
Towards a Computational Theory of Epistemic Creativity
Jiřı́ Wiedermann1and Jan van Leeuwen2

“The creative act is not an act of creation in the
sense of the Old Testament. It does not create
something out of nothing: it uncovers, selects,
re-shuffles, combines, synthesizes already exist-
ing facts, idea, faculties, skills. The more famil-
iar the parts, the more striking the new whole.

A. Koestler [9]

Abstract. We investigate the computational process of creativity
from the viewpoint of our recent thesis stating that computation is
a process of knowledge generation. Rather than considering the cre-
ativity process in its full generality, we restrict ourselves to so-called
epistemic creativity which deals with the processes that create knowl-
edge. Within this domain we mainly concentrate on elementary acts
of creativity — viz. drawing analogies. In order to do so using the
epistemic framework, we define analogies as certain relationships
among linguistic expressions and we state what knowledge must be
discovered in order to resolve a given incompletely specified anal-
ogy. We assume analogies are formed in a natural language and also
require that a solution of each analogy must contain an explanation
why the resulting analogy holds. Finally, the difference between non-
creative and creative computational processes is discussed. Our ap-
proach differs from the majority of previous approaches in stress-
ing the knowledge discovery aspects of computational creativity, in
requiring explanations in analogy solving and, last but not least, in
including theory-less domains serving as knowledge base for knowl-
edge discovery process.

1 INTRODUCTION

Creativity is an activity producing knowledge in the form of ideas,
artifacts or behavior that is new for its creator and in some way
valuable or important for him or her. Without creativity, no artifi-
cial system can aspire to be on par with human intelligence. In its
most developed form creativity permeates all human activities. It has
been subject of studies in many academic disciplines, among them
in psychology, cognitive science, education, philosophy (particularly
philosophy of science), technology, theology, sociology, linguistics,
economics, and in arts. While all of these disciplines have defined
creativity according to their own paradigms and needs, hardly any of
them made a serious effort to reveal the underlying mental mecha-
nisms supporting and enabling the process of creativity. This is per-
haps due to the fact that the anticipated nature of these mechanisms
has been assumed to lay outside of the disciplines at hand. But there

1 Institute of Computer Science of CAS and Czech Institute of Informat-
ics, Robotics and Cybernetics of CTU, Prague, Czech Republic email:
jiri.wiedermann@cs.cas.cz

2 Center for Philosophy of Computer Science, Utrecht University, the Nether-
lands email: J.vanLeeuwen1@uu.nl

is one exception to this rule, and this is the field of artificial intel-
ligence, and especially artificial general intelligence (AGI). Mecha-
nisms of artificial creativity have been intensively studied in cogni-
tive science as well. Due to its omnipresence in many fields of study,
the literature concerning creativity is immensely rich and too exten-
sive to be discussed, summarized or referenced fully here.

When inspecting definitions of creativity in whatever discipline,
AGI included, two things strike the eye: first, the definitions are very
informal, given in a natural language, and second, the definitions
hardly ever mention the term knowledge. Especially the latter fact
is quite surprising since, perhaps with the exception of artistic cre-
ativity, the ability to create new knowledge permeates all domains
of creativity. In such domains the primary purpose of creativity is to
generate or to demonstrate new knowledge in whatever form — be
it conventional knowledge used in everyday life, or scientific knowl-
edge, or a skill, behavior, or a “materialized knowledge” (i.e., knowl-
edge embedded into objects, their functioning, shape or appearance).
This kind of creativity is called epistemic creativity. Mokyr (cf. [11])
describes it as “actually creating new knowledge or combining exist-
ing fragments of knowledge in altogether new ways”, as part of his
more general view of productive creativity. How can the functioning
of epistemic creativity effectively be understood?

It is true that the research field called “knowledge discovery”
has become quite popular since the 1990s. Knowledge discovery
describes the process of automatically searching large volumes of
structured (databases, XML) and unstructured (text, documents, im-
ages, multimedia) data for patterns that can be considered knowledge
about the data. When compared to what one expects from epistemic
creativity, the field of knowledge discovery, despite its name, merely
extracts knowledge about the data without having the ambition to
create new knowledge other than that which can be straightforwardly
extracted from data. This, by the way, can be illustrated by the fact
that in the research papers in this field, the word “creativity” is used
quite rarely.

It is also true that at the intersection of the fields of artificial intelli-
gence, cognitive psychology, philosophy, and the arts there is a flour-
ishing multidisciplinary endeavor called “computational creativity”
(also known as artificial creativity or creative computation). Its roots
go back to the nineteen sixties. The field is concerned with theoret-
ical and practical issues in the study of creativity. Here the situation
seems to be fairly opposite to the previous case: while the field teems
with the word “creative” and all its derivatives, the notion of “knowl-
edge” is much less frequent here. In part this could be due to the fact
that the field very often seeks its inspiration in artistic creativity. The
field is looking for its theoretical foundations.

In our opinion this frequent overlooking of the connection be-
tween (computational) creativity and knowledge generation - where
the latter obviously is the main sense of epistemic creativity - may
have been caused by an insufficient understanding of what compu-



tation is. In our recent works [17],[18], [19], [15] we coined the
idea that the classical view of computation, based on the ways in-
formation is processed by all sorts of machine models (typically by
Turing machines), prevents us from clearly seeing the main purpose
of computations. The classical view favors the view of HOW com-
putations are performed, instead of WHAT they are doing, i.e. of
what is their sense. We hold the view that computation is any pro-
cess of knowledge generation, as we have demonstrated in our previ-
ous works. Note that the notion of knowledge generation is machine-
independent: we are not interested how, by what means, knowledge
is generated, be it in a serial, parallel, interactive, or any other way.
What counts is what knowledge is generated.

Changing the view of what computation is may have dramatic con-
sequences. For instance, in the past, various authors have argued
that cognition is not computation (cf. [3], [14]), where they have
viewed computation in its classical sense, through classical mod-
els and scenarios of computations. Under the new view, cognition
becomes knowledge generation, and thus, computational, indepen-
dently of the underlying machine model and computational scenar-
ios. The previous problem vanishes thanks to a new apprehension of
computation.

Seeing computations as knowledge generation processes does not
automatically turn every computation into a creative process. Intu-
itively, epistemic creativity requires more than producing knowledge
according to some rigid schema (program), counting with some fixed
number of alternatives each of which corresponding to a certain pre-
specified circumstance. For creativity, we require more: new, original
alternatives (pieces of knowledge) satisfying as many required con-
straints as possible must be discovered within the existing knowledge
and combined in a novel way under whatever circumstance that can-
not be known beforehand. From the candidate alternatives, the one
best fitting the constraints must get chosen. This leads to a computa-
tional view of epistemic creativity.

The ideas described in the last paragraph answer the often posed
question why people have ideas and computers don’t. The reason
why computers are not creative can have two reasons. The first one
is that in the majority of cases when an average person is using a
computer, creativity is not required by the application (e.g., in look-
ing for a train schedule). The second answer concerns the so-far quite
rare cases where creativity is required — e.g., when consulting symp-
toms of a disease, or asking for a nice analogy. In such situations a
computer will probably not be as creative as we would like to see be-
cause it is programmed without understanding how creativity works
and what its prerequisites are. Nonetheless, the essence of epistemic
creativity has been described in the last two sentences of the previous
paragraph. Can we say more about the respective creative processes?
Can we be more specific in describing which knowledge generating
processes can be seen as creative processes? What are the prerequi-
sites for computational creativity? (Note that we are using the term
“computational creativity” in a new, broader sense than mostly used
in the eponymous research field.)

In this paper we will answer the last three questions from the epis-
temic viewpoint of computations. As it turns out, answering the last
three questions in their full generality is not easy. Therefore, in what
follows we will first investigate but a specific case of creativity. We
will concentrate on one of the simplest cases of creativity, and this
is analogy solving. Solving an analogy can be seen as an elementary
creativity act that calls for discovering and displaying new relations
between known pieces of knowledge. Then we will extend our study
to a general case of new knowledge discovery.

The structure of the paper is as follows. In Section 2 we present our

view of computation as knowledge generation that will offer a unified
framework for our further consideration of computations. Special at-
tention is paid to computations in theory-less domains correspond-
ing to natural languages. Section 3 contains the main contribution of
the paper. After some preliminaries in Subsection 3.1. analogies and
their formal definition in the epistemic framework is presented in
Subsection 3.2. The “hard to vary” principle is described, enabling
a “quality” judgment of explanatory analogies. In Subsection 3.3.
metaphors and allegories as variants of analogies are considered.
Subsection 3.4. deals with the efficiency issues in analogy solving.
The entire Section 4 is devoted to the general problem of knowl-
edge discovery. Finally, Section 5 contains a general discussion, also
paying attention to the difference between creative and non-creative
knowledge generation. Conclusions are given in Section 6.

The contribution of the paper to the present state of the art of the
theory of computational creativity can be seen in several planes. First,
the epistemological view of computations offers a natural unified
framework for studying problems related to epistemic creativity. Sec-
ond, this framework, being machine independent, allows the consid-
eration of theory-less knowledge domains. Third, pertaining to anal-
ogy solving, the requirement for a computation to be accompanied
by evidence that it works as expected is mirrored in the definition of
analogy by a similar demand for analogy explanations. Fourth, ex-
planations attached to each solution of explanatory analogies allows
one to judge their explanatory power via the “hard to vary” principle.
Finally, our considerations shed further light on the general problem
when a computational process is a creative process.

2 COMPUTATION AS KNOWLEDGE
GENERATION

Viewing computation as knowledge generation as described in [17],
[18] and [19], requires certain ingredients that we first describe in-
formally.

Knowledge in our framework is knowledge in the usual sense of
this word. This, of course, does not look like a definition of knowl-
edge, but we need not be very specific. For illustration purposes only,
we cite the following definition from Wikipedia: Knowledge is a fa-
miliarity with someone or something, which can include facts, infor-
mation, descriptions, or skills acquired through experience or edu-
cation. It can refer to the theoretical or practical understanding of
a subject. It can be implicit (as with practical skill or expertise) or
explicit (as with the theoretical understanding of a subject); it can be
more or less formal or systematic. Obviously, knowledge according
to this definition is observer–dependent.

Any knowledge is a part of a so-called epistemic domain, or do-
main of discourse, corresponding to the kind of knowledge we are
interested in. Such a domain can be given formally — as in math-
ematical or logical theories (e.g., theory of recursive functions) or
entirely informally, in a natural language, as all sentences describing
phenomena in a real world. Intermediate cases (like physical, chem-
ical or biological theories) described in part formally and in part in-
formally are also acceptable. In any case, we must have means to
describe the so-called pieces of knowledge (e.g., axioms, sentences
or formulae in formal theories, or words and linguistic expressions
in informal theories described in a natural language).

The final ingredient we require are so-called inference rules ap-
plicable to the pieces of knowledge in a given domain allowing con-
structing, generating new pieces of knowledge that will still belong
to the domain at hand. Again, in the case of formal theories these
rules are also formal rules (like deductive rules in logic), but we also



allow entirely informal ones, corresponding to “rational thinking” in
the case of informal theories.

The epistemic domain together with the corresponding inference
rules form the epistemic theory.

Each computation we will consider will generate knowledge from
some epistemic domain with the help of the corresponding computa-
tional process. We will say that such a computation will be rooted
in this domain. Starting from the so-called initial knowledge the
computational process will generate output knowledge within the
given epistemic domain. Depending on the epistemic domain, initial
knowledge is given in the form of axioms, definitions, observations,
facts, perceptions, etc. The output knowledge may take the form of
propositions, theorems or proofs in the case of formal theories, and
statements, hypotheses, scientific laws, or predictions in the case of
natural sciences. In the case of informal theories (like theory of mind,
arts, etc.) the generated knowledge takes the form of conceptual-
ization, behavior, communication, utterances in a natural language,
thinking, and knowledge about the world formed mostly in a natural
language or in a form of scientific theories and other writings.

From what has been said above one can see that the epistemic
domains range from so-called theory-full domains corresponding to
formal, abstract theories to theory-less domains that admit no formal
descriptions for capturing e.g. behavior in common life situations (cf.
[13]).

In order for a computation to generate knowledge there must be
evidence (e.g., a proof) that explains that the computational process
works as expected. Such an evidence must ascertain two facts: (i)
that the generated knowledge can be derived within the underlying
epistemic theory, and (ii) that the computational process generates
the desired knowledge.

The latter is the key to the following more formal definition (cf.
[18]). In this definition we assume that the input to a computation is
part of both the underlying epistemic domain (and thus of the theory)
and the initial data of the computational process. Do not forget that
although the notation used in the definition formally resembles the
notation used in the formal theories, we will also be using it in the
case of informal epistemic domains.

Definition 1 Let T be a theory, letω be a piece of knowledge serving
as the input to a computation, and let κ ∈ T be a piece of knowledge
from T denoting the output of a computation. Let Π be a computa-
tional process and let E be an explanation. Then we say that process
Π acting on input ω generates the piece of knowledge κ if and only
if the following two conditions hold:

• (T, ω) ` κ, i.e., κ is provable within T from ω, and
• E is the (causal) explanation that Π generates κ on input ω.

We say that the 5-tuple C = (T, ω, κ,Π, E) is a computation
rooted in theory T which on input ω generates knowledge κ using
computational process Π with explanation E.

When considering epistemic creativity in the sense of human men-
tal ability, one usually thinks of it in the context of a natural language.
How could the corresponding computation (seen as knowledge gen-
eration) be captured by the above definitions?

First of all, one must bear in mind that the underlying knowledge
domain is a domain comprising, in principle, all human knowledge.
This knowledge can be seen as a union of various specific knowl-
edge domains which vary from theory-full to theory-less domains.
The respective knowledge is thus heterogeneous knowledge and nat-
ural language serves as an important, and in fact, the only one known

mediator among the respective theories. The less formal the knowl-
edge is the more it relies on the natural language. The “inference
rules” for heterogeneous domains are a mix of informal and formal
rules. That is, when one speaks within theory-less domains, the infor-
mal rules of “rational thinking” are used. Otherwise, speaking within
theory-full domains one makes use of the rules corresponding to that
domain. Natural language provides not only a tool for initial forming
and describing a theory, it also provides a unified tool for understand-
ing all theories and “moving” among them. Last but not least, natu-
ral language and its semantics provide a link between a theory and
the physical world. Only due to natural language and only within a
theory one can explicate meaning of the expressions of a natural lan-
guage, i.e., their semantics. Namely, in our framework the meaning
of any expression of a natural language is given by knowledge per-
tinent to this expression within a certain domain of discourse. This
knowledge comes again in the form of a theory stating all contexts
and relationships among them in which the expressions at hand can
be used. That is, this theory captures the ways in which usage of
an expression makes sense in various contexts. Semantics is knowl-
edge and therefore it can be generated by a computation. From this
viewpoint all computations, including the computations that generate
knowledge based on understanding natural language, bear a homo-
geneous structure despite the fact that the underlying knowledge as a
whole covers many epistemic domains.

The knowledge framework behind a computation over the domain
of a natural language will normally be based on cooperating theories.
This is an extremely complex system since in principle to each word
a theory (in our general sense) is attached, controlling the proper use
of this word. In general, such a theory depends not only on the word
at hand, but also on the context in which the word is being used. In the
case of embodied cognitive systems the context does not only refer
to the grammatical context, but also to the entire perceptual situation
(cf. [16]). All this leads to a complex intertwining of the respective
theories working of the internal models of the world. If realized along
the lines sketched above, the underlying cooperative theories should
display understanding. The problem of understanding is the central
problem of AGI and our approach to computation seems to offer a
versatile tool for capturing the related issues. This is because it con-
centrates on the specification of WHAT the sense of understanding
is, while postponing the questions HOW this can be realized. Nev-
ertheless, it is fair to state that so far we do not know much about
cooperating theories leading to computational understanding.

Second, what computational process is behind a natural language?
It is the process running in our heads. Although we do not know the
details of how it works, we do know that it generates knowledge that
we can describe by natural language as indicated above. And finally,
what corresponds to the explanation? Again, it is an explanation in a
natural language.

To summarize, we see that natural language is used here as a
means for describing the underlying theory-less domain and the in-
ferences over such domain, as well as for explaining the respective
computations as performed by the human brain. Note the analogous
situation in classical computing where, for example, λ-calculus is
used both as a programming language and as the underlying model
of computation.

3 COMPUTATIONAL CREATIVITY
3.1 Preliminaries
Any computation as defined in the previous section generates knowl-
edge. Nonetheless, as remarked in the Introduction, this does not



necessarily mean that any computation should be seen as a creative
process, as a process that generates something new, original, unex-
pected, surprising, deserving a special interest or having some wor-
thy value as required in epistemic creativity. This “surprise effect”
does not happen when an output of a computation can routinely be
produced in a straightforward way, following pre-programmed paths
corresponding to a priori envisaged circumstances. The majority of
current computer programs works in this way. Typical examples in-
clude the computation of a function. Such a process can be seen as
generating explicit knowledge (i.e., a function value corresponding
to the input value) from implicitly described knowledge that is given
in the form of an algorithm. There is no room for creativity in such
a process. Note that, e.g., various editors and spreadsheets belong to
the category of such computations. Operating systems can serve as an
example of an interactive non-creative computational process. What
they do can be subsumed as an iteration of the following activity: “if
so and so happens, do so and so”. In computations of this kind no
creativity is assumed, since it is not required by the applications at
hand.

What about database searches? Here, pieces of knowledge are
sought by searching a finite amount of data (“knowledge items”) us-
ing a specified criterion. Is here some room for creativity? Now the
answer is not so simple as in the previous case. In “old fashioned”
databases as used in the early days of computing that used to seek an
item satisfying a certain condition within the set of structured data,
the situation was similar to the previous case. But think about the fol-
lowing case: a “database” (or rather: a knowledge base) containing
all knowledge possessed by an average person (whatever it might
mean), i.e., knowledge contained in the mind of that person. The
query would be as follows: ”name me an animal living in a desert
having the same relation to its living environment as has a shark to
the ocean” (the example taken from [16]). In this case, we can obtain
an answer “I don’t know” (e.g., from a child), or “a camel” (from an
average educated person), or “a desert lion” (from an informed ani-
mal rights activist), or even “Cataglyphis bicolor” (a desert-dwelling
ant also called “the Sahara desert ant”), from some joking entomol-
ogist. Now, were there some aspects of creativity in delivering any
od these answers? Which of these answers is the best? And, last but
not least, what was the mechanism enabling the answering of such a
query?

3.2 Analogies

The last example has been an example of analogy solving. Discus-
sions and studies of analogies go back to the ancient philosophers,
since analogies have always played in important role in reasoning
in logics, science, law and elsewhere. The role of analogy has been
intensively studied for years in cognitive science (cf. [8], [10]). The
notion of analogy is rarely formally defined. What one can find in the
literature, vocabularies and on the web are informal definitions serv-
ing to the purpose of the underlying field. Thus, one can find defini-
tions like “analogy denotes a similarity between like features of two
things, on which a comparison may be based; or “a comparison be-
tween one thing and another, typically for the purpose of explanation
or clarification”, or “analogy is a figure of language that expresses
a set of like relations among two sets of terms”. In logic, “analogy is
a form of reasoning in which one thing is inferred to be similar to an-
other thing in a certain respect, on the basis of the known similarity
between the things in other respects”.

There are many variants of analogies. For the purpose of knowl-
edge generation we will be especially interested in so-call explana-

tory analogies. Such analogies create understanding between some-
thing unknown by relating it to something known. They provide
insight or understanding by relating what one does not know with
what one knows. Thus, these analogies may be seen as providing el-
ementary creativity steps in deriving new knowledge. This approach
where knowledge is not obtained by simply composing pieces of old
knowledge has to be contrasted with the classical epistemological
procedures of knowledge generation. Such procedures are usually
described as extrapolations of repeated observations, or of known
facts, as some variants of an induction process. In this process, there
is no creativity aspect: knowledge is merely transformed from one
form to an other. However, it is reasonable to expect that the abil-
ity to create new knowledge must also include the ability to create
new explanations, not merely extrapolating or generalizing the past
experience.

In order to better understand explanatory analogies, we will need a
more formal definition of analogy that will enable us to see the finer
details of the envisaged computational process of creating knowledge
leading to analogy solution. Therefore, for our purposes the desired
definition should fit into the framework of epistemic computations.

The starting point will be to choose a suitable theory in which
the respective computations will be rooted. In this respect, note that
all informal definitions of analogies involve direct or indirect ref-
erence to natural language. Moreover, they are using linguistic ex-
pressions like features, relations, similarity, comparison, or explana-
tions. Therefore, a natural choice for such a theory would be a nat-
ural language NL possessing the richness of linguistic expressions
needed to understand and resolve analogies. The (informal) rules cor-
responding to NL would be those of “rational thinking”, and the
corresponding computational process will be that produced by the
human brain (cf. Definition 1) and the discussion thereafter.

In the following definition (taken from [16]) the adjective linguis-
tic will mean that the corresponding expressions, predicates or rela-
tions are not described in any formal logical calculus or theory —
rather they are described by expressions of a natural language NL
corresponding to the respective pieces of knowledge. These pieces
of knowledge form the knowledge base of NL. Their validity usu-
ally cannot be proved formally but can be known from experience,
empirically or from hearsay.

Definition 2 Let S = (s1, . . . , sk) and T = (t1, . . . , tk) be two
sequences of linguistic expressions from NL. If there exists a lin-
guistic k-ary predicate P ∈ NL such that both P (S) and P (T )
hold and linguistic relationsR1, . . . , Rk ∈ NL such thatRi(si, ti),
for i = 1, . . . , k holds, then we say that S is analogous to T w.r.t.
predicate P and relations R1, . . . , Rk.

Parameters s1, . . . , sk and t1, . . . , tk are called attributes of S
and T, respectively. Relations Ri’s are called similarity relations.

Note that the linguistic expressions, predicates and relations are
all described as expressions of a chosen natural languageNL.

Definition 3 Using the notation from Definition 1, given S and T,
analogy solving is a knowledge generating process whose purpose
is to find linguistic predicate P and linguistic relations R1, . . . , Rk

such that S is analogous to T w.r.t. predicate P and relations
R1, . . . , Rk.

We say that P is a conjecture and P (S), P (T ) and Ri(si, ti) are
the explanation of this conjecture.

To illustrate the use of the introduced formalism, consider again
the example from Subsection 3.1. Excerpting from [16]: If S =



(shark, ocean) and T = (camel, desert), then we may define
predicate P (x, y) as“x lives in y” and R1 as “both shark and camel
are animals”,R2 as “both ocean and desert are living environments”.
Then the claim “x lives in y” is the conjecture and the facts that
“camel lives in a desert” , “shark lives in ocean” , “both shark and
camel are animals” and “both ocean and desert are living environ-
ments” are its explanation. The previous task is often described as
“the relation of shark to ocean is like the relation of camel to desert”
and abbreviated as shark : ocean :: camel : desert.

If all expressions in S are known and only some expressions from
T are missing, then S is called the source and T is called a target
of the analogy. Then the whole analogy inclusively of its explana-
tion can be seen as an explanatory analogy. The task of finding both
the conjecture and its explanation is an act of knowledge discovery.
This is because in general the predicates corresponding to the con-
jecture and the explanations must be discovered among the pieces of
knowledge that are at one’s disposal.

We have already noted that an explanatory analogy might admit
more than one solution. For instance, the solution of analogy shark :
ocean :: ? : desert could have been either a camel, or a desert lion,
or a Sahara desert ant. Under some circumstance, the answer “I don’t
know” could also be correct. In order to judge the quality and valid-
ity of an answer, we must also know the respective explanation. If all
explanations are evaluated by an observer as valid, then what answer
is the best? In such a case, the best answer would be the one which
maximizes the number of relations between the source and the tar-
get (i.e., maximizes number k in Definition 2). For instance, in our
case, the answer “desert lion” is to be preferred, because in addition
to similarity relations R1 and R2 it also satisfies relation R3 “both
shark and desert lion are predators”. The more similarity relations
the candidate solution of the incomplete analogy satisfies, the harder
it is to come with a different solution. We say that the solution at
hand is “hard to vary”. According to Deutsch [6], such a solution has
a better “explanatory power” than the other competing solutions.

The multitude of answers points to the fact that the answer is
observer dependent. The “less knowledgeable” observer might not
know about the existence of desert lions and therefore the answer
“camel” would sound more plausible to him or her. An observer not
knowing any animal living in a desert obviously must answer “I don’t
know”.

3.3 Variants of analogies

Analogies also occur in a number of different forms which can be
seen as generalizations or specific cases of our definition of analogy.
Let us mention but a few of such instances of analogy.

A more general case is the case of so-called incomplete analogies,
in which one has to find an analogy between two (or even more) lin-
guistic notions S and T but not all (possible none of the) attributes of
neither notion are given. That is, a part of a solution must also be the
discovery of the respective attributes of T and S whose pairs corre-
spond to the similarity relations, and the maximization of the number
of such pairs. Such problems occur, e.g., in taxonomy dealing with
classification of things or concepts based on sharing similar features.
In such cases the degree of creativity seems to be higher than in the
cases described by Definition 2.

In the opposite direction, a metaphor is a special type of analogy.
A metaphor is an expression of language that describes a subject by
comparing it with another unrelated subject resembling the original
subject only in some semantic aspects, on some points of compari-
son. Both subjects then share the same semantic property which is

not immediately apparent from the names of both subjects (cf. the
metaphor “time is money”) (cf. [10]).

An extended metaphor is allegory, in its most general sense. Al-
legory has been used widely throughout the histories of all forms of
art, largely because it readily illustrates complex ideas and concepts
in ways that are comprehensible to its viewers, readers, or listen-
ers. Allegories are typically used as literary devices or rhetorical de-
vices that convey hidden meanings through symbolic figures, actions,
imagery, and/or events, which together create the moral, spiritual,
or political meaning the author wishes to convey (cf. Wikipedia).
Re-casting allegory into our framework, allegory usually establishes
similarity relations between the narrative story and its possible inter-
pretations in a real or imaginary world. Discovering such relations
is a task for allegory creation as well as their projection into the so-
lution of the allegory at hand. The idea is that this projection is not
usually obvious at the first sight and its discovery is a task for the ob-
server. In this sense, the similarity relations are “indirectly defined”
and depend on the individual taste and knowledge of the observer.
Aesthetics and emotions can play an important role in this process.
In this way, both creating an allegory by its creator as well as its
“deciphering” by an observer are creative acts.

Finally, let us mention the most general and the most important
case that plays a crucial role in scientific discovery, and this is the
case of the resolution of a “flaw” in a theory. In our framework (cf.
Definition 1), the scenario of such a situation is as follows: consider
theory T working well over some epistemic domain until one day an
input ω to T is found delivering output κ1. This output is different
from output κ2 which for some reason was expected (e.g. κ1 dis-
agrees with observations or with experiments). Now the question is,
what is the minimal adjustment of theory T such that it would pre-
dict output κ2 on input ω while retaining its ability to work correctly
for all other inputs? Clearly, this is another variation on the theme of
analogy. This time however, the epistemic theory T itself has become
the source and the new theory T ′ the target of the analogy, and one
has to invent new attributes of the target theory preserving as much
of the old theory as possible while repairing its flow w.r.t. input ω.Of
course, it may happen that theory T is “irreparable” and T ′ will be
completely different from T. History of science knows a lot of such
examples (cf. the clash of Darwinism and creationism).

3.4 Efficiency issues in analogy solving
In the framework of epistemic computations one cannot speak about
complexity of computations in the classical sense. This is because,
in this case, no concrete computational model is used. What can be
done for a computation generating complex knowledge, is to describe
what partial knowledge or pieces of information are needed in order
to generate the knowledge.

Consider the case of solving an explanatory analogy in the form
as described by Definition 2 and 3.

The input knowledge for our computation consists of two linguis-
tic predicates S, T ∈ NL from a natural languageNL, respectively,
with S = (s1, . . . , sk) and T = (t1, . . . , tk). Since we are dealing
with explanatory analogy we will assume that some (but not all) at-
tributes ti’s in T are left unspecified. Let K be the knowledge base
that is at the disposal of our computation.

In order to resolve such analogy, we need to discover the following
knowledge:

1. we have to check whether an object corresponding to predicate S
does exist in K. If not, the answer would be “I don’t know” and
we are done.



2. for each object T ′ ∈ K satisfying predicate T in specified at-
tributes, we check whether in K there exists

(a) a k-ary predicate P satisfying P (S) = P (T ′) (i.e., we are
looking for a conjecture). If there is no such P the answer
would again be “I don’t know” and we are done.

(b) next, we look for linguistic relations of similarity
R1, . . . , Rk ∈ K such that Ri(si, ti), for i = 1, . . . , k
holds. If such relations are found then the answer would return
object T ′, conjecture P and explanations Ri’s. Otherwise the
answer would again be “I don’t know” and in either case, we
are done.

If no object T ′ is found then the answer is “I don’t know” and we
are done.

A more involved procedure would be needed in case the necessary
knowledge is not found and we don’t want to “give it up”. If this
happens then it is possible to consult “external sources” such as the
web, encyclopedias, monographs, experts, etc. In any case, one can
see that resolving explanatory analogies is a quite demanding task,
requiring in the worst case knowledge of all items in the underlying
knowledge base.

Can we say at least something about the computational complex-
ity of solving explanatory analogies? Well, in any case, when we
are dealing with analogies over finite knowledge bases, the previous
“algorithm” of finding a solution (if it exists) solves in fact a combi-
natorial problem over a finite domain and therefore can be solved in
finite time.

Obviously, the solution of an analogy problem, and in general, of
any creativity task depends on all items in the underlying knowl-
edge base. In order to address the essence of the problem of knowl-
edge discovery in terms of the size of the underlying knowledge base
we also use a metaphor, viz. the metaphor of a mosaic. Namely, a
simplistic view of knowledge discovery is that we seek a piece or
pieces of knowledge that fit into a certain unfinished mosaic com-
posed from pieces of knowledge possibly from various domains.
Here, “fit” means that the new pieces of knowledge are related to the
existing pieces by a certain set of known eligible relations that can be
either of a syntactic or a semantic nature. (Note that this was also the
case of analogies and metaphors.) Then the creativity problem is the
task of composing a solution of a problem from finitely many pieces
of knowledge that have to be related in a logical way in order to come
up with the desired solution. It is interesting to observe that a mosaic
where only few pieces are missing can be seen as a hypothesis, or
a conjecture. In the case of explanatory analogy solving the size of
the mosaic is bounded by the number of attributes of both source and
target predicate (parameter k in Definition 2). If n is the size of the
knowledge base then solving the mosaic problem requires inspection
of at most

(
n
k

)
= O(nk) subsets of the knowledge base. This means

that for sufficiently large n and a fixed k the mosaic problem is of
polynomial complexity and thus fixed parameter tractable in k.

A problem similar to the creativity problem — the so-called
domino problem — has been studied in classical complexity the-
ory (based on Turing machines). In 1966, Berger [2] proved that the
domino problem is (classically) undecidable if the pieces of knowl-
edge can be used an arbitrarily number of times. The basic idea of
the proof is to have a mosaic to encode a halting computation of a
Turing machine.

On the one hand, this explains the difficulty of finding new knowl-
edge in general: there is no (Turing machine) algorithm solving such
a task. On the other hand, solutions with a small number of pieces

are relatively easy to find by a combinatorial search. It is interesting
to note that the unrestricted creativity problem seems to be one of the
few known undecidable problems of practical significance.

4 Discovering Knowledge

In [5] Barry Cooper asked, whether information can increase in a
computation. Indeed, how could a computation produce information
which has not already been somehow encoded in the initial data?
This does not seem to be possible. An exhaustive answer to this prob-
lem has been given by S. Abramsky in [1]. He concludes that, while
information is presumably conserved in a total (closed) system, there
can be information flow between, and information increase in, sub-
systems. Note that in our definition of computation we have con-
sidered computational processes rooted in the underlying epistemic
domains. This can be viewed as though computations are “observ-
ing” their “environments” as captured in their knowledge bases, and
indeed, some of them even update the underlying knowledge or gain
information from cooperating theories under an interactive scenario.
In this case it is possible for such a computation to discover new
knowledge.

More precisely, it is possible to go beyond the current knowledge
explicitly represented in a knowledge base. This can be done by dis-
covering new relationships among the elements of knowledge, or to
discover an element or elements of knowledge that satisfy a required
relationship to the existing pieces of knowledge, or to gain a new
piece of knowledge from “external sources”. By “discover” we read-
ily mean to make something explicitly known, i.e., to obtain explicit
knowledge of something for the first time. As an example of new
knowledge one can take the resolution of a given analogy.

When speaking about creativity in the sense of knowledge gener-
ation one must take into account that knowledge can only be gener-
ated from knowledge — this is in fact the essence of our definition
of computation. Thus, there exist two opposite processes related to
knowledge processing: knowledge acquisition, and knowledge gen-
eration.

There are many ways of knowledge acquisition: by reason and
logic, by scientific method, by trial and error, by algorithm, by ex-
perience, by intuition, from authority, by listening to testimony and
witness, by observation, by reading, from language, culture, tradi-
tion, conversation, etc.

The purpose of acquisition processes is to let the information enter
into a system and to order it — via computation — into the existing
theory or theories over the pertinent knowledge domains (and rep-
resent it in a knowledge base). Such domains take various forms of
conceptualizations which are part of the respective theory. A concep-
tualization is a simplified, abstract view of the world representing the
given knowledge domain. It captures the objects, concepts and other
entities and their relationships existing within the knowledge domain
at hand (cf. Wikipedia). Obviously, any knowledge acquisition pro-
cess builds and updates the existing theories.

The purpose of the knowledge generation process is to produce
knowledge in reaction to the external or internal requests. One can
distinguish two basic principles of knowledge generation: syntactic
and semantic knowledge mining. Both methods make use of specific
inference mechanisms whose purpose is to discover hidden patterns
in the data.

Syntactic knowledge mining works solely over the data represent-
ing knowledge. It takes into account only the syntax of the respective
data, not their meaning, and also the syntactic inference mechanisms
of the underlying theory. Syntactic knowledge mining is the compu-



tational process of discovering patterns mainly in large data sets in-
volving methods at the intersection of artificial intelligence, machine
learning, statistics, and database systems. Finding a pattern corre-
sponding to a certain relationships among data not previously known
certainly counts as knowledge discovery.

Semantic knowledge mining is the main engine of creativity. It also
looks for hidden patterns in data (knowledge representations) which
are semantically, rather than syntactically, related. Usually, based on
the semantics of one pattern (the base) and a semantic relation an
other pattern (the target), possibly in a different knowledge domain,
with a similar semantic structure as the base pattern, is sought satis-
fying the required relation.

Very often the task of semantic knowledge mining is formed in
a natural language. That is, the items to be sought and the relations
to be satisfied are described in linguistic terms (as was the case of
analogy solving). This complicates the searches since the meaning of
linguistic terms must be known. The meaning of each term is, in fact,
a piece of knowledge — a theory describing (the properties of) the
notion at hand in various contexts. Thus, semantic knowledge min-
ing calls for detecting similarities between theories usually related to
different knowledge domains.

Discovering a, in a sense, “parallel” theory to a given one con-
tributes to a better understanding of either theory since it enables
to expect relations holding in one theory to also hold in its pendant
theory. This is an important element of insight, explanation and un-
derstanding. Insight, understanding and explanation make only sense
within a theory. They must follow from known facts and rational
thoughts.

Unfortunately, general mechanisms of semantic knowledge dis-
covery, explanations and understanding are largely unknown. What
we have described here are but the first steps along the respective
road.

5 DISCUSSION

We have already remarked at several occasions that, although we see
every computation as a knowledge generating process, we cannot au-
tomatically consider any computational process to be a creative pro-
cess. Stating this, when will a computation become a creative pro-
cess? This seems to be a “million dollar question” of the entire field.

As an example, consider computing x2, given x. Is this compu-
tation a creative process? Compare this with solving the incomplete
analogy shark : ocean :: ? : desert. Where is the difference? We even
know for both cases an algorithm leading to an answer. So where is
a difference? Why is finding a solution of the former task considered
to be a “non-creative” task whereas finding a solution of the latter is
considered to be a creative task?

Well, there seem to be two important differences. In solving the
first task one can compute directly with x and manipulate it as the
computation requires. In the second case, the computation requires to
discover other notions contained in the knowledge base, and the an-
swer depends on what knowledge is stored in the knowledge database
at that time. As we have seen, the solution of the second task need
not be unique. And the second difference is in the complexity of ex-
planations. While in the first case we must offer an explanation as
required by Definition 1, in the second case, in principle, we must
offer two explanations: one as asked by Definition 1 related to the
correctness of the computation, and the second one required by Def-
inition 2 concerning the correctness of analogy drawing. In general,
is there a clear cut between non-creative and creative computational
knowledge generation? Nevertheless, the extreme cases can be dis-

tinguished.
One might think that there is one more difference. Namely, that

in the first case we do not need to know the semantics of x whereas
in the second case it is necessary to know the semantics of the “pa-
rameters” of the analogy. But this is not true — both computations
proceed without knowing the semantics of the respective notions.

Thus, as it appears, in creative knowledge generation (i.e., in com-
putational creativity) the resulting knowledge depends, in addition to
the discovery algorithm, on the contents of the underlying knowledge
base. The result need not be uniquely defined and in some case need
not be defined at all. The respective “creative computation” must
work over whatever complete or incomplete knowledge base over
the domain of the natural language at hand.

An aspect that seems implicit in “epistemic creativity” is that
it isn’t driven by the search for a pre-determined answer. In other
words, creativity seems be synonymous with “unanticipated solu-
tion”. In this context the underlying computational process is diver-
gent since it leads to many answers, solutions, knowledge items even
from domains that are not internal already but may be imported from
elsewhere. Thus creativity seems to involve the generation of options
that do not follow by mere deterministic reasoning. (If an artist has
found a style that he can repeat, the question is whether it remains a
creative process after the first time.)

The bottom line seems that a creative process is not a special type
of computation to begin with but a whole collection of computations
as also seen from the schema of resolving explanatory analogies in
Subsection 3.4. This process is guided at best by some overall trigger-
ing process. This latter process may also hold a criterion for judging
the computations or rather, the knowledge they come up with, a kind
of objective function (which may not be well determined nor a “func-
tion” either). In the case of analogies we opted for the “hard to vary”
criterion. In any case, this would mean that the question “when is a
computation creative” is perhaps not the proper one to ask, if we ac-
cept that it is rather a complex process of “divergent computations”.

Interestingly, in [12] the author attributes the difference between
creative and non-creative mental processes not to the underlying
computational/functional mechanisms, but rather to the way in which
the mental process is experienced. This, however, throws no light on
the nature of the underlying mechanisms.

In the context of computational creativity our analysis of analogy
solving has revealed that the larger the knowledge base the greater
the potential for discovering new knowledge. In order to have the
knowledge base as large as possible it must potentially involve all
the existing human knowledge and the creative agent must have a
command of natural language in order to be able to navigate among
various knowledge domains. Along these lines it appears that among
the main obstacles of the progress in AGI is our insufficient knowl-
edge of natural language processes concerned with the interactions
between computers and human (natural) languages and representa-
tion of knowledge accessible to natural languages. Automatic proce-
dures building the respective knowledge bases must be sought (cf.
[16]).

Finally, one remark regarding the series of recent writings and
interviews of one of the world top thinkers, the prominent British
physicist David Deutsch (cf. [7]). At these occasions he has repeat-
edly stressed that “The field of artificial (general) intelligence has
made no progress because there is an unsolved philosophical prob-
lem at its heart: we do not understand how creativity works.”

In spite of what is known about computational creativity (cf. [4])
and despite of the enormous activities in this field, there is some-
thing in Deutsch’s statement. What is still missing in all known ap-



proaches, are the phenomenal issues related to creativity. The “phe-
nomenal component” of creativity seems to be required for a gen-
uine understanding and realization of creative acts. In our approach
we have covered up this problem by the requirement of a full mas-
tering of the natural language. This appears to be impossible without
engagement with issues around consciousness and free will, and this
is why we have stressed the central role of natural language in epis-
temic creativity processes.

6 CONCLUSION

Our approach is consistent with the modern philosophical view ac-
cepted since ancient times that creativity is a form of discovery of
new knowledge rather than some kind of inspired guessing. In this
discovery process the role of natural language is indispensable since
it serves as a universal language bridging various theory-less knowl-
edge domains serving as knowledge base for a knowledge discovery
process. Our approach to the problems of computational creativity
via the epistemic view of computations offers a natural and uniform
framework for the investigation of such problems. Under this view,
computational creativity is simply seen as a specific kind of compu-
tational knowledge discovery in the underlying knowledge base. The
richer the knowledge base the higher the potential for creativity is
possessed by the corresponding computations. From this viewpoint,
the classical, “non-creative” computational processes are but a spe-
cial, in a sense “degenerated” kind of computations that do not make
use of epistemic theories corresponding to knowledge domains de-
scribed by explicit knowledge. The epistemic view of computations
points to the full capability of computations by revealing their cre-
ative potential already in their very definition.

ACKNOWLEDGEMENTS

The research of the first author was partially supported by ICS AS CR
fund RVO 67985807 and the Czech National Foundation Grant No.
15-04960S. We thank the anonymous reviewers for their insightful
comments that have helped to improve the final version of our paper.

REFERENCES
[1] S. Abramsky. Information, processes and games. In J. van Benthem and

P. Adriaans, editors, Handbook of the Philosophy of Information, pages
483549. Elsevier Science Publishers, Amsterdam, 2008

[2] Berger, R.: The undecidability of the Domino Problem, Memoirs of the
American Mathematical Society 66, 1966.

[3] Bishop, J.M., (2009), A Cognitive Computing fallacy? Cognition, com-
putations and panpsychism, Cognitive Computing 1:3, pp. 221-233

[4] Boden, M.: The Creative Mind: Myths and Mechanisms (Weiden-
feld/Abacus & Basic Books, 1990; 2nd edn. Routldge, 2004)

[5] Cooper, B.: Turing centenary: The incomputable reality Nature
482,465, 23 February 2012

[6] D. Deutsch, The Beginning of Infinity. Explanations That Transform the
World. Penguin, 2011, 496 pages

[7] D. Deutsch, “Creative Blocks”, AEON Magazine, 02 October 2012
[8] G. Edelman, Second Nature: Brain Science and Human Knowledge.

Yale University Press, 2006, 224 p.
[9] Koestler, A.: The Act of Creation, Penguin Books, New York, 1964.

[10] G. Lakoff, and M. Johnson, Metaphors We Live By. Chicago, IL: The
University of Chicago Press, 1980

[11] Mokyr, J.: Mobility, Creativity, and Technological Development: David
Hume, Immanuel Kant and the Economic Development of Europe. Ses-
sion on Creativity and the Economy, German Association of Philoso-
phy, Berlin, Sept. 18, 2005. In G. Abel, ed., Kolloquiumsband of the
XX. Deutschen Kongresses fr Philosophie, Berlin 2006, pp. 1131-1161.

[12] Nanay, B.: An experiential account of creativity. In: Elliot Paul and
Scott Barry Kaufman (eds.): The Philosophy of Creativity. Oxford: Ox-
ford University Press, 2014, pp. 17-35.

[13] Valiant, L.: Probably Approximately Correct: Nature’s Algorithms for
Learning and Prospering in a Complex World, Basic Books, (2013)

[14] van Gelder, T.: What might cognition be, if not computation? The Jour-
nal of Philosophy, Vol. 92, No. 7. (Jul., 1995), 345-381.

[15] J. van Leeuwen, J. Wiedermann: Knowledge, representation and the
dynamics of computation. To appear in: G. Dodig-Crnkovic, R. Gio-
vagnoli (Eds): Representation and Reality: Humans, Animals and Ma-
chines, 2015, Berlin: Springer

[16] Wiedermann, J.: The creativity mechanisms in embodied agents: An ex-
planatory model. In: 2013 IEEE Symposium Series on Computational
Intelligence (SSCI), IEEE, 2013, pp. 41-45.

[17] Wiedermann, J. van Leeuwen, J.: Rethinking computation. In: Proc.
6th AISB Symp. on Computing and Philosophy: The Scandal of Com-
putation - What is Computation?, AISB Convention 2013 (Exeter, UK),
AISB, 2013, pp. 6-10

[18] Wiedermann, J., van Leeuwen, J.: Computation as knowledge gen-
eration, with application to the observer-relativity problem. In: Proc.
7th AISB Symposium on Computing and Philosophy: Is Computation
Observer-Relative?, AISB Convention 2014 (Goldsmiths, University of
London), AISB, 2014

[19] Wiedermann, J.,van Leeuwen, J.: What is Computation: An Epistemic
Approach. In: G. Italiano et al. (Eds), SOFSEM 2015: Theory and Prac-
tice of Computer Science, Proceedings, Lecture Notes in Computer Sci-
ence Vol 8939, Springer, 2015, pp. 1-13.


