 to de-
termine participant perceptions of the location of peak performance.
This process generated perceived peak performance locations from
the “far home” and “near home” locations, as well as their average,
denoted perc

far

, perc
near

, and perc

11, respectively.

9Post-hoc analysis revealed no statistically significant difference between
pre

far

and pre

near

measurements, hence why we rely on pre.
10Post-hoc analysis revealed no statistically significant difference between

post

far

and post

near

measurements, hence why we rely on post.
11Post-hoc analysis revealed no statistically significant difference between

perc

far

and perc

near

measurements, hence why we rely on perc.

4.2 Experimental Conditions
We considered two performance vs. distance conditions; 1) a “uni-
form performance” condition, and 2) an “attenuated perfor-
mance” condition. Overall robot performance for each condition
was held at a constant 40%12—that is, for each participant, the robot
provided 20 affirmative responses and 30 negative responses dis-
tributed across 50 instructions. The way in which these responses
were distributed across locations varied between conditions.

In the uniform performance condition, robot performance was
the same (40%) across across all locations [Figures 3 and 4]. Thus,
at each of the ten locations visited, the robot provided two affirmative
and three negative responses, respectively. This condition served as
a baseline of participant proxemic preferences within the task.

In the attenuated performance condition, robot performance
varied with distance proportional to a Gaussian distribution centered
a location of “peak performance” (M = peak, SD = 1.0) [Figures
3 and 4]. Due to differences in pre-interaction proxemic preferences,
we could not select a single value for peak that provided a similar ex-
perience between participants without introducing other confounding
factors (e.g., the peak not being at a location that the robot visited or
distances beyond the “home” locations). To alleviate this, we opted
to select multiple peak performance locations, exploring the space of
human responses to robot performance differences at a variety of dis-
tances. We selected the eight locations non-inclusively between the
“near home” and “far home” locations as the peak performance loca-
tions [Figure 2]; the “near home” and “far home” locations were not
included in the set of peaks to ensure that participants were always
exposed to an actual peak in performance, rather than just a trend.
Peak performance locations were varied between participants.

Figure 3. The performance curves of the uniform and attenuated
conditions. In this example, peak = 2.25 (in meters), so the attenuated
performance curve parameters is M = peak = 2.25, SD = 1.0. The

number of affirmative responses at a distance, x, from the user is
proportional to p(x), the evaluation of the performance curve at x.

The distribution of affirmative responses for all conditions is pre-
sented in Figure 4. The number of affirmative responses was normal-
ized to 20 (40%) to ensure a consistent user experience of overall
robot performance across all conditions. In the attenuated perfor-
mance condition, the number of affirmative responses at peak was
always the 5 (i.e., perfect performance), and the number of affirma-
tive responses at other locations were always less than that of the
peak to ensure that participants were exposed to an actual peak. At
each location, the order in which the five responses were provided
was random.

12This value was selected because it is an average performance rate pre-
dicted by our results in [16] for typical human-robot proxemic preferences.
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Figure 4. The distribution of affirmative responses provided by the robot
across conditions. Manipulated values are highlighted in bold italics.

4.3 Experimental Hypotheses
Within these conditions, we had three central hypotheses:

H1: In the uniform performance condition, there will be no sig-
nificant change in participant proxemic preferences.

H2: In the attenuated performance conditions, participants will
be able to identify a relationship between robot performance and
human-robot proxemics.

H3: In the attenuated performance conditions, participants will
adapt their proxemic preferences to improve robot performance.

4.4 Participants
We recruited 100 participants (50 male, 50 female) from
our university campus community. Participant race was diverse
(67 white/Caucasian, 26 Asian, 3 black/African-American, 3
Latino/Latina, and 1 mixed-race). All participants reported profi-
ciency in English and had lived in the United States for at least two
years (i.e., acclimated to U.S. culture). Average age (in years) of par-
ticipants was 22.26 (SD = 4.31), ranging from 18 to 39. Based on
a seven-point scale, participants reported moderate familiarity with
technology (M = 3.98, SD = 0.85). Average participant height (in
meters) was 1.74 (SD = 0.10), ranging from 1.52 to 1.93. Related
work reports how human-robot proxemics is influenced by gender
and technology familiarity [24], culture [3], and height [7, 21].

The 100 participants were randomly assigned to a performance
condition, with N = 20 in the uniform performance condition and
N = 80 in the attenuated performance condition. In the atten-
uated performance condition, the 80 participants were randomly
assigned one of the eight peak performance locations (described in
Section 4.2) with N = 10 for each peak. Neither the participant nor
the experimenter was aware of the condition assigned.

5 Results and Discussion
We analyzed data collected in our experiment to test our three hy-
potheses (described in Section 4.3), and evaluated their implications
for autonomous social robots and human-robot proxemics.

To provide a baseline of our robot for comparison in gen-
eral human-robot proxemics, we consolidated and analyzed pre-
interaction proxemic preferences (pre) across all conditions (N =
100), as the data had not been influenced by robot performance. The
participant pre-interaction proxemic preference (in meters) was de-
termined to be 1.14 (SD = 0.49) for our robot system, which is con-
sistent with [18] and our previous work [16], but twice as far away as
related work has reported for robots of a similar form factor [28, 24].

5.1 H1: Pre- vs. Post-interaction Locations

To test H1, we compared average pre-interaction proxemic prefer-
ences (pre) to average post-interaction proxemic preferences (post)
of participants in the uniform performance condition.

A paired t-test revealed a statistically significant change in partic-
ipant proxemic preferences between pre (M = 1.12, SD = 0.51)
and post (M = 1.39, SD = 0.63); t(38) = 1.49, p = 0.02. Thus,
our hypothesis H1 is rejected.

The rejection of this hypothesis does not imply a failure of the
experimental procedure, but, rather, provides important insights that
must be considered for subsequent analyses (and for related work in
proxemics). This result suggests that there might be something about
the context of the interaction scenario itself that influenced partici-
pant proxemic preferences. To address any influence the interaction
scenario might have on subsequent analyses, we define a contextual
offset, ✓, as the average difference in participant post-interaction and
pre-interaction proxemic preferences (M = 0.27, SD = 0.48); this
✓ value will be subtracted from (post� pre) values in Section 5.3 to
normalize for the interaction context.

5.2 H2: Perceived vs. Actual Peak Locations

To test H2, we compared participant perceived locations of peak per-
formance (perc) to actual locations of peak performance (peak) in
the attenuated performance conditions [Figure 5].

Steven’s Power Law, axb, has previously been used to model hu-
man distance estimation as a function of actual distance [19], and is
generally well representative of human-perceived vs. actual stimuli
[23]. However, existing Power Laws relevant to our work only seem
to pertain to distances of 3–23 meters, which are beyond the range
of the natural face-to-face communication with which we are con-
cerned. Thus, our goal here is to model our own experimental data to
establish a Power Law for perc vs. peak at locations more relevant
to HRI (0.75–4.25 meters), which we can then evaluate to test H2.

Immediate observations of our data suggested that the data ap-
pear to be heteroscedastic [Figure 5]—in this case, the variance
seems to increase with distance from the participant, which means we
should not use traditional statistical tests. The Breusch-Pagan test for
non-constant variance (NCV) confirmed this intuition; �2(1, N =
100) = 15.79, p < 0.001. A commonly used and accepted approach
to alleviate our heteroscedasticity is to transform the perc and peak

data to a log-log scale. While not applicable to all datasets, this ap-
proach served as an adequate approximation for our purposes [Fig-
ure 6]; it also enabled us to perform a regression analysis to deter-
mine parameter values for the Power Law coefficient and exponent,
a = 1.3224 and b = 0.5132, respectively. With these parameters,
we identified that peak was a strongly correlated and very signifi-
cant predictor of perc; R2 = 0.4951, F (1, 78) = 76.48, p < 0.001.
Thus, our hypothesis H2 is supported.

This result suggests that people are able to identify a relationship
between robot performance and human-robot proxemics, but they
will predictably underestimate the distance, x, to the location of peak
performance based on the Power Law equation 1.3224x0.5132. While
human estimation of the location of peak performance is suboptimal,
it is possible that repeated exposure to the robot over multiple ses-
sions might yield more accurate results. This follow-up hypothesis
will be formally tested in a planned longitudinal study in future work
(described in Section 6).
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Figure 5. Participant perceived location of robot peak performance (perc)
vs. actual location of robot peak performance (peak). Note the

heteroscedasticity of the data, which prevents us from performing traditional
statistical analyses without first transforming the data (shown in Figure 6).

Figure 6. Participant perceived location of robot peak performance (perc)
vs. actual location of robot peak performance (peak) on a log-log scale,

reducing the effects of heteroscedasticity and allowing us to perform
regression to determine parameters of the Power Law, axb.

5.3 H3: Preferences vs. Peak Locations
To test H3, we compared changes in participant pre-/post-interaction
proxemic preferences (post� pre� ✓) to the distance from the par-
ticipant pre-interaction proxemic preference to either a) the actual
location of robot peak performance (peak � pre) [Figure 7], or b)
the perceived location of robot peak performance (perc� pre) [Fig-
ure 8], both in the attenuated performance conditions.

Data for (post�pre� ✓) vs. both (peak�pre) and (perc�pre)
were heteroscedastic, as indicated by Breusch-Pagan NCV tests:
�

2(1, N = 100) = 18.81, p < 0.001; and �

2(1, N = 100) =
13.55, p < 0.001; respectively. This is intuitive, as the data for per-
ceived (perc) vs. actual (peak) locations of peak performance were
also heteroscedastic [Figure 5]. The log-transformation approach that
we used in Section 5.2 did not perform well in modeling these data;
thus, we needed to use an alternative approach. We opted to utilize
a Generalized Linear Model [20] because it allowed us to model the
variance of each measurement separately as a function of predicted
values and, thus, perform appropriate statistical tests for significance.

We first modeled changes in participant proxemic preferences
(post � pre � ✓) vs. distance from pre-interaction proxemic pref-
erence to the actual location of peak performance (peak � pre). In

Figure 7. Changes in participant pre-/post-interaction proxemic
preferences (pre and post, respectively; ✓ is the contextual offset defined in

Section 5.1) vs. distance from participant pre-interaction proxemic
preference (pre) to the actual location of robot peak performance (peak).

Figure 8. Changes in participant pre-/post-interaction proxemic
preferences (pre and post, respectively; ✓ is the contextual offset defined in

Section 5.1) vs. distance from participant pre-interaction proxemic
preference (pre) to the perceived location of robot peak performance (perc).

the ideal situation (for the robot), these match one-to-one—in other
words, the participant meets the needs of the robot entirely by chang-
ing proxemic preferences to be centered at the peak of robot perfor-
mance. Unfortunately for the robot, this was not the case. We de-
tected a strongly correlated and statistically significant relationship
between participant proxemic preference change and distance from
pre-interaction preference to the peak location (R2 = 0.5474,� =
0.5361, t(98) = 9.71, p < 0.001), but participant preference change
only got the robot approximately halfway (� = 0.5361) to its loca-
tion of peak performance [Figure 7]. Why is this?

Recall that results reported in Section 5.2 suggested that, while
people do perceive a relationship between robot performance and
distance, their ability to accurately identify the location of robot peak
performance diminishes based on the distance to it as governed by a
Power Law. Were participants trying to maximize robot performance,
but simply adapting their preferences to a suboptimal location?

We investigated this question by considering changes in partici-
pant proxemic preferences (post � pre � ✓) vs. distance from pre-
interaction proxemic preference to the perceived location of peak
performance (perc�pre). If the participant was adapting their prox-
emic preferences to accommodate the needs of the robot, then these
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should match one-to-one. A Generalized Linear Model was fit to
these data, and yielded a strongly correlated and statistically signifi-
cant relationship between changes in proxemic preferences and per-
ceptions of robot performance (R2 = 0.5421,� = 0.9275, t(98) =
9.61, p < 0.001) [Figure 8]. Thus, our hypothesis H3 is supported.

The near one-to-one relationship (� = 0.9275) between post-
interaction proxemic preferences and participant perceptions of robot
peak performance is compelling, suggesting that participants adapted
their proxemic preferences almost entirely to improve robot perfor-
mance in the interaction.

5.4 Discussion
These results have significant implications for the design of social
robots and autonomous robot proxemic control systems, specifically,
in that people’s proxemic preferences will likely change as the user
interacts with and comes to understand the needs of the robot.

As illustrated in our previous work [16], the locations of on-board
sensors for social signal recognition (e.g., microphones and cam-
eras), as well as the automated speech and gesture recognition soft-
ware used, can have significant impacts on the performance of the
robot in autonomous face-to-face social interactions. As our now-
reported results suggest that people will adapt their behavior in an ef-
fort to improve robot performance, it is anticipated that human-robot
proxemics will vary between robot platforms with different hardware
and software configurations based on factors that are 1) not specific
to the user (unlike culture [3], or gender, personality, or familiarity
with technology [24]), 2) not observable to the user (unlike height
[7, 21], amount of eye contact [24, 18], or vocal parameters [29]), or
3) not observable to the robot developer. User understanding of the
relationship between robot performance and human-robot proxemics
is a latent factor that only develops through repeated interactions with
the robot (perhaps expedited by the robot communicating its pre-
dicted error); fortunately, our results indicate that user understanding
will develop in a predictable way. Thus, it is recommended that social
robot developers consider and perhaps model robot performance as
a function of conditions that might occur in dynamic proxemic inter-
actions with human users to better predict and accommodate how the
people will actually use the technology. This dynamic relationship, in
turn, will enable more rich autonomy for social robots by improving
the performance of their own automated recognition systems.

If developers adopt models of robot performance as a factor con-
tributing to human-robot proxemics, then it follows that proxemic
control systems might be designed to expedite the process of au-
tonomously positioning the robot at an optimal distance from the user
to maximize robot performance while still accommodating the initial
personal space preferences of the user. This was the focus of our pre-
vious work [16], which treated proxemics as an optimization problem
that considers the production and perception of social signals (speech
and gesture) as a function of distance and orientation. Recall that an
objective of the now-reported work was to address questions regard-
ing whether or not users would accept a robot that positions itself
in locations that might differ from their initial proxemic preferences.
The results in this work (specifically, in Section 5.3) support the no-
tion that user proxemic preferences will change through interactions
with the robot as its performance is observed, and that the new user
proxemic preference will be at the perceived location of robot peak
performance. An extension of this result is that, through repeated
interactions, user proxemic preferences will further adapt and even-
tually converge to the actual location of robot peak performance, a
hypothesis that we will investigate in future work.

6 Future Work

Our experimental conditions (described in Section 4.2) were specif-
ically selected to strongly expose a relationship (if one existed)
between human proxemic preferences and robot performance—the
robot achieved perfect success rates (100%) at “peak” locations and
perfect failure rates (0%) at other locations, and these success/failure
rates were distributed proportional to a Gaussian distribution with
constant variance. Now that we have identified that a relationship ex-
ists, our next steps will examine how the relationship changes over
time or with other related factors. A longitudinal study over multi-
ple sessions will be conducted to determine if changes in preferences
persist from one interaction to the next, and if user proxemic pref-
erences will continue to adapt and eventually converge to locations
of robot peak performance through repeated interactions. Other fu-
ture work will follow the same experimental procedure described in
Section 4.1, but will adjust the attenuated performance condition
(described in Section 4.2) to consider how the relationship changes
with 1) distributions of lower or higher variance, 2) lower maximum
performance or higher minimum performance, 3) more realistic non-
Gaussian distributions, and 4) the interactions between distributions
of actual multimodal recognition systems [16].

This perspective opens up a whole new theoretical design space of
human-robot proxemic behavior. The general question is, “How will
people adapt their proxemic preferences in any given performance
field?”, in which performance varies with a variety of factors, such as
distance, orientation, and environmental interference. The follow-up
question then asks, “How can the robot expedite the process of estab-
lishing an appropriate human-robot proxemic configuration within
the performance field without causing user discomfort?” This will be
a focus of future work, and will extend our prior work on modeling
human-robot proxemics to improve robot proxemic controllers [16].

7 Summary and Conclusions

An objective of autonomous socially assistive robots is to meet the
needs and preferences of a human user [4]. However, this can some-
times be at the expense of the robot’s own ability to understand social
signals produced by the user. In particular, human proxemic prefer-
ences with respect to a robot can have significant impacts on the per-
formance rates of its automated speech and gesture recognition sys-
tems [16]. This means that, for a successful interaction, the robot has
needs too—and these needs might not be consistent with and might
require changes in the proxemic preferences of the human user.

In this work, we investigated how user proxemic preferences
changed to improve the robot’s understanding of human social sig-
nals (described in Section 4). We performed an experiment in which a
robot’s performance was artificially varied, either uniformly or atten-
uated across distance. Participants (N = 100) instructed a robot us-
ing speech and pointing gestures, and provided their proxemic pref-
erences before and after the interaction.

We report two major findings. First, people predictably underes-
timate the distance to the location of robot peak performance; the
relationship between participant perceived and actual distance to the
location of peak performance is represented well by a Power Law
(described in Section 5.2). Second, people adjust their proxemic pref-
erences to be near the perceived location of maximum robot under-
standing (described in Section 5.3). This work offers insights into
the dynamic nature of human-robot proxemics, and has significant
implications for the design of social robots and robust autonomous
robot proxemic control systems (described in Section 5.4).
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Traditionally, we focus on our attention on ensuring the robot is
meeting the needs of the user with little regard to the impact it might
have on the robot itself; it is often an afterthought, or something that
we, as robot developers, have to “fix” with our systems. While robot
developers will continue to improve upon our autonomous systems,
our results suggest that even novice users are willing to adapt their
behaviors in an effort to help the robot better understand and perform
its tasks. Automated recognition systems are not and will likely never
be perfect, but this is no reason to delay the development, deploy-
ment, and benefits of social and socially assistive robot technologies.
Robots have needs too, and human users will attempt to meet them.
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[16] R. Mead and M. J. Matarić, ‘Perceptual models of human-robot prox-
emics’, in 14th International Symposium on Experimental Robotics,
ISER’14, p. to appear, Marrakech/Essaouira, Morocco, (2014).

[17] R. Mead, E. Wade, P. Johnson, A. St. Clair, S. Chen, and M. J. Mataric.,
‘An architecture for rehabilitation task practice in socially assistive
human-robot interaction’, in Robot and Human Interactive Communi-
cation, pp. 404–409, (2010).

[18] J. Mumm and B. Mutlu, ‘Human-robot proxemics: Physical and psy-
chological distancing in human-robot interaction’, in 6th ACM/IEEE
International Conference on Human-Robot Interaction, HRI-2011, pp.
331–338, Lausanne, (2011).

[19] A Murata, ‘Basic characteristics of human’s distance estimation’, in
1999 IEEE International Conference on Systems, Man, and Cybernet-
ics, volume 2 of SMC’99, pp. 38–43, (1999).

[20] J. Nelder and R. Wedderburn, ‘Generalized linear models’, Journal of
the Royal Statistical Society, 135(3), 370–384, (1972).

[21] I. Rae, L. Takayama, and B. Mutlu, ‘The influence of height in robot-
mediated communication’, in 8th ACM/IEEE International Confer-
ence on Human-Robot Interaction, HRI-2013, pp. 1–8, Tokyo, Japan,
(2005).

[22] S. Satake, T. Kanda, D. F. Glas, M. Imai, H. Ishiguro, and N. Hagita,
‘How to approach humans?: Strategies for social robots to initiate in-
teraction’, in HRI, pp. 109–116, (2009).

[23] S.S. Stevens, ‘On the psychological law’, Psychological Review, 64,
153–181, (2007).

[24] L. Takayama and C. Pantofaru, ‘Influences on proxemic behaviors in
human-robot interaction’, in IEEE/RSJ International Conference on In-
telligent Robots and Systems, IROS’09, pp. 5495–5502, (2009).
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A new biomimetic approach towards educational
robotics: the Distributed Adaptive Control of a Synthetic
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Abstract. Many fields can profit from the introduction of robots,
including that of education. In this paper, our main focus is the ad-
vancement of the Synthetic Tutor Assistant (STA), a robot that will
act as a peer for knowledge transfer. We propose a theory of a tutoring
robotic application that is based on the Distributed Adaptive Control
(DAC) theory: a layered architecture that serves as the framework of
the proposed application. We describe the main components of the
STA and we evaluate the implementation within an educational sce-
nario.

1 INTRODUCTION

Robots are now able to interact with humans in various conditions
and situations. Lately, there has been an increased attempt to develop
socially interactive robots, that is, robots with the ability to display
social characteristics: use natural communicative cues (such as ges-
tures or gaze), express emotional states or even establish social rela-
tionships, all of which are important when a peer-to-peer interaction
takes place [20]. In fact, given the current technological advance-
ments, we are now able to develop robotic systems that are able to
deal with both physical and social environments. One of the greatest
challenges in the design of social robots is to correctly identify all
those various factors that affect social interaction and act in accor-
dance [43]. Indeed, different studies have shown that the complexity
in the behavior of robots affect how humans interact with robots and
perceive them [30, 55, 7, 52].

There are many fields that can profit from the introduction of
robots [13], they include health care [9], entertainment [18], social
partners [8] or education [21, 41]. Here we focus on the latter, by ad-
vancing the notion of the Synthetic Tutor Assistant (STA) (see sec-
tion 3) which is pursued in the European project entitled Expressive
Agents for Symbiotic Education and Learning (EASEL). In this per-
spective, the robot STA will not act as the teacher, but rather as a
peer of the learner to assist in knowledge acquisition. It has been
shown that robots can both influence the performance of the learner
[41] and their motivation to learn [29]. One of the main advantages
of employing a robotic tutor is that it can provide assistance at the
level of individual learners, given that the robot can have the ability
to learn and adapt based on previous interactions.

1 Laboratory of Synthetic Perceptive, Emotive and Cognitive Systems -
SPECS, Universitat Pompeu Fabra

2 Institute For Infocomm Research, A*STAR, Singapore
3 Center of Autonomous Systems and Neurorobotics - NRAS, Catalan Insti-

tute of Advanced Studies - ICREA, email: paul.verschure@upf.edu

Through education, people acquire knowledge, develop skills and
capabilities and consequently form values and habits. Although there
exist several educational approaches that could be considered, here,
we will focus on Constructivism [35]. Constructivism proposes an
educational approach based on collaboration, learning through mak-
ing, and technology-enhanced environments. Such approach aims at
constructing social interaction between the participant and the STA
as it implies a common goal for both learners-players [45].

We consider tutoring as the structured process in which knowl-
edge and skills are transferred to an autonomous learner through a
guided process based on the individual traits of the learner. Here
we present an approach where both the user model and the STA are
based on a neuroscientifically grounded cognitive architecture called
Distributed Adaptive Control (DAC) [51, 47]. On one hand, DAC
serves as the theory which defines the tutoring scenario: it allows
us to derive a set of key principles that are general for all learning
processes. On the other hand, it is the core for the implementation
of the control architecture of the STA, the robotic application. Fol-
lowing the layered DAC architecture, we propose the STA that will
deploy tutoring strategies of increasing levels of complexity depend-
ing on the performance and capabilities of the learner. The DAC the-
ory serves as both the basis for the tutoring robotic application, user
model as well as for the implementation of the STA. Such design
guarantees a tight interplay between the robotic application, the user
and their interaction.

The present study is organized as follows: first, we present the
background theory of the tutoring robotic application, the DAC the-
ory, and we describe the tutoring model applied. Furthermore, we in-
troduce the key implementation features of the STA based on DAC.
To assess the first implementation of our system, we devised a pilot
study where the STA performs the role of a peer-teacher in an edu-
cational scenario. The proposed scenario consists of a pairing game
where participants have to match an object to its corresponding cat-
egory. The setup was tested with both children and adults. The game
had three levels of increased difficulty. Questionnaires distributed af-
ter every interaction to the players were used to assess the STA’s
ability to transfer knowledge.

2 DAC COGNITIVE ARCHITECTURE AND
LEARNING

To provide a model of perception, cognition and action for our sys-
tem, we have implemented the DAC architecture. [51, 47]. DAC is a
theory of mind and brain, and its implementation serves as a real-time
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neuronal model for perception, cognition and action (for a review see
[49]). DAC will serve both as the basis for the tutoring model as well
as the core of the implementation of the STA.

2.1 Distributed Adaptive Control (DAC)

Providing a real-time model for perception, cognition and action,
DAC has been formulated in the context of classical and operant con-
ditioning: learning paradigms for sensory-sensory, multi-scale sen-
sorimotor learning and planning underlying any form of learning.
According to DAC, the brain is a layered control architecture that
is subdivided into functional segments sub-serving the processing of
the states of the world, the self, interaction through action [48], and
it is dominated by parallel and distributed control loops.

DAC proposes that in order to act upon the environment (or to
realize the How? of survival) the brain has to answer four fundamen-
tal questions, continuously and in real-time: Why, What, Where and
When, forming the H4W problem [50, 49]. However, in a world filled
with agents, the H4W problem does not seem enough to ensure sur-
vival; an additional key question needs to be answered: Who?, which
shifts the H4W towards a more complex problem, H5W [46, 39].

To answer the H5W problem, the DAC architecture comprises of
four layers: Somatic, Reactive, Adaptive and Contextual, intersected
by three columns: states of the world (exosensing), states of self
(endosensing) and their interface in action (Figure 1). The Somatic
Layer represents the body itself and the information acquired from
sensations, needs and actions. The Reactive Layer comprises fast,
predefined sensorimotor loops (reflexes) that are triggered by low
complexity perceptions and are coupled to specific affective states of
the agent. It supports the basic functionality of the Somatic Layer in
terms of reflexive behavior and constitutes the main behavioral sys-
tem based on the organism’s physical needs. Behavior emerges from
the satisfaction of homeostatic needs, which are also regulated by an
integrative allostatic loop that sets the priorities and hierarchies of
all the competitive homeostatic systems. Thus, behavior serves the
reduction of needs [25] controlled by the allostatic controller [42].

The Adaptive Layer extends the sensorimotor loops of the Re-
active Layer with acquired sensor and action states, allowing the
agent to escape the predefined reflexes and employs mechanisms
to deal with unpredictability through learning [14]. The Contex-
tual Layer uses the state-space acquired by the Adaptive Layer to
generate goal oriented behavioral plans and policies. This layer in-
cludes mechanisms for short, long-term and working memory, for-
mating sequential representations of states of the environment and
actions generated by the agent or its acquired sensorimotor contin-
gencies. The DAC architecture has been validated through robotic
implementations[19, 42], expanded to capture social interactions
with robots [52, 39] as well as providing novel approaches towards
rehabilitation [47]. Here, the implementation of DAC serves two
main purposes. On the one hand, it acts as the grounding theory for
the pedagogical model: it allows us to derive and deduce a set of key
principles that are general for all learning processes. On the other
hand, DAC is the core for the implementation of the STA.

2.2 Phases of learning

Based on the formal description of learning from the DAC architec-
ture which has been shown to be Bayes optimal [48], we will focus
on two main principles as it has a dual role within EASEL. On one
hand, DAC is the core for the implementation of the Synthetic Tutor

Figure 1. The DAC architecture and its four layers (somatic, reactive
adaptive and contextual). Across the layers we can distinguish three

functional columns of organization: world (exosensing), self (endosensing)
and action (the interface to the world through action). The arrows show the

flow of information. Image adapted from [49].

Assistant (STA). On the other hand, following the layered architec-
ture, the STA deploys pedagogical strategies of increasing levels of
complexity.

First, DAC predicts that learning is bootstrapped and organized
along a hierarchy of complexity: the Reactive Layer allows for ex-
ploring the world and gaining experiences, based on which the Adap-
tive Layer learns the states of the world and their associations; only
after these states are well consolidated, the Contextual Layer can ex-
tract consistent rules and regularities. We believe that the same hier-
archy is applicable in the pedagogical context. Secondly, DAC pre-
dicts that in order to learn and consolidate new material, the learner
undergoes a sequence of learning phases: resistance, confusion and
resolution. Resistance is a mechanism that results from defending
one’s own (in)competence level against discrepancies encountered
in sensor data. In DAC these discrepancies regulate both percep-
tual learning and the engagement of sequence memory. Consistent
perceptual and behavioral errors lead to the second phase, namely
confusion, the necessity to resolve the problem and learn through
readapting. Confusion modulates learning as to facilitate the discov-
ery and generation of new states to be assessed on their validity. In
other words, to assist in performing abduction. Finally, resolution is
the very process of stabilizing new knowledge that resolves the ear-
lier encountered discrepancies and errors. This DAC-derived learn-
ing dynamics have been grounded in aspects of the physiology of the
hippocampus [40] and pre-frontal cortex [32], and they reflect the
core notions of Piaget’s theory of cognitive development assimila-
tion and accommodation through a process of equilibration [37, 56].

Human learners show a large variability in their performance and
aptitude [16] requiring learning technologies to adjust to the skills
and the progress of every individual. For learning to be efficient and
applicable for as broad a range of students as possible, individual
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differences need to be taken into account. The critical condition that
has to be satisfied, however, is that the confusion needs to be con-
trollable so that it adjusts to the skills and the progress of individual
students. This is consistent with the classical notion of Vygotsky’s
Zone of Proximal Development which is the level of knowledge that
the learner can acquire with external assistance of a teacher or a peer
[54]. Individualization thus serves the identification of this epistemic
and motivational level.

Monitoring, controlling and adjusting the phase of confusion is
what we call shaping the landscape of success. This approach is
consistent to the notion of scaffolding, a technique based on helping
the student to cross Vygotsky’s Zone of Proximal Development. The
concept of controlled confusion, as well as of individualized train-
ing, has already been tested in the context of neurorehabilitation us-
ing DAC based Rehabilitation Gaming System (RGS) which assists
stroke patients in their functional recovery of motor deficits [10, 11].
RGS indeed effectively adjusts to individual users in terms of dif-
ficulty, allowing for an unsupervised deployment of individualized
rehabilitation protocols.

Within the DAC architecture, the processes of learning are not
isolated within single layers but they result as the interplay among
them and the external world [51]. Although both the processes of
learning deployed in the current experiment (resistance, confusion,
resolution) and the layers of the DAC architecture (Reactive, Adap-
tive, Contextual) constitute a specific order and initial dependencies,
their relation is not fixed. Depending on the learning goal (learn-
ing a new concept, contextualizing new information within a broader
scale, etc.) the tutoring may be focusing on one of the three layers.
In order to systematically traverse the three phases of learning distin-
guished here, the user is guided through a goal-based learning.

By incorporating DAC within the educational framework, our aim
is to be able to create the feeling of resistance and confusion to intro-
duce new knowledge specific for every individual student. Adjusting
to the skills and the progress of individual students may result in
keeping the process of acquisition motivating; so it is essential that
despite helping the student to overcome certain difficulties, the task
remains challenging enough.

3 THE SYNTHETIC TUTOR ASSISTANT (STA)
The STA emerges as the interplay of the three layers of DAC archi-
tecture. It is the STA that provides individualized content, adapted to
the needs and capabilities of each student. Here we layout the frame-
work for the implementation of the STA within the DAC architec-
ture. The Reactive Layer provides the basic interaction between the
student, tutor and teaching material through a self-regulation system
and an allostatic control mechanism. It encompasses the basic reac-
tion mechanisms guiding the student through the learning material in
a predefined reactive manner and is based on a self-regulation mech-
anism that contains predefined reflexes that support behavior. Such
reflexes are triggered by stimuli that can be either internal (self) or
external (environment) and are coupled to specific affective states of
the agent.

The Adaptive Layer will adjust the learning scenario to the needs
and capabilities of the student based on the user model that is on-
line updated throughout the analysis of the interaction. To do so,
the STA needs to assess the state of the student (cognitive, physi-
cal, emotional), learn from previous interactions and adapt to each
student. This knowledge will support the rich and multimodal inter-
actions based on a the DAC control architecture. Finally, the Con-
textual Layer will monitor and adjust the learning strategy over long

periods of time and over all participating students through Bayesian
memory and sequence optimization. In the pilot experiment reported
here, we are assessing the properties of the Reactive Layer of the
STA in an educational scenario.

3.1 Behavioral modulation
In case of the STA, the main purpose of the self-regulating mecha-
nism of the Reactive Layer is to provide the tutor with an initial set
of behaviors that will initiate and maintain the interaction between
the STA and the student. Grounded in biology, where living organ-
isms are endowed with internal drives that trigger, maintain and di-
rect behavior [25, 38], we argue that agents that are endowed with
a motivational system show greater adaptability compared to sim-
ple reactive ones [2]. Drives are part of a homeostatic mechanism
that aims at maintaining stability [12, 44], and various autonomous
systems have used self-regulation mechanisms based on homeostatic
regimes [6, 3].

Inspired by Maslow’s hierarchy of needs [33], Hull’s drive reduc-
tion theory [25] and tested in the autonomous interactive space Ada
[15], the robots behavior is affected by its internal drives (for exam-
ple the need to socialize - establish and maintain interaction). Each
drive is controlled by a homeostatic mechanism. This mechanism
classifies the drive in three main categories: under, over and within
homeostasis. The main goal of the STA is to maximize its effectivity
(or ”happiness”) as a tutor assistant, by maintaining its drives within
specific homeostatic levels. To do so, the STA will need to take the
appropriate actions. These states are focusing on the level of interac-
tion with the learner and its consistency. Coherence at the behavioral
level is achieved through an extra layer of control that reduces drives
through behavioral changes, namely the allostatic control. Allostasis
aims at maintaining stability through change [34]. The main goal of
allostasis is the regulation of fundamental needs to ensure survival
by orchestrating multiple homeostatic processes that directly or indi-
rectly help to maintain stability.

The allostatic controller adds a number of new properties of the
STA-DAC architecture, ensuring the attainment of consistency and
balance in the satisfaction of the agent’s drives and foundations for
utilitarian emotions that drive communicative cues [53]. This ap-
proach strongly contradicts the paradigm of state machines stan-
dardly employed in comparable approaches and, in general, within
the robotics community. State machines provide a series of closed-
loop behaviours where each state triggers another state in function
of its outcome. Here, drives are not associated on a one-to-one ba-
sis with a specific behavior. Instead, each behavior is associated with
an intrinsic effect on the drives and with the usage of the allostatic
controller, drives, and therefore behavior, change as the environment
changes. With such design, drives modulate the robot’s behavior
adaptively in the function of every learner and the learning environ-
ment in general. Although in our current implementation, the map-
pings are hard-coded as reflexes (Reactive Layer), according to the
DAC architecture, the mappings should be learnt through experience
to provide adaptation.

3.2 The setup (software and hardware)
The DAC architecture and framework proposed are mostly hardware
independent, as it can be applied in various robotic implementations
[19, 42, 53, 31]. Here, the implementation aims at controlling the
behavior of the robot and it involves a large set of sensors and effec-
tors, designed to study Human-Robot Interaction (HRI). The setup

AISB Convention 2015: Symposium on New Frontiers in Human-Robot Interaction 100



(see figure 2) consists of the humanoid robot iCub (represented by
the STA), the Reactable [23, 27] and a Kinect. The Reactable is a
tabletop tangible display that was originally used as a musical instru-
ment. It has a translucent top where objects and fingertips (cursors)
are placed to control melody parameters. In our scenario, the usage
of the Reactabe allows us to construct interactive games tailored to
our needs. It furthermore provides information about the location of
a virtual and physical object placed on the table and allows a preci-
sion that can hardly be matched using a vision based approach. In our
lab, we have employed the Reactable in various interaction scenarios
using the MTCF framework [28], such as musical DJ (cooperative
game where the robot produces music with humans), Pong (compet-
itive 2D simulated table tennis game) and Tic Tac Toe. The use and
control of all these components allows the development of various
interactive scenarios including educational games investigated here
and allow the human and the robot to both act in a shared physical
space. An extensive description of the overall system architecture can
be found in [31, 52, 53]. The setup was designed to run autonomously
in each trial, being the allostatic control the main component for pro-
viding the guidance for the learner/player during the task.

Figure 2. Experimental setup of the robot interacting with a human using
the Reactable for the educational game scenario. In the image you can see
the participant holding an object used to select an item from the Reactable

(round table with projected images of countries and capitals). The
participant is facing the iCub. The projected items are mirrored, so each side

has the same objects.

4 TOWARDS ROBOTIC TEACHERS

In order to test the implementation of the STA-DAC as well as to
evaluate the effectiveness of our scenario depending on different so-
cial features of the robot, we conducted a pilot study where the robot
had the role of a tutor-peer.

The aim of the experiment focused on testing the effect of social
cues (in this case, facial expression and eye contact) in HRI during
an educational game. The goal was to test whether the variation of
these social cues could affect the knowledge retrieval, subjective ex-
perience, and the very behavior towards the other player.

4.1 The educational scenario

The first question raised during the development of the STA is
whether it can be an effective peer for the learner, both in terms of
the social interactions and the impact on learning. Hence, the focus of
this experiment is to study whether the modulation of certain behav-
ioral parameters (based on the DAC architecture and the proposed
behavioral modulation system), such as the use of eye contact and
facial expressions, can change the acquisition of knowledge of a spe-
cific topic and the subjective experience of the user. On the one hand,
eye contact can strengthen the interaction between the learner and the
STA, for gazing can affect the knowledge transfer and the learning
rate [36]. On the other hand, facial expressions can be used as a re-
inforcement of the participant’s actions (the robot displays a happy
face when the participant’s choice is correct and a sad face when the
matching is wrong), and could be considered as a reward.

The game-like scenario which we deployed is exercising Gagne’s
five learning categories [22]: verbal information, intellectual skill,
cognitive strategy, motor skill and attitude. The game is based in a
physical task, so the participants have to use their motor skills and,
in order to solve the task, they have to develop a cognitive strategy to
control their internal thinking processes. We also implemented three
components of intellectual skill: concept learning, that is, learning
about a topic; rule learning, used to learn the rules of the game; and,
problem solving processes to decide how to match the pieces.

The educational scenario is a pairing game, where participants
need to pair objects appearing on the Reactable to their correspond-
ing categories. The pairing game is grounded in the premises of con-
structivism, where two or more peers learn together. Here the robot
behaves similarly to a constructivist tutor: instead of just giving the
information directly, it helps the student to understand the goal of
the game (and, for example, reminding the subject the correct ways
of playing) and it provides feedback regarding his actions (the robot
only tells the correct answer to the subject when he has chosen a
wrong answer, not before). For example, if the human selects a wrong
pair, the robot indicates why the selection is wrong; it also comments
on the correct selections. The players also receive visual information
regarding their selection from the Reactable: if the selection is cor-
rect, the selected pair blinks with a green color and the object (but
not the category) dissapears whereas the pair blinks with a red color
if the selection is incorrect. The game was tested with both children
and adults and the contents were adapted according their estimated
knowledge. Therefore, for the children the game’s topic was recy-
cling, where the task was to correctly match different types of waste
to the corresponding recycling bin. For the adults the topic was ge-
ography, where the task was to correctly match a capital with the
corresponding country.

The learning scenario requires turn-taking and comprises three
levels of increased difficulty. Both the human and robot had the same
objects mirrored in each side. At each level, they had to correctly
match the four objects to their corresponding category to proceed to
the next level. The gradual increase of the difficulty allows for the
scaffolding of the task, and consequently for the improvment of the
learning process [4]. As mentioned earlier, the game was realized us-
ing the Reactable; the virtual objects were projected on the Reactable
and object selection was achieved either with the usage of an object
or with a cursor (fingertip). At the beginning of the interaction, the
robot verbally introduces the game and is the first who initiates the
interaction and the game.
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4.2 Methods
We hypothesized that the combination of eye-contact and facial ex-
pressions strengthens the feedback between the player, the partici-
pant and the participant’s choice, and affects the participant’s sub-
jective experience. As a result, we expected that when exposed to
both behavioral conditions the participants would have a higher both
knowledge transfer and the subjective experience.

To test our hypothesis and assess our architecture, we devised five
experimental conditions (see Table 1) where we varied the gaze be-
havior and facial expressions of the STA. The experimental condi-
tions are: Not-oriented Robot (NoR) (fixed gaze at a point - this way
we are ensured that no eye contact is achieved); Task oriented Robot
(ToR) (gaze supports actions, without making eye contact or show-
ing facial expressions); Task and Human oriented Robot (T&HoR)
(gaze supports actions, eye contact and showing facial expressions);
Table-Human Interaction (THI), where the participant plays alone
with the Reactable, and the Human-Human Interaction (HHI), where
the participant plays with another human. Apart from the HHI, the
behavior of the STA in terms of game play, verbal interaction and re-
action to the participant’s actions remained the same. The aim of the
THI condition is to show the importance of embodiment of the STA
during the interaction; the HHI condition acted as both the control
group and a way of achieving a baseline regarding the interaction.
The children were tested in the NoR, T&HoR and HHI conditions
whereas the adults in all conditions.

Data were collected within three systems: knowledge and subjec-
tive experience questionnaires, behavioral data and the logs from the
system. Participants had to answer pre- and post- knowledge ques-
tionnaires related to the pairing game. For recycling, the question-
naires had a total of twelve multiple-choice questions, including the
same wastes and containers that the participants had to classify dur-
ing the game. The information for creating this questionnaire came
from the website ”Residu on vas” (www.residuonvas.cat), property
of the Catalan Wastes Agency. For geography, the questionnaires
had a total of 24 multiple-choice questions (half of them, about the
countries and capitals and the other half, about countries and flags).
These questionnaires were given to the participants before and after
the game, in order to evaluate their previous knowledge about the
topic and later compare the pre- and post- knowledge results. The
subjective experience questionnaire aims at assessing the STA’s so-
cial behavior. It consists of 32 questions based on: the Basic Empathy
Scale [26], the Godspeed questionnaires [5] and the Tripod Survey
[17]. In the case of adults, there were 74 participants (age M = 25.18,
SD = 7.55; 50 male and 24 female) distributed among five different
conditions (THI=13, NoR=15, ToR=15, T&HoR=16, HHI=15). In
the case of children, we tested 34 subjects (age M = 9.81, SD = 1.23;
23 male and 11 female) who randomly underwent three different ex-
perimental conditions (NoR=12, T&HoR=14, HHI=8).

Table 1. Table of the five experimental conditions.

Embodiment Action Eye Facial
supporting gaze contact Expression

THI No No No No
NoR Yes No No No
ToR Yes Yes No No
T&HoR Yes Yes Yes Yes
HHI Yes Yes Yes Yes

Various conditions of robot behavior based on the interaction scenario

4.3 Results

First, we report a significant knowledge improvement in adults for all
the conditions: THI, t(13) = 7. 697, p <0.001; NoR, (t(14) = 2.170,
p = 0.048; ToR, t(14) = 3.112, p = 0.008, T&HoR, t(16) = 3.174, p =
0.006 and HHI,t(13) = 3.454 p = 0.004. In constrast, in children, there
was no significance between conditions, although our results suggest
a trend in improvement. We expected a difference among conditions,
as we hypothesised that in the T&HoR condition, the knowledge
transfer would be greater than the rest of the conditions. However
this does not occur in neither the adult nor the children scenarios. In
the case of children, we hypothesized that the associations were too
simple; in the case of the adults, it seems that the knowledge transfer
was achieved irregardless of the condition, suggesting that possibly
the feedback of the Reactable itself regarding each pairing (green
for correct and red for incorrect) might have been sufficient for the
knowledge to be transferred.

Regarding the subjective experience, there was no statistical dif-
ference in the questionnaires data from children. We suspect that
such result might be affected by the fact that both the Empathy and
Godspeed questionnaires are designed for adults, and not children.
In adults, although there was no significant difference among con-
ditions for the Empathy and Tripod parts, there was a statistically
significant difference between groups for the Godspeed part, as de-
termined by one-way ANOVA (F(4,35) = 4.981, p = 0.003). As ex-
pected, humans scored higher (HHI, .06 ± 0.87), than the robot in
two conditions (NoR, 2.84 ± 0.72, p = 0.003; ToR, 3.19 ± 0.46, p
= 0.044, but surprisingly not in the T&HoR) and the table (THI,3.02
± 0.56, p = 0.031) (Bonferroni post-hoc test). We can therefore hy-
pothesize that the STA significantly scores lower than a human in all
conditions but the one where its behavior is as close as possible to
that of a human: gaze that sustains action (look at where the agent
is about to point) and is used for communication purposes (look at
human when speaking) and facial expressions as a feedback to the
humans actions.

Regarding the behavioral data, there was a statistically significant
difference between conditions for the mean gaze duration in chil-
dren ( one-way ANOVA (F(2,26) = 8.287, p = .0021)). A Bonferroni
post-hoc test revealed that the time spent looking at the other player
(in seconds) was significantly lower in the NoR (14.70 ± 8.81”, p =
0.012) and the HHI conditions (11.74 ± 8.02”, p = 0.003) compared
to the T&HoR condition (30.97 ± 15.16”)(figure 3). Our expecta-
tion regarding the difference between the NoR and T&HoR condi-
tions was correctly met: people looked more at the agent who looked
back at them. However, we were not expecting a difference between
T&HoR and HHI condition. We believe that the reason why the dif-
ference in mean gaze duration occurs is because humans remained
focused on the game and were mainly looking at table instead of
looking at the other player. Furthermore, there were much less spo-
ken interactions between them. In contrast, in the rest of the sce-
narios, the STA would comment on the actions of the participant,
attrackting attention in more salient way.

In adults, a Kruskal-Wallis test showed that there was a high sta-
tistically significant difference in the time spent looking at the other
player between the different conditions, x2(4) = 15.911, p = 0.003.
The results of the Mann-Whitney Test showed significant differences
between the THI (2.72 ± 5.53) and the NoR (16.37 ± 21.17) con-
ditions (p = 0.026); the THI (2.72 ± 5.53) and the ToR (7.80 ±
7.76) conditions (p = 0.029); the THI (2.72 ± 5.53) and the T&HoR
(19.87 ± 12.01) conditions (p <0.001); the ToR (7.80 ± 7.76) and
the T&HoR (19.87 ± 12.01) conditions (p = 0.028); and the T&HoR
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Figure 3. Time spent looking at the other player (in seconds) in children
among conditions. Asterisks ”*” depict significance.

(19.87 ± 12.01) and the HHI (3.66 ± 4.13) conditions (p = 0.002)
(See figure 4). As expected, the more human-like the behavior of the
STA, the more people would look at. The explanation regarding the
difference between T&HoR and HHI in gaze duration is similar to
that of children.

Figure 4. Time spent looking at the other player (in seconds) in adults
among conditions. Asterisks ”*” depict significance.

5 DISCUSSION AND CONCLUSIONS
The goal of the present study is to provide the key implementation
features of the Synthetic Tutor Assistant (STA) based on the DAC ar-
chitecture. Here, we propose the implementation of the STA within
the DAC, a theory of the design principles which underlie perception,
cognition and action. DAC is a layered architecture (Soma, Reac-
tive, Adaptive and Contextual) intersected by three columns (world,
self and actions), modeled to answer the H5W problem: Why, What,
Where, When, Who and How. We explain the basic layers of DAC

and focus on the Reactive Layer that constructs the basic reflexive
behavioral system of the STA, as systhematically explained in sec-
tion 3.1.

DAC predicts that learning is organized along a hierarchy of com-
plexity and in order to acquire and consolidate new material the
learner undergoes a sequence of learning phases: resistance, confu-
sion and resolution. We argue that it is important to effectively adjust
the difficulty of the learning scenario by manipulating the accord-
ing parameters of the task (Adaptive Layer). This function will allow
us for controlled manipulation of confusion, tailored to the needs of
each student. Though it is not in the scope of the present study, in
the future we plan to adjust the parameters of the learning scenario
studied here on the basis of an online analysis of the learners’ per-
formance, interpreted both in terms of traditional pedagogical scales
and the DAC architecture (Adaptive Layer). The learner’s errors and
achievements will be distinguished in terms of specific hierarchical
organization and dynamics. Finally, the Contextual Layer will mon-
itor and adjust the difficulty parameters for both individual students
and bigger groups on a longer time scales. The motivational system
presented is mainly focused on the Reactive Layer of the architecture,
but our aim is to primarily adapt the Reactive Layer to the needs of
STA and teaching scenarios and then extend the STA to include the
Adaptive and Contextual Layers.

We devised an educational scenario to test the implementation of
the STA-DAC as well as to evaluate the effectiveness of different
social features of the robot (social cues such as eye contact and fa-
cial expressions). The task devised was a pairing game using the
Reactable as an interface, where the robot acts as a constructivist
tutor. The pairing consisted of matching different types of waste to
the corresponding recycling bin (recycle game) for the children and
matching the corresponding capital to a country (geography game)
for the adults. The learning scenario was turn-taking with three lev-
els of increased difficulty. The experiment consists of five different
conditions, described in section 4.2: THI, NoR, ToR, T&HoR and
HHI. Adults were tested in all conditions whereas children in NoR,
T&HoR and HHI. To assess the interaction, the implementation as
well as the effectiveness of the robot’s social cues, behavioral data,
logged files and questionnaires were collected.

In the results, we see that in adults, there are significant differ-
ences in knowledge improvement among conditions. On the other
hand, there is a trend in knowledge improvement in children, but it
is not significant. The results are not sufficient to draw any concrete
conclusions about knowledge retrieval. Nevertheless, we can see that
people scored higher in the post-experiment questionnaire, on the
other hand, results are not enough to identify exactly the reason. It
is possible that the task, though the difficulty increased on each trial,
would still remain relatively easy. That is why we aim at devising a
related experiment where we would exploit the Adaptive Layer that
adapts the difficulty to each individual player.

Our results show that children looked more at the T&HoR robot
than then ToR or HHI. Based on these results, we can conclude that
the behavior of the Task and Human oriented Robot drew more the
attention of the participant than the other human or the solely Task
oriented Robot. The robot was looking at the participant when it was
addressing him; its gaze followed both the player’s and its own ac-
tions, meaning that it would look at the object that the participant
had chosen or the object that it chose. Finally, it would show facial
expressions according to each event: happy for the correct pair or sad
for the incorrect one. Such cues may indeed be more salient and draw
the attention of the player. In all conditions, the robot was speaking,
so it seems that it was the implicit non-verbal communicative signals
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of the robot that drew the attention of the participant. In the case of
the adults, the results are also similar. Such behavior is important in
the development of not only social but also educational robots, as
gaze following directs attention to areas of high information value
and accelerates social, causal, and cultural learning [1]. Indeed, such
cues positively impact human-robot task performance with respect
to understandability [7]. This is supported by results like the ones
of [24], where the addition of gestures led to a higher effect on the
participant only when the robot was also performing eye contact.

Finally, the results from the Godspeed questionnaire in adults
show a significant difference in the overall score between HHI and
THI, NoR, ToR but not the T&HoR. Such results were generally ex-
pected, as a human would score higher than the machine. In children,
there was no significance in any of the conditions, however, it may
be the case that the Godspeed questionnaire is not the optimal mea-
surement for subjective experience, at it may contain concepts that
are not yet fully understood by such a young age. Perhaps simpler
or even more visual (with drawings that represent the extremes of a
category) questionnaires would be more appropriate.

Though the knowledge transfer results are not sufficient to draw
any concrete conclusions (as the knowledge transfer is not signifi-
cantly different among conditions), the complex social behavior of
the robot indeed attracts attention of the participant. As for the pilot
study, the authors need to focus more on the evaluation of the system,
and need to introduce a strong experimental design to derive more
specific conclusions. Further analysis of the behavioral data can pro-
vide insight regarding eye contact in terms of error trials, decision
time and task difficulty. In the upcoming experiments we will pro-
vide a better control in the HHI condition. A possible strategy is to
deploy a specific person (an actor) as the other player, to normalize
the characteristics of the scenario between all the subjects.
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[27] Sergi Jordà, ‘On stage: the reactable and other musical tangibles go
real’, International Journal of Arts and Technology, 1(3), 268–287,
(2008).
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[31] Stéphane Lallée, Vasiliki Vouloutsi, Maria Blancas Munoz, Klaudia
Grechuta, Jordi-Ysard Puigbo Llobet, Marina Sarda, and Paul FMJ Ver-
schure, ‘Towards the synthetic self: making others perceive me as an
other’.

[32] Encarni Marcos, Pierpaolo Pani, Emiliano Brunamonti, Gustavo Deco,

AISB Convention 2015: Symposium on New Frontiers in Human-Robot Interaction 104



Stefano Ferraina, and Paul Verschure, ‘Neural variability in premotor
cortex is modulated by trial history and predicts behavioral perfor-
mance’, Neuron, 78(2), 249–255, (2013).

[33] Abraham Harold Maslow, ‘A theory of human motivation.’, Psycholog-
ical review, 50(4), 370, (1943).

[34] Bruce S McEwen, ‘Allostasis and allostatic load: implications for neu-
ropsychopharmacology’, Neuropsychopharmacology, 22(2), 108–124,
(2000).

[35] Seymour Papert, Mindstorms: Children, Computers, and Powerful
Ideas, Basic Books, Inc., New York, NY, USA, 1980.

[36] Fiona G Phelps, Gwyneth Doherty-Sneddon, and Hannah Warnock,
‘Helping children think: Gaze aversion and teaching’, British Journal
of Developmental Psychology, 24(3), 577–588, (2006).

[37] Jean Piaget and Margaret Trans Cook, ‘The origins of intelligence in
children.’, (1952).

[38] Robert Plutchik, The emotions, University Press of America, 1991.
[39] Tony J Prescott, Nathan Lepora, and Paul FMJ Vershure, ‘A future of

living machines?: International trends and prospects in biomimetic and
biohybrid systems’, in SPIE Smart Structures and Materials+ Nonde-
structive Evaluation and Health Monitoring, pp. 905502–905502. In-
ternational Society for Optics and Photonics, (2014).
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Verschure, ‘The influence of behavioral complexity on robot percep-
tion’, in Biomimetic and Biohybrid Systems, 332–343, Springer, (2014).
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