
EmohawkVille: Virtual City for Everyone
David Holaň and Jakub Gemrot and Martin Černý and Cyril Brom 1

Abstract. Despite recent progress, behavior of non-player charac-
ters (NPCs) in contemporary games is still kept rather simple. This
is an opportunity for the academia to develop novel techniques and
tools that would allow for easier creation of complex behaviors that
are resilient to the dynamicity implied by the presence of the player.
There already exist languages within multiagent community that are
thought to be suitable for NPC behaviors creation, but they are usu-
ally tested in simplistic environments and our experience indicates
that applying them to complex 3D worlds introduces significant ob-
stacles. This is part of the reason why simple reactive techniques are
prevalent in game industry practice. Moreover there is no publicly
available research-friendly 3D virtual world with sufficient complex-
ity that would allow developers to evaluate their languages and tools
in a more realistic setting and improve them toward practical applica-
bility. In this demo we present EmohawkVille: an open-source first-
person 3D virtual world that is a candidate for such an environment.

1 Introduction
Many contemporary computer games take a great effort to achieve a
high level of believability of their virtual worlds. This is especially
true for games with large open worlds, where the user is free to dis-
cover the environment on his own and is relatively unconstrained by
the game. One of the challenges that arise in this scenario is the prob-
lem of choosing the right higher-level action for the NPCs (e.g., move
to a point, pick up an item, use an item, . . . ). Since the game industry
relies almost exclusively on simple reactive techniques which make
creation of complex behaviors rather time-consuming and costly,
non-player characters (NPCs) display complex behaviors only during
crucial game events. In between, the NPC behaviors are schematic at
best.

The main issue is that going beyond simple behavior and still
maintaining the suspension of disbelief introduces significant diffi-
culties to the NPC behavior authoring. There are many possible ob-
stacles to NPC goals and if they are not taken into account, the NPCs
are easy for the player to “break” and may provide even worse illu-
sion of a real world than rather static NPCs.

For a truly alive open world, dozens of different and often com-
plex scenarios are needed, which implies that the world needs to be
equipped with a rich ontology of items and actions NPCs (as well as
the player) can perform.

As the world ontology grows, the number of meaningful NPC ac-
tion sequences increases and the behavior complexity rises. Not only
the means-ends analysis becomes more demanding, new problems
emerge such as transitional behaviors, joint behaviors, behaviors or-
dering or behaviors interleaving [6]. At the same time, game studios

1 Charles University in Prague, Czech Republic email:
{paladin.invictus,jakub.gemrot,cerny.m}@gmail.com,
brom@ksvi.mff.cuni.cz

usually cannot afford to let an expert AI programmer design such
day-to-day behaviors, because that would be cost-prohibitive. Most
of the NPC design is thus usually carried out with the aid of some
visual tool by scripters with little programming experience.

At this place, academia could provide action selection mech-
anisms (ASM) and accompanying tools that would help inexpert
scripters to create complex behaviors that are interactively believ-
able, that is, behaviors that sustain their believability under non-
determinism brought by the player. However, most of the academic
research is carried out in environments that either have simple ontolo-
gies or are static or discrete. Games on the other hand are dynamic,
multi-agent environments that can be for all practical purposes con-
sidered continuous in both time and space. There are languages and
techniques that can be applied to such worlds: either from the mul-
tiagent community or the field of robotics or automated planning.
However, to our knowledge, there is currently no 3D virtual world
publicly available that would provide rich ontology for NPCs out of
the box. This means that in this particular problem area, academia is
one step behind the industry — we do not even have an environment
to work with.

Note that raw frameworks such as Unity [7] are not sufficient as
creating a rich world in a raw framework is a substantial amount of
work. An important part of the environment is also the possibility to
develop the NPC behavior with a high-level language such as Java
since nearly all agent languages of interest can be invoked from Java
code. We are not aware of any complex 3D environment that would
meet all those requirements. See our paper [4] for a thorough com-
parison of possible candidates.

Previous research has shown that applying agent languages to 3D
environments is neither straightforward nor guaranteed to yield bet-
ter results than using a general programming language [2, 5]. Com-
mon issues with agent languages are incomplete debugging and tool
support, some of the architectures are also hard to debug in princi-
ple (e.g., because of inherent paralellism). Many agent languages are
also declarative in nature, while game worlds feature lots of mechan-
ics that are hard to express declaratively (e.g., determining which
object is hit by an arrow). Proper evaluation of agent languages is
thus critical.

In this demo, we present an extension of the Pogamut 3 plat-
form [3] called EmohawkVille, the first step towards an open-sourced
complex simulation of NPC everyday life in 3D virtual world. We
believe that creating a fully working, accessible and polished envi-
ronment fosters academic progress. The large amount of research
work evaluated on Pogamut for Unreal Tournament 2004 supports
this view. We have also exerted great effort to make EmohawkVille
a mature tool. In practice, there is a long chain of components that
are needed to fully connect high-level AI with an NPC: sensors and
actuators interface, navigation and pathfinding, character animation
support are among the most important, but the list is far from exhaus-



tive. In EmohawkVille, we have resolved large part of those issues on
behalf of the researcher. The quality of the EmohawkVille environ-
ment was evaluated in a small-scale user study and by use of the
environment in our teaching curriculum.

2 General Description
EmohawkVille is a first-person virtual world with detailed interac-
tive elements of day-to-day life. There is a general framework that
supports interaction with items, continual actions and processes and
inter-agent communication including trade. There is a set of ready-
made assets for a cooking scenario. For example, an agent or a hu-
man player can pick up a piece of meat, put it on a chopping board
and slice it and then fry the slices on a pan (charring the food if he
does not add oil or forgets to flip the meat). The cooking scenario
was chosen as our first because it features plethora of complex pro-
cedures yet it is easy to grasp by programmers and non-programmers
alike and is gender-neutral.

EmohawkVille is based on Unreal Development Kit (UDK) [1]
and thus is capable of displaying the world in state-of-the-art graph-
ics. UDK is free for educational and non-commercial use and Emo-
hawkVille itself is available under GPLv32.

In EmohawkVille the world mechanics are implemented in Un-
realScript - a proprietary language deployed with the UDK toolkit.
The Pogamut platform provides a high-level Java interface to the
UDK for writing the actual AI and takes care of many common tasks
(pathfinding with A* and smooth path following, caching sensory
data to a blackboard, etc.). Both the UDK and the Java part have
been designed with possible further extensions in mind and the ba-
sic NPC support is separated from the model of the general Emo-
hawkVille ontology, which is in turn separated from the implemen-
tation of the specific mechanics for our cooking scenario. The UDK
part also fully supports interaction with a human user through the
UDK visual client.

At this moment, EmohawkVille features 20 item types (food, cut-
lery, cooking tools, . . . ) and a cooking stove (part of the environ-
ment). Interaction is provided by 14 actions, of which nine are instant
and four initiate a longer-lasting process, e.g., chopping a vegetable
or stirring a broth. An overview of the available items is visible in
Figure 1.

Figure 1. A screenshot of the environment.

The central complexity of the NPC behavior stems from the sim-
ulation of cooking. Some ingredients can be boiled, some fried. The
2 EmohawkVille may be downloaded from http://pogamut.cuni.
cz/main/tiki-index.php?page=EmohawkVille

speed of cooking is determined by the temperature of respective
stoves. Water evaporates from pots and ingredients may burn or char
if not stirred or flipped in the pot or the pan. The cooking theme
provides important challenges to the NPC behavior creation: cook-
ing a meal may require a long sequence of actions (more than 20),
effectivity is increased by performing processes in parallel possibly
requiring cooperation of multiple chefs, the player may both support
and sabotage the cooking NPC.

Every aspect of the environment and the agents is programmable.
EmohawkVille is ready for a researcher to plugin any high-level de-
cision making mechanism (planning, machine learning, . . . ) without
the need to handle low-level details. More detail of the environment
is given in our paper [4].

3 Demo Presentation
In our demo presentation we would like to show the environment and
its richness, let the spectators interact with the environment them-
selves, helping a preprogrammed agent to cook a complex meal or
sabotaging his effort. We would also like to show that programming
the behaviors is easy and EmohawkVille thus lets the researcher fo-
cus on the action selection exclusively. This will be demonstrated
by a live creation of a cooking NPC and we would enable hands-on
programming experience to the spectators.

A video presentation of the environment may be found at http:
//www.youtube.com/watch?v=G7lKXkR2Xgg

ACKNOWLEDGEMENTS
This research was supported by SVV project number 260 224.

REFERENCES
[1] Epic Games Inc. Unreal development kit documentation. http://

www.unrealengine.com/udk/documentation/, 2009. Last
checked: 2015-03-30.

[2] Jakub Gemrot, Zdeněk Hlávka, and Cyril Brom, ‘Does high-level behav-
ior specification tool make production of virtual agent behaviors better?’,
in Proceedings of CAVE’12, pp. 167–183, Berlin, Heidelberg, (2013).
Springer-Verlag.

[3] Jakub Gemrot, Rudolf Kadlec, Michal Bı́da, Ondřej Burkert, Radek
Pı́bil, Jan Havlı́ček, Lukáš Zemčák, Juraj Šimlovič, Radim Vansa,
Michal Štolba, Tomáš Plch, and Cyril Brom, ‘Pogamut 3 can assist de-
velopers in building ai (not only) for their videogame agents’, in Agents
for Games and Simulations, eds., Frank Dignum, Jeff Bradshaw, Barry
Silverman, and Willem Doesburg, LNCS 5920, 1–15, Springer-Verlag,
(2009).

[4] Gemrot J. Černý M. Holaň, D., ‘Emohawkville: Towards complex dy-
namic virtual worlds’, in Proceedings of GAMEON’2013, pp. 52–58,
(2013).

[5] Radek Pı́bil, Peter Novák, Cyril Brom, and Jakub Gemrot, ‘Notes on
pragmatic agent-programming with Jason’, in Programming Multi-Agent
Systems, LNCS 7217, 58–73, Springer, (2012).

[6] Tom Plch, Action selection for an animat, Master’s thesis, Charles Uni-
versity in Prague, 2009.

[7] Unity Technologies. Unity documentation. http://docs.
unity3d.com/Documentation/Manual/, 2005. Last checked:
2015-03-30.


