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Abstract. This paper addresses aesthetic problem in cellular au-
tomata, taking a quantitative approach for aesthetic evaluation. Al-
though the Shannon’s entropy is dominant in computational methods
of aesthetics, it fails to discriminate accurately structurally differ-
ent patterns in two-dimensions. We have adapted an informational
measure to overcome the shortcomings of entropic measure by us-
ing information gain measure. This measure is customised to ro-
bustly quantify the complexity of multi-state cellular automata pat-
terns. Experiments are set up with different initial configurations in a
two-dimensional multi-state cellular whose corresponding structural
measures at global level are analysed. Preliminary outcomes on the
resulting automata are promising, as they suggest the possibility of
predicting the structural characteristics, symmetry and orientation of
cellular automata generated patterns.

1 INTRODUCTION

Cellular Automata (CA) initially invented by von Neumann in the
late 1940s as material independent systems to investigate the pos-
sibility self-reproduction. His initial cellular automaton to study the
possibility of self-reproduction was a two-dimensional (2D) cellu-
lar automaton with 29 states and 5-cell neighbourhood. A cellular
automaton consists of a lattice of uniformly arranged finite state au-
tomata each of which taking input from the neighbouring automata;
they in turn compute their next states by utilising a state transition
function. A synchronous or asynchronous interactive application of
state transition function (also known as a rule) over the states of au-
tomata (also referred to as cells) generates the global behaviour of a
cellular automaton.

The formation of complex patterns from simple rules sometimes
with high aesthetic quality has been contributed to the creation of
many digital art works since the 1960s. The most notable works are
“Pixillation”, one of the early computer generated animations [32],
the digital art works of Peter Struycken [31, 36], Paul Brown [5, 12]
and evolutionary architecture of John Frazer [18]. Although classi-
cal one-dimensional CA with binary states can generate complex
behaviours, experiments with 2D multi-state CA have shown that
adding more states significantly increases the complexity of be-
haviour, therefore, generating very complex symmetrical patterns
with high aesthetic qualities [21, 22]. These observations have led
to the quest of developing a quantitative model to evaluate the aes-
thetic quality of multi-state CA patterns.

This work follows Birkhoff’s tradition in studying mathematical
bases of aesthetics, especially the association of aesthetic judgement
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with the degree of complexity of a stimulus. Shannon’s information
theory provided an objective measure of complexity. It led to emer-
gence of various informational theories of aesthetics. However due
to its nature, the entropic measure fails to take into account spacial
characteristics of 2D patterns which is fundamental in addressing
aesthetic problem for CA generated patterns.

2 CELLULAR AUTOMATA ART
The property of CA that makes them particularly interesting to dig-
ital artists is their ability to produce interesting and logically deep
patterns on the basis of very simply stated preconditions. Iterating
the steps of a CA computation can produce fabulously rich output.
The significance of CA approach in producing digital art was out-
lined by Wolfram in his classical studies on CA behaviours in [39].
Traditional scientific intuition, and early computer art, might lead
one to assume that simple programs would always produce pictures
too simple and rigid to be of artistic interest. But extrapolating from
Wolfram’s work on CA, “it becomes clear that even a program that
may have extremely simple rules will often be able to generate pic-
tures that have striking aesthetic qualities-sometimes reminiscent of
nature, but often unlike anything ever seen before” [39, p.11].

Knowlton developed “Explor” system for generating 2D patterns,
designs and pictures from explicitly provided 2D patterns, local op-
erations and randomness. It aimed not only to provide the computer
novice with graphic output; but also a vehicle for depicting results of
simulations in natural (i.e. crystal growth) and hypothetical (e.g. cel-
lular automata) situations, and for the production of a wide variety of
designs [23]. Together with Schwartz and using Explor’s CA mod-
els, they generated “Pixillation”, one of the early computer gener-
ated animations [32]. They contested in the Eighth Annual Computer
Art Contest in 1970 with two entries, “Tapestry I” and “Tapestry II”
(two frames from Pixillation). The “Tapestry I” won the first prize
for “new, creative use of the computer as an artist’s tool” as noted
by selecting committee and covered the front page of Computers &
Automation on Aug. 1970.

Meertens and Geurts also submitted an entry to the Eighth An-
nual Computer Art Contest with “Crystalization” as an experimen-
tal computer graphics generated by a asynchronous cellular automa-
ton. Their entries were four drawings intended to generated patterns
that combine regularity and irregularity in a natural way [20]. Peter
Struycken, the Dutch contemporary digital artist has created many
of his works “Computer Structures” (1969), “Four Random Draw-
ings for Lien and Ad” (1972), “Fields” (1979-1980) with binary and
multi-state CA [31, 36]. Paul Brown, the British contemporary dig-
ital artists also applied various CA rules in his static and kinematic
computer arts. “Neighbourhood Count” (1991), “Infinite Permuta-
tions V1” (1993-94), “Infinite Permutations V2” ( 1994-95), “Sand



Lines” (1998), “My Gasket”(1998) “Chromos” (199-2000) [5, 12]
are some of his CA generated works.

John F. Simon Jr created a series of art projects called “Art Ap-
pliances” using a CA based software and LCD panels to exhibit
CA pattern formations. “Every Icon” (1996), “ComplexCity” (2000)
and “Automata Studies” (2002) are examples of his art appliances.
Driessen and Verstappen have produced “Ima Traveler” (1996) and
“Breed”(1995-2007) digital arts in a three-dimensional CA space.
Dorin’s “Meniscus” [13] and McCormack’s “Eden” [27] are further
examples of interactive artworks built on the bases of CA rules. In
addition, a combination of CA with other Alife techniques (e.g. evo-
lutionary computing or L-systems) has been used to explore a set of
rules generating patterns with aesthetic qualities [9, 34].

Fig. 1 shows some experimental patterns generated by the authors
to demonstrate the generative capabilities of CA in creating appeal-
ing complex patterns from various initial configurations.

Figure 1. Sample 2D CA generated complex symmetrical patters

3 DEFINITION OF CELLULAR AUTOMATA

In this section, formal notions of 2D CA are explained and later re-
ferred to in the rest of the paper.

Definition 1: A cellular automaton is a regular tiling of a lattice
with uniform deterministic finite state automata as a quadruple of
A = 〈L, S,N, f〉 such that:

1. L is an infinite regular lattice in Z,
2. S ⊆ N0 is a finite set of integers as states,
3. N ⊆ N+ is a finite set of integers as neighbourhood,
4. f : S|N| 7→ S is the state transition function.

The state transition function f maps from the set of neighbour-
hood states S|N| where |N | is the cardinality of neighbourhood set,
to the set of states {s0, .., sn−1} synchronously in discrete time in-
tervals of t = {0, 1, 2, 3, ..., n} where t0 is the initial time of a cel-
lular automaton with initial configuration. A mapping that satisfies
f(s0, ..., s0) = s0 where (s0 ∈ S), is called a quiescent state.

In a 2D square lattice (Z2) if the opposite sides of the lattice (up
and down with left and right) are connected, the resulting finite lat-
tice forms a torus shape (Fig.2) which is referred as a lattice with
periodic boundary conditions.

Figure 2. Connecting the opposite sides of a lattice forms a torus

The state of each cell at time (t+1) is determined by the states of
immediate surrounding neighbouring cells (nearest neighbourhood)
at time (t) given a neighbourhood template. There are two com-
monly used neighbourhood templates considered for 2D CA. A five-
cell mapping f : S5 7→ S known as von Neumann neighbourhood
(Eq. 1) and a nine-cell mapping f : S9 7→ S known as Moor neigh-
bourhood (Eq. 2).

st+1
i,j = f

 st(i,j+1)

st(i−1,j) st(i,j) st(i+1,j)

st(i,j−1)

 (1)

st+1
i,j = f

 st(i−1,j+1) st(i,j+1) st(i+1,j+1)

st(i−1,j) st(i,j) st(i+1,j)

st(i−1,j−1) st(i,j−1) st(i+1,j−1)

 (2)

Since the elements of the S are non-negative integers and discrete
instances of time are considered, the resulting cellular automaton is
a discrete time-space cellular automaton. These type of CA can be
considered as discrete dynamical systems.



4 INFORMATIONAL AESTHETICS
The topic of determining aesthetics or aesthetic measures have been
a heated debate for centuries. There is a great variety of computa-
tional approaches to aesthetics in visual and auditory forms including
mathematical, communicative, structural, psychological and neuro-
science. A thorough examination of these methodologies from dif-
ferent perspective has been provided in [19]. In this section, some in-
formational aesthetic measures are presented. Our review is focused
on informational theories of aesthetics as these are the ones that con-
form with this work directly.

Birkhoff suggested an early aesthetic measure by arguing that the
measure of aesthetic (M) is in direct relation with the degree of order
(O) and in reverse relation with the complexity (C) of an object [11].
Given that order and complexity are measurable parameters the aes-
thetic measure of (M ) is:

M =
O

C
(3)

Even though the validity of Birkhoff’s approach to the relationship
and definition of order and complexity has been challenged [38, 15,
16, 14], the notion of complexity and objective methods to quantify
it remains a prominent parameter in aesthetic evaluation functions.

Shannon’s introduction of information theory provided a mathe-
matical model to measure the degree of uncertainty (entropy) asso-
ciated with a random variable [33]. The entropy H of a discrete ran-
dom variable X is a measure of the average amount of uncertainty
associated with the value of X . So H(X) as the entropy of X is:

H(X) = −
∑
x∈X

P (x) log2 P (x) (4)

The definition of entropy for X has a logarithm in the base of 2 so
the unit of measure of entropy is in bits.

Moles [28], Bense [7, 6, 8] and Arnheim [2, 3, 4] were pioneers of
the application of Shannon’s entropy to quantify order and complex-
ity in Birkhoff’s formula by adapting statistical measure of informa-
tion in aesthetic objects. Berlyne used informational approach in his
psychological experiments to determine humans perceptual curiosity
of visual figures [10]. Bense argued that aesthetic objects are “ve-
hicles of aesthetical information” where statistical information can
quantify the aesthetical information of objects [7]. For Bense order
is a process of artistic selection of elements from a determined reper-
toire of elements. The aesthetic measure (MB) is a the relative re-
dundancy (R) of the reduction of uncertainty because of selecting
elements from a repertoire (Hmax −H) to the absolute redundancy
(HMax).

MB =
R

Hmax
=

Hmax −H

Hmax
(5)

where H quantifies entropy of the selection process from a deter-
mined repertoire of elements in bits and Hmax is maximum entropy
of predefined repertoire of elements [8]. His informational aesthetics
has three basic assumptions. (1) Objects are material carriers of aes-
thetic state, and such aesthetic states are independent of subjective
observers. (2) A particular kind of information is conveyed by the
aesthetic state of the object (or process) as aesthetic information and
(3) objective measure of aesthetic objects is in relation with degree
of order and complexity in an object [29].

Herbert Franke put forward an aesthetic perception theory on the
ground of cybernetic aesthetics. He made a distinction between the
amount of information being stored and the rate of information flow-

ing through a channel as information flow measured in bits/sec [17].
His theory is based on psychological experiments which suggested
that conscious working memory can not take more than 16 bits/sec
of visual information. Then he argued that artists should provide a
flow of information of about 16 bits/sec for works of art to be per-
ceived as beautiful and harmonious.

Staudek in his multi criteria approach (informational and struc-
tural) as exact aesthetics to Birkhoff’s measure applied information
flow I ′ by defining it as a measure assessing principal information
transmission qualities in time. He used 16 bits/sec reference as
channel capacity Cr = 16 bits/sec and a time reference of 8 sec-
onds (tr = 8s) to argue that artefacts with I > 128 bits will not
fit into the conscious working memory for absorbing the whole aes-
thetic message [35].

Adapting Bense’s informational aesthetics to different approaches
of the concepts of order and complexity in an image in [30], three
measures based on Kolmogorov complexity [25], Shannon entropy
(for RGB channels) and Zurek’s physical entropy [40] were intro-
duced. Then the measures were are applied to analyse aesthetic
values of several paintings (Mondrian, Pollock, and van Gogh).
Machado and Cardoso [26] proposed a model based on Birkhoff’s
approach as the ratio of image complexity to processing complexity
by arguing that images with high visual complexity, are processed
easily so they have highest aesthetic value.

5 INFORMATION GAIN MODEL

Despite the domination of entropic measures to aesthetic evaluation
functions, it has a major shortcoming in terms of reflecting struc-
tural characteristics of 2D patterns. Examples in Fig.3 illustrate this
shortcoming by showing the calculations of entropy for 2D patterns
with the same density but different structural regularities and com-
plexities. Fig.3a is a uniformly distributed patterns (a highly ordered
pattern), Fig.3b and Fig.3c are patterns with identical structures but
in vertical and horizontal orientations. Fig.3d is randomly arranged
pattern (a random pattern). As it is evident from the comparison of
the patterns and their corresponding entropy value, all of the patterns
have the same entropy value. This clearly demonstrates that Shan-
non’s entropy fails to differentiate structural differences among these
patterns. In the case of measuring complexity of CA generated pat-
terns especially with multi-state structures, it would be problematic
if only entropy used as a measure of complexity for the purpose of
aesthetic evaluation.

(a) (b) (c) (d)
H = 1 H = 1 H = 1 H = 1

Figure 3. The measure of entropy H for structurally different patterns
with the same density of 50%

In order to overcome this problem we have adapted information
gain model introduced as a method of characterising the complexity
of dynamical systems [37]. It has been applied to describe quantita-
tively the complexity of geometric ornaments and patterns arising in
random sequential adsorption of discs on a plane [1]. The informa-



tion gain G, also known as Kullback-Leibler divergence [24], mea-
sures the amount of information required to select a discrete ran-
dom variable X with state j if prior information about variable X is
known at the state of i.

Gxij = − logP(xi|xj) (6)

where P(xi|xj) the conditional probability of the discrete random
variable x at state i given its state j. Then from Eq. 6 mean infor-
mation gain G would be the average information gain from possible
states (i|j):

G =
∑
i,j

P (i, j)Gij = −
∑
i,j

Pi,j logP (i|j) (7)

where P(i,j) is the joint probability of the variable x at state i and
variable x at state j. Considering Eq. 7, we can define a structural
complexity measure for a multi-state 2D cellular automaton as fol-
lows:

Definition 2: A structural complexity measure is the mean infor-
mation gain of a cell having a heterogeneous neighbouring cell in a
multi-state two-dimensional cellular automaton pattern.

G = −
∑
i,j

P(i,j) log2 P(i|j) (8)

where P(i,j) is the joint probability of a cell having the i state
(colour) and the neighbouring cell has the state (colour) j in a given
neighbouring cell. And P(i|j) is the conditional probability of the
state (colour) i given that its neighbouring cell has state (colour) j in
one of four directions of up, low, left or right. The quantity G mea-
sures average information gain about other elements of the structure
(e.g. the state of the neighbouring cell in one of the four directions),
when some properties of the structure are known (e.g. the state of a
cell). It can be noted that the combined probabilities of Pi,j and Pi|j
describe spatial correlations in a pattern so that G can detect inherent
correlations of patterns. Considering neighbourhood templates of a
2D CA in Eq.1 and Eq. 2, following variations of G can be defined
where for each cell in i state given its neighbouring cell in j state in
any of directions.

Gu = −
∑

i,j(x,y+1)

P(i,j(x,y+1))
log2 P(i|j(x,y+1))

(9)

Gd = −
∑

i,j(x,y−1)

P(i,j(x,y−1))
log2 P(i|j(x,y−1))

(10)

Gl = −
∑

i,j(x−1,y)

P(i,j(x−1,y))
log2 P(i|j(x−1,y))

(11)

Gr = −
∑

i,j(x+1,y)

P(i,j(x+1,y))
log2 P(i|j(x+1,y))

(12)

The measure is applied to calculate structural complexly of sam-
ple patterns in Fig 4 to demonstrates the ability of G in discrimi-
nating structurally different 2D patterns. The calculations have been
performed for each elements of the patterns having a heterogamous
colour in one of the four directions from two possible colours.

(a)
Gu = 0

Gd = 0

Gl = 0

Gr = 0
H = 1

(b)
Gu = 0.5510

Gd = 0.5510

Gl = 0

Gr = 0
H = 1

(c)
Gu = 0

Gd = 0

Gl = 0.5510

Gr = 0.5510
H = 1

(d)
Gu = 0.9839

Gd = 0.9871

Gl = 0.9377

Gr = 0.9473
H = 1

Figure 4. The comparison of entropy H and G for structurally different
patterns but with the same density of 50%

6 EXPERIMENTS AND RESULTS
A set of experiments were designed to examine the effectiveness of G
in discriminating structurally different patterns generated by multi-
state 2D CA. The chosen experimental cellular automaton maps three
states represented by green, red and blue colour cells. The quiescent
state cells represented with white colours. The size of the lattice is
set to 129 × 129 cells. Two set of experiments are conducted: (1)
a single cell as initial configuration and (2) a randomly seeded ini-
tial configuration with 50% destiny of three states (green, red, blue).
Both of the experiments are conducted for 300 successive time steps.
The G for four directions along with their corresponding entropy H
are measured in bits.

Fig. 7 and Fig. 8 illustrate the formation of 2D patterns for a sam-
ple of 12 time steps {0, 10, 20, 30, 40, 50, 60, 70, 80, 100, 200, 300}
starting from two different initial configurations and their corre-
sponding G and H . Figs. 7 and 6 shows the plots of G and H for
300 time steps. The G measures in Fig. 7 which shows the formation
of 2D patterns from a single cell are conforming in directional cal-
culations; it means that each cell in the patterns has exactly the same
amount of information regarding their neighbouring cell in one of
the four directions. Therefore it indicates that the development of the
patterns are symmetrical in the four directions. In other words, the
cellular automaton with a single cell as its initial configuration has
created 2D pattens with four-fold rotational symmetry. The measure
in Fig. 8 starts with G ≈ 1.7 for the random initial configuration
and with H ≈ 1.5 (maximum entropy for a three-state patterns since
log2 3 = 1.5848). The formation of patterns with local structures
reduces the value of G. The values of G are not conforming in any
directional calculations which indicates the development of less or-
dered (“chaotic”) patterns. From the comparison of H with G in the
set of experiments, it is clear that it would be very unlikely to dis-
criminate the structural differences of patterns with a single measure



Figure 5. The plot of G and H for 300 time steps starting from single cell

Figure 6. The plot of G and H for 300 time steps starting from random initial configuration

of H given the diversity of patterns that can be generated by various
2D CA state transition functions. Computing directional measures
of G and comparing their values provides a more subtle measure of
structural order and complexity of a 2D pattern. The conformity or
non-conformity of G measure in up, down, left and right neighbour-
ing cells clearly gives us not only an accurate measure of structural
characteristics of 2D patterns but they also provide us with informa-
tion about the orientation of the patterns as well.

7 CONCLUSION
Cellular automata (CA), which are fundamental to the study of self-
replicating systems, are powerful tools in generating computer art.
The multi-state 2D CA rule space is a vast set of possible rules which
can generate interesting patterns with high aesthetic qualities. The
application of CA in digital art has been reviewed; and the concepts
of order and complexity from Shannon’s information entropy per-
spective in the CA framework has been analysed concluding that
existing informational aesthetic measures do not capture structural
differences in 2D patterns. In order to address the shortcomings of
informational approaches to computational aesthetics, a mean infor-
mation gain model was adapted to measure both structural complex-
ity and distinguish symmetrical orientation of 2D CA patterns. The
measure takes into account conditional and joint probabilities of the
information gain value that a cell offers, given a particular position
of its neighbouring cells. The effectiveness of the measure is shown

in a series of experiments for multi-state 2D patterns generated by
a cellular automaton. The results of the experiments show that the
mean information gain model is capable of distinguishing the struc-
tural complexity of 2D CA patterns as well as their symmetrical ori-
entation. Having a model to evaluate the aesthetic qualities of CA
generated patterns could potentially have a substantial contribution
towards further automation of the evaluative component in the CA
based computer generated art. This could also enable us to have an
integrated process of generation-evaluation which is a subject of on
going research.
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t = 0

Gu = 0.0009

Gd = 0.0009

Gl = 0.0009

Gr = 0.0009
H = 0

t = 10

Gu = 0.0551

Gd = 0.0551

Gl = 0.0551

Gr = 0.0551
H = 0.6343

t = 20

Gu = 0.2261

Gd = 0.2261

Gl = 0.2261
Gr = 0.2261
H = 1.0316

t = 30

Gu = 0.4698

Gd = 0.4698

Gl = 0.4698
Gr = 0.4698
H = 0.9957

t = 40

Gu = 0.7805

Gd = 0.7805

Gl = 0.7805
Gr = 0.7805
H = 1.2224

t = 50

Gu = 0.9930

Gd = 0.9930

Gl = 0.9930

Gr = 0.9930
H = 1.0875

t = 60

Gu = 1.3524

Gd = 1.3524

Gl = 1.3524

Gr = 1.3524
H = 1.2031

t = 70

Gu = 1.4539

Gd = 1.4539

Gl = 1.4539

Gr = 1.4539
H = 1.1757

t = 80

Gu = 1.4703

Gd = 1.4703

Gl = 1.4703

Gr = 1.3699
H = 1.1434

t = 100

Gu = 1.4282

Gd = 1.4282

Gl = 1.4282

Gr = 1.4282
H = 1.0051

t = 200

Gu = 1.3699

Gd = 1.3699

Gl = 1.3699

Gr = 1.3699
H = 0.8409

t = 300

Gu = 1.3632

Gd = 1.3632

Gl = 1.3632

Gr = 1.3632
H = 0.8276

Figure 7. Patterns generated from a single cell as initial configuration and
their corresponding G and H values

t = 0

Gu = 1.7928

Gd = 1.7913

Gl = 1.7924

Gr = 1.7923
H = 1.5849

t = 10

Gu = 1.4418

Gd = 1.4417

Gl = 1.4440

Gr = 1.4438
H = 1.0879

t = 20

Gu = 1.4702

Gd = 1.4696

Gl = 1.4710
Gr = 1.4714
H = 1.1674

t = 30

Gu = 1.4939

Gd = 1.4947

Gl = 1.4929
Gr = 1.4926
H = 1.1641

t = 40

Gu = 1.4683

Gd = 1.4691

Gl = 1.4678
Gr = 1.4675
H = 1.0863

t = 50

Gu = 1.4534

Gd = 1.4546

Gl = 1.4564

Gr = 1.4575
H = 1.0318

t = 60

Gu = 1.4290

Gd = 1.4300

Gl = 1.4280

Gr = 1.4274
H = 0.9588

t = 70

Gu = 1.4192

Gd = 1.4196

Gl = 1.4192

Gr = 1.4189
H = 0.9241

t = 80

Gu = 1.4092

Gd = 1.4091

Gl = 1.4056

Gr = 1.4047
H = 0.8873

t = 100

Gu = 1.3968

Gd = 1.3964

Gl = 1.3932

Gr = 1.3931
H = 0.8581

t = 200

Gu = 1.3904

Gd = 1.3900

Gl = 1.3871

Gr = 1.3863
H = 0.8388

t = 300

Gu = 1.3909

Gd = 1.3905

Gl = 1.3877

Gr = 1.3869
H = 0.8393

Figure 8. Patterns generated from a 50% seeded density as initial
configuration and their corresponding G and H values
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