
Data Collection with Screen Capture
Jason Traish, James Tulip and Wayne Moore1

Abstract. Game traces are an important aspect of analysing how
players interact with computer games and developing case based rea-
soning agents for such games. We present a computer vision based
approach using screen capture for extracting such game traces. The
system uses image templates of to identify and log changes in game
state. The advantage of the system is that it only captures events
which actually occur in a game and is robust in the face of multi-
ple redundant commands and command cancellation.

This paper demonstrates the use of such a vision based system to
gather build orders from Starcraft 2 and compares the results gener-
ated with those produced by a system based on analysing log files of
user actions. Our results show that the vision based system is capable
of not only automatically retrieving data via screen capture, but does
so more accurately and reliably than a system relying completely on
recorded user interactions.

Screen capture also allows access to data not otherwise available
from an application. We show how screen capture can be used to
retrieve data from the DotA 2 picking phase in real time. This data
can be used to support meta-game activity, and guide in-game player
behaviours.

1 Introduction

Game traces allow researchers to follow the evolution of game state
as a game is played. Retrieving game traces is necessary to further
understand decisions made by players in different game states, and
to support the development of AI agents.

Data for board games such as GO [4] and Chess [7] are obtained
from a sequential list of user interactions with the game. In GO and
chess the user interactions with the game are very limited and the
effect of any player action in the game is deterministic. For exam-
ple, in GO it is known that when a player places a stone such that an
opponent’s stones are surrounded, then the opponent’s stones will be
eliminated. However, in commercial RTS games such as Starcraft 2
[1], the set of user interactions for is often far larger than in a classic
board game, and the effect of player actions on game state is un-
certain. A user can move a camera, move units, construct buildings,
train units, buy upgrades and much more. Some of these commands
(eg camera movement) have no effect on game state, and for oth-
ers, (eg unit movement) the effect is indirect. Furthermore, the actual
internal game state is inaccessible.

In both GO and Starcraft 2 a game is recorded as a sequence of
user interactions. However, while in GO this sequence corresponds
directly to changes in game state, in Starcraft 2, multiple redundant
commands may be issued in a short space of time, many may never
have effect, or they may be cancelled before they are enacted. The

1 Charles Sturt University, Mining Lab, Australia, email: {jtraish & jtulip}
@csu.edu.au & wmoore@lisp.com.au

only way to tell what actually happens is to play the user interactions
back through the game environment.

The other problem that occurs, particularly in RTS games, is that
the rules determining how player actions affect the game environ-
ment can change due to developers tuning and rebalancing game
play. This makes it unfeasible to recreate game state based on user
interactions because their effects are constantly changing. In the case
of Starcraft 2, while we can access the list of raw commands given
by the user via game replay files, access to this list does not allow
recreation of game state unless it is used to replay the game using
the actual game environment. Once again, the solution is to directly
monitor game state changes rather than user inputs.

Lack of access to internal game state makes it difficult to develop
AI agents, and much game AI agent research is based on the use of
appropriately instrumented simulators. Unfortunately, many of these
are highly simplified versions of the original game. Samothrakis [8]
suggests that a screen capture approach would solve this problem.
Screen capture also offers a standardized way to provide AI agents
with input. This is necessary to meaningfully compare the perfor-
mance of AI agents. Screen capture also allows retrieval of game
state from closed source commercial games, and so enables testing
of agents using the original game rather than a simulator.

This paper demonstrates the use of a screen capture system to anal-
yse Starcraft 2 build orders. Build orders describe a player’s sequence
of creating units, buildings, and upgrades to reach a specific strategic
goal. The efficiency of a player’s build order can significantly impact
their chance of winning, and there is considerable research in build
order optimization [6]. We demonstrate the extraction of build orders
using screen capture and compare the results generated with those
produced by Sc2Gears [3]. Sc2Gears calculates build orders based
on a log of user interactions. We also demonstrate the real-time use
of screen capture to monitor hero selection in the online game De-
fense of the Ancients (DotA 2) [2]. DotA 2 is a multi player online
battle arena (MOBA) game where players select heroes with vari-
ous characteristics and do battle in teams. Hero selection and team
combinations have a large impact on team success, and there is much
interest in predicting game outcomes based on hero combinations
[9].

2 Screen Capture

The screen capture system models a human observer tracking and
recording changes in a game. It identifies areas of the screen which
display information relevant to game state and then monitors changes
in those areas, interpreting them in terms of game state.

Initially, the area of the game window that the relevant informa-
tion will appear is specified. Then all patterns showing the informa-
tion to be recognised in that area of interest are recorded as a set of
templates. All templates have the same dimensions to simplify and



speed up matching. After all templates have been loaded into the
system, PCA [5] is used to compress each set of templates down to
30 descriptors per template. This enables a reduction in the number
of comparisons for each template and facilitates real-time analysis
of captured images. The application is then started with the replay
for game trace retrieval. The windows contents are captured via the
Windows API and stored in an OpenCV image as often as the refresh
rate allows. The image is then decomposed into the identified areas of
interest such as the game timer, player’s production icons, progress
bars, and resource supply. Game specific heuristics are then used to
extract information from the screen using template matching and to
monitor game state events. The processed game state information is
then stored as a game trace.

The screen capture system can be summarised as taking the fol-
lowing steps:

1. Load pre-labeled templates.
2. Decompose templates into basic descriptors.
3. Open the application’s associated replay file.
4. Capture the game window using the Windows API.
5. Store and decompose the windows contents into areas of interest.
6. Match templates against areas of interest using a multi-threaded

framework.
7. Process the results and store the resulting game trace.
8. Repeat from step 3 to analyse further games.

3 Starcraft 2 Build Orders
Figure 1 displays the replay interface in Starcraft 2 that was used
to retrieve game traces. Before starting the process, the system must
be aware of where to look for which templates. The templates are
stored in sets, one each for the production icons of each player se-
lectable race, and an extra one for other GUI elements. This reduces
the number of comparisons necessary as a player can only produce
items for their chosen race.

To retrieve the build order we now identify what is displayed us-
ing our library of PCA refined descriptors. The top left hand cor-
ner of Figure 1 shows seven units/buildings in production. Each item
of production shows an identifying image, a number showing how
many units are being produced simultaneously, and a green progress
bar reflecting the completion percentage of that item. Each different
production icon indicates that a build queue is active within that area
of interest. In this case we would say that 4 build queues are active
for player 1 and 3 are active for player 2. The icon positions are then
posted to different worker threads which compare the captured im-
age with an assigned template set. Figures 2 and 3 show the matching
templates used to identify production icons collected from the scene
shown in Figure 1. Each template is labelled with the name of the
production icon.

After identifying the production icon, the game trace heuristic then
finds the number on each template as shown in Figure 4.Numbers are
identified using a relatively naive yet accurate method. Because nu-
merals are imprinted against a production icon’s image they contain
a small amount of noise. The noise is reduced by only accounting for
pixels that are very similar to white. Then the filtered image is com-
pared against a set of number templates where the closest is selected
as the matching number. Following this process identifies the digit
shown Figure 4 as matching the template shown in Figure 5.

The completion percentage shown in the production icon is then
determined (Figure 6). For this we simply perform a threshold check
for predefined pixel values along the length of the progress bar, re-
turning when an empty pixel is found.

Figure 1. Sample screen capture

Figure 2. Player 1 - Matching production templates

Figure 3. Player 2 - Matching production templates

Figure 4. Digit with noise

Figure 5. Pre-labeled Digit (Matching Template)



Figure 6. Progress bar

Since each template comparison is independent, all template com-
parisons can be run in separate threads. Once all threads have fin-
ished analysing each real-time acquired production icon image the
information is used to update each players build order along with the
game state, and the game time at which the image was retrieved.

As each player’s build order is updated, it is possible that a previ-
ously recorded production item is cancelled. If a production item is
not listed but was less than 97% complete when last identified then
that item is assumed to have been cancelled and is removed from the
recorded build order. Within a game of Starcraft 2, this can occur at
any point in time when a user selects a production item and cancels
it. A cancellation is also noted if the number of items listed within
the production icon drops while the current completion percentage is
under 97%. This leads to the flaw in the current game trace heuris-
tic that if a production item is almost complete then any number of
production items of the same type can be cancelled and they will be
falsely recorded as completed. In practice, this rarely occurs.

When a new production item type appears or the production count
increases then the game trace heuristic appends that item to the build
order. If the number of items in production recorded by a produc-
tion icon number remains the same for longer than the time to cre-
ate that item, then another production item of that type is appended
to the build order. This deals with the case of when a series of
probes/workers are queued. Since they are created one at a time,
a constant production count of 1 appears over an extended period.
Thus, keeping track of how long it is from when a production icon
first appears we can determine when an item repeats production. The
exception is when production is halted or paused which can be de-
tected when the progress bar is halted.

After a game has completed, each players build order is recorded
to file and the next game is opened and the process repeated. The re-
play interface is controlled by sending Windows API keyboard mes-
sages to Starcraft 2 to display the production icons and accelerate
the play back. The replay playback is accelerated to the maximum of
eight times the normal playback rate.

4 Comparison with User Interaction Logs

An experiment was conducted to evaluate how the screen capture
system performs in capturing a build order in comparison with the
established tool Sc2Gears [3]. Sc2Gears applies the user interaction
approach to analyse build orders. Both systems were tested using a
set of 100 public Starcraft single player versus single player ladder
games. Comparisons were made only on the first 10 minutes of game
play so that replays of diverse lengths would not affect the results
significantly. Each of the 100 games was also processed by a human
to generate a ground truth set of build orders. The accuracy for the
automated systems was calculated as the number of matching build
order steps compared with the human verified sequence.

Table 1 shows that the screen capture technique was able to signif-
icantly reduce the number of errors in calculated build orders com-
pared with an analysis based on raw user interactions. The screen
capture system still generated a small number of errors in cases
where actions were cancelled on the last frame (thus appearing to
have actually been completed). Table 2 shows an example of an open-

Table 1. Error Rates

Error Screen Capture Sc2Gears
Mean 0.39% 30.71%
StdDev 0.96% 27.75%

ing build order extracted using screen capture compared with one
using Sc2Gears from the same game. The extracted information is
significantly different. Sc2Gears incorrectly identifies the creation of
three probes and an additional pylon. In this case, the player requests
production of an additional Probe without the necessary resources,
a situation that can only be determined by running the game replay.
The extra pylon identified by Sc2Gears was the result of the player
ordering construction of a pylon and then moments later changing the
location of its construction. These errors highlight the issues encoun-
tered when using user interaction methods to extract game traces.

Table 2. Example Game Trace

Sc2Gears Screen Capture
1. Probe 1. Probe
2. Probe 2. Probe
3. Probe 3. Probe
4. Probe 4. Pylon
5. Probe
6. Probe
7. Probe
8. Probe

5 Hero Selection in Defence of the Ancients 2
The screen capture technique was also applied to Defence of the An-
cients 2 (DotA 2) to test its real-time capabilities of the screen cap-
ture framework, and its capacity to generalise beyond Starcraft 2.
This section re-enforces the application of the screen capture frame
work in retrieving data from a 2D display interface. The data from
the DotA 2 interface is retrieved without error and thus no compar-
ison against other methods is given, instead a potential use of the
retrieved data is given. The experiment with DotA 2 shows flexibil-
ity and versatility of the screen capture approach.

DotA 2 is a multi player online battle (MOBA) game that involves
2 teams of 5 players. Each player must pick a hero, and after a hero
is selected and locked in it can not be picked by any other player.
Players can select a hero they intend to pick before locking it in,
and this is referred to as shadow picking. A shadow pick will only
display to the allied team, and is important in influencing the heroes
other members of the team will select.

Heroes fall into general categories based on their abilities and how
they interact with other heroes within the game. The picking process
leads to a diverse set of combinations that can be formed between the
2 teams. However, some of these combinations are weaker than oth-
ers due to the interaction of hero’s strengths and weaknesses. Each
hero has synergies with certain allied heroes and/or are able to ex-
ploit weaknesses in particular enemy heroes. Thus, it is an interest-
ing problem to see how players adapt their choice of hero during the
1 minute picking phase. It is also interesting to see how these picks
can be used to predict the winning team and what rate of success they
might have.

In DotA 2, there is much interest in real-time capture of game ac-
tions since such a capability offers the potential to support real-time



guidance on hero selection. It also provides information useful to cal-
culating the likelihood of final outcomes. Screen capture potentially
can achieve this while user interaction logs are available only after a
game has ended.

Figure 7 shows a standard DotA 2 ’all pick’ mode selection screen.
It can be seen that all players have locked in their hero choices ex-
cept for the player shown on the upper left . This player’s portrait is
rendered in grey scale to show that it the depicted hero has only been
shadow picked. During the picking phase we use the screen capture

Figure 7. DotA 2 Hero Selection Screen

framework to identify which heroes have been locked in or shadow
picked. This data is then analysed using a statistical algorithm based
on hundreds of thousands of games of DotA 2.

The current program then displays the win rate for any point in
time during the game as shown in Figure 8. This graph can be used
loosely to identify when one team is stronger than another and can be
used as an indicator for players to become more aggressive within the
favoured time zones. It can also be used by lower skilled players to
help better identify hero picks that complement their team, and to see
what effect their pick would have on the progress of the game. Figure
8 shows that the enemy team has a small advantage that decreases
over time until around the 60 minute mark, at which point My Team
increases substantially in strength.

Figure 8. DotA 2 Predicted Game Balance

6 Discussion and Further Work

The Starcraft 2 experiment shows that the screen capture approach
can help generate more accurate build orders than conventional sys-
tems based on logs of player actions. Its application to analysing hero
selection in DotA 2 shows that the principles can be applied gener-
ally to any game, and for any analytical purpose, using different sets
of image templates and different analytical heuristics. The technique

can be applied to almost any application where a streaming 2D dis-
play record is available. Furthermore, no access to game code or pro-
prietary APIs is required. This opens up data collection and analysis
for previously inaccessible games and other applications. The high
performance provided by the simplified PCA based image descrip-
tors and parallel template matching allows the development of real-
time in-game decision support systems, once again without access
to game code or proprietary APIs. The screen capture system takes
advantage of using the game display to retrieve actual game events
while user interaction logging methods can result in noisy data that
can detrimentally affect further analysis.

However, currently screen capture has only been applied to appli-
cations where the state is represented with scale and rotation invariant
2D images. There would be considerable challenges in applying the
technique to applications that display their state in 3D.

The technique could also be extended to live game data retrieval,
such as a Starcraft 2 commentator agent. An agent could be set up
to watch two players play a competitive game, giving viewers pre-
dictions and feedback in a similar way to how real commentators
perform.

The screen capture system could also be used to track in game
auction house item prices. The retrieval of the changing value of
game items could allow systems to graph, analyse and predict market
trends in online worlds.

It could also be used for non game applications such as watching
a user’s screen and determining the time spent interacting with dif-
ferent windows. This could help system analysts trace work flow and
productivity in given applications without access to the source code.

While analytic techniques relying on replays to retrieve game data
have to wait until a game has been played and recorded before anal-
ysis can be applied, a screen capture system can be used to analyse
live games, allowing interested parties to use the data in prediction
systems or other applications.

7 Conclusion
Screen capture data retrieval offers great advantages to researchers
and applications looking to gather data from complex environments
with 2D displays. The system is flexible and more accurate than user
interaction logs for such applications.

REFERENCES
[1] ‘Blizzard entertainment’. http://www.blizzard.com.
[2] ‘Valve corporation’. www.dota2.com.
[3] ‘Sc2gears’. https://sites.google.com/site/sc2gears, (2012).
[4] T. Bossomaier, J. Traish, F. Gobet, and P. C. R. Lane, ‘Neuro-cognitive

model of move location in the game of go’, in (IJCNN), The 2012 Inter-
national Joint Conference on Neural Networks, pp. 1–7.

[5] Ian T Jolliffe, Principal component analysis, volume 487, Springer-
Verlag New York, 1986.

[6] Matthias Kuchem, Mike Preuss, and Günter Rudolph, ‘Multi-objective
assessment of pre-optimized build orders exemplified for starcraft 2’, in
Computational Intelligence in Games (CIG), 2013 IEEE Conference on,
pp. 1–8. IEEE, (2013).

[7] Peter CR Lane and Fernand Gobet, Using chunks to categorise chess
positions, 93–106, Springer, 2012.

[8] S. Samothrakis, D. Robles, and S. Lucas, ‘Fast approximate max-n
monte carlo tree search for ms pac-man’, Computational Intelligence and
AI in Games, IEEE Transactions on, 3(2), 142–154, (2011).

[9] Pu Yang, Brent Harrison, and David L Roberts, ‘Identifying patterns in
combat that are predictive of success in moba games’, Proceedings of
Foundations of Digital Games, (2014).


