
Search and Recall for RTS Tactical Scenarios
Jason Traish, James Tulip and Wayne Moore 1

Abstract. The success of a Real-Time Strategy agent is heavily
dependent on its ability to respond well to a large number of diverse
tactical situations. We present a novel method of tactical decision
making called Search and Recall (S&R) which is a hybrid of Search
and Case Based Reasoning (CBR) methods. S&R allows an agent to
learn and retain strategies discovered over the agent’s history of play,
and to adapt quickly in novel circumstances.

The sense of memory that S&R provides an RTS AI agent allows
it to improve its performance over time as better responses are dis-
covered. S&R demonstrates an minimum win rate of 92% in standard
scenarios evaluated in this paper.

S&R decouples search from the main game loop which allows ar-
bitrary computational complexity and execution time for search sim-
ulations. Meanwhile in-game decision making is based on CBR and
remains fast and simple.

This paper presents an S&R model which extends the ability of an
RTS AI agent to deal with complex tactical situations. These situa-
tions include special unit abilities, fog of war, path finding, collision
detection and terrain analysis.

1 Introduction

Real-time strategy (RTS) games are a popular genre of commercial
games that require substantial practice, skill and experience to mas-
ter. In order to conquer an opponent, a player must manage a number
of in-game systems with precision, using a large number of possi-
ble commands. In-game systems include research, economics, explo-
ration, managing an army, and executing a strategy with the potential
of defeating the opponent’s strategy. On top of all this complexity a
player is expected to complete all these tasks in a real-time environ-
ment of uncertainty.

The number of in-game systems and possible commands illustrate
the complexity of the RTS genre and form the basis of it’s appeal to
players and researchers alike. Developing an RTS agent poses many
challenges that are not present in traditional strategy board game en-
vironments such as GO and Chess. In particular, the large number of
units and possible commands, the uncertain environment, the effect
of terrain, and the real-time execution constraints are unique to the
computer based RTS genre.

It is very difficult to write scripted agents that vary their responses
in different situations. This results in easily exploited AI agents
which fail to give experienced players an enjoyable challenge.

Case Based Reasoning is one approach that has been used to create
adaptive RTS AI agents [1, 2, 8, 9]. Search based methods have also
became a point of interest to the RTS research community [3, 4, 12].
However, both approaches have intrinsic limitations.

1 Charles Sturt University, Mining Lab, Australia, email: {jtraish & jtulip}
@csu.edu.au & wmoore@lisp.com.au

1.1 Case Based Reasoning and Search in RTS AI

Case based reasoning (CBR) methods have been used successfully
to create adaptive RTS agents. In general, such methods store plans
with an associated game state and use this data to reason about future
encounters.

Aha et al. [1] demonstrated a CBR agent capable of identifying
and adapting to a randomly selected opponent which demonstrated
good results. Their agent relied on the availability of a set of pre-
generated responses, each capable of winning against an opponent
from a given position.

McGinty et al. [8] improved CBR approaches by changing the
structuring and case retrieval approach, leading to significantly better
results. Their agent demonstrated a high win rate in experiments with
imperfect information. Other CBR methods have focused on the use
of recorded human player interactions to make decisions [2, 9].

However, while CBR has been successful in creating adaptive RTS
agents, they face a number of challenges. Responses derived from
human players can be of inconsistent quality due to the diversity of
human player skills and the nature of human play. Standard CBR ap-
proaches are also ill equipped to make decisions if there is no similar
recorded context.

As a result, search based methods, and in particular Monte Carlo
simulations have gained the interest of the RTS AI research com-
munity [3, 4, 5, 6, 12]. Search based methods enable an agent to
adapt in real-time to whatever circumstances it is currently facing,
assuming the simulator can correctly predict the outcome of a given
response action. Significant research on adaptive agents using search
based techniques has been performed in the context Chess and GO
[7] and the application of such techniques to RTS games is an attrac-
tive prospect.

However, complexities such as path finding and collision detection
are required for an agent to appropriately handle commercial game
type tactical situations. Such situations include moving units in a en-
vironment affected by terrain, or engaging armies of many varied
unit types, some with special abilities.

The complexity inherent in commercial RTS games places huge
computational demands on the simulations required to perform a
search for a tactical solution. For this reason most of the published
search simulation approaches are very simple relative to the demands
of fully realised commercial game agents and ignore issues such as
terrain, path finding, and collisions between units.

The problem is that simulations conducted within the game loop
are heavily constrained to execute in an extremely limited amount of
time, due to the demands of other aspects of the game loop such as
animation and rendering.

In the rest of this paper we present a hybrid search/CBR approach
called Search and Recall (S&R) which enables simulations capable
of dealing with commercial grade RTS game complexity, while offer-
ing CBR level in-game performance. We demonstrate these capabil-



ities in the context of Starcraft Broodwar; a commercial RTS which
has become a popular RTS AI research platform.

The main contribution of this work is to demonstrate the utility of
responses generated using Search simulations as recorded responses
in a CBR-like database. The technique was inspired by case base rea-
soning literature that focused on constructing databases using player
responses [10]. We also demonstrate an approach for making com-
putationally intensive search simulations feasible in the context of a
real-time game.

2 Search and Recall - Overview

Search and Recall (S&R) is a novel method of tactical decision mak-
ing which is a hybrid of Search and Case Based Reasoning (CBR)
methods. It allows an agent to learn and retain strategies discovered
over the agent’s history of play, and to adapt quickly in novel circum-
stances.

Similarly to CBR methods, S&R uses a database of previously dis-
covered successful responses associated with a collection of identi-
fied game states. S&R agents use these responses to quickly identify
a solution without extensive simulation within the game loop. How-
ever, unlike other CBR methods, S&R does not populate it’s response
database with a static set of game states identified from previously
played games. Rather, it populates the database dynamically with the
results of search simulations conducted in response to actual game
states encountered during play.

By combining the adaptive learning of MCS with the memory of
CBR, S&R allows an agent to improve the quality of its responses
over the course of multiple games.

In essence, we decouple the search tasks from the game loop by al-
lowing them to execute asynchronously and in parallel with the game
loop. Searches are pushed into concurrent threads, allowing them
to take as long as necessary without delaying game rendering. The
agent makes its decisions based on its current database of solutions,
and the search tasks update that database asynchronously with the
results of new simulations based on possible responses to the current
game state. As many searches can be carried out as are appropriate
to the CPU resources available to the game.

Search time is limited only by the length of a game or an arbitrary
stopping condition, and is substantially longer than the 5ms generally
allocated for an agent’s decision making process within the standard
game loop. The downside is that the longer it takes to evaluate poten-
tial decisions the more likely it is that the response will come too late
to be useful in the current situation. However, the next time a similar
situation is encountered, the simulation results will be available in
the CBR database (response library) ready for near instant access.

Search results are used to update a CBR like database as they be-
come available, and the AI task within the game loop is reduced to
selecting the appropriate response as in a conventional CBR system.

We apply this architecture in the context of the commercial game
Starcraft Broodwar. Starcraft is an immensely popular and sophisti-
cated RTS game, famous for its balanced asymmetric game play and
status as a professional spectator sport in Korea. Starcraft Broodwar
is a version of Starcraft for which an external programming interface
has been developed called the Brood War API (BWAPI). The avail-
ability of BWAPI has made Broodwar an attractive platform for RTS
AI research.

3 Search and Recall - Agent Components

The S&R agent is composed of a recall-playback component (RPC),
a search component (SC), and a response library (RL). This basic ar-
chitecture is illustrated in Figure 1. The RPC component acts as coor-
dinator for the agent and interacts with the BWAPI interface. As soon
as a Broodwar game begins the S&R agent starts the recall-playback
component and initialises the search component with a number of
threads.

3.1 Recall/Playback Component (RPC)

The RPC matches the current game state against the game states cur-
rently recorded in the response library. Game states in the database
are identified by a simplified descriptor containing only the number
and types of unit present.

The RPC then retrieves the response associated with the current
game state from the response library. The response associated with
a game state is always the most favourable response generated by
the search simulations carried out in the search component. If no
matching game state is found, the RPC assigns random behaviours
to the agent’s units. If a response was loaded earlier from a previous
game state then those previous behaviours are not changed.

The RPC has a simulator similar to those being used for searching.
It uses this to simulate a single time step using the unit actions speci-
fied in the response. This step is carried out in order to map from the
actions specified in the response to a set of Broodwar commands that
must be issued through the BWAPI interface. The raw actions that
the units must perform are recorded (e.g. move[x,y], attack[unitId])
and forwarded to the BWAPI.

Although games states are identified in the RL only by the number
and type of units present, actual game state is defined with consid-
erably more information on unit positions, current unit states, what
projectiles have been created, which units are damaged, and which
weapons have entered their cool down periods. All of this informa-
tion is captured from the BWAPI and sent through to the search com-
ponent (SC) in addition to the number and type of units present in the
scenario. The RPC buffers these changes in actual game state for the
SC, updating the information used by that component as a basis for
simulation only after 200 simulations have completed. This allows a
sufficient number of searches associated with a particular game state
to complete to be useful in subsequent games.

The execution of the RPC is constrained to take less than 5ms
per frame since it executes as a part of the main game loop. This
constraint is easily achieved since the simulator used to calculate the
BWAPI commands simulates only a single time step.

3.2 Search Component (SC)

The search component is represented in Figure 1 as the Concurrent
Search Simulators (CSS). It consists of a number of search threads
which repeatedly run simulations for the combat scenario utilizing
the current actual game state, a simulator engine, and a set of actions
assigned to each unit in the scenario.

At the beginning of a simulation, each search thread is given the
current identifying game state (unit numbers and types) as well as
information describing the actual game state (terrain, unit positions,
unit health, current unit action states, etc).

We randomly assign behaviours to each unit for each simulation
so we can evaluate the effect of utilising different tactics on the out-
come of a battle . If simulations complete quickly, many different



Figure 1. Search and recall agent process

possible outcomes can be calculated and used to update the solution
available to the RPC before the time allotted to its execution within
the game loop (5ms) expires. However, if it takes longer to simulate
an outcome than the time Broodwar allows, then the result will not
be available to the RPC during the current game loop. This results in
the game agent taking longer to respond to a game state in real time,
although simulation results do become available to the RPC over the
next few game loop cycles as simulations complete.

When a simulation completes, the quality of the response is cal-
culated as the total health percentage of the remaining allied units at
the end of simulation. A quality of 0 is given for prediction in which
all allied units are killed. This formula favours victories with lower
casualties, and ranks all losses equally.

As in [6], the simulator is a mathematical model of the combat me-
chanics implemented in Broodwar, that allows simulations to be run
without any frame rate derived speed limitations. As such, it is not
an exact model of the combat mechanics implemented in Broodwar.

3.2.1 Simulators

Asynchronous execution of search allows the complexity and execu-
tion cost of the simulation engine used to be increased arbitrarily. In
this work we explore the effect of increasing the complexity of the
simulation engine used by evaluating the performance of two differ-
ent simulators. These are:

1) Basic Simulator: This simulator handles unit health, shields, heal-
ing, attacking, and movement without collision or path finding.
It can complete up to 2000 combat simulations per second per
thread.

2) Complex Simulator: This simulator handles unit health, shields,
healing, and attacking. However, the movement function detects
collisions and finds paths around obstacles such as terrain and
other units. Influence maps from [11] have also been integrated
to support a ’kiting’ behavior which has been added to the list of
available behaviours. This simulator can complete only up to 200
combat simulations per thread per second.
Kiting is a highly successful behaviour that fast moving ranged
units can use against slower units. Kiting is the act of attacking an
enemy unit and then moving away while reloading.

3.2.2 Response Divergence

A response grows stale the longer it is in effect. This is due to differ-
ences in mechanics between the Broodwar game and the simulator

that even a very sophisticated model will find challenging to elimi-
nate, in particular because there are random elements built into the
Broodwar game engine. We call the differences between the simu-
lated outcome and what actually happens in Broodwar as divergence.
Divergence represents the cumulative error between the game states
of the simulation and Broodwar as time passes.

Different game systems suffer differing amounts of divergence.
While systems like health regeneration and attack damage are
straight forward, other components such as attack cool downs are
randomisied slightly, introducing small changes in combat outcomes.
The precise mechanics of other systems such as path finding are un-
known and this also increases the divergence of simulations from
actual game encounters. Furthermore, an opponent model is not nec-
essarily a precise model of the Broodwar AI, and this also leads
to a large amount of divergence. Finally, the actual precise game
state used to drive the search simulation that generated the response
recorded in the database may differ from the precise current game
state. If differences in precise unit location and health affect the out-
come of the battle, divergence will occur.

3.2.3 Opponent Models

In order to combat the effects of divergence, solutions that generalise
well are sought. The simulation outcome is heavily dependent on the
strategy used by the opponent, so we attempt to find generalized so-
lutions by taking the minimum of the solution quality score over a
small set of opponent models. This favours the selection of robust
strategies that are successful against a variety of opponent models
for the response library (RL). In the current work this set of oppo-
nent models contains only 2 strategies; one using an ’Attack Weakest
strategy, and the other using an ’Attack Closest’ strategy.

3.2.4 Unit Behaviours and Grouping

A behaviour describes what action the unit should take in any given
circumstance. A behaviour consists of a series of actions which a
unit executes in sequence, moving on to the next action when the
previous action is complete or appropriate conditions are met. For
each behaviour we identify a primary action, and a secondary action
which is applied if multiple targets are identified for the primary ac-
tion. For example, if ’Attack Weakest’ is the primary action, and all
enemy units have the same health, then the secondary action ’Attack
Closest’, is applied. Behaviours are described in Table 1.

In order to allow the S&R agent some flexibility in terms of choos-
ing and targeting particular units or types of enemy units, we provide
the agent with the ability to separate the enemy into groups.



When setting up a simulation, not only are a random set of be-
haviours assigned to the agent’s units, but the enemy is divided into 4
random groups. Actions are then made specific to groups. For exam-
ple, the generic ”Attack Closest” behaviour becomes ”Attack Closest
in Group 1”. Grouping allows the agent to create plans that can focus
fire individual or groups of units. This greatly increases the degree of
freedom with which the agent can respond to situations.

3.3 Response Library Component (RLC)

The S&R agent receives its recall ability from the use of the re-
sponse library. The response library is responsible for the storage
and communication of the best recorded responses from the search
simulations. The database is updated asynchronously by the SC, and
queried from within the game loop by the RPC. It acts as a constantly
growing and improving database of best seen responses to recorded
tactical situations.

3.3.1 Game State and Response Descriptors

Preliminary testing identified that actual game state needed to be
generalized for successful game state matching to occur. Further-
more, only a small number of game state attributes were required for
the agent to adapt competently. Hence, the attributes used to iden-
tify game state within the RLC include only the number and type
of each unit involved in the current scenario. Adding more detailed
game state descriptors such as those describing unit health or posi-
tion causes an explosion of possible states, this drastically shortens
the time that a game remains in a particular state, and makes it dif-
ficult to match the current game state with a state recorded in the
response library.

Describing game state by only the number and type of units in-
volved results in relatively stable states that recur sufficiently fre-
quently to make matching effective, and balances the frequency of
response adaption. This approach effectively forces the chosen re-
sponse to change only to when units are removed from or added to
the game.

In addition to the game state information that is used as a key in
the response library, each entry in the response database records the
behaviour assigned to each unit, and the groupings assigned to the
enemy units.

Response behaviours do not correspond with BWAPI commands:
they need to be mapped into BWAPI commands by the simulator
associated with the RPC.

4 Experimental Setup

The following experiments contain four tactical scenarios that an
agent cannot resolve with a singular response. These are illustrated
in Figure 2 and listed below:

A) 3 Zealots vs 3 Vultures (Attack Closest agent): This scenario pits
3 fast ranged units (Vultures) controlled by the agent against 3
slow close attack units (Zealots). This scenario favours the kiting
strategy as it is extremely difficult to solve without it.

B) 6 Fast Zerglings vs 2 Dragoons (Attack Closest agent): This sce-
nario pits 2 strong ranged units (Dragoons) controlled by the agent
against 6 fast close attack units (Fast Zerglings). Once again a kit-
ing solution is favoured, but far more precision is required to make
this work.

C) 3 Zealots and 3 Dragoons vs 3 Zealots and 3 Dragoons (Default
AI): This is a symmetrical scenario pitting ranged (Dragoons) and
close attack (Zealots) units against each other. Precise control over
unit attacks which enemy unit as well as unit placement is required
to be successful.

D) 8 Dragoons vs 8 Dragoons (Default AI): Once again this is a sym-
metrical scenario that pits equal numbers of ranged units against
each other. Control of attack strategy is important in this scenario,
but unit placement is less important than in Scenario C.

The experimental setup is based on work by [5] although the ex-
perimental setups for scenarios A and B differ from Churchill’s im-
plementation. Due to problems encountered with the BroodWar AI’s
default behaviour it was replaced with a scripted agent designed to
constantly attack the closest unit.

Each scenario is run against a particular configuration of the S&R
agent for a total of 200 games at an acceleration of 5ms per frame.
This is necessary since due to stochastic variation between games,
the outcome of an actual game is not completely deterministic. The
scores recorded in Table 2 are defined by the following function to
the nearest percentage.

Score = (wins+ draws/2)/200

Our experiment compares several different configurations of the
SR agent. The performance of the basic and the complex simulator
engine are compared in two modes: in pure search mode (ie without
access to any stored responses), and in combined search and recall
mode (with access to stored responses). This tests whether there is
any advantage in retaining results from earlier simulations. For com-
parison purposes, the performance of two scripted agents was also
evaluated: one based on an ’Attack Closest’ strategy, and another
which favours Kiting. Each configuration or agent is tested on the
four scenarios listed above.

For the S&R agents, each configuration is initialised with a new
empty response library at the beginning of the evaluations for all
scenarios. All recorded responses are generated by simulations run
during the actual games.

All S&R experiments utilise 4 threads within the SC for running
simulations. Each search was limited to 2000 time steps although this
number of steps was never reached. The results of the experiments
are shown in Table 2.

5 Results and Discussion
The results of the experiments for the scripted agents show clearly
that to do well in all four scenarios requires adaptive agent behaviour.
The ’Attack Closest’ scripted agent performs poorly in scenarios A
and B, but is successful in scenarios C and D while the reverse is the
case for the ’Kiting’ scripted agent.

Results for the simple simulator, which does not have a kiting be-
haviour available are similar to the ’Attack Closest’ scripted agent.
This illustrates the importance of the simulator model containing a
set of behaviours sufficient to cover what is required in a scenario.

On the other hand, results in scenarios A and B for the complex
simulator show that agent clearly discovered and utilized the appro-
priate kiting behaviour. Results in Scenario A are stronger than in
Scenario B, likely because the large speed difference between Vul-
tures and Zerglings makes a wide range of successful kiting solutions
relatively easy to find. In Scenario B, if the Dragoons performed
a suboptimal action for even a small period they would lose to the
larger numbers of Zerglings.



Table 1. Behaviour Descriptions

Behaviour Primary Function Secondary Function Condition
G1, G2, G3 and G4 Attack unit of least health in group X Attack closest unit in group X No units in group X
Attack Closest Attack closest unit Attack unit of least health N/A
Attack Wounded Attack unit of least health Attack closest unit N/A
Kite Attack unit of least health in range when ready to fire Move away from all enemies and terrain N/A

Table 2. Experiment 1 Results. S&R: Search and Recall. IM: Influence Map.

Setup Churchill Search Search S&R Search (IM) S&R (IM) Attack Closest Kiter
A 0.81 0 0 0.96 1.00 0 1.00
B 0.65 0 0 0.65 0.92 0 1.00
C 0.95 0.95 0.80 0.76 0.94 0.77 0.26
D 0.96 1.00 1.00 1.00 1.00 0.97 0.14

The results for the complex simulator with recall enabled are better
than for search alone, indicating that the recall capability provides a
considerable advantage. The advantage conferred by the recall ability
is much greater in Scenario B than in Scenario A. This suggests that
the advantage of accumulating knowledge in the response database
is greatest when solutions are relatively exact, and the exploration of
the solution space is relatively slow.

Results for the simple simulator are equivalent or better than the
complex simulator for scenarios C and D. This indicates that the
range of behaviours available to the simple simulator are sufficient
in these scenarios, and that the complexities introduced for the com-
plex simulator have little impact in these scenarios. This result is
not terribly surprising since the influence map affects only the kiting
behaviour which is not necessary in these scenarios, and the close
ranged combat and lack of terrain features in these scenarios reduces
the impact of the path finding capability of the complex simulator.
Given these considerations, it may be that the much greater number
of simulations that the simple simulator can perform (2000 vs 200
per second) allows it to find better solutions than the complex simu-
lator.

Results for scenario C yield are the most varied. The winning solu-
tions for this scenario required more complex behaviours than in the
other scenarios. Scenario C is similar in some respects to Scenario B
with its rigorous success requirements.

Results for the complex simulator in Scenario C show a large dif-
ference between search only and combined search and recall. Once
again it appears that that the recall capability becomes a significant
advantage when solutions are hard to find and the exploration of so-
lution space is slow.

Results degrade when recall is enabled for the simple simulator.
It is likely that this is an example of the effects of divergence. The
simulator has discovered an action set that is effective in simulation,
but that does not translate well into the actual game. This indicates
the importance of the simulator’s combat model being a close match
to the actual game’s.

Results for Scenario D are both extremely strong and uniform
across both the simple and complex simulators, both with and with-
out recall enabled. This is probably a result of the scenario being rel-
atively easy to solve, as indicated by the strong result also generated
by the ’Attack Closest’ scripted agent.

Over all scenarios, the strongest performance is shown by the com-
plex simulator with recall enabled. This configuration of the S&R
agent adapts strongly to all scenarios, even though its performance

without recall enabled is relatively weak. The result is important,
since it indicates that the build up of experience over many game cy-
cles becomes greatly beneficial when solutions are hard to find, and
simulation rates are slow. This is exactly the situation faced when
attempting to apply accurate simulation models to complex commer-
cial grade RTS AI problems.

Note that for all the search based configurations, results between
zero and one are in some ways a measure of divergence, since the
simulations return what they estimate as a winning solution or a loss.
Solutions that win sometimes reflect differences between what the
simulators calculate and what actually happens in Broodwar. This
tends to impact weaker solutions to a greater extent, resulting in
lower scores where search is less effective. Given this interpretation
of each scenario score, it is an important result that the scores for the
complex simulator with recall enabled are consistently high across all
scenarios. This reflects relatively little divergence between what the
complex simulator predicts and what happens in Broodwar, given a
sufficient accumulation of simulations, and the capacity to retain the
results.

Another important result is that the benefits of recall are delivered
to the agent relatively quickly. There is a marked improvement for
the complex simulator with recall enabled in the difficult scenarios
even though the scenario is evolving in real time. This indicates that
the advantage of receiving high quality solutions outweighs the dis-
advantage of them taking more than a game cycle to calculate.

In comparison with Churchill’s results, the complex simulator
with recall enabled dominates by a large margin in all but Scenario
C, where it is only marginally weaker. Given the divergence interpre-
tation of the evaluation scores, the results suggest that the complex
simulator is a much closer approximation of the Broodwar combat
mechanics, and that the predictions made by the complex simulator
are much more accurate. The ’complex simulator with recall’ ap-
proach is an approach worth pursuing.

6 Conclusions and Future Work
Overall the results of this preliminary study can be summed up as:
high quality responses are worth remembering, when solutions are
hard to find, the exploration rate of the solution space is low, and
when the fidelity of the simulations is high.

The results strongly indicate that retention of results from search
simulations is worthwhile, and that Search and Recall is a useful
approach. This eliminates the need for a huge and uneven quality



Figure 2. Experimental Setup

database of pre-played games on which to base CBR, and allows the
situations a game AI can respond intelligently to grow over time. At
the same time it guarantees fast decision making within the game
loop.

An important implication of the proposed architecture is that be-
cause simulations are decoupled from the game loop, they become
amenable to parallel, distributed, or offline processing. The exact ac-
tual game states sent to the SC, could instead be sent out over the
network, or logged for later processing. Regardless of whether re-
sults arrive in time to advantage the S&R agent in the current game,
the fact that the results are generated improves the response database
over time, even when the game is not being played. Another impli-
cation is that simulation results from many separate instances of a
game can be shared between games, allowing games to cooperate in
improving the AI for all games.

A final implication is that simulations are not restricted to the CPU
capacity of an ordinary gaming PC. Simulations could be conducted
on server farms or supercomputers in the cloud, and the results used
to update a global database available to all instances of a game.

Because the constraints on execution times and hence simulations
complexity have been eased, future work could extend simulation
models to scenarios of greater complexity such as working with ter-
rain and larger unit encounters. It would also be interesting to explore
the feasibility and utility of more detailed game state descriptors, and
the associated much larger response databases required.

Once response databases become larger and more populated, game
progression paths through state space and discovering general pat-
terns of game progression could prove interesting. The sensitivity of
results to the range of available behaviours also indicates that further
work into more complex behaviour sets is also warranted.

S&R removes computational execution time restrictions on search
but retains the ability of search based agents to adapt to new situa-
tions. The S&R agent model allows simulators used in searches to
use much more complex models to deal with complex tactical situa-
tions. Simulators can include path finding, unit and terrain collision
avoidance, and specialized behaviours. These complex simulators
greatly improve the fidelity of the results produced, which reduces
the divergence between predicted outcomes and those produced by
the game. This makes the S&R method potentially useful in apply-
ing search techniques to commercial grade levels of combat scenario
complexity.

REFERENCES
[1] David W. Aha, Matthew Molineaux, and Marc Ponsen, ‘Learning to

win: Case-based plan selection in a real-time strategy game’, in Case-
Based Reasoning Research and Development, volume 3620 of Lecture
Notes in Computer Science, 5–20, Springer Berlin / Heidelberg, (2005).

[2] Klaus-Dieter Althoff, Ralph Bergmann, Mirjam Minor, Alexandre
Hanft, Neha Sugandh, Santiago Ontan, and Ashwin Ram, ‘Real-time
plan adaptation for case-based planning in real-time strategy games’, in
Advances in Case-Based Reasoning, volume 5239 of Lecture Notes in
Computer Science, 533–547, Springer Berlin / Heidelberg, (2008).

[3] Radha-Krishna Balla and Alan Fern, ‘Uct for tactical assault planning
in real-time strategy games’, pp. 40–45. Morgan Kaufmann Publishers
Inc., (2009).

[4] Michael Chung, Michael Buro, and Jonathan Schaeffer, ‘Monte carlo
planning in rts games’, in IEEE Symposium on Computational Intelli-
gence And Games (Cig), (2005).

[5] David Churchill and Michael Buro, ‘Incorporating search algorithms
into rts game agents’, in Eighth Artificial Intelligence and Interactive
Digital Entertainment Conference, (2012).

[6] David Churchill, Abdallah Saffidine, and Michael Buro, ‘Fast heuristic
search for rts game combat scenarios’, AIIDE, (2012).

[7] Leandro Soriano Marcolino and Hitoshi Matsubara, ‘Multi-agent
monte carlo go’, pp. 21–28. International Foundation for Autonomous
Agents and Multiagent Systems, (2011).

[8] Lorraine McGinty, David Wilson, Ben Weber, and Michael Mateas,
‘Conceptual neighborhoods for retrieval in case-based reasoning’, in
Case-Based Reasoning Research and Development, volume 5650 of
Lecture Notes in Computer Science, 343–357, Springer Berlin / Hei-
delberg, (2009).

[9] Manish Mehta and Ashwin Ram, ‘Runtime behavior adaptation for
real-time interactive games’, IEEE Transactions on Computational In-
telligence and Ai in Games, 1(3), 187–199, (2009).

[10] Santiago Ontan, Kinshuk Mishra, Neha Sugandh, and Ashwin Ram.
Case-based planning and execution for real-time strategy games, 2007.

[11] Alberto Uriarte and Santiago Ontan, ‘Kiting in rts games using influ-
ence maps’. AIIDE, (2012).

[12] Wang Zhe, Kien Quang Nguyen, Ruck Thawonmas, and Frank Rinaldo,
‘Using monte-carlo planning for micro-management in starcraft’, in
GAMEON Asia, pp. 33–35, Japan, (2012).


