Cognitive Navigation in PRESTO

Paolo Calanca and Paolo Busetta®

Abstract. The PRESTO project has developed an Al infrastruc-
ture and an agent framework called DICE for the creation of game-
independent, modular NPC behaviours based on a BDI (Belief-
Desire-Intention) approach enriched with cognitive extensions for
human simulation. Behavioural models can be combined via end-
user development tools to form the behavioural profiles of NPCs in a
game. Furthermore, PRESTO is producing a set of behavioural mod-
els targeted at its pilot project’s needs or expected to be of common
use. This paper focuses on a fundamental building block: naviga-
tion of (human and non-human) characters, implemented as the in-
terplay between a set of behavioural models encapsulating higher-
level decision making concerning e.g. speed control, activation of
gates, replanning when faced with the impossibility to going forward
and lower-level modules for path planning, steering and obstacle
avoidance that focus on performance and simpler perception-driven
choices. These lower-level modules are embedded into the PRESTO
infrastructure and contain a few novel algorithms. The higher level
navigation behavioural models in DICE can encapsulate very differ-
ent physical and emotional profiles; they deal with short-term mem-
ory and background knowledge concerning spatial knowledge and
impose constraints on path planning based on physical as well as
cognitive considerations (e.g. risks or threats). DICE provides the co-
ordination between body-controlling behavioural models (for navi-
gation as well as posture, facial expressions, actioning) and decision-
making models representing e.g. the standard operating procedures
of professional roles, the cognitive appraisal of events and percep-
tions, the modality of reaction to unplanned events occurring during
a game.

1 INTRODUCTION

PRESTO (Plausible Representation of Emergency Scenarios for
Training Operations) [2] aims at adding semantics to a virtual en-
vironment and modularising the artificial intelligence controlling the
behaviours of NPCs. Its main goal is to support a productive end-user
development environment directed to trainers building scenarios for
serious games (in particular to simulate emergency situations such as
road and industrial accidents, fires and so on) and in general to game
masters wanting to customize and enrich the human player’s experi-
ence. The framework for behavioural modeling in PRESTO, called
DICE, was inspired by a BDI (Belief-Desire-Intention) [1, 9] multi-
agent system with cognitive extensions, CoJACK [10, 6]. PRESTO
offers powerful end-user development tools for defining the parts
played by virtual actors (as end user-written behaviours) and the
overall session script of a game. PRESTO supports a specific vir-
tual reality, XVR from E-Semble, a well known tool in use for Emer-
gency Management and Training (EMT) in a number of schools and

1 Delta Informatica Spa, email:

name.surname @deltainformatica.eu

Trento, Ttaly,

organisations around the world, as well as Unity 3d and, at least in
principle, is agnostic with respect to the game engine in use.

The rest of this introduction briefly explains the motivations be-
hind PRESTO with an example and gives an overview of the system.
The following sections are dedicated to its navigation subsystem, first
discussing lower-level facilities for path planning and steering and
then introducing a higher-level layer that takes into account cognitive
aspects including memory and appraisal of the perceptions according
to the semantics of the environment and the NPC’s own psychologi-
cal profile.

Directing NPCs as virtual actors in a virtual stage. Serious
games have the potential to dramatically improve the quality of train-
ing in a number of fields where the trainee has to face complex and
potentially life-threatening situations. In particular, open-world 3D
simulations (also called “’sandbox” or *’free-roaming” games) have
been used for quite a long time by the military, with a few products
reaching a significant market success, and are becoming common in
civilian emergency training because they allow the rapid construction
of scenarios for the rehearsal of safety procedures. The main limita-
tion of current technology concerns NPCs, whose behaviour may be
quite sophisticated when performing predefined tasks but is often un-
affected by context; further, a professional programmer is required
for the implementation of any procedure that cannot be described
with the simple selection of a few waypoints and the choice of a few
actions, let alone introducing variants due to psychological factors.
These issues lead to repetitive and hardly credible scenarios and to
the slow and costly development of new ones when many NPCs are
involved.

As an example, consider a fire breaking in a hospital ward during
daytime with patients with different impairments, visitors of various
ages and professionals with different roles, experiences and training.
In this scenario, which is taken from the pilot project of PRESTO,
most characters are NPCs while the human players, i.e. the trainees,
are either health professionals that could be in charge for a ward at the
time of an accident or emergency staff called to help. A training ses-
sion would require two apparently conflicting abilities from NPCs.
From the one hand, they should act autonomously according to a va-
riety of parameters concerning e.g. their physical and psychological
state, their current position, their capabilities; e.g. visitors may act
rationally and follow well-marked escape routes or flee panicking to
the closest exits, nurses at the start of their shift are fully responsive
and careful while at the end of the shift fatigue may lead to errors,
and so on. On the other hand, in order to make training effective
and engaging, the trainer supervising a simulation session should be
able to temporarily suspend it (e.g. to give feedback to the trainees),
change the course of events or affect the way certain characters be-
have (e.g. to introduce more drama or rehearse different procedures),
as well as introducing or removing characters in following runs of
the same scenario. Hardcoding all possibilities, assuming that this is

supported by the game in use, is a laborious task to say the least.

The objective of PRESTO is to allow NPCs to act as “virtual ac-
tors” because they are able to “interpret” a part written at a higher
level of abstraction than with common scripting languages, with
additional modalities (that may correspond to, e.g., levels of skills
or psychological profiles) that can be selected at the beginning but
changed during a game as a result of the application of rules or by ex-
plicit user choice. The game’s master (i.e. the trainer) is empowered
to become a “director” able to “brief” virtual actors, that is, to define
the parts the artificial characters have to play by means of a language
aimed to non-programmers that composes more fundamental even if
potentially very complex behaviours into game-specific sequences.
Key enablers are end-user development tools [7] and the ability to
mix and match behavioural components taken off-the-shelf from a
market place (similar in principle to asset stores in popular gaming
platforms such as Unity).

Semantics and NPC programming in PRESTO. PRESTO pro-
vides facilities for the semantization of the game environment in
order to support decision-making based on game- and scenario-
independent properties. Most importantly, ontologies are used for the
classification of objects and locations and for annotating them with
properties and states (called “qualities”) that allow abstract reason-
ing, while navigation areas can be annotated with various proper-
ties [5]; some of these aspects are discussed in Sec. 3.

DICE (Fig. 1) supports multi-goal modeling of NPC behaviours,
where navigation, body postures and facial expressions, manipula-
tion of objects and decision-making concerning tactical and long-
term objectives are controlled by concurrent threads (implemented,
in BDI speak, as intention trees achieving independent hierarchies of
goals and subgoals). Furthermore, decision-making in DICE happens
at two levels, controlled by independent “planned” and “reaction” in-
tention trees. A decision-making behaviour started in reaction to an
event pre-empts and blocks the execution of a planned behaviour un-
til it is fully completed, at which point the planned behaviour is re-
sumed. This allows, for instance, to have short-term reactions to per-
ceptions (such as hearing a noise) that partially change the NPC state
(e.g. by pointing the head towards the source of the noise) while not
affecting navigation or longer-term procedures if not required. All
behaviours in the body-controlling intention trees and in decision-
making can be overriden by new behaviours at any time, e.g. as new
perceptions are processed, as part of a decision-making routine, as
a user choice from a GUI, as a command from a PRESTO session-
controlling script; at any time, no more than one behaviour for each
intention tree is active.

Changes in behaviours due to emotions, fatigue or other non-
rational factors can be dealt within DICE in various ways, of which
the most novel (and dramatic) is by defining behavioral rules that
select alternative models according to the current cognitive state of
the NPC. These rules can be defined directly by the end user, who
is enabled to change the behavioural profiles of her characters ac-
cording to the evolution of the game or even in real-time by explicit
choice and from the session-level script. As in CoJACK [10], cogni-
tive states are represented in DICE by moderators (i.e. numeric val-
ues modeling specific factors such as fear and fatigue levels) and a set
of cognitive parameters computed from those moderators (modeling
e.g. reactivity and accuracy), even if greatly simplified with respect
to the original. Any behavioural model, including navigation, can use
moderators and cognitive parameters to tune its own internal parame-
ters, e.g. to decide the speed of execution of action or memory fading.
Changes to moderators are normally performed by behavioural mod-
els for cognition according to appraisal rules (concerning e.g. the

External goal submission

Dice Agent

Decision-making goals

v |
Select BM Decision

Perception &—| DICE Scheduler > Making

data BMs

A Reaction goals |

Concurrent executors

& & ¥ b |
Posture BM Object
manipulation BM

Navigation BM Facial expression

\ ;
A /
! PRESTO
Perceptions \\\\\ /
System v

¢ Path Planning Stecang —> Action Manager

Ontology

Figure 1. Simplified DICE architecture with navigation highlighted (BM:
Behavioural Model)

perception of threatening things) and time; however, it is possible
to force the value of moderators at any time from any behavioural
model (e.g. because of the realization of a dangerous situation) or
from the session-controlling script, thus allowing the trainer to fully
control the overall behaviour of an NPC during a game.

One of the implications of the DICE approach on navigation is
that, at any time, the travel direction (decided by a behaviour) can
be changed and may be resumed later (e.g. when a reaction is com-
pleted). The APIs make programming this concurrent machinery a
straightforward business, while the end-user development tool for
behaviour modeling (called the DICE Parts Editor) provides an ex-
tremely powerful yet intuitive way to write scripts that affect one or
more intention trees at each step [8].

As mentioned earlier, PRESTO has a facility to edit and control
session-level scripts inspired by interactive books. A session script
is composed by a set of scenes connected as a graph. At each scene,
goals can be given to NPCs, their internal state changed (including
emotions) and objects manipulated. The trainer starts a script at the
beginning of a training session and advances it by manually navi-
gating the graph of scenes or letting PRESTO choose the next one
e.g. when certain events happen or when a timer expires. This al-
lows a large, potentially unlimited number of different sessions to
unfold from a single script with no need to reprogram the NPCs once
equipped with all required behavioural models. In the hospital ward
example presented earlier, the initial scene would command visitors,
patiens and nurses to accomplish their routine goals; the script may
continue with alternative scenes such as “fire breaking in a patient
room” or “fire breaking in a surgical facility”, each with different
people involved, and then with sequences that may lead e.g. to smoke
filling the area and visitors fleeing or an orderly managed situation
with the intervention of fire fighters, chosen according to the deci-
sions of the trainer and the events occurring during a session.

Decision-making navigation goals (reach destination,
BMs A\%w character...)

Navigation BM \

Other body-
posture BMs

Compute Path L
navigation-related

actions (open door, call
elevator, jump, ...)

Add/remove area Start.on Path

Stop/Continue
Set weight to area P/

Update obstacl
Set weight to entity ROALEe ORstaciEs

Path Planning Steering

———————3 Action Manager

Move actions

Figure 2. Navigation subsystem architecture

2 NAVIGATION ARCHITECTURE

The overall architecture of navigation within a DICE agent, shown
in Fig. 2, closely resembles a standard model [3], with a path plan-
ning module, a steering module looking after actual body movements
and simple obstacle avoidance, and the navigation behavioural model
calling the path planner and the steering modules according to the
goals provided by decision-making (e.g., of reaching a destination,
of following another character, and so on).

The path planner uses a navigation graph which is instantiated for
each agent and modified by the navigation behavioral model to re-
flect memory, navigation decisions and specific capabilities. From
this graph, the path planner can compute one ore more paths to the
desired destination and the behaviour can choose which one to fol-
low based on any attached information. Once a path is chosen, the
steering module is invoked by the behaviour to move along it. State
information on the steering activity for a specific path, including an
explanation in case of unsuccessful conclusion (e.g., facing a gate,
impassable obstacles, aborted by another steering request typically
generated by a reaction), is used by the behaviour to track progress
and possibly perform actions to resume navigation. Analogously, the
state of a goal given to the navigation behaviour is reported on a
tracking object that allows higher-level decision-making behaviours
to know when the goal has been satisfied or the reason for failure,
including abort caused e.g. by a reaction submitting a different navi-
gation goal.

The flow of perceptions goes to steering as well as to all be-
havioural models to update their own internal state. As a conse-
quence, the navigation goal being currently pursued may be changed
because e.g. of a reaction or the decision to take a different course of
actions.

3 MESHES, AREAS AND SEMANTICS OF THE
ENVIRONMENT

Configuration information affecting navigation is distributed in three
main data structures, two of which concern meshes and are directly
used by the navigation modules while the third is related to semantics
for the decision-making layer.

Navigation meshes and navigation areas. PRESTO uses navi-
gation meshes (that is, sets of adjacent convex polygons that share
edges and cover a walkable / drivable / otherwise navigable sur-
face) [11] to compute safe and efficient paths through the environ-
ment, avoiding walls, obstacles and precipices. Navigation meshes

can be automatically built from the environment geometry and from
parameters including the navigating object’s radius, height and max
acceptable steepness, so it is possible to generate meshes specialized
per character type (including non-humans, e.g. vehicles).

Semantics data on the navigation meshes, such as the terrain type
and traffic constraints (permitted directions, reserved paths, ...), can
be added with a tool that allows the creation and annotation of nav-
igation areas by selecting polygons of a mesh. Furthermore, as dis-
cussed below, behavioural models manipulate areas rather than poly-
gons of a mesh.

Locations of Interest and navigation-affecting entities.
PRESTO allows the end-user to classify and annotate locations
of interests and objects within the environment with semantic
information taken from an ontology. This is composed of a domain-
independent core and one or more domain-specific extensions [5]
and determines which behavioural models can be used in a specific
game; for instance, the current PRESTO pilot project contains a
hospital ontology that is used by models of nurses and doctors while
a generic safety ontology is used by fire fighters. A small part of
the semantic annotations is directly managed by the navigation
subsystem as discussed later, most importantly the property of
being a “gate”, i.e. anything that has a state of openness that can
be manipulated by a character. Being a gate is not automatically
related to the classification of the object (e.g., a door is not a gate
if it is permanently closed) and may even change dynamically.
Anything else that may affect what the character does during its
movements is handled by other behavioural models and especially
by decision-making models. This separation of concerns relies on
the possibility offered by DICE to stop and change navigation goals
at any time, possibly as reactions that simply delay rather than abort
the procedure being executed by a character.

4 LOWER-LEVEL NAVIGATION FACILITIES

Higher-level behavioural models and lower-level facilities share a
navigation graph, manipulated by behaviours and used by the path
planner, and status information on the current steering activity. A set
of APIs allow behaviours to affect the navigation graph, invoke the
path planner and trigger steering.

Navigation graph and path planning. The Path Planning module
uses a navigation mesh to build a polygon adjacency graph, which in
turn is used as navigation graph shared with the behavioural mod-
els. While navigation meshes are generated off-line and shared by
all agents, a navigation graph is specific for each agent since it is
based on the background knowledge of the agent, its capabilities,
its memory and its decisions. For instance, the configuration of the
background knowledge of an agent specifies which mesh to use and
how much of it is known at the beginning of a game; furthermore,
behavioural models can add or remove navigation areas (converted
in polygons by the Path Planning API).

Edges in the navigation graph carry a weight, by default represent-
ing the euclidean distance between the centroids of the two polygons
correspondent to two graph nodes. These weights can be manipulated
by behavioural models to convey preferences to the path planner; this
is done by specifying the weight for an entire area, which is like al-
tering the area’s distance from the remaining navigable areas.

The path planner computes the shortest path from a source point to
a destination point by using the weigths and applying the well known
A* algorithm.

Steering and obstacle avoidance. The steering module moves the
NPC controlled by the agent along a path computed by the path plan-

NS

C Ready)

start(path) i
continue SLoR
continue continue
(Blocked)< {_ Running ~_ Waiting)
g g o s’ S
start(path) start(path)

Figure 3. Steering FSM

ner. To this end, it computes and updates a trajectory that avoids ob-
stacles and moves the NPC along the points of the trajectory. While
the path is computed from the start point to the destination point, the
trajectory is computed locally, that is, from the current NPC position
up to a maximum distance. The trajectory is frequently updated so
that it continuously adapts to changing conditions. The trajectory is
computed inside a “global path”, i.e. the sequence of polygons com-
puted by the path planner forming a tunnel in the selected navigation
mesh. Only obstacles inside this tunnel, perceived by the agent and
close to the current position of the NPC are considered by steering,
which considers also their semantic properties; most importantly, ob-
jects classified as gates and in a “closed” state are not avoided. When
the agent perceives that an obstacle has moved then the trajectory is
immediately re-calculated.

Steering is a Finite State Machine, illustred in Fig. 3. The agent
(that is, its navigation behavioural model) can query its state and send
inputs that will cause state transitions; in particular, the behaviour
can start steering on a selected path, stop it and later resume it on the
current path or re-start it on a different one.

While Running, steering moves the NPC by calling PRESTO’s
“MOVE” action, which in turns controls the body’s animation con-
cerning legs or other moving parts (e.g. wheels), translate the NPC in
space at the desired speed and adjust the NPC position on the ground.
MOVE modifies the speed according to its initial value, providing
any required acceleration; a complementary STOP action decelerates
the NPC.

The Blocked state is entered when steering fails in computing a
trajectory because the path is obstructed by too many obstacles. As
discussed below, it is left to the behaviour to take a decision, e.g.
waiting and later resuming or temporary removing the obstructed
polygon from the agent’s navigation graph and recomputing the path.

The Waiting state is entered when the NPC cannot go further be-
cause it is in front of a closed gate. Steering moves the NPC to an
appropriate distance before entering Waiting. At this stage, the be-
haviour has to take an action depending on the gate’s type, for exam-
ple a door must be opened or an elevator must be called. Once the
action has been performed, steering can be resumed. Note that the
behaviour may decide to abort steering and change path because, for
instance, the opening action fails for some reason not under naviga-
tion’s control (e.g., the goal of opening a door cannot be achieved
because a key is required and not owned by the NPC).

Steering trajectory computation. The trajectory is first com-
puted ignoring ostacles, using the Funnel algorithm [4]. This algo-
rithm is also known as “string-pulling” because the trajectory being
generated is like a string pulled from the two extremes (Fig. 4).

The generated trajectory is modified to avoid obstacles, repre-
sented with simple geometries, like circles and rectangles, enlarged
by the agent radius; an example of the algorithm is in Fig. 5. As first

Figure 4. Trajectory generated by the Funnel algorithm

Figure 5. Obstacle avoidance algorithm, A: the output of the Funnel
algorithm. B: the trajectory point is inside the orange obstacle, the right side
is rejected. C: the new segment intersects the violet obstacle. D: the
trajectory is recomputed to attach the two sides, but the first segment
intersects the green obstacle cluster. E: the left side is rejected because a
point is out of the path. F: the two final trajectories.

step, obstacles that intersect each other are clustered; each isolated
obstacle forms a cluster by itself. Then each cluster is checked for
intersections with the trajectory segments. If a segment intersects the
cluster, the segment is discarded and two poly-lines are computed
from its starting point to its ending point, passing to the right side
and to the left side of the cluster. If no poly-lyne is within the path,
the steering state is set to Blocked and the algorithm is stopped, even-
tually invoking the higher-level behavioural model. If exactly one of
the computed poly-lines is inside the path, then the intersecting seg-
ment is substituted with that one. If both the poly-lines are inside
the path, then the trajectory is duplicated. At this stage the checking
process is repeated recursively on the resulting trajectories to handle
further intersections with other clusters. The final output of the algo-
rithm, if successful (i.e. if the Blocked state is never reached), is one
or more trajectories; one is eventually chosen at random, to prevent
the oscillations that typically arise when NPCs facing each other use
the same deterministic steering algorithm.

5 HIGHER-LEVEL NAVIGATION
BEHAVIOURAL MODELS

Navigation control in DICE is split in two types of behavioural mod-
els. One type, identified as “navigation BM” in Fig. 1 and 2, satis-
fies the navigation goals submitted by decision-making behaviours
(e.g., of reaching a destination); slightly different navigation mod-
els are provided that depend on the main physical features of the
NPC, e.g. of being a human rather than a vehicle, and consequently
on the NPC’s ability to move and affect the environment. As men-
tioned above, the navigation BM runs in its own intention tree (thread
of execution) concurrently with decision-making and other body-
controlling behaviours. The navigation BM calls path planning and
controls steering, acting according to the latter’s indication in par-
ticular when entering the Blocked or Waiting states. A number of
different decisions can be taken according to the model and to the
semantics of gates or obstructing objects, which may in turn cause
goals to be submitted to other body-parts behaviours (e.g. opening a
door, calling a lift, and so on).

A second type of behavioural model, referred to as “navigation ca-
pabilities” and included as a decision-making module in DICE, looks
after some of the cognitive aspects of navigation. In particular, the
navigation capability of an NPC decides which mesh to use on cre-
ation, then changes the default speed, default animations and so on
according to the current sub-rational state of the agent (i.e. its moder-
ators and cognitive parameters). Thus, PRESTO can provide capa-
bilities specialized e.g. for quiet or excited people, for permanent or
temporary physical impairments, for different types of vehicles, and
so on. Navigation capabilities may access the cognitive state to tune
their parameters (e.g. speed or animations); furthermore, behavioural
rules may be defined to switch navigation capabilities entirely dur-
ing a game depending on the NPC’s moderators. For instance, a high
level of fear may select a model whose default speed is running and
movement animations jerky, while a high level of fatigue may select
a model doing exactly the opposite. Furthermore, the navigation ca-
pabilities satisfy goals concerning path selection, such as “stay out
of sight of entity E” or “don’t go thru location L (which may have
been classified as dangerous by a decision-making model according
to the appraisal rules of the agent), by taking note of what to avoid
and manipulating the navigation graph accordingly, based on current
knowledge and the flow of perceptions.

Behavioural models in DICE have their own configuration pa-
rameters, called “background knowledge”. As mentioned above, the
background knowledge of the navigation capability of an agent de-
termines how much the agent knows a priori about the environment
— it can be everything or being limited to a few areas; the naviga-
tion graph is created accordingly. The flow of perceptions arriving
from the PRESTO infrastructure includes also the visible naviga-
tion polygons of the various meshes; this data is used by the naviga-
tion capability to update the navigation graph. The cognitive model
of DICE, not discussed here, looks after short-term memory man-
agement, which includes calling the navigation capability to purge
the navigation graph; that is, the agent literally forgets about where
to navigate according to timing and frequency of perceptions from
the environment. Out of scope of the navigation subsystem, and not
discussed here, is a “search” behaviour, which is a set of decision-
making procedures that can be started when a navigation goal fails
with an “unknown path” error.

In the hospital fire scenario presented in the introduction, the nav-
igation capability of a patient on a wheel chair would use a different
mesh than the one selected for a visitor with normal walking capabil-

ities, e.g. to avoid steps and stairs. The patient’s background knowl-
edge would include the navigation areas of the entire ward (since
she has been there for a while) while the visitor’s knowledge would
be initially empty and populated while she moves in the ward; a
decision-making procedure of the visitor that invokes a goal such
as “go to patient room nr. 3” would initially fail because, indeed,
no path can be computed and a search behaviour would need to be
invoked allowing the progressive discovery of the navigation areas
of the selected mesh. If, at any time during the game, a fire alarm
starts ringing, its perception on both visitor and patient would trig-
ger a (decision-making) reaction that is handled different according
to the currently active behavioural models, which in turn may de-
pend on cognitive states such as fear. The perception of smoke and
fire would submit goals such as “don’t go thru that area” handled by
the navigation capability as mentioned above. A rationally-behaving
NPC that knows the position of a location ontologically classified as
“fire exit” would navigate to the latter, with a speed and a modality
that depend on the currently active navigation capability (excited /
not excited, walking / pushing the wheel chair); an NPC that doesn’t
know about fire exits or that it’s too fearful to act rationally would
run to the closest exit.

Queuing and other coordinated behaviour. Steering looks after
obstacle avoidance and thus somehow takes care of certain crowding
behaviours. However, proper coordination is a matter for decision
making at least partially outside of the scope of navigation. Work is
in progress on game-theoretical descriptions of queuing and access
to shared resources that allow the definition of policies at a very ab-
stract (meta-) level. This exploits the support in DICE for introspec-
tion, semantic tagging of goals and plans, dynamic assignment and
aborting of goals and intentions as well as the ability to dynamically
manipulate semantic tags of any entities (including NPCs) offered
by PRESTO. The specification of policies is expected to substan-
tially reduce the coding required by models and allows the reuse of
the same coordination patterns in many different situations, e.g. for
queuing to pass through a gate (which will be part of the navigation
BMs) as well as for queuing at the entrance of an office or at the
cashier in a supermarket (which are decision-making behaviours not
related to navigation goals).

6 CONCLUSIONS AND FUTURE WORKS

At the time of writing, testing and performance evaluation are still
in progress. Initial results show that the navigation meshes are sur-
prisingly small even in very large and complex indoor and outdoor
environments; in turn, this makes the maintenance of per-agent nav-
igation graphs and path planning computationally well affordable.
Other work in progress concerns coordinated behaviour, as discussed
above.

While the navigation algorithms described in this paper contain
a few novelties, we believe that the most interesting part of the
PRESTO approach is the coordination among navigation behaviour,
other concurrent body-controlling intentions and the two-level deci-
sion making, all affected by cognitive elements such as short term
memory management and emotions. When combined with its se-
mantic facilities and end-user development tools for the creation of
NPC behavioural profiles, PRESTO represents an interesting im-
provement to the state-of-the-art of game platforms, especially for
serious game development.

ACKNOWLEDGEMENTS

We thanks all other members of Delta Informatica’s technical team
(Matteo Pedrotti, Mauro Fruet and Michele Lunelli). PRESTO has
been funded by the Autonomous Province of Trento (PAT), Italy.

REFERENCES

(1]
(2]

[3]
[4]

[5]

(6]

(7]

(8]

(9]

[10]

(1]

Michael E. Bratman, Intention, Plans, and Practical Reason, Harvard
University Press, November 1987.

Paolo Busetta, Chiara Ghidini, Matteo Pedrotti, Antonella De Angeli,
and Zeno Menestrina, ‘Briefing virtual actors: a first report on the presto
project’, in Proceedings of the Al and Games Symposium at AISB 2014,
ed., Daniela Romano, (April 2014).

Alex J. Champandard, An Overview of Navigation Systems, volume 2 of
Al Game Wisdom, 131-139, Charles River Media, Massachusset, 2004.
Xiao Cui and Hao Shi, ‘An overview of pathfinding in navigation
mesh’, IJCSNS International Journal of Computer Science and Net-
work Security, 12, 48-51, (December 2012).

Mauro Dragoni, Chiara Ghidini, Paolo Busetta, Mauro Fruet, and Mat-
teo Pedrotti, ‘Using ontologies for modeling virtual reality scenarios’,
in to appear in Proceedings of ESWC 2015.

Rick Evertsz, Matteo Pedrotti, Paolo Busetta, Hasan Acar, and Frank
Ritter, ‘Populating VBS2 with Realistic Virtual Actors’, in Conference
on Behavior Representation in Modeling & Simulation (BRIMS), Sun-
dance Resort, Utah, (March 30 — April 2 2009).

Henry Lieberman, Fabio Paterno, Markus Klann, and Volker Wulf,
‘End-User Development: An Emerging Paradigm’, End User Develop-
ment, 9, 1-8, (2006).

Zeno Menestrina, Antonella De Angeli, and Paolo Busetta, ‘APE: end
user development for emergency management training’, in 6th Inter-
national Conference on Games and Virtual Worlds for Serious Appli-
cations, VS-GAMES 2014, Valletta, Malta, September 9-12, 2014, pp.
1-4. IEEE, (2014).

Anand S. Rao and Michael P. Georgeff, ‘Bdi agents: From theory to
practice’, in IN PROCEEDINGS OF THE FIRST INTERNATIONAL
CONFERENCE ON MULTI-AGENT SYSTEMS (ICMAS-95, pp. 312—
319, (1995).

Frank E. Ritter, Jennifer L. Bittner, Sue E. Kase, Rick Evertsz, Matteo
Pedrotti, and Paolo Busetta, ‘CoJACK: A high-level cognitive architec-
ture with demonstrations of moderators, variability, and implications
for situation awareness’, Biologically Inspired Cognitive Architectures,
1, 2-13, (July 2012).

Paul Tozour and Ion Storm Austin, Building a Near-Optimal Naviga-
tion Mesh, 171-185, AI Game Wisdom, Charles River Media, Mas-
sachusset, 2002.

