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Abstract. An objective of autonomous socially assistive robots is
to meet the needs and preferences of human users. However, this
can sometimes be at the expense of the robot’s own ability to un-
derstand social signals produced by the user. In particular, human
preferences of distance (proxemics) to the robot can have significant
impact on the performance rates of its automated speech and gesture
recognition systems. In this work, we investigated how user proxemic
preferences changed to improve the robot’s understanding human so-
cial signals. We performed an experiment in which a robot’s ability
to understand social signals was artificially varied, either uniformly
or attenuated across distance. Participants (N = 100) instructed a
robot using speech and pointing gestures, and provided their prox-
emic preferences before and after the interaction. We report two ma-
jor findings: 1) people predictably underestimate (based on a Power
Law) the distance to the location of robot peak performance; and 2)
people adjust their proxemic preferences to be near the perceived lo-
cation of robot peak performance. This work offers insights into the
dynamic nature of human-robot proxemics, and has significant impli-
cations for the design of social robots and robust autonomous robot
proxemic control systems.

1 Introduction
A social robot utilizes natural communication mechanisms, such as
speech and gesture, to autonomously interact with humans to accom-
plish some individual or joint task [2]. The growing field of socially
assistive robotics (SAR) is at the intersection of social robotics and
assistive robotics that focuses on non-contact human-robot interac-
tion (HRI) aimed at monitoring, coaching, teaching, training, and re-
habilitation domains [4]. Notable areas of SAR include robotics for
older adults, children with autism spectrum disorders, and people in
post-stroke rehabilitation, among others [25, 17].

Consequently, SAR constitutes an important subfield of robotics
with significant potential to improve health and quality of life. Be-
cause the majority of SAR contexts investigated to date involve one-
on-one face-to-face interaction between the robot and the user, how
the robot understands and responds to the user is crucial to successful
autonomous social robots [1], in SAR contexts and beyond.

One of the most fundamental social behaviors is proxemics, the
social use of space in face-to-face social encounters [5]. A mobile so-
cial robot must position itself appropriately when interacting with the
user. However, robot position has a significant impact on the robot’s
performance—in this work, performance is measured by automated
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speech and gesture recognition rates. Just like electrical signals, hu-
man social signals (e.g., speech and gesture) are attenuated (lose
signal strength) based on distance, which dramatically changes the
way in which automated recognition systems detect and identify the
signal; thus, a proxemic control system that often varies its location
and, thus, creates signal attenuation, can be a defining factor in the
success or failure of a social robot [16].

In our previous work [16] (described in detail in Section 2.2), we
modeled social robot performance attenuated by distance, which was
then used to implement an autonomous robot proxemic controller
that maximizes its performance during face-to-face HRI; however,
this work begged the question as to whether or not people would ac-
cept a social robot that positions itself in a way that differs from tradi-
tional user proxemic preferences. Would users naturally change their
proxemic preferences if they observed differences in robot perfor-
mance in different proxemic configurations, or would their proxemic
preferences persist, mandating that robot developers must improve
autonomous speech and gesture recognition systems before social
and socially assistive robot technology can be deployed in the real
world? This question is the focus of the investigation reported here.

2 Background
The anthropologist Edward T. Hall [5] coined the term “proxemics”,
and, in [6], proposed that proxemics lends itself well to being ana-
lyzed with performance (as measured through sensory experience) in
mind. Proxemics has been studied in a variety of ways in HRI; here,
we constrain our review of related work to that of autonomous HRI3.

2.1 Comfort-based Proxemics in HRI
The majority of proxemics work in HRI focuses on maximizing
user comfort during a face-to-face interaction. The results of many
human-robot proxemics studies have been consolidated and normal-
ized in [28], reporting mean distances of 0.49–0.71 meters using a va-
riety of robots and conditions. Comfort-based proxemic preferences
between humans and the PR2 robot4 were investigated in [24], re-
porting mean distances of 0.25–0.52 meters; in [16], we investigated
the same preferences using the PR2 in a conversational context, re-
porting a mean distance of 0.94 meters. Farther proxemic preferences
have been measured in [18] and [26], reporting mean distances of
1.0–1.1 meters and 1.7–1.8 meters, respectively.

3There is a myriad of related work reporting how humans adapt to various
technologies, but this is beyond the scope of this work. For a review, see [8].

4https://www.willowgarage.com/pages/pr2/overview



However, results in our previous work [16] suggest that au-
tonomous speech and gesture recognition systems do not perform
well using comfort-based proxemic configurations. Speech recogni-
tion performed adequately at distances less than 2.5 meters, and face
and hand gesture recognition performed adequately at distances of
1.5–2.5 meters; thus, given current technologies, distances for mu-
tual recognition of these social signals is between 1.5 and 2.5 meters,
at and beyond the far end of comfort-based proxemic preferences.

2.2 Performance-based Proxemics in HRI
Our previous work utilized advancements in markerless motion cap-
ture (specifically, the Microsoft Kinect) to automatically extract
proxemic features based on metrics from the social sciences [11, 14].
These features were then used to recognize spatiotemporal interac-
tion behaviors, such as the initiation, acceptance, aversion, and termi-
nation of an interaction [12, 14]. These investigations offered insights
into the development of proxemic controllers for autonomous social
robots, and suggested an alternative approach to the representation of
proxemic behavior that goes beyond simple distance and orientation
[13]. A probabilistic framework for autonomous proxemic control
was proposed in [15, 10] that considers performance by maximizing
the sensory experience of each agent (human or robot) in a co-present
social encounter. The methodology established an elegant connection
between previous approaches and illuminated the functional aspects
of proxemic behavior in HRI [13], specifically, the impact of spac-
ing on speech and gesture behavior recognition and production. In
[16], we formally modeled (using a dynamic Bayesian network [9])
autonomous speech and gesture recognition systems as a function of
distance and orientation between a social robot and a human user,
and implemented the model as an autonomous proxemic controller,
which was shown to maximize robot performance in HRI.

However, while our approach to proxemic control objectively
maximized the performance of the robot, it also resulted in prox-
emic configurations that are atypical for human-robot interactions
(e.g., positioning itself farther or nearer to the user than preferred).
Thus, the question arose as to whether or not people would subjec-
tively adopt a technology that places performance over preference, as
it might place a burden on people to change their own behaviors to
make the technology function adequately.

2.3 Challenges in Human Spatial Adaptation
For humans to adapt their proxemic preferences to a robot, they must
be able to accurately identify regions in which the robot is perform-
ing well; however, errors in human distance estimation increase non-
linearly with increases in distance, time, and uncertainty [19]. Fortu-
nately, the relationship between human distance estimation and each
of these factors is very well represented by Steven’s Power Law, axb,
where x is distance [19, 23]. Unfortunately, these relationships are
reported for distances of 3–23 meters, which are farther away than in
those with which we are concerned for face-to-face HRI—thus, we
cannot use the reported model parameters and must derive our own.

In this work, we investigate how user proxemic preferences change
in the presence of a social robot that is recognizing and responding
to instructions provided by a human user. Robot performance (ability
to understand speech and gesture) is artificially attenuated to expose
participants to success and failure scenarios while interacting with
the robot. In Section 3, we describe the overall setup in which our
investigation took place. In Section 4, we outline the specific proce-
dures, conditions, hypotheses, and participants of our experiment.

3 Experimental Setup
3.1 Materials
The experimental robotic system used in this work was the Ban-
dit upper-body humanoid robot5 [Figure 1]. Bandit has 19 degrees
of freedom: 7 in each arm (shoulder forward-and-backward, shoul-
der in-and-out, elbow tilt, elbow twist, wrist twist, wrist tilt, grabber
open-and-close; left and right arms), 2 in the head (pan and tilt), 2
in the lips (upper and lower), and 1 in the eyebrows. These degrees
of freedom allow Bandit to be expressive using individual and com-
bined motions of the head, face, and arms. Mounted atop a Pioneer
3-AT mobile base6, the entire robot system is 1.3 meters tall.

A Bluetooth PlayStation 3 (PS3) controller served as a remote con-
trol interface with the robot. The controller was used by the experi-
menter (seated behind a one-way mirror [Figure 2]) to step the robot
through each part of the experimental procedure (described in Sec-
tion 4.1)—the decisions and actions taken by the robot during the ex-
periment were completely autonomous, but the timing of its actions
were controlled by the press of a “next” button. The controller was
also used to record distance measurements during the experiment,
and to provide ground-truth information to the robot as to what the
participant was communicating (however, the robot autonomously
determined how to respond based on the experimental conditions de-
scribed in Section 4.2).

Four small boxes were placed in the room, located at 0.75 meters
and 1.5 meters from the centerline on each side (left and right) of the
participant [Figure 2]. During the experiment (described in Section
4.1), the participant instructed the robot to look at these boxes. Each
box was labeled with a unique shape and color; in this experiment,
the shapes and colors matched the buttons on the PS3 controller: a
green triangle, a red circle, a blue cross, and a purple square. This
allowed the experimenter to easily indicate to the robot to which box
the user was attending (i.e., “ground-truth”).

A laser rangefinder on-board the robot was used to measure the
distance from the robot to the participant’s legs at all times.

Figure 1. The Bandit upper-body humanoid robot.

5http://robotics.usc.edu/interaction/?l=Laboratory:Robots#BanditII
6http://www.mobilerobots.com/ResearchRobots/P3AT.aspx



Figure 2. The experimental setup.

3.2 Robot Behaviors
The robot autonomously executed three primary behaviors through-
out the experiment: 1) forward and backward base movement, 2)
maintaining eye contact with the participant, and 3) responding to
participant instructions with head movements and audio cues.

Robot base movement was along a straight-line path directly in
front of the participant, and was limited to distances of 0.25 meters
(referred to as the “near home” location) and 4.75 meters (referred to
as the “far home” location); it returned repeatedly to these “home” lo-
cations throughout the experiment. Robot velocity was proportional
to the distance to the goal location; the maximum robot speed was
0.3 m/s, which people find acceptable [22].

As the robot moved, it maintained eye contact with the partici-
pant. The robot has eyes, but they are not actuated, so the robot’s
head pitched up or down depending on the location of the partici-
pant’s head, which was determined by the distance to the participant
(from the on-board laser) and the participant’s self-reported height.
We note that prolonged eye contact from the robot often results in
user preferences of increased distance in HRI [24, 18].

The robot provided head movement and audio cues to indicate
whether or not it understood instructions provided by the participant
(described in Section 4.1.2). If the robot understood the instructions,
it provided an affirmative response (looking at a box); if the robot
did not understand the instructions, it provided a negative response
(shaking its head). With each head movement, one of two affective
sounds were also played to supplement the robot’s response; affective
sounds were used because robot speech influences proxemic prefer-
ences and would have introduced a confound in the experiment [29].

4 Experimental Design
With the described experimental setup, we performed an experiment
to investigate user perceptions of robot performance attenuated by
distance and its effect on proxemic preferences.

4.1 Experimental Procedure
Participants (described in Section 4.4) were greeted at the door enter-
ing the private experimental space, and were informed of and agreed
to the nature of the experiment and their rights as a participant, which
included a statement that the experiment could be halted at any time.

Participants were then instructed to stand with their toes touching
a line on the floor, and were asked to remain there for the duration of
the experiment [Figure 2]. The experimenter then provided instruc-
tions about the task the participant would be performing.

Participants were introduced to the robot, and were informed that
all of its actions were completely autonomous. Participants were told
that the robot would be moving along a straight line throughout the
duration of the experiment; a brief demonstration of robot motion
was provided, in which the robot autonomously moved back and
forth between distances of 3.0 meters and 4.5 meters from the partic-
ipant, allowing them to familiarize themselves with the robot motion.
Participants were told that they would be asked about some of their
preferences regarding the robot’s location throughout the experiment.

Participants were then informed that they would be instructing the
robot to look at any one of four boxes (of their choosing) located in
the room [Figure 2], and that they could use speech (in English) and
pointing gestures. A vocabulary for robot instructions was provided:
for speech, participants were told they could say the words ”look at”
followed by the name of the shape or color of each box (e.g., ”tri-
angle”, ”circle”, ”blue”, ”purple”, etc.); for pointing gestures, partic-
ipants were asked to use their left arm to point to boxes located on
their left, and their right arm to point to boxes on their right. This vo-
cabulary was provided to minimize any perceptions the person might
have that the robot simply did not understand the words or gestures
that they used; thus, the use of the vocabulary attempted to maximize
the perception that any failures of the robot were due to other factors.

Participants were told that they would repeat this instruction pro-
cedure to the robot many times, and that the robot would indicate
whether or not it understood their instructions each time using the
head movements and audio cues described in Section 3.2.

Participants had an opportunity to ask the experimenter any clar-
ifying questions. Once participant understanding was verified, we
proceeded with the experiment.

4.1.1 Pre-interaction Proxemic Measures (pre)7

The robot autonomously moved to the “far home” location [Figure
2]. Participants were told that the robot would be approaching them,
and to say out loud the word “stop” when the robot reached the ideal
location at which the participant would have a face-to-face conversa-
tion8 with the robot. This pre-interaction proxemic preference from
the “far home” location is denoted as prefar .

When the participant was ready, the experimenter pressed a PS3
button to start the robot moving. When the participant said “stop”,
the experimenter pressed another button to halt robot movement. The
experimenter pressed another button to record the distance between
the robot and the participant, as measured by the on-board laser.

Once the prefar distance was recorded, the experimenter pressed
another button, and the robot autonomously moved to the “near
home” location [Figure 2]; the participant was informed that the
robot would be approaching to this location and would stop on its
own. The process was repeated with the robot backing away from
the participant, and the participant saying “stop” when it reached the
ideal location for conversation. This pre-interaction proxemic prefer-
ence from the “near home” location is denoted as prenear .

7Measures are provided inline with the experimental procedure to provide
an order of events as they occurred in the experiment.

8Related work in human-robot proxemics asks the participant about lo-
cations at which they feel comfortable [24], yielding proxemic preferences
very near to the participant. Our general interest is in face-to-face human-
robot conversational interaction, with proxemic preference farther from the
participant [16, 26, 27], hence the choice of wording.



From prefar and prenear , we calculated and recorded the average
pre-interaction proxemic preference, denoted as pre9.

4.1.2 Interaction Scenario

After determining pre-interaction proxemic preferences, the robot re-
turned to the “far home” location. The experimenter then repeated to
participants the instructions about the task they would be performing
with the robot. When participants verified that they understood the
task and indicated that they were ready, the experimenter pressed a
button to proceed with the task.

The robot autonomously visited ten pre-determined locations [Fig-
ure 2]. At each location, the robot responded to instructions from the
participant to look at one of four boxes located in the room [Figure
2]. Five instruction-response interactions were performed at each lo-
cation, after which the robot moved to the next location along its
path; thus, each participant experienced a total of 50 instruction-
responses interactions. Robot goal locations were in 0.5-meter inter-
vals inclusively between the “near home” location (0.25 meters) and
“far home” location (4.75 meters) along a straight-line path in front
of the participant [Figure 2]. Locations were visited in a sequential
order; for half of the participants, the robot approached from the “far
home” location (i.e., farthest-to-nearest order), and, for the other half
of participants, the robot backed away from “near home” location
(i.e., nearest-to-farthest order); this was done to reduce any ordering
effects [19].

To controllably simulate social signal attenuation at each location,
robot performance was artificially manipulated as a function of the
distance to the participant (described in Section 4.2). After each in-
struction provided by the participant, the experimenter provided to
the robot (via a remote control interface) the ground-truth of the in-
struction; the robot then determined whether or not it would have
understood the instruction based on a prediction from a performance
vs. distance curve (specified by the assigned experimental condition
described in Section 4.2), and provided either an affirmative response
or a negative response to the participant indicating its successful or
failed understanding of the instruction, respectively.

The entire interaction scenario lasted 10-15 minutes.

4.1.3 Post-interaction Proxemic Measures (post)

After the robot visited each of the ten locations, it autonomously re-
turned to the “far home” location. The experimenter then repeated the
procedure for determining proxemic preferences described in Sec-
tion 4.1.1. This process generated post-performance proxemic pref-
erences from the “far home” and “near home” locations, as well as
their average, denoted postfar , postnear , and post10, respectively.

4.1.4 Perceived Peak Location Measures (perc)

Finally, after collecting post-interaction proxemic preferences, the
experimenter repeated the procedure described in Section 4.1.1 to de-
termine participant perceptions of the location of peak performance.
This process generated perceived peak performance locations from
the “far home” and “near home” locations, as well as their average,
denoted percfar , percnear , and perc11, respectively.

9Post-hoc analysis revealed no statistically significant difference between
prefar and prenear measurements, hence why we rely on pre.

10Post-hoc analysis revealed no statistically significant difference between
postfar and postnear measurements, hence why we rely on post.

11Post-hoc analysis revealed no statistically significant difference between
percfar and percnear measurements, hence why we rely on perc.

4.2 Experimental Conditions
We considered two performance vs. distance conditions; 1) a “uni-
form performance” condition, and 2) an “attenuated perfor-
mance” condition. Overall robot performance for each condition
was held at a constant 40%12—that is, for each participant, the robot
provided 20 affirmative responses and 30 negative responses dis-
tributed across 50 instructions. The way in which these responses
were distributed across locations varied between conditions.

In the uniform performance condition, robot performance was
the same (40%) across across all locations [Figures 3 and 4]. Thus,
at each of the ten locations visited, the robot provided two affirmative
and three negative responses, respectively. This condition served as
a baseline of participant proxemic preferences within the task.

In the attenuated performance condition, robot performance
varied with distance proportional to a Gaussian distribution centered
a location of “peak performance” (M = peak, SD = 1.0) [Figures
3 and 4]. Due to differences in pre-interaction proxemic preferences,
we could not select a single value for peak that provided a similar ex-
perience between participants without introducing other confounding
factors (e.g., the peak not being at a location that the robot visited or
distances beyond the “home” locations). To alleviate this, we opted
to select multiple peak performance locations, exploring the space of
human responses to robot performance differences at a variety of dis-
tances. We selected the eight locations non-inclusively between the
“near home” and “far home” locations as the peak performance loca-
tions [Figure 2]; the “near home” and “far home” locations were not
included in the set of peaks to ensure that participants were always
exposed to an actual peak in performance, rather than just a trend.
Peak performance locations were varied between participants.

Figure 3. The performance curves of the uniform and attenuated
conditions. In this example, peak = 2.25 (in meters), so the attenuated
performance curve parameters is M = peak = 2.25, SD = 1.0. The

number of affirmative responses at a distance, x, from the user is
proportional to p(x), the evaluation of the performance curve at x.

The distribution of affirmative responses for all conditions is pre-
sented in Figure 4. The number of affirmative responses was normal-
ized to 20 (40%) to ensure a consistent user experience of overall
robot performance across all conditions. In the attenuated perfor-
mance condition, the number of affirmative responses at peak was
always the 5 (i.e., perfect performance), and the number of affirma-
tive responses at other locations were always less than that of the
peak to ensure that participants were exposed to an actual peak. At
each location, the order in which the five responses were provided
was random.

12This value was selected because it is an average performance rate pre-
dicted by our results in [16] for typical human-robot proxemic preferences.



Figure 4. The distribution of affirmative responses provided by the robot
across conditions. Manipulated values are highlighted in bold italics.

4.3 Experimental Hypotheses
Within these conditions, we had three central hypotheses:

H1: In the uniform performance condition, there will be no sig-
nificant change in participant proxemic preferences.

H2: In the attenuated performance conditions, participants will
be able to identify a relationship between robot performance and
human-robot proxemics.

H3: In the attenuated performance conditions, participants will
adapt their proxemic preferences to improve robot performance.

4.4 Participants
We recruited 100 participants (50 male, 50 female) from
our university campus community. Participant race was diverse
(67 white/Caucasian, 26 Asian, 3 black/African-American, 3
Latino/Latina, and 1 mixed-race). All participants reported profi-
ciency in English and had lived in the United States for at least two
years (i.e., acclimated to U.S. culture). Average age (in years) of par-
ticipants was 22.26 (SD = 4.31), ranging from 18 to 39. Based on
a seven-point scale, participants reported moderate familiarity with
technology (M = 3.98, SD = 0.85). Average participant height (in
meters) was 1.74 (SD = 0.10), ranging from 1.52 to 1.93. Related
work reports how human-robot proxemics is influenced by gender
and technology familiarity [24], culture [3], and height [7, 21].

The 100 participants were randomly assigned to a performance
condition, withN = 20 in the uniform performance condition and
N = 80 in the attenuated performance condition. In the atten-
uated performance condition, the 80 participants were randomly
assigned one of the eight peak performance locations (described in
Section 4.2) with N = 10 for each peak. Neither the participant nor
the experimenter was aware of the condition assigned.

5 Results and Discussion
We analyzed data collected in our experiment to test our three hy-
potheses (described in Section 4.3), and evaluated their implications
for autonomous social robots and human-robot proxemics.

To provide a baseline of our robot for comparison in gen-
eral human-robot proxemics, we consolidated and analyzed pre-
interaction proxemic preferences (pre) across all conditions (N =
100), as the data had not been influenced by robot performance. The
participant pre-interaction proxemic preference (in meters) was de-
termined to be 1.14 (SD = 0.49) for our robot system, which is con-
sistent with [18] and our previous work [16], but twice as far away as
related work has reported for robots of a similar form factor [28, 24].

5.1 H1: Pre- vs. Post-interaction Locations

To test H1, we compared average pre-interaction proxemic prefer-
ences (pre) to average post-interaction proxemic preferences (post)
of participants in the uniform performance condition.

A paired t-test revealed a statistically significant change in partic-
ipant proxemic preferences between pre (M = 1.12, SD = 0.51)
and post (M = 1.39, SD = 0.63); t(38) = 1.49, p = 0.02. Thus,
our hypothesis H1 is rejected.

The rejection of this hypothesis does not imply a failure of the
experimental procedure, but, rather, provides important insights that
must be considered for subsequent analyses (and for related work in
proxemics). This result suggests that there might be something about
the context of the interaction scenario itself that influenced partici-
pant proxemic preferences. To address any influence the interaction
scenario might have on subsequent analyses, we define a contextual
offset, θ, as the average difference in participant post-interaction and
pre-interaction proxemic preferences (M = 0.27, SD = 0.48); this
θ value will be subtracted from (post− pre) values in Section 5.3 to
normalize for the interaction context.

5.2 H2: Perceived vs. Actual Peak Locations

To test H2, we compared participant perceived locations of peak per-
formance (perc) to actual locations of peak performance (peak) in
the attenuated performance conditions [Figure 5].

Steven’s Power Law, axb, has previously been used to model hu-
man distance estimation as a function of actual distance [19], and is
generally well representative of human-perceived vs. actual stimuli
[23]. However, existing Power Laws relevant to our work only seem
to pertain to distances of 3–23 meters, which are beyond the range
of the natural face-to-face communication with which we are con-
cerned. Thus, our goal here is to model our own experimental data to
establish a Power Law for perc vs. peak at locations more relevant
to HRI (0.75–4.25 meters), which we can then evaluate to test H2.

Immediate observations of our data suggested that the data ap-
pear to be heteroscedastic [Figure 5]—in this case, the variance
seems to increase with distance from the participant, which means we
should not use traditional statistical tests. The Breusch-Pagan test for
non-constant variance (NCV) confirmed this intuition; χ2(1, N =
100) = 15.79, p < 0.001. A commonly used and accepted approach
to alleviate our heteroscedasticity is to transform the perc and peak
data to a log-log scale. While not applicable to all datasets, this ap-
proach served as an adequate approximation for our purposes [Fig-
ure 6]; it also enabled us to perform a regression analysis to deter-
mine parameter values for the Power Law coefficient and exponent,
a = 1.3224 and b = 0.5132, respectively. With these parameters,
we identified that peak was a strongly correlated and very signifi-
cant predictor of perc;R2 = 0.4951, F (1, 78) = 76.48, p < 0.001.
Thus, our hypothesis H2 is supported.

This result suggests that people are able to identify a relationship
between robot performance and human-robot proxemics, but they
will predictably underestimate the distance, x, to the location of peak
performance based on the Power Law equation 1.3224x0.5132. While
human estimation of the location of peak performance is suboptimal,
it is possible that repeated exposure to the robot over multiple ses-
sions might yield more accurate results. This follow-up hypothesis
will be formally tested in a planned longitudinal study in future work
(described in Section 6).



Figure 5. Participant perceived location of robot peak performance (perc)
vs. actual location of robot peak performance (peak). Note the

heteroscedasticity of the data, which prevents us from performing traditional
statistical analyses without first transforming the data (shown in Figure 6).

Figure 6. Participant perceived location of robot peak performance (perc)
vs. actual location of robot peak performance (peak) on a log-log scale,

reducing the effects of heteroscedasticity and allowing us to perform
regression to determine parameters of the Power Law, axb.

5.3 H3: Preferences vs. Peak Locations
To test H3, we compared changes in participant pre-/post-interaction
proxemic preferences (post− pre− θ) to the distance from the par-
ticipant pre-interaction proxemic preference to either a) the actual
location of robot peak performance (peak − pre) [Figure 7], or b)
the perceived location of robot peak performance (perc− pre) [Fig-
ure 8], both in the attenuated performance conditions.

Data for (post−pre− θ) vs. both (peak−pre) and (perc−pre)
were heteroscedastic, as indicated by Breusch-Pagan NCV tests:
χ2(1, N = 100) = 18.81, p < 0.001; and χ2(1, N = 100) =
13.55, p < 0.001; respectively. This is intuitive, as the data for per-
ceived (perc) vs. actual (peak) locations of peak performance were
also heteroscedastic [Figure 5]. The log-transformation approach that
we used in Section 5.2 did not perform well in modeling these data;
thus, we needed to use an alternative approach. We opted to utilize
a Generalized Linear Model [20] because it allowed us to model the
variance of each measurement separately as a function of predicted
values and, thus, perform appropriate statistical tests for significance.

We first modeled changes in participant proxemic preferences
(post − pre − θ) vs. distance from pre-interaction proxemic pref-
erence to the actual location of peak performance (peak − pre). In

Figure 7. Changes in participant pre-/post-interaction proxemic
preferences (pre and post, respectively; θ is the contextual offset defined in

Section 5.1) vs. distance from participant pre-interaction proxemic
preference (pre) to the actual location of robot peak performance (peak).

Figure 8. Changes in participant pre-/post-interaction proxemic
preferences (pre and post, respectively; θ is the contextual offset defined in

Section 5.1) vs. distance from participant pre-interaction proxemic
preference (pre) to the perceived location of robot peak performance (perc).

the ideal situation (for the robot), these match one-to-one—in other
words, the participant meets the needs of the robot entirely by chang-
ing proxemic preferences to be centered at the peak of robot perfor-
mance. Unfortunately for the robot, this was not the case. We de-
tected a strongly correlated and statistically significant relationship
between participant proxemic preference change and distance from
pre-interaction preference to the peak location (R2 = 0.5474, β =
0.5361, t(98) = 9.71, p < 0.001), but participant preference change
only got the robot approximately halfway (β = 0.5361) to its loca-
tion of peak performance [Figure 7]. Why is this?

Recall that results reported in Section 5.2 suggested that, while
people do perceive a relationship between robot performance and
distance, their ability to accurately identify the location of robot peak
performance diminishes based on the distance to it as governed by a
Power Law. Were participants trying to maximize robot performance,
but simply adapting their preferences to a suboptimal location?

We investigated this question by considering changes in partici-
pant proxemic preferences (post − pre − θ) vs. distance from pre-
interaction proxemic preference to the perceived location of peak
performance (perc−pre). If the participant was adapting their prox-
emic preferences to accommodate the needs of the robot, then these



should match one-to-one. A Generalized Linear Model was fit to
these data, and yielded a strongly correlated and statistically signifi-
cant relationship between changes in proxemic preferences and per-
ceptions of robot performance (R2 = 0.5421, β = 0.9275, t(98) =
9.61, p < 0.001) [Figure 8]. Thus, our hypothesis H3 is supported.

The near one-to-one relationship (β = 0.9275) between post-
interaction proxemic preferences and participant perceptions of robot
peak performance is compelling, suggesting that participants adapted
their proxemic preferences almost entirely to improve robot perfor-
mance in the interaction.

5.4 Discussion

These results have significant implications for the design of social
robots and autonomous robot proxemic control systems, specifically,
in that people’s proxemic preferences will likely change as the user
interacts with and comes to understand the needs of the robot.

As illustrated in our previous work [16], the locations of on-board
sensors for social signal recognition (e.g., microphones and cam-
eras), as well as the automated speech and gesture recognition soft-
ware used, can have significant impacts on the performance of the
robot in autonomous face-to-face social interactions. As our now-
reported results suggest that people will adapt their behavior in an ef-
fort to improve robot performance, it is anticipated that human-robot
proxemics will vary between robot platforms with different hardware
and software configurations based on factors that are 1) not specific
to the user (unlike culture [3], or gender, personality, or familiarity
with technology [24]), 2) not observable to the user (unlike height
[7, 21], amount of eye contact [24, 18], or vocal parameters [29]), or
3) not observable to the robot developer. User understanding of the
relationship between robot performance and human-robot proxemics
is a latent factor that only develops through repeated interactions with
the robot (perhaps expedited by the robot communicating its pre-
dicted error); fortunately, our results indicate that user understanding
will develop in a predictable way. Thus, it is recommended that social
robot developers consider and perhaps model robot performance as
a function of conditions that might occur in dynamic proxemic inter-
actions with human users to better predict and accommodate how the
people will actually use the technology. This dynamic relationship, in
turn, will enable more rich autonomy for social robots by improving
the performance of their own automated recognition systems.

If developers adopt models of robot performance as a factor con-
tributing to human-robot proxemics, then it follows that proxemic
control systems might be designed to expedite the process of au-
tonomously positioning the robot at an optimal distance from the user
to maximize robot performance while still accommodating the initial
personal space preferences of the user. This was the focus of our pre-
vious work [16], which treated proxemics as an optimization problem
that considers the production and perception of social signals (speech
and gesture) as a function of distance and orientation. Recall that an
objective of the now-reported work was to address questions regard-
ing whether or not users would accept a robot that positions itself
in locations that might differ from their initial proxemic preferences.
The results in this work (specifically, in Section 5.3) support the no-
tion that user proxemic preferences will change through interactions
with the robot as its performance is observed, and that the new user
proxemic preference will be at the perceived location of robot peak
performance. An extension of this result is that, through repeated
interactions, user proxemic preferences will further adapt and even-
tually converge to the actual location of robot peak performance, a
hypothesis that we will investigate in future work.

6 Future Work

Our experimental conditions (described in Section 4.2) were specif-
ically selected to strongly expose a relationship (if one existed)
between human proxemic preferences and robot performance—the
robot achieved perfect success rates (100%) at “peak” locations and
perfect failure rates (0%) at other locations, and these success/failure
rates were distributed proportional to a Gaussian distribution with
constant variance. Now that we have identified that a relationship ex-
ists, our next steps will examine how the relationship changes over
time or with other related factors. A longitudinal study over multi-
ple sessions will be conducted to determine if changes in preferences
persist from one interaction to the next, and if user proxemic pref-
erences will continue to adapt and eventually converge to locations
of robot peak performance through repeated interactions. Other fu-
ture work will follow the same experimental procedure described in
Section 4.1, but will adjust the attenuated performance condition
(described in Section 4.2) to consider how the relationship changes
with 1) distributions of lower or higher variance, 2) lower maximum
performance or higher minimum performance, 3) more realistic non-
Gaussian distributions, and 4) the interactions between distributions
of actual multimodal recognition systems [16].

This perspective opens up a whole new theoretical design space of
human-robot proxemic behavior. The general question is, “How will
people adapt their proxemic preferences in any given performance
field?”, in which performance varies with a variety of factors, such as
distance, orientation, and environmental interference. The follow-up
question then asks, “How can the robot expedite the process of estab-
lishing an appropriate human-robot proxemic configuration within
the performance field without causing user discomfort?” This will be
a focus of future work, and will extend our prior work on modeling
human-robot proxemics to improve robot proxemic controllers [16].

7 Summary and Conclusions

An objective of autonomous socially assistive robots is to meet the
needs and preferences of a human user [4]. However, this can some-
times be at the expense of the robot’s own ability to understand social
signals produced by the user. In particular, human proxemic prefer-
ences with respect to a robot can have significant impacts on the per-
formance rates of its automated speech and gesture recognition sys-
tems [16]. This means that, for a successful interaction, the robot has
needs too—and these needs might not be consistent with and might
require changes in the proxemic preferences of the human user.

In this work, we investigated how user proxemic preferences
changed to improve the robot’s understanding of human social sig-
nals (described in Section 4). We performed an experiment in which a
robot’s performance was artificially varied, either uniformly or atten-
uated across distance. Participants (N = 100) instructed a robot us-
ing speech and pointing gestures, and provided their proxemic pref-
erences before and after the interaction.

We report two major findings. First, people predictably underes-
timate the distance to the location of robot peak performance; the
relationship between participant perceived and actual distance to the
location of peak performance is represented well by a Power Law
(described in Section 5.2). Second, people adjust their proxemic pref-
erences to be near the perceived location of maximum robot under-
standing (described in Section 5.3). This work offers insights into
the dynamic nature of human-robot proxemics, and has significant
implications for the design of social robots and robust autonomous
robot proxemic control systems (described in Section 5.4).



Traditionally, we focus on our attention on ensuring the robot is
meeting the needs of the user with little regard to the impact it might
have on the robot itself; it is often an afterthought, or something that
we, as robot developers, have to “fix” with our systems. While robot
developers will continue to improve upon our autonomous systems,
our results suggest that even novice users are willing to adapt their
behaviors in an effort to help the robot better understand and perform
its tasks. Automated recognition systems are not and will likely never
be perfect, but this is no reason to delay the development, deploy-
ment, and benefits of social and socially assistive robot technologies.
Robots have needs too, and human users will attempt to meet them.
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