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Abstract. This survey paper highlights some advances and chal-
lenges in robots that learn to carry out tasks from verbal interaction
with humans, possibly combined with physical manipulation of their
environment. We first describe what robots have learnt from verbal
interaction, and how do they do it. We then enumerate a list of re-
search limitations to motivate future work in this challenging and ex-
citing multidisciplinary area. This brief survey points out the need of
bringing robots out of the lab, into uncontrolled conditions, in order
to investigate their usability and acceptance by end users.

1 INTRODUCTION

Intelligent conversational robots are an exciting and important area
of research because of their potential to provide a natural language
interface between robots and their end users. A learning conversa-
tional robot can be defined as an entity which improves its perfor-
mance over time through verbally interacting with humans and/or
other machines in order to carry out abstract or physical tasks in
its (real or virtual) world. The vision of such kinds of robots is be-
coming more realistic with technological advances in artificial in-
telligence and robotics. The increasing development of robot skills
presents boundless opportunities for them to perform useful tasks for
and with humans. Such development is well suited to robots with a
physical body because they can exploit their input and output modal-
ities to deal with the complexity of public spatial environments such
as homes, shops, airports, hospitals, etc. A robot learning from in-
teraction, rather than a robot that does not learn, is particularly rele-
vant because it is not feasible to pre-program robots for all possible
environments, users and tasks. Even though many robotic systems
can be scripted or programmed to behave just as expected, the rich
nature of interaction with the physical world, or with humans, de-
mands flexible, adaptive solutions to deal with dynamic, previously
unknown, or highly stochastic domains. Therefore, robots should be
able to refine their already learned skills over time and/or acquire
new skills by (verbally) interacting with its users and its spatial envi-
ronment. An emerging multidisciplinary community at the intersec-
tion of machine learning, human-robot interaction, natural language
processing, robot perception, robot manipulation and robot gesture
generation, among others, seeks to address challenges in realising
such robots capable of interactive learning.

This paper will provide a brief survey on robots that learn to ac-
quire or refine their verbal skills from example interactions using
machine learning. Conversational robots that draw on hand-coded
behaviours, or robots learning from non-verbal interaction [3, 14],
are therefore considered out of scope here.
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2 ADVANCES
2.1 What have robots learnt from conversational

interaction?
The following list of representative conversational robots shows a
growing interest in this multidisciplinary field, see Figure 1.

• The mobile robot Florence is a nursing home assistant [20, 17].
The tasks of this robot include providing the time, providing infor-
mation about the patient’s medication schedule and TV channels,
and motion commands such as go to the kitchen/bedroom. The
learning task consists in inducing a dialogue strategy under uncer-
tainty, where the actions correspond to physical actions (motion
commands) and clarification or confirmation actions. The robot’s
goal is to choose as many correct actions as possible.

• �Iwahashi’s non-mobile robot with integrated arm+hand+head
learns to communicate from scratch by physically manipulating
objects on a table [11]. The tasks of this robot include (a) acqui-
sition of words, concepts and grammars for objects and motions;
(b) acquisition of the relationships between objects; and (c) the
ability to answer questions based on beliefs. The robot’s goal is to
understand utterances and to generate reasonable responses from
a relatively small number of interactions.

• The mobile robot SmartWheeler is a semi-autonomous wheelchair
for assisting people with severe mobility impairments [19]. The
task of the robot is to assist patients in their daily locomotion.
The learning task is similar as in the Florence robot, the induction
of a dialogue manager under uncertainty, but with a larger state
space (situations). The robot’s goal is to reduce the physical and
cognitive load required for its operation.

• A mobile robotic forklift is a prototype for moving heavy objects
from one location to another [25]. Example commands include
going to locations, motion commands, and picking up and putting
down objects. The learning task consists in understanding natural
language commands in the navigation and object manipulation do-
main. The robot’s goal is to ground natural language commands
(mapping commands to events, objects and places in the world
[18]) in order to output a plan of action.

• The humanoid robot Simon manipulates physical objects on a ta-
ble from human teachers [2]. The task of the robot includes pour-
ing cereal into bowls, adding salt to salads, and pouring drinks
into cups. The learning task is to ask questions to human demon-
strators from three different types: label queries (Can I do it like
this?), demonstration queries (Can you show me how to do it?) ,
and feature queries (Should I keep this orientation?). The robot’s
goal is to ask as good questions as possible in order to achieve fast
learning from physical demonstrations.

• A KUKA mobile platform with manipulator ensembles simple
furniture [24]. The task of the robot is to assemble IKEA furni-
ture such as tables based on STRIPS-like commands. The learning
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Figure 1. Example learning conversational robots: (a) Florence nursebot [20], (b) Iwahashi’s robot [11], (c) Kuka furniture assembler [24], (d) Nao giving
directions [1], (e) Nao playing quizzes [7], (f) Simon robot learning from demonstrations [2], (g) James bartender robot [12], (h) Forklift robot [25], (i)

SmartWheeler [19], (j) PR2 learning new words [15], (k) Gambit picking up objects [16], and (l) Cosero receiving verbal commands [21]. See text in Section 2.

tasks consists in learning to ground language and to train a natural
language generator in order to ask for help to humans (by gener-
ating words from symbolic requests) when the robot encounters a
failure situation. The robot’s goal is to ensemble furniture as inde-
pendently as possible and to ask for help when failures occurred.

• The torso robot James serves drinks to people in a pub [12]. The
task of the robot is to approach customers in natural language, to
ask for the drinks they want, and to serve the requested drinks. The
learning task consists in inducing a dialogue manager for multi-
party interaction. The robot’s goal is to serve as correct drinks as
possible based on socially acceptable behaviour due to the pres-
ence of multiple customers at once in the robot’s view.

• The humanoid robot NAO has been used to play interactive quiz
games [7, 6]. The robot’s tasks include engaging into interactions,
asking and answering questions from different fields, and showing
affective gestures aligned with verbal actions. The learning task
consists in inducing a dialogue strategy optimising confirmations
and flexible behaviour, where users are allowed to navigate flex-
ibly across subdialogues rather than using a rigid dialogue flow.
The robot’s goal is to answer correctly as much as possible and to
ask as many questions as possible from a database of questions.

• The humanoid robot NAO has been used to give indoor route in-
structions [1]. The task of the robot is to provide directions, ver-
bally and with gestures, to places within a building such as of-
fices, conference rooms, kitchen, cafeteria, bathroom, etc., based
on a predefined map. The learning task is to induce a model of

engagement to determine when to engage, maintain or disengage
an interaction with the person(s) in front of the robot. The robot’s
goal is to direct people to the locations they are looking for.

• The mobile robot PR2 has been used to acquire new knowledge
of objects and their properties [15]. The tasks of the robot include
to spot unknown objects, to ask how unknown objects look like,
and to confirm newly acquired knowledge. The learning task is
to extend its knowledge base of objects via descriptions of their
physical appearance provided by human teachers. The robot’s goal
is to answer questions of its partially known environment.

• The robot arm Gambit has been used to study how users users
refer to groups of objects with speech and gestures. The tasks of
the robot is to move indicated objects in a workspace, via verbal
descriptions of object properties and possibly including gestures.
The learning task is to understand user intentions without requir-
ing specialized user training. The robot’s goal is to select, as cor-
rectly as possible, the referred objects on the table.

• The mobile robot Cosero has been used in the RoboCup at home
competition, which has won several of them in recent years [21].
The tasks of the robot include to safely follow a person, to de-
tect an emergency from a person calling for help, to get to know
and recognise people and serve them drinks, and to bring objects
from one location to another. The learning task is to extend its
knowledge of locations, objects and people. The robot’s goal is to
carry out tasks autonomously—provided in spoken language—as
expected and in a reasonable amount of time.



ID Dimension / Reference [20] [11] [19] [25] [2] [24] [12] [7] [1] [15] [16] [21] ALL
01 Learning To Interpret Commands 1 1 1 1 1 1 1 1 1 1 1 1 12
02 Dialogue Policy Learning 1 0 1 0 1 0 1 1 0 0 0 0 5
03 Learning To Generate Commands 0 1 0 0 0 1 0 0 0 0 0 0 2
04 Learning To Engage 0 0 0 0 0 0 1 1 1 0 0 0 3
05 Grammar Learning 0 1 0 0 0 0 0 0 0 0 0 0 1
06 Flexible Interaction 0 0 0 0 0 0 0 1 0 0 1 1 3
07 Speech-Based Perception 1 1 1 0 1 0 1 1 1 1 1 1 10
08 Language Grounding 0 1 0 0 0 1 0 0 0 0 1 0 3
09 Speech Production 1 1 1 0 1 0 1 1 1 1 0 1 9
10 Multimodal Fussion 0 1 1 0 1 0 1 0 1 1 1 1 8
11 Multimodal Fission 0 1 1 0 0 0 1 1 1 0 0 1 6
12 Multiparty Interaction 0 0 0 0 0 0 1 0 1 0 0 0 2
13 Route Instruction Giving 0 0 0 0 0 0 0 0 1 0 0 0 1
14 Navigation Commands 1 0 1 1 0 1 0 0 0 0 0 1 5
15 Object Recognition and Tracking 0 1 0 1 1 1 1 0 0 1 1 1 8
16 Human Activity Recognition 0 0 0 0 0 0 0 0 1 0 0 1 2
17 Localisation and Mapping 1 0 1 1 0 0 0 0 0 0 0 1 4
18 Gesture Generation 0 0 0 0 1 0 0 1 1 1 0 1 5
19 Object Manipulation 0 1 0 1 1 1 1 0 0 0 1 1 7
20 Supervised Learning 0 1 0 1 0 1 1 1 1 0 1 0 7
21 Unsupervised Learning 0 0 1 0 0 0 0 0 0 0 1 0 2
22 Reinforcement Learning 1 0 1 0 0 0 1 1 0 0 0 0 4
23 Active Learning 0 0 0 0 1 0 0 0 0 0 0 0 1
24 Learning From Demonstration 0 0 0 0 1 0 0 0 0 1 0 1 3
25 Evaluation w/Recruited Participants 1 0 0 0 1 1 1 1 1 0 1 1 8
26 Evaluation in Noisy/Crowded Spaces 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 1. Features of robots acquiring/using their verbal skills. While boolean values are rough indicators, real values are better indicators but harder to obtain.

2.2 How do conversational robots learn to interact?

Machine learning frameworks are typically used to equip robots with
learning skills, and they differ in the way they treat data and the way
they process feedback [13, 8]. Some machine learning frameworks
addressed by previous related works are briefly described as follows:

• Supervised learning can be used whenever it comes to the task of
classifying and predicting data, where the data consists of labelled
instances (pairs of features and class labels). The task here is to
induce a function that maps the unlabelled instances to labels. This
function is known as a classifier when the labels are discrete and as
a regressor when the labels are continuous. Conversational robots
make use of classifiers to predict spatial description clauses [25],
grounded language [11, 24], social states [12], dialogue acts [7],
gestures [16], and engagement actions [1], among others.

• Reinforcement Learning makes use of indirect feedback typically
based on numerical rewards given during the interaction, and the
goal is to maximise the rewards in the long run. The environment
of a reinforcement learning agent is represented with a Markov
Decision Process (MDP) or a generalisation of it. Its solution is a
policy that represents a weighted mapping from states (situations
that describe the world) to verbal and/or physical actions, and can
be found through a trial and error search in which the agent ex-
plores different action strategies in order to select the one with the
highest payoff. This framework can be seen as a very weak form of
supervised learning, where the impact of actions is rated according
to the overall goal (e.g. fetching and delivering an object or play-
ing a game). This form of learning has been applied to design the
dialogue strategies of interactive robots using MDPs [12], Semi-
MDP to scale up to larger domains [7], and Partially Observable
MDPs to address interaction under uncertainty [20, 19].

• Unsupervised learning addresses the challenge of learning from
unlabelled data. Since it does not receive any form of feedback,

it has to find patterns in the data solely based on its observable
features. The task of an unsupervised learning algorithm is thus to
uncover hidden structure in unlabelled data. This form of machine
learning has been used by [19] to cluster the observation space of
a POMDP-based dialogue manager, by [12] to cluster social states
for multiparty interaction, and by [16] to select features for gesture
recognition tasks.

• Active learning includes a human directly within the learning pro-
cedure assuming three data sets: a small set of labelled examples, a
large set of unlabelled examples, and chosen examples. The latter
are built in an interactive fashion by an active learning algorithm
who queries a human annotator for labels it is most uncertain of.
This form of learning has been applied to learning from demon-
stration scenarios by [2] and closely related by [15, 21].

Other forms of machine learning that can be applied to conversa-
tional robots include transfer and multi-task learning, lifelong learn-
ing, and multiagent learning, among others [8, 4]. Furthermore, while
a single form of learning can be incorporated into conversational
robots, combining multiple forms of machine learning can be used
to address perception, action and communication in a unified way.
The next section describes some challenges that require further re-
search for the advancement of intelligent conversational robots.

3 Challenges: What is missing?
Table 1 shows a list of binary features for the robots described above.
These features are grouped according to language, robotics, learn-
ing, and evaluation. The lowest numbers in the last column indicate
the dimensions that have received little attention. From this table, it
can observed that the main demand to be addressed is conversational
robots that interact with real people in uncontrolled environments
rather than recruited participants in the lab. The research directions
demanding further attention are briefly described as follows:



• Noise and crowds: most (if not all) interactive robots have been
trained and tested in lab or controlled conditions, where no noise
or low levels of noise are exhibited–see Table 1. A future direction
concerning the whole multidisciplinary community lies in training
and evaluating interactive robots in environments including peo-
ple with real needs. This entails dealing with dynamic and varying
levels of noise (from low to high), crowded environments on the
move, distant speech recognition and understanding [26, 23] pos-
sibly combined with other modalities [5], and real users from the
general population rather than just recruited participants.

• Unknown words and meanings: most interactive robots have
been equipped with static vocabularies and lack grammar learn-
ing (see line 5 in Table 1), where the presence of unseen words
lead to misunderstandings. Equipping robots with mechanisms to
deal with the unknown could potentially make them more usable
in the real world. This not only involves language understanding
but also language generation applied to situated domains [9].

• Fluent and flexible interaction: when a robot is equipped with
verbal skills, it typically uses a rigid turn-taking strategy and a
predefined dialogue flow (see line 6 in Table 1). Equipping robots
with more flexible turn-taking and dialogue strategies, so that peo-
ple can say or do anything at any time, would contribute towards
more fluent and natural interactions with humans [7].

• Common sense spatial awareness: most conversational robots
have been equipped with little awareness of the dynamic entities
and their relationships in the physical world (see lines 13 and 16
in Table 1). When a robot is deployed in the wild, it should be
equipped with basic spatial skills to plan its verbal and non-verbal
behaviour. In this way, spatial representations and reasoning skills
may not only contribute to safe human-robot interactions but also
with opportunities to exhibit more socially-acceptable behaviour.
See [22, 10] for detailed surveys on social interactive robots.

• Effective and efficient learning from interaction: interactive
robots are typically trained in simulated or controlled conditions.
If a robot is to interact in the wild, it should be trained with such
kinds of data. Unfortunately, that is not enough because moving
beyond controlled conditions opens up multiple challenges in the
way we train interactive robots such as the following:

– robot learning from unlabelled or partially labelled multimodal
data (see lines 21 and 23 in Table 1) should produce safe and
reasonable behaviours;

– altering the robot’s behaviour, even slightly, should be straight-
forward rather than requiring a substantial amount of human
intervention (e.g. programming);

– inducing robot behaviours should exploit past experiences from
other domains rather than inducing them from scratch; and

– learning to be usable and/or accepted by people from the gen-
eral population is perhaps the biggest challenge.

4 Conclusion
Previous work has shown the increase in multidisciplinary work to
realise intelligent conversational robots. Although several challenges
remain to be addressed by specialised communities, addressing them
as a whole is the end-to-end challenge that sooner or later it has to be
faced. This challenge involves two crucial actions with little attention
so far (a) to bring robots out of the lab to public environments, and (b)
to demonstrate that they are usable and accepted by people from the
general public. We hope that the topics above will encourage further
multidisciplinary discussions and collaborations.
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